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This paper presents measures of target strength (TS; dB re 1 m2) and models of TS vs. fork length (L; cm), i.e. TS ¼ 20log Lð Þ þ b20, for skip-
jack tuna associated with fish aggregating devices (FADs) in the Central Pacific Ocean. Measurements were made using 38-, 120-, and 200-kHz
split-beam echosounders on a purse-seine workboat during fishing operations. To mitigate potential bias due to unresolved targets, TS mea-
surements were rejected if they were not simultaneously detected with multiple echosounder frequencies in approximately the same location.
The filtered TS and concomitantly sampled L data were used to estimate b20¼�76, �71, and �70.5 dB for 38, 120, and 200 kHz, respectively,
using the method of least squares. For comparison, quasi-independent estimates of TS and b20 were calculated from acoustic echo-
integration and catch data representing entire aggregations around the FADs. The results differed by�1 dB for all three frequencies. The sen-
sitivities of these results to variations in fish morphology and behaviour were explored using a simulation of TS for fish without swimbladders.
The utility of the results on acoustic properties of skipjack tuna and next research steps to achieve selective fishing at FADs are discussed.

Keywords: acoustics, echosounder, FAD, frequency response, multiple targets, selectivity, sonar, split beam, tropical tuna, tuna

Introduction
Fish aggregating devices (FADs) are used to catch tropical tunas,

skipjack (Katsuwonus pelamis) comprising more than half of the

global tuna catch. Almost invariably, skipjack are found with big-

eye (Thunnus obesus) and yellowfin tuna (Thunnus albacares) at

FADs (Fonteneau et al., 2013). Although the stocks of skipjack

are reported to be in healthy condition, recent stock assessments for

bigeye and yellowfin tuna indicate that these tuna stocks are fully

exploited or subject to overfishing in different regions (ISSF, 2017).

In recent years, the widespread use of FADs to catch skipjack

has motivated increased efforts to minimize catches of bigeye, yel-

lowfin, and other non-target species (bycatch). One approach is

to use the fishers’ echosounders, sonars, and echosounder buoys

(Lopez et al., 2014; Moreno et al., 2016) to not only locate and

fish on target species, but also to identify the presence and distri-

bution of non-target species near FADs before nets are set. Data

from these instruments could also be used to estimate tuna distri-

butions and abundances to inform stock assessments (Moreno

et al., 2016). To quantitatively interpret acoustic data collected

around FADs, it is necessary to know the sound scattering charac-

teristics of the target species. In particular, echo-integration esti-

mates of fish abundance requires knowledge of mean target

strength [TS ¼ 10log rbsð Þ; dB re 1 m2], where rbs (m2) is the

backscattering cross-section (Maclennan et al., 2002), vs. acoustic

frequency (f ; kHz) and fish length (L; cm) (Simmonds and

MacLennan, 2005). Models of TS fð Þ can be used to allocate
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echoes to target species (Korneliussen, 2010), potentially facilitat-

ing more selective fishing, and models of TS Lð Þ can be used to

convert nautical area backscatter coefficients (sA; m2=nmi2) to es-

timated animal densities (Simmonds and MacLennan, 2005).

Despite the importance of characterizing TS vs. f and L, mea-

sures of tuna around FADs have generally been made with only a

single frequency (e.g. Doray et al., 2006; Josse and Bertrand, 2000;

Moreno et al., 2008), and there have been no published TS fð Þ
and TS Lð Þmodels for in situ skipjack. This lack of knowledge pre-

vents both fishers and scientists from interpreting data provided

by the acoustic tools used when fishing or studying fish at FADs.

To improve this situation, a series of scientific cruises promoted

by the International Seafood Sustainability Foundation were con-

ducted onboard commercial purse seiners to study sound scatter-

ing properties of tropical tuna species around FADs. In this study

we focus on skipjack tuna, the main target species associated with

FADs. Using data from almost pure sets of skipjack collected in a

Central Pacific Ocean cruise in 2014, we provide modelled TS(f)

and TS(L) relationships for skipjack using two different

approaches, as well as interpretation of the obtained results based

on fish-backscattering simulations.

Methods
Data collection
Acoustic data
Sonar (Furuno FSV84), and purse-seine catch data were collected in

the Central Pacific Ocean, aboard F/V Albatun 3, between 3 and 31

May 2014. During this period, data were also collected from 38-,

120-, and 200-kHz echosounders (Simrad EK60) mounted on the

vessel’s 8-m workboat, with the transducers (Simrad ES38-12,

ES120-7C, and ES200-7C, respectively) projecting vertically down-

ward (Figure 1). The echosounders were calibrated using a 38.1-mm

diameter sphere made from tungsten carbide with 6% cobalt binder

(Demer et al., 2015; Foote, 1987), and configured with the calibrated

parameters (Table 1) prior to data collections.

