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On some iterated weighted spaces 1
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Abstract

It is proved that the Hörmander Bloc
p,k(Ω1×Ω2) and Bloc

p,k1
(Ω1, B

loc
p,k2

(Ω2)) spaces (Ω1 ⊂
R
n, Ω2 ⊂ R

m open sets, 1 ≤ p < ∞, ki Beurling–Björck weights, k = k1⊗k2) are iso-
morphic whereas the iterated spaces Bloc

p,k1
(Ω1, B

loc
q,k2

(Ω2)) and Bloc
q,k2

(Ω2, B
loc
p,k1

(Ω1))
are not if 1 < p 6= q < ∞. A similar result for weighted Lp–spaces of entire ana-
lytic functions is also obtained. Finally a result on iterated Besov spaces is given:
Bs

2,q(R
n, Bs

2,q(R
m)) and Bs

2,q(R
n+m) are not isomorphic when 1 < q 6= 2 < ∞.

Key words: Beurling ultradistributions, weighted Lp–spaces of entire analytic
functions, Hörmander spaces, Besov spaces.

1 Introduction and notation

Many iterated spaces of functions or distributions are isomorphic to scalar
spaces of the same kind; e.g. Lp(µ, Lp(ν)) and Lp(µ ⊗ ν) (1 ≤ p < ∞,
µ, ν σ–finite measures), Hp(D, Hp(D)) and Hp(D

2) (1 ≤ p < ∞, D unit
disc), W s

p (R
n,W s

p (R
m)) and W s

p (R
n+m) (1 < p < ∞, s = 0, 1, 2, . . . ) or

D′(Ω1, D
′(Ω2)) and D′(Ω1 × Ω2) (Ω1 ⊂ Rn, Ω2 ⊂ Rm open sets) are isomor-

phic. On the contrary, L∞(Rn, L∞(Rm)) and L∞(Rn+m), BMO(T,BMO(T))
and BMO(T2) or D(Ω1, D(Ω2)) and D(Ω1 × Ω2) are never isomorphic (see,
e.g. [6], [4] and [7], [12] and [5], respectively). In this paper we extend slightly
the kernel theorem for Beurling ultradistributions (see [18, Th. 2.3]) and as
a consequence we obtain results of the former kind for Hörmander Bp,k and
Bloc
p,k(Ω) spaces in the sense of Beurling–Björck [3] (these spaces play a crucial

role in the theory of linear partial differential operators, see, e.g. [3], [14] and

1 The first named author is partially supported by DGES, Spain, Project
MTM2005–08350.

Preprint submitted to J. Math. Anal. Appl. 26 April 2007



[16]), for weighted Lp–spaces of entire analitic functions LKp,ρ (these spaces are
the building blocks of the corresponding Besov spaces, see [30], [27], [32] and
[24]) and for Besov spaces Bs

p,q.

The organization of the paper is as follows. Section 2 contains some basic
facts about scalar and vector–valued Beurling ultradistributions and the def-
initions of the spaces which are considered in the paper. In Section 3 we
show that D′

ω(Ω1 ×Ω2) is canonically isomorphic to Lb(Dω1
(Ω1), D

′
ω2

(Ω2)) for
some weights ω1, ω2 and ω (see Th. 3.2). In Section 4 we prove that the re-
striction of the previous canonical isomorphism to Hörmander–Beurling local
space Bloc

p,k(Ω1 × Ω2) is an isomorphism of this space onto the iterated space
Bloc
p,k1(Ω1, B

loc
p,k2(Ω2)) (Th. 4.5) and that the iterated spaces Bloc

p,k1(Ω1, B
loc
q,k2(Ω2))

and Bloc
q,k2

(Ω2, B
loc
p,k1

(Ω1)) are not isomorphic if 1 < p 6= q < ∞ (Th. 4.9). We
also propose the following question: For which weights k1, k2 and q ∈]1,∞]
the iterated spaces Bloc

1,k1
(Rn, Bloc

q,k2
(Rm)) and Bloc

q,k2
(Rm, Bloc

1,k1
(Rn)) are not iso-

morphic? Are the Banach spaces l1(l∞) and l∞(l1) not isomorphic? In the
last section we present a similar result to Theorem 4.5 for weighted Lp–spaces
of entire analytic functions. We also give a result on iterated Besov spaces:
Bs

2,q(R
n, Bs

2,q(R
m)) and Bs

2,q(R
n+m) are not isomorphic when −∞ < s < ∞

and 1 < q 6= 2 <∞.

Notation. The linear spaces we use are defined over C. Let E and F be locally
convex spaces. Then Lb(E,F ) is the locally convex space of all continuous
linear operators equipped with the bounded convergence topology. The dual
of E is denoted by E ′ and is given the strong topology so that E ′ = Lb(E,C).
EN is the topological product of a countable number of copies of E. Bb(E,F )
is the locally convex space of all continuous bilinear forms on E×F equipped
with the bibounded topology. If E or F is sequentially complete, Bsb(E,F )
denotes the locally convex space of all separately continuous bilinear forms
on E × F with the bibounded topology (see, e.g. [19, p. 167]). E⊗̂εF (resp.
E⊗̂πF ) is the completion of the injective (resp. projective) tensor product of
E and F . If E and F are (topologically) isomorphic we put E ≃ F . If E is
isomorphic to a complemented subspace of F we write E < F . We put E →֒ F
if E is a linear subspace of F and the canonical injection is continuous (we

replace →֒ by
d
→֒ if E is also dense in F ). If (En)

∞
n=1 is a sequence of locally

convex spaces,
⊕∞
n=1En (E(N) if En = E for all n) is the locally convex direct

sum of the spaces En. The Fréchet space defined by the projective sequence
of Banach spaces En and linking maps An

· · · → En+1
An−→ En → · · ·

A2−→ E2
A1−→ E1

will be denoted by proj(En, An).

Let 0 < p ≤ ∞, k : Rn → (0,∞) a Lebesgue measurable function, and E a
Fréchet space. Then Lp(E) is the set of all (equivalence classes of) Bochner
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measurable functions f : Rn → E for which ‖f‖p =
(∫

Rn‖f(x)‖p dx
)1/p

is finite

(with the usual modification when p = ∞) for all ‖·‖ ∈ cs(E) (see, e.g. [11]).
Lp,k(E) denotes the set of all Bochner measurable functions f : Rn → E
such that kf ∈ Lp(E). Putting ‖f‖Lp,k(E) = ‖f‖p,k = ‖kf‖p for all f ∈
Lp,k(E) and for all ‖·‖ ∈ cs(E), Lp,k(E) becomes a Fréchet space isomorphic
to Lp(E) if p ≥ 1. If E = proj(Ei, Ai) and p ≥ 1, then Lp,k(E) is isomorphic
to proj(Lp,k(Ei), Āi) via the operator f → (Pi ◦ f)∞i=1 (Pi is the ith canonical
projection from E into Ei and Āi : Lp,k(Ei+1) → Lp,k(Ei) : g → Ai ◦ g).
When E is the field C, we simply write Lp and Lp,k. If f ∈ L1(E) the Fourier

transform of f , f̂ or Ff , is defined by f̂(ξ) =
∫
Rn f(x)e−iξx dx. If f is a function

on Rn then f̃(x) = f(−x), (τhf)(x) = f(x − h) for x, h ∈ Rn, and Bb is the
closed ball {x : |x| ≤ b} in Rn. The letter C will always denote a positive
constant, not necessarily the same at each occurrence.

Finally we recall the definition of A∗
p functions. A positive, locally integrable

function ω on Rn is in A∗
p provided, for 1 < p <∞,

sup
R

(
1

|R|

∫

R
ω dx

)(
1

|R|

∫

R
ω−p′/pdx

)p/p′
<∞ ,

where R runs over all bounded n–dimensional intervals. The basic properties
of these functions can be found in [10, Ch. IV].

2 Spaces of vector–valued (Beurling) ultradistributions

In this section we collect some basic facts about vector–valued (Beurling) ul-
tradistributions and we recall the definitions of the vector–valued Hörmander–
Beurling spaces and the weighted Lp–spaces of vector–valued entire analytic
functions. Comprehensive treatments of the theory of (scalar or vector–valued)
ultradistributions can be found in [3], [13], [17], [18] and [19]. Our notations
are based on [3] and [27, pp. 14–19].

