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Abstract  

In breast cancer screening or diagnosis, it is usual to combine different images in order to locate a lesion as 
accurately as possible. These images are generated by using a single or several imaging techniques. As X-
ray based mammography is used widespread, a breast lesion is located in the same plane of the image 
(mammogram), but tracking of a breast lesion across mammograms corresponding to different views is a 
daring task for medical physicians. According to this, simulation tools and methodologies that use patient-
specific numerical models can facilitate the task of fusing information from different images. Additionally, 
these tools need to be as straightforward as possible to facilitate its translation to the clinical area.  

This paper presents a patient-specific, finite element (FE) based and semi-automated simulation 
methodology to track breast lesions across mammograms. A realistic, three-dimensional, computer model 
of a patient’s breast was generated from magnetic resonance imaging (MRI) to simulate mammographic 
compressions in cranio-caudal (CC, head-to-toe) and medio-lateral oblique (MLO, shoulder-to-opposite 
hip) directions. For each compression being simulated, a virtual mammogram was obtained and posteriorly 
superimposed to the corresponding real mammogram, by sharing the nipple as a common feature. Two-
dimensional rigid-body transformations were applied, and the error distance measured between the 
centroids of the tumor previously located on each image was 3.84 mm and 2.41 mm for CC and MLO 
compression, respectively. Considering that the scope of this work is to conceive a methodology 
translatable to the clinical practice, the results indicate that it could be helpful to support tracking of breast 
lesions. 

 

1. Introduction 

Breast cancer is the leading cause of cancer deaths among western world women1. Prevention 
policies have led to screening programs that allow early detection and subsequent therapy 
application, thus permitting a better prognosis (Jemal et al 2010). X-ray-based mammography is 
the gold standard in breast screening and cancer diagnosis due to its good specificity and low cost. 
If suspicious masses are found, MRI is also commonly used since it has a higher sensitivity but a 
higher cost and a lower specificity. It is accepted that combination of both techniques provides a 
more reliable diagnosis (Malur et al 2001) (Drukker et al 2005).     

The task of fusing information from different images is known as image registration. Its main 
goal is to obtain the transformation that relates the corresponding regions found in similar images 
(Guo et al 2006) – i. e, mammograms – or to calculate the correspondence between points in an 
image I and those in a fixed reference image, or the physical space of an intervention R (Hipwell 
et al 2016). Tracking lesions across mammograms has to deal with the high deformability of the 
breast due to changes in patient position or to forces exerted during the clinical setting. In a 
mammography, the patient is standing and each breast is highly compressed between two plates 
and, from this process, two mammograms are obtained, usually in CC and MLO directions. 
However, in MRI, the patient lies prone with her breasts pending down and thus subjected to 
gravity action. Hence, the high deformability of the breast makes the tumor tracking between 
mammograms a challenging task, which is intimately related to the problem of predicting breast 
deformations. 

In the last decade, remarkable works have employed FE models to predict breast deformation 
under gravity action (Rajagopal et al 2008) (Kuhlmann et al 2013), when a patient change her 
position from supine to upright (Pérez del Palomar et al, 2008) (Han et al 2014) (Khatam et al 
2015), or during clinical settings, such as needle biopsy (Azar et al 2001) or mammography 
(Chung et al 2008) (Tanner et al 2011) (Han et al 2012). To a greater or lesser extent, the authors 
have related these works with inter-modal (mammogram-to-mammogram) or intra-modal (i.e., 

                                                            
1 World Health Organization. URL: http://www.who.int. Accessed May 13, 2017. 
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mammogram-to-MRI) medical image registration. In addition, other works can be found in which 
FE simulations are used specifically within an image registration framework. The first works were 
carried out by Samani et al (2000). A CC-mammographic compression was simulated in order to 
fuse data from X-Ray to MRI images. The mechanics of a contact problem and the nonlinear 
properties of the tissues involved were considered. However, the FE model was unrealistic, and 
the degree of compression of the breast during simulation was too low compared to the level 
usually reached on a clinical setting (Samani et al 2001). Besides, it was not specified how the 
model could support data fusion.  