Ten minutes before and throughout each of 20 purse-seine

sets, the workboat was attached to the drifting FAD, and TS and

volume backscattering strength (SV; dB re 1 m�1) data were col-

lected from 5- to 200-m depth. During the �60-min sets, the

workboat slowly towed the FAD to maintain separations from the

net and the vessel.

Purse-seine catch data
Skipjack schools were captured using an 1800-m long � 310-m

deep purse-seine net. During the second half of each set, two di-

vers visually observed the species in the shallowest 25 m of the ag-

gregation. While the catch was lifted aboard, 1–2 tons of fish was

sampled, generally from every sixth or seventh brail, into a fiber-

glass box (110 � 70 � 100 cm). Fish species were identified and

fork lengths, L, were measured (1-cm precision) using flat mea-

suring boards. For each species, fish weights (w; g) were estimated

from the measured L and a model of L wð Þ (Cayré and Laloë,

1986). The catch weight for each species was estimated by multi-

plying the weight proportion for each species and the fishing

master’s estimate of total-catch tonnage for the set.

Data analysis
Echosounder, sonar, and catch data from three purse-seine sets

with� 96% skipjack by number (� 94% by weight) (Table 2)

were processed using commercial (Echoview; Hobart, Tasmania)

and open source software (R, R Core Team, 2014). The TS

and SV data were analysed from �5 min before the set until ech-

oes from the net were visible at the bottom of the echogram

(i.e. before the tuna changed their behaviour in response to the

closing net).

Target selection
A routine was then applied to assure that the subsequent TS mea-

surements were of pure skipjack targets. To avoid echoes from

bycatch fish species, SV and TS data were excluded if shallower

than 25 m (Muir et al., 2012; Forget et al., 2015), deeper than

200m, or below echoes from the net. In addition, a school detec-

tion algorithm (Lawson et al., 2001) was then used to retain the

main aggregation (assumed to be skipjack, given the high propor-

tion of the catch). The rejected echoes from outside the aggrega-

tion were considered non-fish echoes (putative plankton or small

nekton) that tend not to aggregate, or large bigeye and yellowfin,

which tend to locate below the main aggregation (as described by

Moreno et al., 2008; Govinden et al., 2010; Muir et al., 2012;

Lopez et al., 2016) (Figure 2). After smoothing by an unweighted,

normalized to unity, 5 � 5 convolution, “schools” (i.e. the main

aggregations around the FAD) were selected using: minimum to-

tal school length and height¼ 0.2 m; minimum candidate length

and height¼ 0.1 m; and maximum vertical and horizontal linking

distances¼ 5 and 20 m, respectively. The school detection was ap-

plied on both SV and TS echograms, and data from within the

schools were attributed to skipjack (Figure 2).

TS estimation based on single targets
The TS echograms at each frequency were processed using a

single-target detection algorithm (SIMRAD, 1996; Soule et al.,

1997) configured with the following settings: minimum

threshold¼�80 dB; normalized pulse durations¼ 0.9–1.5; maxi-

mum off-axis angles¼ 3�; and maximum standard deviations of

phase¼ 0.6�.

Multiple-target rejection
To mitigate bias in TS measurements due to unresolved targets

(Demer et al., 1999), the single-target detections were filtered fur-

ther using the following methods:

(1) Standard deviation (SD): Alongships and athwartships phase

was thresholded (Soule et al.., 1997) with values ranging

from 0.9�–0.1�.

(2) Fish tracking (FT): TS measurement sequences were ascribed

to individual fish using a method (Blackman, 1986) applied in

commercial software (Echoview; Myriax Inc., Hobart,

Tasmania) and configured with the following parameters

(Moreno et al., 2008):� 3 consecutive detections;� 5 missing

pings; missed ping expansion ¼ 0%; sensitivity to unpredicted

change in position, alpha ¼ 0.7; sensitivity to velocity, beta ¼
0.5; exclusion distances along major and minor axes ¼ 4 m;

target–to–track assignment weights ¼ 30 (major axis),

30 (minor axis), and 40 (vertical axis); and � 1 m inter-ping

depth variation. The latter corresponds to the maximum verti-

cal velocities recorded for tuna during ultrasonic tracking ex-

periments around moored FADs (Cayré and Chabanne, 1986;

Marsac and Cayré, 1998).
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(3) Multiple frequencies simultaneously (MFS): TS measurements

were accepted if concomitantly detected by multiple frequen-

cies (Demer et al., 1999). First, the relative transducer posi-

tions were determined (Conti et al., 2005) using sphere echoes

recorded simultaneously at multiple frequencies, and a non-

linear optimization (Powell, 1994) implemented in the R (R

Core Team, 2014) package “NLoptr” (Johnson, n.d.). Then,

the target coordinates were transformed into a common coor-

dinate system (Conti et al., 2005). The minimum distance

between detections by different frequencies was varied sequen-

tially from 5 to 0.01 m.