Let Mn be the set of all functions ω on Rn such that ω(x) = σ(|x|) where
σ(t) is an increasing continuous concave function on [0,∞[ with the following
properties:

(i) σ(0) = 0,

(ii)
∫∞
0

σ(t)
1+t2

dt <∞ (Beurling’s condition),
(iii) there exist a real number a and a positive number b such that

σ(t) ≥ a+ b log(1 + t) for all t ≥ 0 .

The assumption (ii) is essentially the Denjoy–Carleman non–quasi–analyticity
condition (see [3, Sect. 1.5]). The two most prominent examples of functions
ω ∈ Mn are given by ω(x) = log(1+ |x|)d, d > 0, and ω(x) = |x|β, 0 < β < 1.
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If ω ∈ Mn and E is a Fréchet space, we denote by Dω(E) the set of all func-
tions f ∈ L1(E) with compact support, such that ‖f‖λ =

∫
Rn‖f̂(ξ)‖ eλω(ξ)dξ <

∞ for all λ > 0 and for all ‖·‖ ∈ cs(E). For each compact subset K of Rn,
Dω(K,E) = {f ∈ Dω(E) : supp f ⊂ K}, equipped with the topology induced
by the family of seminorms {‖·‖λ : ‖·‖ ∈ cs(E), λ > 0}, is a Fréchet space
and Dω(E) = ind→

K

Dω(K,E) becomes a strict (LF)–space. If Ω is any open

set in Rn, Dω(Ω, E) is the subspace of Dω(E) consisting of all functions f
with supp f ⊂ Ω. Dω(Ω, E) is endowed with the corresponding inductive limit
topology: Dω(Ω, E) = ind →

K⊂Ω

Dω(K,E). Let Sω(E) be the set of all functions

f ∈ L1(E) such that both f and f̂ are infinitely differentiable functions on
Rn with supx∈Rn eλω(x)‖∂αf(x)‖ <∞ and supx∈Rn eλω(x)‖∂αf̂(x)‖ <∞ for all
multi–indices α, all positive numbers λ and all ‖·‖ ∈ cs(E). Sω(E) with the
topology induced by the above family of seminorms is a Fréchet space and
the Fourier transformation F is an automorphism of Sω(E). If E = C then
Dω(E) and Sω(E) coincide with the spaces Dω and Sω (see [3]). Let us recall
that, by Beurling’s condition, the space Dω is non–trivial and the usual pro-
cedure of the resolution of unity can be established with Dω–functions (see

[3, Th. 1.3.7]). Furthermore, Dω
d
→֒ D (see [3, Th. 1.3.18]) and Dω is nuclear

([34, Cor. 7.5]). On the other hand, Dω = D ∩ Sω, Dω
d
→֒ Sω

d
→֒ S (see

[3, Prop. 1.8.6, Th. 1.8.7]) and Sω is nuclear (see [13, p. 320]). If Eω is the
set of multipliers on Dω, i.e., the set of all functions f : Rn → C such that
ϕf ∈ Dω for all ϕ ∈ Dω, then Eω with the topology generated by the semi-
norms {f → ‖ϕf‖λ =

∫
Rn|ϕ̂f(ξ)|eλω(ξ) dξ : λ > 0, ϕ ∈ Dω} becomes a nuclear

Fréchet space (see [34, Cor. 7.5]) and Dω
d
→֒ Eω. Using the above results and

[19, Th. 1.12] we can identify Sω(E) with Sω⊗̂εE. However, though Dω⊗E is
dense in Dω(E), in general Dω(E) is not isomorphic to Dω⊗̂εE (cf., e.g. [12,
Ch. II, p. 83]). A continuous linear operator from Dω into E is said to be a
(Beurling) ultradistribution with values in E. We write D′

ω(E) for the space
of all E–valued (Beurling) ultradistributions endowed with the bounded con-
vergence topology, thus D′

ω(E) = Lb(Dω, E). D′
ω(Ω, E) = Lb(Dω(Ω), E) is the

space of all (Beurling) ultradistributions on Ω with values in E. A continuous
linear operator from Sω into E is said to be an E–valued tempered ultra-
distribution. S ′

ω(E) is the space of all E–valued tempered ultradistributions
equipped with the bounded convergence topology, i.e., S ′

ω(E) = Lb(Sω, E).
The Fourier transformation F is an automorphism of S ′

ω(E).

If ω ∈ Mn, then Kω is the set of all positive functions k on Rn for which
there exists a positive constant N such that k(x + y) ≤ eNω(x)k(y) for all
x and y in Rn [3, Def. 2.1.1] (when ω(x) = log(1 + |x|) the functions k of
the corresponding class Kω are called temperate weight functions, see [14,
Def. 10.1.1]). If k, k1, k2 ∈ Kω and s is a real number then log k is uniformly

continuous, ks ∈ Kω, k1k2 ∈ Kω and Mk(x) = supy∈Rn
k(x+y)
k(y)

∈ Kω (see [3,

Th. 2.1.3]). If u ∈ Lloc
1 and

∫
Rn ϕ(x)u(x) dx = 0 for all ϕ ∈ Dω, then u = 0
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a.e. (see [3]). This result, the Hahn–Banach theorem and [9, Ch. II, Cor. 7]
prove that if k ∈ Kω, p ∈ [1,∞] and E is a Fréchet space, we can identify
f ∈ Lp,k(E) with the E–valued tempered ultradistribution ϕ → 〈ϕ, f〉 =∫
Rn ϕ(x)f(x) dx, ϕ ∈ Sω, and Lp,k(E) →֒ S ′

ω(E). If ω ∈ Mn, k ∈ Kω, p ∈
[1,∞] and E is a Fréchet space, we denote by Bp,k(E) the set of all E–valued
tempered ultradistributions T for which there exists a function f ∈ Lp,k(E)

such that 〈ϕ, T̂ 〉 =
∫
Rn ϕ(x)f(x) dx, ϕ ∈ Sω. Bp,k(E) with the seminorms

{‖T‖p,k =
(
(2π)−n

∫
Rn‖k(x)T̂ (x)‖pdx

)1/p
: ‖·‖ ∈ cs(E)} (usual modification

if p = ∞), becomes a Fréchet space isomorphic to Lp,k(E). Spaces Bp,k(E)
are called Hörmander–Beurling spaces with values in E (see [3], [14], [16] for
the scalar case and [33], [24], [25] for the vector–valued case). We denote by
Bloc
p,k(Ω, E) (see [3], [14], [34] and [23], [25], [33]) the space of all E–valued

ultradistributions T ∈ D′
ω(Ω, E) such that, for every ϕ ∈ Dω(Ω), the map

ϕT : Sω → E defined by 〈u, ϕT 〉 = 〈uϕ, T 〉, u ∈ Sω, belongs to Bp,k(E).
The space Bloc

p,k(Ω, E) is a Fréchet space with the topology generated by the
seminorms {‖·‖p,k,ϕ : ϕ ∈ Dω(Ω), ‖·‖ ∈ cs(E)}, where ‖T‖p,k,ϕ = ‖ϕT‖p,k for
T ∈ Bloc

p,k(Ω, E). We shall also use the spaces Bc
p,k(Ω, E) which generalize the

scalar spaces Bc
p,k(Ω) considered by Hörmander in [14], by Vogt in [34] and by

Björck in [3]. If ω, k, p, Ω and E are as above, then Bc
p,k(Ω, E) =

⋃∞
j=1[Bp,k(E)∩

Ē ′
ω(Kj, E)] (here (Kj) is any fundamental sequence of compact subsets of Ω

and Ē ′
ω(Kj , E) denotes the set of all T ∈ D′

ω(E) such that supp T ⊂ Kj).
Since for every compact K ⊂ Ω, Bp,k(E) ∩ Ē ′

ω(K,E) is a Fréchet space with
the topology induced by Bp,k(E), it follows that Bc

p,k(Ω, E) becomes a strict
(LF)–space: Bc

p,k(Ω, E) = ind→
j

[Bp,k(E)∩Ē ′
ω(Kj , E)]. These spaces are studied

in [23] and [25].