(4) High fish density (HFD): TS measurements were accepted if

they were from areas with low fish densities (Sawada et al.,

1993). The threshold fish density was determined by plotting

the number of single targets per cell (TV) against the total

number of fish per cell (NV) and choosing (Gauthier and

Rose, 2001) the NV that produced a peak in TV. This proce-

dure assures that the threshold density is independent of the

TS value used to calculate it. The threshold was evaluated for

grid-cell dimensions ranging from 1500 (10 m � 100 pings;

1 ping � 0.15 m) to 3.0 m2 (10 m � 2 pings).

TS(L) and TS(f) relationships
After filtering echoes from multiple targets, TS Lð Þ was modelled

as

TS ¼ 20logðLÞ þ b20; (1)

where b20 (Simmonds and MacLennan, 2005) of skipjack was es-

timated for each frequency using the in situ TS distributions,

measurements of L distribution from the purse-seine catches

(Fernandes et al., 2006), and the method of least squares

(MacLennan and Menz, 1996). The slope in (1) was assumed to

be 20 (Simmonds and MacLennan, 2005) because the inter-set

differences in mean L (< 3 cm) were too small to estimate its

Figure 1. For each of 20 purse-seine sets, echosounders on a workboat were used to measure target strength (TS; dB re 1 m2), volume
backscattering strength (SV; dB re 1 m1), and school height (2Rz; m) for skipjack beneath the FAD; and a scanning sonar on a purse-seine
vessel was used to estimate the school width (2Rcw; m) and length (2Rlw; m).

Table 1. Calibrated echosounder (Simrad EK60) settings used to
measure target strength (TS; dB re 1 m2), volume backscattering
strength (SV; dB re 1 m�1).

Frequency (kHz) 38 120 200
Pulse duration (ls) 512 512 512
Power (W) 2000 250 150
Gain (dB) 26.16 25.96 27.09
Sa correction (dB) �0.86 �0.39 �0.34
Ath. beam angle (deg) 6.92 6.38 6.43
Along beam angle (deg) 6.94 6.39 6.37
Sphere TS (dB) 42.3 40 39.9
TS deviation (dB) 5 5 5
RMS beam model 0.19 0.18 0.20
RMS polynomial model 0.16 0.16 0.15
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value from the data. Standard deviations, calculated with the R

package “Seewave” (Sueur et al., 2013), confidence intervals of

the TS distributions, and coefficient of determination values of

the TS(L) models were calculated.

TS estimation based on volume backscatter
Mean TS was independently estimated for each of the three fre-

quencies and purse-seine catches by inverting the volume back-

scatter equation (Misund and Beltestad, 1996),

TS dB re 1 m2
� �

¼ 10log SVwV=Bð Þ; (2)

where SV is the volume backscattering coefficient (m2=m3), w is

the mean weight of skipjack in the spill sample (g), B is the skip-

jack biomass in the catch (g), and V is the ellipsoidal volume of

the skipjack aggregation (m3),

V ¼ ð4=3ÞpRcwRlwRz ; (3)

where the average school height (Rz ; m) is estimated from the SV

echogram (Figure 1), and the school width (Rcw; m) and length

(Rlw; m), assumed to be equal, are estimated from horizontal

range in a sonar image (e.g. Figure 3) recorded at the beginning

of the set, scaled and corrected for distortion according to the

procedure of Misund (1993). The school width was made equal

to the length one instead of calculating it from the screen because

the crosswise dimensions of the schools obtained from the sonar

screenshots were slightly but consistently higher than the length-

wise ones, thus indicating a likely poorer effectiveness of the dis-

tortion correction (and thus slightly biased estimation) in this

direction.

TS sensitivity
TS of a bladderless fish is not only a function of acoustic fre-

quency and fish size, but also shape, material properties (flesh,

bone, and other organs) and behaviour (Gorska et al., 2005;

Korneliussen, 2010). To have a better understanding of the fac-

tors that contribute to the TS of bladderless species in general and

skipjack tuna in particular, finite element models (FEM) (Jech

et al., 2015) were run to predict in situ TS measurements of skip-

jack tuna. However, due to the paucity of published material

properties for this species, the simulations were run in compari-

son with Atlantic mackerel, a more studied bladderless fish

(Gorska et al., 2005) that was taken as a reference. The simula-

tions were run by pairs, one for Atlantic mackerel, considered as

a baseline, and a second one obtained by changing only one of

the model parameters of Atlantic mackerel to suitable values for

skipjack. The resulting change in b20 in each pair informed on

Figure 2. The procedure to attribute echoes to skipjack, illustrated by data from set ID 24. The original SV and TS echograms (columns 1 and
2) were filtered using a school detection algorithm, converted to a mask (column 3, row 2) applied to the SV (column 4) and TS (column 5)
echograms, resulting in data for putative skipjack tuna. Minimum display thresholds¼ 70 dB.

Table 2. Proportions and mean lengths of skipjack (SKJ), bigeye (BET), and yellowfin tuna (YFT) in three catches that included� 96% SKJ by
number (� 94% by weight).

Set Catch
Weight proportion (%) Number proportion (%) Mean Fork Length (cm)

ID (tons) SKJ BET YFT SKJ BET YFT SKJ BET YFT

24 170 100 0 0 99 1 0 48 32 49
26 125 94 4 2 97 2 1 52 58 62
27 170 94 4 2 96 2 2 49 55 47
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which individual properties could theoretically contribute more

to the TS differences between the two species. The goal of the

simulations, rather than obtaining the best match with the experi-

mental results, was to understand which parameters can contrib-

ute more to the TS of fish species when the swimbladder is

absent.

For Atlantic mackerel, published density and sound speed val-

ues of flesh and backbone were used (Gorska et al., 2007;

Sigfusson et al., 2001a) (Table 3). For skipjack, we used albacore

tuna (Thunnus alalunga) values (Table 3) for flesh sound speed

(Sigfusson et al., 2001b) and density (Alexander, 2013). Arbitrary

values were used for the backbone, assumed more rigid and dense

than for Atlantic mackerel, to match the qualitative impression

obtained cutting slices of specimens of both species. The FEM

models were solved using L¼ 20 cm, and f¼ 18, 38, 70, and

80 kHz for both species.

Shape was modelled as an ellipsoid (flesh only, model code A,

Table 3), an ellipsoid with an internal cylinder (flesh and bone,

model code B), and outlines of X-ray images of one specimen of

each species (model code C). For computational efficiency, only

longitudinal waves were considered along the backbone (Forland

et al., 2014a, b). Convergence was assessed with�20 nodes per

wavelength. Evaluations at higher frequencies required more

computer memory than was available (Jech et al., 2015).

Model sensitivities were evaluated for: equivalent shape and

different flesh properties (model code A.1, Table 3); equivalent

shape and bone but different flesh properties (B.1); equivalent

shape and flesh but different backbone properties (B.2); equiva-

lent shape but different flesh and bone properties (B.3); equiva-

lent shape, flesh and bone properties, but different incidence

angle distributions (B.4); equivalent flesh and bone properties

and incidence angle distributions, but different shapes from

X-ray images (C.1) (Figure 4); and equivalent flesh and bone

properties, but different shapes (from X-ray images) and inci-

dence angle distributions (C.2) (Table 3).

Results
TS measurements
The procedure to isolate skipjack tuna echoes transformed the

multimodal TS measurements, which include TS of putative

plankton, small nekton and bycatch species, to unimodal distri-

butions (Figure 5).

The efficiency of each of the four methods applied to remove

unresolved targets was as follows:

(1) Decreasing the standard deviation of split-beam phase (SD)

decreased the number of 38 kHz detections but did not

change the mean TS (Figure 6). Therefore, either the mean

TS is not biased from multiple targets or decreasing the stan-

dard deviation of split-beam phase < 0.9� did not eliminate

multiple targets. Therefore, this threshold was set equal to

the default value of 0.6�.

(2) Increasing the number of fish detections per track (FT) to 8

decreased the mean TS; and larger numbers of fish detections

per track increased both the mean TS and the standard error

(s.e.) (Figure 6). Because it was not possible to visually con-

firm that the tracks were from individual fish and not arte-

facts of the large number of detections within the

aggregation, FT was not considered further.

(3) For simultaneous detections at multiple frequencies (MFS),

decreasing the allowable distance between targets to �0.15 m

decreased the mean TS; and shorter distances increased both

Figure 3. Example sonar image (set ID 24) showing the position of the purse-seine vessel (centre of the concentric dashed-line circles) and
the horizontal ranges to and across a skipjack school (large red patch) beneath the FAD.
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the mean TS and the SE (Figure 6). This indicated an opti-

mal distance threshold for filtering multiple targets.