We conclude this section with the definition of the weighted Lp–spaces of
E–valued entire analytic functions LKp,ρ(E). First we state the vector–valued
version of the Paley–Wiener–Schwartz theorem that we shall need (see [3,
Th. 1.8.14], [18, Th. 1.1] and [27, pp. 18–19] for the scalar case): “Let ω ∈ Mn

and let E be a Banach space. If T ∈ S ′
ω(E) and supp T̂ ⊂ Bb then there exist

an E–valued entire analytic function U(ζ) and a real number λ such that for
any ε > 0

‖U(ξ + iη)‖ ≤ Cε e
(b+ε)|η|+λω(ξ)

holds for all ζ = ξ + iη ∈ Cn where Cε depends on ε but not on ζ (U(ζ)
is called an E–valued entire function of exponential type) and such that U
represents to T , i.e. such that 〈ϕ, T 〉 =

∫
Rn ϕ(x)U(x) dx for all ϕ ∈ Sω”. Next

we recall the definition of R(ω) given in [30, Def. 1.3.1]. If ω ∈ Mn, then
R(ω) denotes the collection of all Borel–measurable real functions ρ(x) on Rn

such that there exists a positive constant c with 0 < ρ(x) ≤ c eω(x−y)ρ(y) for
all x, y ∈ Rn. If ρ ∈ R(ω), p ∈ [1,∞] and E is a Banach space, we have
the canonical embeddings Sω(E) →֒ Lp,ρ(E) →֒ S ′

ω(E). Finally, we give the
definition of the spaces LKp,ρ(E). Let ω ∈ Mn, ρ ∈ R(ω), p ∈ [1,∞], K a
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compact set in Rn and E a Banach space, then

LKp,ρ(E) = {f |f ∈ S ′
ω(E) , supp f̂ ⊂ K , ‖f‖LK

p,ρ(E) = ‖f‖p,ρ <∞} .

With the norm ‖·‖p,ρ, L
K
p,ρ(E) becomes a Banach space. We shall write LKp,ρ

when E = C. If ρ(x) = 1, then we put LKp,1(E) = LKp (E). If there is a possibility
of confusion, the notation LKp,ρ(R

n, E), LKp,ρ(R
n), LKp (Rn, E) will be used. We

shall denote by SKω the collection of all ϕ ∈ Sω such that supp ϕ̂ ⊂ K. The
spaces LKp,ρ(E) are studied in [30], [27], [32] and [24].

3 On the kernel theorem for ultradistributions

In this section we shall show that if ω1 ∈ Mn, ω2 ∈ Mm and ω ∈ Mn+m

satisfy the condition

1

c
[ω1(x) + ω2(y)] ≤ ω(x, y) ≤ c[ω1(x) + ω2(y)] , (x, y) ∈ R

m+n , (3.1)

(c is a constant > 0) and Ω1 (resp. Ω2) is an open set in Rn (resp. Rm), then

Lb(Dω1
(Ω1), D

′
ω2

(Ω2)) ≃ D′
ω(Ω1 × Ω2) .

This result extends slightly the kernel theorem for ultradistributions (see,
e.g. [18, Th. 2.3]) and will be used in the next sections.

Let us now recall that a bounded open Ω in Rn has the segment property if
there exist open balls Vj and vectors yj ∈ R

n
r {0}, j = 1, . . . , N , such that

Ω̄ ⊂
⋃N
j=1 Vj and (Ω̄ ∩ Vj) + tyj ⊂ Ω for 0 < t < 1 and j = 1, . . . , N . For

instance, if Ω is convex or if ∂Ω ∈ C0,1 then Ω has the segment property.

We say that a compact set K in Rn is regular if K =
◦

K and
◦

K has the
segment property (in [18, p. 614] compact regular is said compact with the
cone property).

The following lemma is known (see, e.g. [17, pp. 73–75] and [3, Cor. 1.5.15,
Th. 1.5.16]).

Lemma 3.1. If ω ∈ Mn, the set Pn of all polynomials in Rn is dense in Eω.

Theorem 3.2. Suppose that ω1 ∈ Mn, ω2 ∈ Mm and ω ∈ Mn+m satisfy the
condition (3.1), that Ω1 (resp. Ω2) is an open set in Rn (resp. Rm), and that
K1 (resp. K2) is a regular compact in Rn (resp. Rm). Then

(1) Dω1
(Ω1) ⊗Dω2

(Ω2) is sequentially dense in Dω(Ω1 × Ω2).
(2) Dω1

(K1)⊗̂εDω2
(K2) is canonically isomorphic to Dω(K1 ×K2).

6



(3) D′
ω(Ω1 × Ω2) is canonically isomorphic to Lb(Dω1

(Ω1), D
′
ω2

(Ω2)).

Proof. We are going to adapt to our context the proof given by Komatsu in
[18, pp. 614–619] of the kernel theorem for ultradistributions.

(1) From (3.1) it follows thatDω1
(Ω1)⊗Dω2

(Ω2) is a linear subspace ofDω(Ω1×
Ω2). Let then φ ∈ Dω(Ω1 × Ω2) and put L = supp φ, L1 = projΩ1

L and L2 =
projΩ2

L. By [3, Th. 1.3.7] we can find functions ϕ ∈ Dω1
(Ω1), ψ ∈ Dω2

(Ω2)
such that ϕ ≡ 1 in a neighborhood of L1 and ψ ≡ 1 in a neighborhood of L2.
Then ϕ⊗ψ ∈ Dω1

(Ω1)⊗Dω2
(Ω2) and ϕ⊗ψ ≡ 1 in a neighborhood of L. Now we

choose using Lemma 3.1 a sequence Pk ∈ Pn+m with Pk → φ in Eω. Then the
functions (ϕ⊗ψ)Pk are in Dω1

(Ω1)⊗Dω2
(Ω2) and (ϕ⊗ψ)Pk → (ϕ⊗ψ)φ = φ

in Dω(Ω1 × Ω2). Thus (1) is proved.

(2) Let us denote by Dω1
(K1) ⊗ω Dω2

(K2) the space Dω1
(K1) ⊗ Dω2

(K2)
equipped with the topology induced by Dω(K1 × K2). From (3.1) it follows
that the identity Dω1

(K1) ⊗π Dω2
(K2) → Dω1

(K1) ⊗ω Dω2
(K2) is continu-

ous. Let us see that the identity of Dω1
(K1) ⊗ω Dω2

(K2) into Dω1
(K1) ⊗ε

Dω2
(K2) is also continuous: Let λ1, λ2 > 0. Let U (resp. V ) be the unit ball

in Dω1
(K1) (resp. Dω2

(K2)) corresponding to the norm ‖·‖
(ω1)
λ1

(resp. ‖·‖
(ω2)
λ2

).

Then, by using the theorem of bipolars (cf., eg. [15, p. 149]), we have ‖ϕ‖
(ω1)
λ1

=

supu∈U◦|〈ϕ, u〉| for all ϕ ∈ Dω1
(K1) and ‖ψ‖

(ω2)
λ2

= supv∈V ◦|〈ψ, v〉| for all
ψ ∈ Dω2

(K2). Therefore, if
∑m
j=1 ϕj ⊗ ψj ∈ Dω1

(K1) ⊗ Dω2
(K2), u ∈ U◦

and v ∈ V ◦, we get by using (3.1) and the Fubini’s theorem

∣∣∣∣
∑

j

〈ϕj, u〉〈ψj, v〉
∣∣∣∣ =

∣∣∣∣〈
∑

j

〈ϕj, u〉ψj, v〉
∣∣∣∣ ≤

∥∥∥∥
∑

j

〈ϕj, u〉ψj

∥∥∥∥
(ω2)

λ2

=

=
∫

Rm

∣∣∣∣
∑

j

〈ϕj , u〉ψ̂j(y)
∣∣∣∣ e
λ2ω2(y)dy =

∫

Rm

∣∣∣∣〈
∑

j

ψ̂j(y)ϕj, u〉
∣∣∣∣ e
λ2ω2(y)dy ≤

≤
∫

Rm

∥∥∥∥
∑

j

ψ̂j(y)ϕj

∥∥∥∥
(ω1)

λ1

eλ2ω2(y)dy ≤

≤
∫

Rm



∫

Rn

∣∣∣∣
∑

j

ϕ̂j(x)ψ̂j(y)
∣∣∣∣ e
λ1ω1(x)dx


 eλ2ω2(y)dy ≤

≤
∫

Rn+m

∣∣∣∣(
∑

j

ϕj ⊗ ψj)
∧(x, y)