(4) Decreasing the grid size for determining the high-density

threshold (HDF) decreased the mean TS until the

minimum usable grid size was reached (10 m � 2 pings)

(Figure 6). Because mean TS did not stabilize prior to

reaching this smallest usable grid size, HDF was not consid-

ered further.

Table 3. Model parameters and average b20 values.

Models Body (flesh) parameters Bone parameters b20 @ f (kHz)

Code Type Body Tested FAO Inc. Length Height Width q c Length Diameter q c 18 38 70 80
shape element code angle (�) (cm) (cm) (cm) (kg/l) (m/s) (cm) (cm) (kg/l) (m/s) (dB) (dB) (dB) (dB)

A.1 F Ellipsoid Flesh MAC 9065 20 3.6 3 1.06 1537 — — — — �80.52 �82.22 �85.02 �79.32
A.1 F Ellipsoid Flesh “SKJ” 9065 20 3.6 3 1.09 1600 — — — — �74.02 �76.32 �74.42 �74.02
B.1 F&B Ellipsoid Flesh MAC 9065 20 3.6 3 1.06 1537 18 0.36 1.13 2600 �77.12 �87.92 �70.82 �71.72
B.1 F&B Ellipsoid Flesh “SKJ” 9065 20 3.6 3 1.09 1600 18 0.36 1.13 2600 �72.22 �78.12 �68.22 �73.02
B.2 F&B Ellipsoid Bone MAC 9065 20 3.6 3 1.06 1537 18 0.36 1.13 2600 �72.22 �78.12 �68.22 �73.02
B.2 F&B Ellipsoid Bone “SKJ” 9065 20 3.6 3 1.06 1537 18 0.36 1.3 3200 �71.92 �76.72 �66.62 �71.12
B.3 F&B Ellipsoid Flesh and

bone
MAC 9065 20 3.6 3 1.06 1537 18 0.36 1.13 2600 �77.12 �82.82 �70.82 �71.72

B.3 F&B Ellipsoid Flesh and
bone

“SKJ” 9065 20 3.6 3 1.09 1600 18 0.36 1.3 3200 �71.92 �76.72 �66.62 �71.12

B.4 F&B Ellipsoid Incidence
angle

MAC 9065 20 3.6 3 1.06 1537 18 0.36 1.13 2600 �77.12 �87.92 �70.82 �71.72

B.4 F&B Ellipsoid Incidence
angle

“SKJ” 90610 20 3.6 3 1.06 1537 18 0.36 1.13 2600 �77.72 �85.62 �73.12 �72.72

C.1 F&B X-ray Shape MAC 9065 20 4.2 2.8 1.06 1537 14.9 0.35 1.13 2600 �79.32 �83.32 �77.62 �73.62
C.1 F&B X-ray Shape “SKJ” 9065 20 5 4.8 1.06 1537 17.17 0.38 1.13 2600 �78.52 �86.52 �76.12 �73.42
C.2 F&B X-ray Incidence

angle
MAC 9065 20 4.2 2.8 1.06 1537 14.9 0.35 1.13 2600 �79.42 �83.32 �77.52 �73.62

C.2 F&B X-ray Incidence
angle

“SKJ” 90610 20 5 4.8 1.06 1537 17.17 0.38 1.13 2600 �78.92 �85.72 �76.22 �74.12

For all models, the values assumed for seawater density and sound speed were q¼ 1.030 kg/l and c¼ 1490 m/s. For each Code (defined in the text), the Type is
either F (only flesh) or F&B (flesh and bone). The FAO code is either MAC (Atlantic mackerel) or “SKJ” (skipjack tuna; the quotations marks are a note to the
reader that the parameters are not necessarily appropriate for skipjack tuna).

Figure 4. Dorsal (top row) and lateral (bottom row) X-ray images of Atlantic mackerel (left column) and skipjack tuna (right column)
specimens with length, height, and width dimensions: 26.94, 5.26, and 3.86 cm (MAC1); and 41.8, 10.26, and 7.23 cm (SKJ2). (Note: X-rays for
both species were taken using different settings, and are thus not directly comparable).
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Among the methods tested to filter multiple targets, only MFS re-

duced bias in mean TS using an objectively defined threshold.

Therefore, the results of the MFS filtering were used to fit TS Lð Þ
models for each frequency. The mean TS values did not change

along the set duration (results not shown).

TS(L) and TS(f) models
The TS Lð Þ relationships based on data passing the single target

discrimination filters, have b20 values equal to �76, �71, and

�70.5 dB for the 38, 120, and 200 kHz, respectively. Adjustment

between observed TS distributions and those derived from (1)

with measurements of L (Figure 7) with the least squares method

have coefficients of determination (R2) �80% (Table 4 and

Figure 8). Values of b20 derived by echo-integration using (2) and

(3) were �1 dB higher at all frequencies (Table 4). From measure-

ments of single targets, TS of in situ skipjack tuna at 38 kHz is �5

and �5.5 dB lower than at 120 and 200 kHz, respectively

(Figure 9); whereas from echo-integration, the TS at 38 kHz is �5

and �6 dB lower than at 120 and 200 kHz, respectively (Table 4).

The uncertainties were lower for TS measurements of single

targets (SD¼ 7, 6, and 6 dB at 38, 120, and 200 kHz, respectively)

than for TS measurements derived from echo-integrations

(SD¼ 15, 8, and 7 dB, respectively).

TS sensitivities
In the FEM models, in general, TS decreased from 18 to 38 kHz,

then increased with higher frequencies, the frequency response

showing generally larger values at high (70–80 kHz) compared to

low (18–38 kHz) frequencies for both species (Table 3). This in-

crease at higher frequencies was not accentuated by the inclusion

of a backbone.

Considering the comparison between skipjack and Atlantic

mackerel at 38 kHz (the only simulated frequency that was di-

rectly comparable with the experimental results), larger values for

flesh density and sound speed increased TS by 5–10 dB (Table 3).

These models (A.1, B.2, and B.3) predicted b20 values within

�1 dB of the observed ones (Tables 3 and 4). Larger values for

bone density and sound speed also increased TS, but by less than

2 dB. In contrast, TS did not increase with differences in shape

nor a wider distribution of incidence angles (Table 3).

Figure 5. TS distributions for each frequency (columns) and set (rows), before (grey) and after (black) the school filter was applied to
identify echoes from skipjack tuna. The lower intensity modes are likely from plankton and small nekton. On an average, about 2/3 of the
data were removed in this step.
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Discussion
Experimental measurements
TS measurements of in situ fish may be biased due to inclusion of

non-target species or multiple targets (Soule et al., 1997; Demer

et al., 1999). Here, we use vertical stratification and a school detec-

tion algorithm to filter echoes from plankton, micro-necton and by-

catch species and, after evaluating several methods, apply a

multiple-frequency TS-detection method to filter multiple targets

(Demer et al., 1999; Conti et al., 2005). The school detection algo-

rithm filtered non-target echoes from above the skipjack school,

likely from small tunas and other species (Forget et al., 2015; Muir

et al., 2012; diver observations), and below the school, potentially

larger bigeye and yellowfin tuna (Moreno et al., 2008; Govinden

et al., 2010; Muir et al., 2012). The sensitivity analyses for each of

the filtering steps served to evaluate their effectiveness and optimize

their parameters. For the MFS filter, we refined earlier works

(Demer et al., 1999; Conti et al., 2005) by optimizing a threshold on

the distance between simultaneous detections of candidate single

targets. The school and MFS filters reduced the TS-measurement

biases by �2–4 dB and, although they also reduced the number of

targets by two orders of magnitude, the adjustment between pre-

dicted and observed TS values with the method of least squares pro-

vided high (�80%) coefficients of determination (Figure 8).

The echo-integration estimates of skipjack tuna TS were based

on various important assumptions: (1) that the skipper’s biomass

estimates were accurate and precise, (2) that the schools had

equivalent horizontal dimensions (i.e. Rcw ¼ Rlw) and (3) that

the measurement of a single sonar screenshot gives a reliable mea-

surement of the horizontal aggregation size. The accuracy of the

tonnage estimates for each set is unknown because multiple

catches are stored in the same hold, but their combined tonnage

typically differs by �5% from the total discharge weight (pers.

comm., fishing company representative). Perhaps the measure-

ment accuracy obtained with this approach could be improved by

weighting entire catches ashore. It could also be improved by cor-

recting bias in the measurements made perpendicular to the so-

nar beams, thereby allowing estimates of both horizontal

dimensions of the school. And, finally, by averaging the measure-

ments of horizontal school dimensions throughout the sets in-

stead of using measures taken at the beginning of each set.

Despite the aforementioned uncertainties, the quasi-

independent single-target-detection and echo-integration meth-

ods for estimating TS produced b20 values for skipjack tuna that

were within �1 dB (33%) of each other at all frequencies

(Table 4). However, because of the assumptions of the echo-

integration approach and their higher uncertainty (Table 4), the

results from the single-target approach should be used to identify

echoes from skipjack tuna and estimate their number densities.