∣∣∣∣ e
cλ3ω(x,y)dx dy

where c is the constant of (3.1) and λ3 = max(λ1, λ2). So

sup
(u,v)∈U◦×V ◦

∣∣∣∣
m∑

j=1

〈ϕj, u〉〈ψj, v〉

∣∣∣∣ ≤
∥∥∥∥
m∑

j=1

ϕj ⊗ ψj

∥∥∥∥
(ω)

cλ3

which proves the required continuity. Since the ε–topology coincides with the
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π–topology on Dω1
(K1) ⊗ Dω2

(K2) (by the nuclearity of the spaces Dωi
(Ki),

see Vogt [34, Cor. 7.5]), we conclude that Dω1
(K1)⊗̂εDω2

(K2) is a topological
linear subspace of Dω(K1 ×K2). It remains to prove that this subspace coin-

cides with Dω(K1 ×K2). In order to show this, since Dω1
(

◦

K1) ⊗ Dω2
(

◦

K2) is

dense in Dω(
◦

K1 ×
◦

K2) (step (1)) and the canonical injection of Dω(
◦

K1 ×
◦

K2)

into Dω(K1 ×K2) is continuous, it will be sufficient to prove that Dω(
◦

K1 ×
◦

K2) is dense in Dω(K1 × K2). Let then φ ∈ Dω(K1 × K2). Since K1 × K2

is also a regular compact, there exist open balls Vj in Rn+m and vectors
(xj , yj) ∈ R

n+m
r {0}, j = 1, . . . , N , such that K1 × K2 ⊂

⋃N
j=1 Vj and

(K1 × K2 ∩ Vj) + t(xj , yj) ⊂
◦

K1 ×
◦

K2 for 0 < t < 1 and j = 1, . . . , N .
Therefore, if (φj)

N
j=1 is a Dω–partition of unity at K1 × K2 subordinate to

the covering {V1, . . . , VN} (see [3, Th. 1.3.7]), the functions τt(xj ,yj)(φφj) are in

Dω(
◦

K1 ×
◦

K2) and
∑N
j=1 τt(xj ,yj)(φφj) →

∑N
j=1 φφj = φ in Dω(K1 ×K2) when

t→ 0+. This completes the proof of (2).

(3) Let (K1
j )

∞
j=1 (resp. (K2

j )
∞
j=1) be a fundamental sequence of regular compacts

in Ω1 (resp. Ω2). Then (K1
j × K2

j )
∞
j=1 is a fundamental sequence of regular

compacts in Ω1 × Ω2 and, by (2) and [28, Prop. 50.7], we have the canonical
isomorphisms

(Dω(K
1
j ×K2

j ))
′ ≃ (Dω1

(K1
j )⊗̂εDω2

(K2
j ))

′ ≃ Bb(Dω1
(K1

j ), Dω2
(K2

j )) . (3.2)

Now we shall prove that the linear map

ι : D′
ω(Ω1 × Ω2) → Bsb(Dω1

(Ω1), Dω2
(Ω2))

u → ι(u)(ϕ, ψ) =< ϕ⊗ ψ, u >

(ι is well defined since the bilinear map Dω1
(Ω1) × Dω2

(Ω2) → Dω(Ω1 ×
Ω2) : (ϕ, ψ) → ϕ × ψ is separately continuous) is an isomorphism. That ι
is one–to–one follows from (1). Now assume that U ∈ Bs(Dω1

(Ω1), Dω2
(Ω2)).

Then U |Dω1
(K1

j
)×Dω2

(K2
j
) ∈ Bs(Dω1

(K1
j ), Dω2

(K2
j )) and, since every separately

continuous bilinear form in a product of Fréchet spaces is continuous [28,
Cor. p. 354], we can find (see (3.2)) a uK1

j
×K2

j
∈ (Dω(K

1
j × K2

j ))
′ such that

U(ϕ, ψ) = 〈ϕ⊗ψ, uK1
j
×K2

j
〉 for all ϕ ∈ Dω1

(K1
j ) and for all ψ ∈ Dω2

(K2
j ). So we

construct a u ∈ D′
ω(Ω1 ×Ω2) such that ι(u) = U , and ι is onto. If A (resp. B)

is a bounded set in Dω1
(Ω1) (resp. Dω2

(Ω2)) then, by [28, Prop. 14.6], there
is a sufficiently large j such that A (resp. B) is contained and is bounded in
Dω1

(K1
j ) (resp. Dω2

(K2
j )). Conversely, if M is bounded in Dω(Ω1 × Ω2) there

exists a K1
j ×K2

j [28, Prop. 14.6] such that M is contained and is bounded in
Dω(K

1
j ×K2

j ). Since the spaces Dωi
(Ki

j), i = 1, 2, are nuclear [34, Cor. 7.5],

(2) and [12, Ch. II] prove that M ⊂ ΓA⊗B being A (resp. B) a bounded set
in Dω1

(K1
j ) (resp. Dω2

(K2
j )). It is an immediate consequence of these results
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that ι and ι−1 are continuous, that is, that ι is an isomorphism. Finally, we
can argue exactly as in [18, p. 618] and obtain the canonical isomorphism
Bsb(Dω1

(Ω1), Dω2
(Ω2)) ≃ Lb(Dω1

(Ω1), D
′
ω2

(Ω2)).

Corollary 3.3. If ω1 ∈ Mn, ω2 ∈ Mm and ω ∈ Mn+m satisfy the condition
(3.1), then Sω1

⊗ Sω2
is dense in Sω.

Proof. Since the canonical injection of Dω into Sω is continuous, it is enough to
take into account that Dω is dense in Sω (see [3, Th. 1.8.7]) and that Dω1

⊗Dω2

is dense in Dω (step (1) of Theorem 3.2).

4 Iterated Hörmander–Beurling local spaces

In this section we shall show that if Ω1 (resp. Ω2) is an open set in Rn

(resp. Rm), ω1, ω2 and ω are as in Section 3, k1 ∈ Kω1
, k2 ∈ Kω2

k = k1 ⊗ k2

and 1 ≤ p < ∞, then the restriction of the canonical isomorphism D′
ω(Ω1 ×

Ω2) ≃ Lb(Dω1
(Ω1), D

′
ω2

(Ω2)) (see Theorem 3.2) to Hörmander–Beurling lo-
cal space Bloc

p,k(Ω1 × Ω2) is an isomorphism of this space onto the iterated
space Bloc

p,k1(Ω1, B
loc
p,k2(Ω2)) and that the iterated spaces Bloc

p,k1(Ω1, B
loc
q,k2(Ω2)) and

Bloc
q,k2

(Ω2, B
loc
p,k1

(Ω1)) are not isomorphic if 1 < p 6= q <∞.

In what follows we shall denote by R the canonical isomorphism D′
ω(Ω1 ×

Ω2) → Lb(Dω1
(Ω1), D

′
ω2

(Ω2)) : u → R(u)(ϕ)(ψ) = u(ϕ⊗ ψ) (Theorem 3.2). If
Ω1 = Rn and Ω2 = Rm, then we put R1 instead of R. It is easily seen that the
restriction of R1 to S ′

ω becomes a continuous operator from S ′
ω to Lb(Sω1

, S ′
ω2

).
If we denote by R2 this restriction, we have the commutative diagram

D′
ω

R1 //Lb(Dω1
, D′

ω2
)

S ′
ω

?�

OO

R2 //Lb(Sω1
, S ′

ω2
)

?�

OO

where the vertical arrows are the canonical injections.

Lemma 4.1. Let ω1, ω2, ω, k1, k2, k and p as above. Then the Hörmander–
Beurling space Bp,k is isometrically isomorphic to the iterated space Bp,k1(Bp,k2)
via the canonical isomorphism R1.

Proof. By (3.1), k ∈ Kω. Now consider the diagram

Bp,k
R3 //

D
��

Bp,k1(Bp,k2)

Lp,k
C //Lp,k1(Lp,k2)

B //Bp,k1(Lp,k2)

A

OO

9



where D is (2π)−(n+m)/pF (F is the Fourier transform in S ′
ω), C is defined

by Cf(x)(y) = f(x, y), B is (2π)n/pF−1 (here F is the Fourier transform in
S ′
ω1

(Lp,k2)), and A is defined by A(T ) = (2π)m/pF−1 ◦ T (F being the Fourier
transform in S ′

ω2
). Since all these operators are isometrical isomorphisms, their

composition R3 is also an isometrical isomorphism. It remains to prove that
the diagram

S ′
ω

R2 //Lb(Sω1
, S ′

ω2
)

Bp,k

?�

OO

R3 //Bp,k1(Bp,k2)
?�

OO

is commutative (here the vertical arrows are the canonical injections). For
this, since the canonical injections and R2 and R3 are continuous operators
and Sω1

⊗ Sω2
is dense in Bp,k (in view of Corollary 3.3 and [3, Th. 2.2.3]), it

will be sufficient to show that R3(ϕ0 ⊗ψ0)(ϕ)(ψ) = R2(ϕ0 ⊗ψ0)(ϕ)(ψ) for all
ϕ0, ϕ ∈ Sω1

and for all ψ0, ψ ∈ Sω2
:

R3(ϕ0 ⊗ ψ0)(ϕ)(ψ) =
[(
ABCD(ϕ0 ⊗ ψ0)

)
(ψ)

]
(ψ) =

= (2π)−(n+m)/p
[(
ABC(ϕ̂0 ⊗ ψ̂0)

)
(ϕ)

]
(ψ) =

= (2π)−(n+m)/p
[(
AB(ϕ̂0(·)ψ̂0)

)
(ϕ)

]
(ψ) =

=
[(
F−1 ◦ (F−1(ϕ̂0(·)ψ̂0))

)
(ϕ)

]
(ψ) =

=
[
F−1

(∫

Rn
F−1ϕ(x)ϕ̂0(x)ψ̂0 dx

)]
(ψ) =

=
[
F−1

(
〈ϕ, ϕ0〉ψ̂0

)]
(ψ) =

[
〈ϕ, ϕ0〉ψ0

]
(ψ) = 〈ϕ, ϕ0〉〈ψ, ψ0〉 =

= 〈ϕ⊗ ψ, ϕ0 ⊗ ψ0〉 = R2(ϕ0 ⊗ ψ0)(ϕ)(ψ) .

Thus the lemma is proved.

Remark 4.2. In the case p = ∞, Lemma 4.1 is false. In fact, the spaces
B∞,k and B∞,k1(B∞,k2) not even are isomorphic: By virtue of [6, Th. 5.1.5],
the space B∞,k1(B∞,k2) ≃ L∞(Rn, L∞(Rm)) contains a complemented copy of
c0, however the space B∞,k ≃ L∞(Rn+m) ≃ l∞ has no complemented copies
of c0 by a classical result of Phillips (see, e.g. [6, Cor. 1.3.2]).

Let Ω be an open set in Rn and let ω ∈ Mn, k ∈ Kω and 1 ≤ p ≤ ∞.
Let (Kj)

∞
j=1 be a fundamental sequence of compacts in Ω and, for each j, let

ϕj ∈ Dω(
◦

Kj+1) such that ϕj = 1 on Kj . Let Yj be the closure of {ϕju :
u ∈ Bp,k} in Bp,k and let Bj be the continuous extension to Yj+1 of the
operator ϕj+1u → ϕju (this operator is continuous since, by [3, Th. 2.2.7],
‖ϕju‖p,k = ‖ϕj(ϕj+1u)‖p,k ≤ ‖ϕj‖1,Mk

‖ϕj+1u‖p,k for all u ∈ Bp,k). Then the
following lemma holds:

Lemma 4.3. The map T : Bloc

p,k(Ω) → proj(Yj, Bj) defined by T (u) = (ϕju)
∞
j=1
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is an isomorphism.

Proof. If u ∈ Bloc
p,k(Ω) then ϕj+1u ∈ Bp,k and ϕju = ϕj(ϕj+1u) ∈ Yj. Fur-

thermore, Bj(ϕj+1u) = Bj [ϕj+1(ϕj+2u)] = ϕj(ϕj+2u) = ϕju and so T is a
well–defined operator. Moreover, since the seminorms ‖·‖p,k,ϕj

generate the
topology of Bloc

p,k(Ω), T becomes an isomorphism from Bloc
p,k(Ω) onto ImT .

In consequence, ImT is a closed subspace of proj(Yj , Bj). Let us see that
ImT coincides with proj(Yj , Bj). First recall that the seminorms ‖(yj)

∞
1 ‖∗N =∑N

j=1‖yj‖p,k, N = 1, 2, . . . , generate the topology of proj(Yj, Bj) (see [20,
p. 230]). Then fix (yj) ∈ proj(Yj, Bj) and take ε > 0 and N ≥ 1. Put
C = 1+

∑N−1
j=1

∏N−1
l=j ‖ϕl‖1,Mk

and choose v ∈ Bp,k such that ‖yN−ϕNv‖p,k <
ε
C

.
Then u = v|Dω(Ω) ∈ Bloc

p,k(Ω) and ϕju = ϕjv for all j. Thus, using Theo-
rem 2.2.7 of [3], we get

‖yj − ϕju‖p,k = ‖Bj(yj+1) − Bj(ϕj+1u)‖p,k ≤ ‖Bj‖‖yj+1 − ϕj+1u‖p,k ≤

≤ ‖ϕj‖1,Mk
‖yj+1 − ϕj+1u‖p,k ≤ · · · ≤

≤ ‖ϕj‖1,Mk
· · · ‖ϕN−1‖1,Mk

‖yN − ϕNu‖p,k , j = 1, . . . , N − 1 ,

and so

‖(yj) − T (u)‖∗N =
N∑

j=1

‖yj − ϕju‖p,k < ε .

This proves that ImT is dense in proj(Yj, Bj). Thus ImT = proj(Yj, Bj) as
we required.

Lemma 4.4. Let X be a Banach space, Y a closed linear subspace of X and
f ∈ Lloc

1 (X) such that
∫
Rn ϕ(x)f(x) dx ∈ Y for every ϕ ∈ Dω (ω ∈ Mn).

Then, f(x) ∈ Y for a.e. x.

Proof. If π : X → X/Y is the quotient map, then
∫
Rn ϕ(x)π(f(x)) dx =

π
(∫

Rn ϕ(x)f(x) dx
)

= 0 for every ϕ ∈ Dω and so
∫
Rn ϕ(x)〈π(f(x)), u〉 dx = 0

for all u ∈ (X/Y )′ and for all ϕ ∈ Dω. This implies, by [3, Th. 1.3.18], that
u ◦ (π ◦ f) = 0 a.e. for all u ∈ (X/Y )′. Then, applying [9, Cor. 7,p. 48], we
conclude that π(f(x)) = 0 for a.e. x, i.e., that f(x) ∈ Y for a.e. x.

Theorem 4.5. If Ω1 (resp. Ω2) is an open set in Rn (resp. Rm), ω1 ∈ Mn,
ω2 ∈ Mm and ω ∈ Mn+m satisfy (3.1), k1 ∈ Kω1

, k2 ∈ Kω2
, k = k1 ⊗

k2 and 1 ≤ p < ∞, then the restriction of the canonical isomorphism R
to Bloc

p,k(Ω1 × Ω2) is an isomorphism of this space onto the iterated space
Bloc

p,k1(Ω1, B
loc

p,k2(Ω2)).

Proof. Step 1. We denote the restriction of R to Bloc
p,k(Ω1×Ω2) by Rloc. Let u ∈

Bloc
p,k(Ω1 × Ω2) and put U = Rloc(u). Let us see that U ∈ Bloc

p,k1
(Ω1, B

loc
p,k2

(Ω2)).
Fix ϕ ∈ Dω1

(Ω1) and choose ϕ0 ∈ Dω1
(Ω1) so that ϕ0 = 1 on suppϕ. By

11



Theorem 3.2, U(ϕ) ∈ D′
ω2

(Ω2). Moreover, for every ψ ∈ Dω2
(Ω2) we have (see

the proof of Lemma 4.1)

[ψ U(ϕ)]∧(θ) = [ψ U(ϕ)](θ̂) = U(ϕ)(ψθ̂) = u(ϕ⊗ ψθ̂) = u(ϕϕ0 ⊗ ψθ̂) =

= u[(ϕ⊗ ψ)(ϕ0 ⊗ θ̂)] = [(ϕ⊗ ψ)u](ϕ0 ⊗ θ̂) = R2[(ϕ⊗ ψ)u](ϕ0)(θ̂) =

= [R2[(ϕ⊗ ψ)u](ϕ0)]
∧(θ) = [R3[(ϕ⊗ ψ)u](ϕ0)]

∧(θ)

for all θ ∈ Sω2
. Hence it follows that the ultradistributions ψ U(ϕ) and R3[(ϕ⊗

ψ)u](ϕ0) coincide, and so ψ U(ϕ) ∈ Bp,k2. Consequently, U(ϕ) ∈ Bloc
p,k2

(Ω2) and
U is an operator from Dω1

(Ω1) into Bloc
p,k2

(Ω2). Let us see that it is continuous.
Let φj → φ in Dω1

(Ω1) and let U(φj) → v in Bloc
p,k2(Ω2). Then U(φj) → U(φ)

in D′
ω2

(Ω2), since U ∈ L(Dω1
(Ω1), D

′
ω2

(Ω2)). On the other hand, U(φj) → v
in D′

ω2
(Ω2) since Bloc

p,k2
(Ω2) →֒ D′

ω2
(Ω2) [3, Th. 2.3.5]. Therefore, U(φ) = v.