This work compares the results of TS Lð Þ models estimated us-

ing the single target discrimination and echo-integration meth-

ods, which are quasi-independent and have different sources of

uncertainty. Therefore, similar results corroborate each other.

Besides, the capability of the TS values to obtain accurate biomass

estimations is implicitly tested in the echo-integration method.

Therefore, the results of this study should facilitate unbiased

acoustic estimates skipjack biomass.

Theoretical interpretation of skipjack TS
Our 38-kHz TS measurements of in situ skipjack tuna are

�2.5 dB lower than the mean TS measured for one skipjack tuna

Figure 6. Mean TS for in situ skipjack measured at 38 kHz vs. standard deviation of split-beam phase (SD), number of targets per track (FT),
distance between simultaneous detections at multiple frequencies (MFS), and grid size used to determine a HDF. Horizontal dotted line
represents the unfiltered mean TS value. The number of TS measurements included in the average (continuous red line and right axis label)
decreases, and the standard error increases (bars) with increased filter constraints. For MFS, the TS stabilized with a distance threshold of
0.15 m (vertical black line) at 38 kHz and 0.09 and 0.1 m at 120 and 200 kHz respectively (not shown).
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in a cage (Oshima, 2008). The FEM model sensitivity analysis

showed that this difference could be due to differences in material

properties or incidence angle distributions for skipjack tuna ag-

gregated near FADs vs. those for one captive specimen.

Our 38-kHz estimate of mean b20 for in situ skipjack tuna

(�76 dB) is higher than values reported for Atlantic mackerel

(Scomber scombrus), i.e. �90 dB (Scoulding et al., 2016), �88 dB

(Clay and Castonguay, 1996), �86 dB (Fernandes et al., 2006),

�84.9 or �82 dB (ICES, 2006). The FEM model results (Table 3)

predict b20 for skipjack higher than that of Atlantic mackerel.

According to the simulations, the material properties can account

for difference in b20 of up to �10 dB at 38 kHz (model B.1). From

those, acoustic properties of flesh accounted for the main b20 dif-

ference between both species, followed by backbone properties. In

contrast, variations in shape and incidence angle distribution

may have relatively little effect on the difference in TS of skipjack

tuna vs. Atlantic mackerel (Table 3). It is possible, however, that

a 5� change in the standard deviation of the incidence angle dis-

tribution in the model does not reflect the true range of natural

behaviour for skipjack.

Some of the tested models matched the experimental results

rather well (within<1 dB), whereas other models yielded very dif-

ferent results (up to 10 dB). However, as mentioned earlier, the

goal of the simulations was not to match the experimental results

in absolute terms, but rather to help interpreting them in terms

of the relative contribution of different parameters to the TS of

bladderless fish. In this regard, the 10 dB difference predicted for

different flesh properties (density and sound speed) alone can jus-

tify the differences between our results and TS of Atlantic mack-

erel found in bibliography.

However, these simulation results should be taken with cau-

tion due to the mentioned scarcity of information on material

properties of skipjack. Overall, skipjack is known to be denser

than Atlantic mackerel based on their respective length–weight

relationships (Cayré & Laloë, 1986; Coull et al., 1989) but it is not

clear how much of this density difference is attributable to the

bone and the flesh. Consequently, the values chosen for flesh

properties (i.e. the parameters with the highest contribution to

the TS) were taken from another tuna species, albacore tuna, of

similar size. The rigidity of the backbone appears to be consider-

ably higher for skipjack, but it has not been measured.

Consequently, future studies should include direct measurements

of skipjack flesh and bone properties for a range of fish lengths

(e.g. Forland et al., 2014b) and measurements of their orientation

distributions.

Although the magnitude of skipjack TS differs from that of

Atlantic mackerel, its TS fð Þ resembles that of many species with-

out swimbladders (Mosteiro et al., 2004; Fernandes et al., 2006;

Korneliussen, 2010; Forland et al., 2014a). However, because

skipjack tuna are larger than Atlantic mackerel, the 5 and 5.5 dB

increases in skipjack tuna TS at 120 and 200 kHz relative to

38 kHz (Figure 9) may be larger than for Atlantic mackerel

(Gorska et al., 2005, 2007). This TS fð Þ for skipjack tuna is also

different from that of fish species with swimbladders (Fernandes

Figure 7. Distributions of fork length for skipjack tuna ranged from 30 to 70 cm in three catches (sets number 24, 26, and 27) that
included� 96% skipjack tuna by number (� 94% by weight) (see Table 3).