This proves that U is sequentially closed, and the Grothendieck’s closed–graph
theorem [12, Ch. I, p. 17] gives the desired continuity. Whence it follows that
ϕU and ϕ̂U are continuous operators from Sω1

into Bloc
p,k2(Ω2). Next it will be

shown that ϕ̂U ∈ Lp,k1(B
loc
p,k2

(Ω2)). To do this, we first identify Bloc
p,k2

(Ω2) with

the projective limit proj(Yj, Bj) (see Lemma 4.3: if (Kj
2)

∞
j=1 is a fundamental

sequence of compacts in Ω2 and, for each j, ψj ∈ Dω2
(

◦

Kj+1
2 ) and ψj = 1 on

Kj
2 , then Yj is the closure of {ψjv : v ∈ Bp,k2} in Bp,k2, Bj is the continuous

extension to Yj+1 of the operator ψj+1v → ψjv and Pj is the jth canonical
projection from proj(Yj, Bj) into Yj). Then the operator f → (Pj ◦ f)∞j=1 is
an isomorphism from Lp,k1(B

loc
p,k2(Ω2)) onto proj(Lp,k1(Yj), B̄j) (see Section 1).

Let us see that the operators Pj ◦ ϕ̂U and
[
R3[(ϕ⊗ ψj)u]

]∧
(see Lemma 4.1)

Sω1
//

Pj◦ϕ̂U
((R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Bloc
p,k2

(Ω2) = proj(Yj , BJ)

Pj

��
Yj →֒ Bp,k2

coincide. In fact, for each θ ∈ Sω1
, we have (Pj ◦ϕ̂U)(θ) = ψjϕ̂U(θ) = ψjU(θ̂ϕ)

and [R3[(ϕ⊗ψj)u]]
∧(θ) = R3[(ϕ⊗ψj)u](θ̂) and then, for each ζ ∈ Sω2

, we get

(Pj ◦ ϕ̂U)(θ)(ζ) = [R3[(ϕ⊗ ψj)u]]
∧(θ)(ζ) = u(ϕθ̂ ⊗ ψjζ) as we required. Now

let fj be the function in Lp,k1(Bp,k2) which represents to [R3[(ϕ⊗ψj)u]]
∧, that

is, such that

(Pj ◦ ϕ̂U)(θ) = [R3[(ϕ⊗ ψj)u]]
∧(θ) =

∫

Rn
θ(x)fj(x) dx , θ ∈ Sω1

.

Then this integral lies in the subspace Yj of Bp,k2 and so, by Lemma 4.4,

fj ∈ Lp,k1(Yj). Let us check that (fj)
∞
j=1 ∈ proj

(
Lp,k1(Yj), B̄j

)
. For each j we

have

12



∫

Rn
θ(x)Bj(fj+1(x)) dx = Bj [(Pj+1 ◦ ϕ̂U)(θ)] = Bj[ψj+1U(θ̂ϕ)] =

= ψjU(θ̂ϕ) =
(
Pj ◦ ϕ̂U

)
(θ) =

∫

Rn
θ(x)fj(x) dx , θ ∈ Sω1

,

and hence Bj(fj+1(x)) = fj(x) for a.e. x, that is, B̄j(fj+1) = fj by Lemma 4.4.
In consequence, the function f(x) = (fj(x))

∞
j=1 is in Lp,k1(B

loc
p,k2

(Ω2)), that is,

ϕ̂U ∈ Lp,k1(B
loc
p,k2

(Ω2)). Definitively, U ∈ Bloc
p,k1

(Ω1, B
loc
p,k2

(Ω2)) and Rloc is an
operator from Bloc

p,k(Ω1 × Ω2) into Bloc
p,k1(Ω1, B

loc
p,k2(Ω2)).

Step 2. Naturally Rloc is one–to–one, let us see that it is onto. Let U ∈
Bloc
p,k1

(Ω1, B
loc
p,k2

(Ω2)). Since Bloc
p,k2

(Ω2) →֒ D′
ω2

(Ω2), U ∈ L(Dω1
(Ω1), D

′
ω2

(Ω2))
and so, by Theorem 3.2, we can find a u ∈ D′

ω(Ω1 ×Ω2) such that U(ϕ)(ψ) =
u(ϕ ⊗ ψ) for all ϕ ∈ Dω1

(Ω1) and all ψ ∈ Dω2
(Ω2). We next prove that

(ϕ ⊗ ψ)u ∈ Bp,k for each ϕ ∈ Dω1
(Ω1) and each ψ ∈ Dω2

(Ω2), and then,
that φu ∈ Bp,k for each φ ∈ Dω(Ω1 × Ω2). Fix ϕ and ψ. Then ϕU ∈

Bp,k1(B
loc
p,k2(Ω2)), that is, ϕ̂U ∈ Lp,k1(B

loc
p,k2(Ω2)), and the function F = Mψ◦ϕ̂U

(Mψ is the operator v → ψv from Bloc
p,k2

(Ω2) into Bp,k2(Ω2)) is in Lp,k1(Bp,k2)

since it is Bochner measurable (ϕ̂U is Bochner measurable and Mψ is lin-

ear and continuous) and
∫

Rn‖F (x)‖pp,k2k
p
1(x) dx =

∫
Rn‖ψϕ̂U(x)‖pp,k2k

p
1(x) dx =

∫
Rn‖ϕ̂U(x)‖pp,k2,ψk

p
1(x) dx < ∞. If we prove that [R2[(ϕ⊗ ψ)u]]∧ = F (as ele-

ments of L(Sω1
, S ′

ω2
)) then R2[(ϕ⊗ψ)u] ∈ Bp,k1(Bp,k2) and so, by Lemma 4.1,

(ϕ⊗ ψ)u ∈ Bp,k. For all f ∈ Sω1
and all g ∈ Sω2

we get

[R2[(ϕ⊗ ψ)u]]∧(f)(g) = [R2[(ϕ⊗ ψ)u]](f̂)(g) = [(ϕ⊗ ψ)u](f̂ ⊗ g) =

= u(ϕf̂ ⊗ ψg) = U(ϕf̂)(ψg) = [ψU(ϕf̂)](g) = [ψ(ϕU)(f̂ )](g) =

= [ψϕ̂U(f)](g) = [ψ
∫

Rn
ϕ̂U(x)f(x) dx](g) =

= [
∫

Rn
ψϕ̂U(x)f(x) dx](g) = [

∫

Rn
F (x)f(x) dx](g) = F (f)(g) ,

and this establishes the required equality. To prove that φu ∈ Bp,k for all
φ ∈ Dω(Ω1 ×Ω2), we reason as follows. Given such a φ, let K1, K2 be regular
compacts such that φ ∈ Dω(K1 × K2) and let us see that the bilinear map
Ju : Dω1

(K1)×Dω2
(K2) → Bp,k defined by Ju(ϕ, ψ) = (ϕ⊗ψ)u is continuous.

Since the Dωi
(Ki) are Fréchet spaces, it will be sufficient to prove that Ju

is separately continuous [28, Cor. p. 354]. Supose that ϕj → ϕ in Dω1
(K1)

and (ϕj ⊗ ψ)u → v in Bp,k. Then ϕj ⊗ ψ → ϕ ⊗ ψ in Dω(K1 × K2) and
(ϕj ⊗ ψ)u → (ϕ⊗ ψ)u in S ′

ω. Since Bp,k →֒ S ′
ω, it results that v = (ϕ⊗ ψ)u.

In consequence, the map ϕ → (ϕ ⊗ ψ)u is closed and therefore continuous
by the closed–graph theorem [28, Cor. 4, p. 173]. The argument for the map
ψ → (ϕ ⊗ ψ)u is just the same. Then the linearization of Ju extends to
a continuous operator J̄u from Dω1

(K1)⊗̂πDω2
(K2) into Bp,k, that is, to a

continuous operator J̄u from Dω(K1 ×K2) into Bp,k (see Theorem 3.2). Now
it is immediate to verify that J̄u(φ) = φu. Consequently, φu ∈ Bp,k and
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u ∈ Bloc
p,k(Ω1 × Ω2). Since obviously Rloc(u) = U , the map Rloc is onto.

Step 3. We show that Rloc is an isomorphism. To do this, we use the graph–
closed theorem [28, Cor. 4, p. 173] again. Assume that uj → u in Bloc

p,k(Ω1 ×
Ω2) and Rloc(uj) → v in Bloc

p,k1(Ω1, B
loc
p,k2(Ω2)). By virtue of the embeddings

Bloc
p,k1

(Ω1, B
loc
p,k2

(Ω2)) →֒ D′
ω1

(Ω1, B
loc
p,k2

(Ω2)),B
loc
p,k2

(Ω2) →֒ D′
ω2

(Ω2) andBloc
p,k(Ω1×

Ω2) →֒ D′
ω(Ω1 × Ω2) we get for all ϕ ∈ Dω1

(Ω1) and all ψ ∈ Dω2
(Ω2)

Rloc(uj)(ϕ) → v(ϕ) in Bloc
p,k2

(Ω2) ,

Rloc(uj)(ϕ)(ψ) → v(ϕ)(ψ) ,

Rloc(uj)(ϕ)(ψ) = uj(ϕ⊗ ψ) → u(ϕ⊗ ψ) ,

thus Rloc(u) = v. Hence it follows, since our local spaces are Fréchet spaces,
that Rloc is continuous. Finally, we apply the open mappping theorem [28,
Th. 17.1].

Using Theorem 4.5 and the natural isomorphism Bloc
p,k1⊗k2(Ω1 ×Ω2) ≃ Bloc

p,k2⊗k1

(Ω2×Ω1), one may immediately obtain the isomorphism Bloc
p,k1

(Ω1, B
loc
p,k2

(Ω2)) ≃
Bloc
p,k2(Ω2, B

loc
p,k1(Ω1)). Next we shall prove that if p 6= q then, in general, the

spaces Bloc
p,k1

(Ω1, B
loc
q,k2

(Ω2)) and Bloc
q,k2

(Ω2, B
loc
p,k1

(Ω1)) are not isomorphic.

We shall require the following simple lemma whose proof we omit.

Lemma 4.6. Let Ω be an open set in Rn, ω ∈ Mn, k ∈ Kω, 1 ≤ p ≤ ∞ and
let (Ej)

∞
j=1 be a sequence of Banach spaces. Then the space Bloc

p,k(Ω,
∏∞
j=1Ej)

is isomorphic to
∏∞
j=1B

loc

p,k(Ω, Ej).

We shall also need the following lemmata.

Lemma 4.7. Let Ω be an open set in R
n, ω ∈ Mn, k ∈ Kω, 1 ≤ p < ∞

and let E be a Banach space whose dual E ′ possesses the Radon–Nykodým

property. Then Bloc

p′,1/k̃
(Ω, E ′) is isomorphic to

(
Bc
p,k(Ω, E)

)′
b
.

Proof. See Theorem 3.1 of [23].

In [24] we have shown that the spaces Bc
p,k(R

n) are isomorphic to l(N)
p (see [34]

for p = 1) and the spaces Bc
p,k(R

n, l2) are isomorphic to (lp(l2))
(N) if p ∈ (1,∞)

and k is a temperate weight function on Rn such that kp ∈ A∗
p. By using the

methods of the proof of Corollary 5.6 of [24] we have obtained in [23, Th. 4.1]
the following result.

Lemma 4.8. Assume 1 < p, q < ∞ and let k be a temperate weight function
on Rn with kp ∈ A∗

p. Then the space Bc
p,k(R

n, lq) is isomorphic to
⊕∞
j=0Gj

14



where G0 is isomorphic to lp(lq) and Gj is isomorphic to a complemented
subspace of lp(lq) for j = 1, 2, . . .

Theorem 4.9. If k1 (resp. k2) is a temperate weight function on Rn (resp. Rm)
such that kp1 ∈ A∗

p (resp. kq2 ∈ A∗
q) and 1 < p, q < ∞ with p 6= q, then the

spaces Bloc

p,k1
(Rn, Bloc

q,k2
(Rm)) and Bloc

q,k2
(Rm, Bloc

p,k1
(Rn)) are not isomorphic.

Proof. Since 1/k̃1 (resp. 1/k̃2) is a temperate weight function on Rn (resp. Rm)

such that 1/k̃p
′

1 ∈ A∗
p′ (resp. 1/k̃q

′

2 ∈ A∗
q′), it follows by Lemma 4.8 that

Bc
p′,1/k̃1

(Rn, lq′) is isomorphic to
⊕∞

j=0Gj where G0 ≃ lp′(lq′) and Gj < lp′(lq′)

for j = 1, 2, . . . , and that Bc
q′,1/k̃2

(Rm, lp′) is isomorphic to
⊕∞
j=0Hj where

H0 ≃ lq′(lp′) and Hj < lq′(lp′) for j = 1, 2, . . . On the other hand, recall that

if (Ej)
∞
j=1 is a sequence of Banach spaces then the space

(⊕∞
j=1Ej

)′
b

is iso-

morphic to Π∞
j=1E

′
j (see [15, p. 168]). On the basis of these results and the

previous lemmata, one may derive immediately the isomorphisms

Bloc
p,k1

(Rn, Bloc
q,k2

(Rm)) ≃ Bloc
p,k1

(Rn, (Bc
q′,1/k̃2

(Rm))′b) ≃ Bloc
p,k1

(Rn, (l
(N)
q′ )′b) ≃

≃ Bloc
p,k1

(Rn, lNq ) ≃ (Bloc
p,k1

(Rn, lq))
N ≃ ((Bc

p′,1/k̃1
(Rn, lq′))

′
b)

N ≃

≃ ((
∞⊕

j=0

Gj)
′
b)

N ≃ (
∞∏

j=0

G′
j)

N < ((lp(lq)
N)N ≃ (lp(lq))

N .

Similarly, we get

Bloc
q,k2

(Rm, Bloc
p,k1

(Rn)) ≃ (
∞∏

j=0

H ′
j)

N < (lq(lp))
N .

Suppose now that our iterated spaces are isomorphic. Then the previous iso-
morphisms yield that the space lp(lq) (resp. lq(lp)) becomes isomorphic to a
complemented subspace of (lq(lp))

N (resp. (lp(lq))
N). Hence it follows, by [8],

that there exist positive integers α, β such that lp(lq) < (lq(lp))
α(≃ lq(lp))

and lq(lp) < (lp(lq))
β(≃ lp(lq)). We are now in a position to apply Pelczyn-

ski’s decomposition method to conclude that lp(lq) ≃ lq(lp). This however
contradicts the assumption that p 6= q (see, e.g. [31, p. 242]). In conse-
quence, Bloc

p,k1(R
n, Bloc

q,k2(R
m)) and Bloc

q,k2(R
m, Bloc

p,k1(R
n)) are not isomorphic and

the proof is complete.

We do not know if the above theorem is valid for other values of p and q. We
thus propose the following question.

Problem 4.10. For which weights k1, k2 and q ∈]1,∞] the iterated spaces
Bloc

1,k1
(Rn, Bloc

q,k2
(Rm)) and Bloc

q,k2
(Rm, Bloc

1,k1
(Rn)) are not isomorphic?

15



By using results of Vogt [34] and [23, Th. 3.1] we have shown (the proof will
appear elsewhere) the isomorphisms Bloc

1,k1
(Rn, Bloc

∞,k2
(Rm)) ≃ (l1(l∞))N and

Bloc
∞,k2(R

m, Bloc
1,k1(R

n)) ≃ (l∞(l1))
N for some Hörmander weights kj, j = 1, 2.

Hence, these iterated spaces are not isomorphic if and only if l1(l∞) and l∞(l1)
are not isomorphic either. Thus we are also interested in the following question
of Banach space theory.

Problem 4.11. Are the Banach spaces l1(l∞) and l∞(l1) not isomorphic?