1798 G. Boyra et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/75/5/1790/4973732 by U
PVA user on 08 January 2019

Deleted Text: ersu
Deleted Text: -
Deleted Text: :
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ersu
Deleted Text: -
Deleted Text: , and
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: Fig.
Deleted Text: -


et al., 2006; Horne et al., 2009). As skipjack is the main tuna spe-

cies without swimbladder associated with FADs, this could be

used to acoustically discriminate it from the other tuna species.

Use of acoustic data to support the sustainable fishing of
tropical tunas
Bigeye and yellowfin tuna, the most abundant tuna species found

at FADs, together with skipjack, are subject to overfishing in dif-

ferent regions. Informing fishers about the relative abundance of

skipjack compared with that of yellowfin and bigeye could allow

fishers to avoid setting nets on large abundances of species of

concern.

The TS(f) and TS(L) relationships obtained for skipjack in this

study are useful to improve the interpretation of the acoustic data

collected by purse seiners fishing at FADs. However, the knowl-

edge acquired is not enough: to provide acoustic estimations of

abundance per tuna species, TS(f) and TS(L) of the other main

tuna species found at FADs are also needed. TS(L) relationships

at 38 kHz are available for bigeye and yellowfin tuna from previ-

ous works (Bertrand et al., 1999; Josse and Bertrand, 2000), but

their TS(f) are absent from bibliography and should be studied.

Given that our measurements were made in situ under real

commercial fishery conditions, the obtained TS(L) relationships

reflect the true values of skipjack and be directly usable to

Figure 8. TS distributions of in situ skipjack tuna measured at 38, 120, and 200 kHz. To mitigate bias due to measurements of multiple
targets, the split-beam detections (top row) were filtered to retain those (N¼ number remaining) that were simultaneously detected at
multiple frequencies (bottom row). As in MacLennan and Menz (1996), each dataset was fit with a normal distribution (black lines) to
evaluate the mean (dashed vertical line), standard deviation (SD) and b20 of the best fit, given by coefficient of determination (R2), of
observed vs. modelled TS distributions.

Figure 9. Measured b20 for skipjack tuna associated with FADs. The
error bars (CI for b20 measurements) at 38 kHz don’t overlap with
those at 120 or 200 kHz, indicating significantly different (Cumming
et al., 2007) response between low and high frequencies. This
pattern could be potentially useful for discriminating this species
acoustically.
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estimate skipjack abundance. The acoustic abundance estimation

is obtained by isolating the biomass in (2), which leaves rbs (i.e.

the linearized TS) at the denominator. The standard error of the

measured rbs is �5% at the three frequencies. As the variance of

a quotient equals the sum of the variances of numerator and de-

nominator plus their covariance in relative terms (Seber, 1982),

assuming independence between the variances of the factors in

(2), the uncertainty of the measured rbs alone would cause confi-

dence intervals for the biomass �10% around the mean

(Cumming et al., 2007).

To estimate the abundances of multiple species typically aggre-

gated beneath FADs, it is necessary to first estimate the propor-

tions of each species present. To do this, the frequency response

of the aggregation may be compared with a mixed TS(f) model

derived from a proportion (x) of the skipjack TS(f) model and

proportion (1 � x) of a swimbladder fish TS(f) model, where the

difference is minimized by optimizing x (e.g. Korneliussen, 2010).

To increase the precision of the species proportion estimations,

the mixed TS(f) model could include proportions of models for

the other tuna species (e.g. Korneliussen et al., 2016). The esti-

mated proportions can then be used, analogous to species pro-

portions in catches, to estimate abundances for each of the

species following standard procedure (Simmonds and

MacLennan, 2005).

Conclusion
The application of fish school and MFS filters on single-target de-

tections at 38, 120, and 200 kHz served to mitigate measurement

bias of TS distributions of skipjack tuna associated with FADs.

The combination of echosounder, sonar, and net-sample mea-

surements allowed inversion of the echo-integration equation to

provide quasi-independent TS estimates. Values of b20 derived

from these two methods differed by<1 dB at all three frequencies.

The TS fð Þ measured in this study is useful to estimate abundance

of this species at FADs and to distinguish the echoes from skip-

jack tuna from tuna species with swimbladders, e.g. bigeye and

yellowfin tunas, before purse-seine fishing at FADs. This

manuscript represents the first of a series of studies on the acous-

tic properties of tropical tunas, with the final goal of providing es-

timates of tuna abundance at FADs by species, suitable for

selective fishing and fisheries independent estimates of tropical

tuna abundance.
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