5 Weighted Lp–spaces of entire analytic functions

In this last section we present a similar result to Theorem 4.5 for weighted
Lp–spaces of entire analytic functions. We also give a result on iterated Besov
spaces: Bs

2,q(R
n, Bs

2,q(R
m)) and Bs

2,q(R
n+m) are not isomorphic when −∞ <

s <∞ and 1 < q 6= 2 <∞.

Theorem 5.1. If K1 (resp. K2) is a regular compact in Rn (resp. Rm), K =
K1 × K2, ω1 ∈ Mn, ω2 ∈ Mm and ω ∈ Mn+m satisfy (3.1), ρ1 ∈ R(ω1),
ρ2 ∈ R(ω2), ρ = ρ1 ⊗ ρ2 and 1 ≤ p < ∞, then LKp,ρ(R

n+m) is isometrically
isomorphic to the iterated space LK1

p,ρ1
(Rn, LK2

p,ρ2
(Rm)).

We shall write LKp,ρ (resp. LK1
p,ρ1

, LK2
p,ρ2

, LK1
p,ρ1

(LK2
p,ρ2

)) instead of LKp,ρ(R
n+m) (resp.

LK1
p,ρ1(R

n), LK2
p,ρ2(R

m), LK1
p,ρ1(R

n, LK2
p,ρ2(R

m))), and we shall denote by SKω [LKp,ρ]
the space SKω endowed with the norm ‖ · ‖p,ρ.

Proof. First we show that the natural map N : SKω [LKp,ρ] → LK1
p,ρ1(L

K2
p,ρ2) defined

by Nf(x) = f(x, ·) is well defined and is linear and norm–preserving. Let
f ∈ SKω . It is easily verified that f(x, ·) ∈ LK2

p,ρ2 and Nf ∈ Lp,ρ1(L
K2
p,ρ2). Let us

see that supp N̂f ⊂ K1: For every ϕ ∈ Dω1
(∁K1) we have

〈ϕ, N̂f〉 = 〈ϕ̂, Nf〉 =
∫

Rn
ϕ̂(x)Nf(x) dx

(
∈ LK2

p,ρ2

)

and so, since the Dirac deltas δy ∈ (LK2
p,ρ2)

′ (see [30, p. 36]), we get

〈ψ, 〈ϕ, N̂f〉〉 =
∫

Rm
ψ(y)

(∫

Rn
ϕ̂(x)Nf(x) dx

)
(y) dy =

=
∫

Rm
ψ(y)〈

∫

Rn
ϕ̂(x)Nf(x) dx, δy〉 dy =

=
∫

Rm
ψ(y)

(∫

Rn
ϕ̂(x)f(x, y) dx

)
dy =

∫

Rn+m
ϕ̂(x)ψ(y)f(x, y) dxdy

for all ψ ∈ Sω2
. Thus, for ψ ∈ Dω2

we have that

〈ψ̂, 〈ϕ, N̂f〉〉 =
∫

Rn+m
ϕ̂(x)ψ̂(x)f(x, y) dxdy =

∫

Rn+m
ϕ⊗ψ(x, y)f̂(x, y) dxdy = 0
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since ϕ ⊗ ψ ∈ Dω(∁K) in virtue of (3.1), and hence, by the denseness of

{ψ̂ : ψ ∈ Dω2
} in Sω2

[3, Th. 1.8.7], it follows that 〈ϕ, N̂f 〉 = 0. Consequently

supp N̂f ⊂ K1 and Nf ∈ LK1
p,ρ1(L

K2
p,ρ2). Then N is linear and preserves the

norm and, since SKω is dense in LKp,ρ [30, p. 40], it can be extended to a norm
preserving linear operator from LKp,ρ into LK1

p,ρ1(L
K2
p,ρ2) which will also be denoted

by N . It remains to prove that N is surjective. Given G ∈ LK1
p,ρ1

(LK2
p,ρ2

), we
define f : Rn+m → C : (x, y) → G(x)(y) (we may suppose, see Section 2, that
G is the restriction to Rn of an LK2

p,ρ2–valued entire function of exponential type
and that, for all x ∈ Rn, G(x) is the restriction to Rm of an entire function
of exponential type). Let us see that f ∈ Lp,ρ. By virtue of the estimate
1/ρ2(y) ≤ C eω2(y) and the embedding LK2

p,ρ2
→֒ LK2

∞,ρ2
(see [30, p. 36]), we have

that

|f(x, y) − f(x0, y0)| = |G(x)(y) −G(x0)(y0)| ≤

≤ |G(x)(y) −G(x0)(y)| + |G(x0)(y) −G(x0)(y0)| ≤

≤ C eω2(y)‖G(x) −G(x0)‖p,ρ2 + |G(x0)(y) −G(x0)(y0)| → 0

when (x, y) → (x0, y0). Thus f is continuous, ‖f‖p,ρ = ‖G‖
L

K1
p,ρ1

(L
K2
p,ρ2

)
and

f ∈ Lp,ρ. Actually, f ∈ LKp,ρ. In fact, if we proceed as above then

〈Φ, f̂〉 = 〈Ψ, f̂〉 = 0 , Φ ∈ Dω1
(∁K1) ⊗Dω2

, Ψ ∈ Dω1
⊗Dω2

(∁K2) ,

and so, by Theorem 3.2 (1), we get

〈Φ, f̂〉 = 〈Ψ, f̂〉 = 0 , Φ ∈ Dω(∁K1 × R
m) , Ψ ∈ Dω(R

n × ∁K2) . (5.1)

Hence it follows that 〈Φ, f̂〉 = 0 holds for all Φ ∈ Dω(∁K) (since given such a
Φ, we have supp Φ ⊂ ∁K = (∁K1×Rm)∪(Rn×∁K2) and then it suffices to take
a Dω–partition of unity at supp Φ subordinate to this covering and use (5.1)).
Therefore, f ∈ LKp,ρ. Finally, from the embeddings LK1

p,ρ1
(LK2

p,ρ2
) →֒ LK1

∞,ρ1
(LK2

p,ρ2
)

(see [24, Th. 3.3]), LK2
p,ρ2 →֒ LK2

∞,ρ2 and LKp,ρ →֒ LK∞,ρ, it follows that Nf = G.
The proof is complete.

The spaces LQp (Q cube in Rn) are the building blocks of the Besov spaces (see
[27], [30] and [31]). By using the isomorphism LQp ≃ lp, Triebel proves in [29]
(see also [31]) that the Besov spaces Bs

p,q(R
n) are isomorphic to lq(lp). Follow-

ing Triebel’s approach [31] it is shown in [24] the vector–valued counterpart
of this result: a) Let 1 < p < ∞, 1 ≤ q ≤ ∞, −∞ < s < ∞, let Q ⊂ Rn be
a cube and let E be a Banach space with the UMD–property. Then LQp (E) is
isomorphic to lp(E) and Bs

p,q(E) is isomorphic to lq(lp(E)). (For definitions,
notation and basic results about vector–valued Besov spaces see [2] and [26]).

Since the spaces lq0(lp0) and lq1(lp1) are isomorphic if and only if q0 = q1 and
p0 = p1 (1 ≤ q0, q1 ≤ ∞ and 1 < p0, p1 < ∞) (see e.g. [31, p. 242]), it
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follows from a) that the spaces LQ1
p (LQ2

q ) and LQ2
q (LQ1

p ) are not isomorphic if
1 < p 6= q < ∞ (here Q1, Q2 are cubes in Rn). Another application of result
a) is the following.

Theorem 5.2. Let 1 < q 6= 2 < ∞ and −∞ < s < ∞. Then the spaces
Bs

2,q(R
n, Bs

2,q(R
m)) and Bs

2,q(R
n+m) are not isomorphic.

Proof. The Besov space Bs
2,q(R

n+m) is an Lq–space since lq(l2) is an Lq–space
(see [21, Ex. 8.2]) and Bs

2,q(R
n+m) is isomorphic to lq(l2). On the other hand,

since Bs
2,q(R

m) is a UMD space (lq(l2) is a UMD space, see e.g. [1, Th. 4.5.2]),
we can apply a) and obtain

Bs
2,q(R

n, Bs
2,q(R

m)) ≃ lq(l2(B
s
2,q(R

m))) ≃ lq(l2(lq(l2))) > l2(lq(l2)) > l2(lq) .

Whence it follows that Bs
2,q(R

n, Bs
2,q(R

m)) is not an Lq–space, since l2(lq) is
not an Lq–space [21, p. 316] and a complemented subspace of an Lq–space
which is not isomorphic to a Hilbert space is an Lq–space [22].
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