Schnabel et al (2003) presented a FE-based methodology to validate nonrigid image 
registration methods, but they considered a linear elastic response for the tissues involved. Ruiter 
et al (2006) developed a FE-based methodology to register MRI and mammograms. In this work, 
a mean registration error of 4.3 mm was obtained, a good result in the field of tumor localization. 
Nevertheless, the contact mechanics of the model were not stated sufficiently. Pathmanathan et 
al (2008) simulated breast compressions to match a point in a CC mammogram with the 
corresponding region in a MLO mammogram. Besides, it was computed the reference, stress-free 
state of the breast (i.e, without taking into account gravity action) as it was done previously by 
Rajagopal et al (2008). Though the results were promising, the model lacked of clinical validation. 
Furthermore, the proposed methodology was judged difficult to put into practice. Chung et al 
(2008) presented a FE-based methodology which was intended to trace the position of a tumor 
during a mammographic compression. Errors lesser than 5.0 mm in the location of markers were 
measured, but the model was little realistic. Lee et al (2013) presented a simulation framework to 
perform mammograms-MRI registration. CC and MLO compressions were carried out to the 
breast models, but those were manually generated. In addition, the tumor localization errors were 
too high, ranging from 7.5 mm to 33.0 mm. 

In some works, the authors use FE simulations within an intensity-based registration 
framework to optimize the parameters involved in the analysis, but they have some shortcomings. 
Hopp et al (2013) only considered CC mammograms, while in the clinical setting is prescriptive 
to compress the breast in two directions. This was corrected by Mertzanidou et al (2014) but the 
mean registration error was 11.6 mm and 11.0 mm for CC and MLO mammograms, respectively. 
Solves-Llorens et al (2014) developed a software application to register automatically X-ray 
mammograms and MRI, but the geometry of the FE model is believed to be excessively simplistic.  

Finally, there can be found some registration frameworks that are scarce in the literature, but 
they are interesting in the sense that they can open new research ways to investigate 
methodologies to track breast lesions. Ong et al (2010) used FE simulations within a surface-
based non-rigid registration framework that provided good results. 

The state-of-art of breast simulation evidences that the question of how to track breast tumors 
across different medical images is still not solved in a practical way. The importance of this issue 
is that an adequate framework to track tumors could allow a better diagnosis or even support 
surgery planning to remove breast lesions. Nevertheless, such a method should meet the 
requirements of individualization to a particular patient, accuracy in a sufficient degree and 
potential translatability to the clinical area. In fact, although many of the previously cited works 
are able to fulfill the first one with enough accuracy, their practical applicability is believed to be 
difficult.  

In this paper, the authors propose a methodology to track a breast lesion in plane previously 
detected in both X-ray mammograms and MRI. A realistic, patient-based and large deformable 
FE model of the breast is generated and used to simulate breast compressions as it was done 
during mammography. Among other assumptions, the number of parameters to define the 
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material constitutive models was reduced with respect to previous works with the aim of obtaining 
an accurate but faster methodology that could be applied to clinical practice. 

 

2. Methods 

The case of study employed in this work corresponded to a 56-year-old European female who 
was diagnosed of a nodule attached to the left inferior quadrant of the left breast by means of X-
ray mammography (Konica Minolta, 4014 x 5416 pixel x pixel resolution, 0.04375-mm2 pixel 
size) (Figures 1a, 1b). A written informed consent was obtained to use the medical images in this 
work.  

 

2.1. Model generation 

Following intravenous gadolinium intake to enhance contrast, a MRI scan was performed 
(Siemens Symphony Maestro 1.5 T scanner, 512 x 320-pixel resolution, 0.664-mm2 pixel size, 
1.4-mm slice thickness) and 352 axial, sagittal and coronal images were taken with a fat 
suppression sequence (Figure 1c, 1d, 1e). 

     
 

              (a)                 (b) 
 

     
 

                   (c)             (d)               (e) 
 

Figure 1. Clinical images from the patient’s left breast showing the presence of a tumor. 
Mammograms taken in two compression directions: (a) CC and (b) MLO. MR images in 

anatomical planes: (c) sagittal, (d) axial and (e) coronal.    
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A lesion of 2.5 x 2.2 x 2.5 cm3 was measured in the left breast in CC, ML and AP (antero-
posterior) directions, respectively. Images were saved to DICOM format and loaded into MIMICS 
10.01 software (Materialise 2006). Segmentation of tumor from healthy tissues and image 
artifacts was performed semi-automatically, and a 3D geometric model of the breast was 
automatically built and saved in STL format (Standard Tessellation Language). The geometric 
model comprised two closed surfaces: one for the outer surface of the tumor and the other 
representing the skin breast. Figure 2 shows these surfaces and it can be observed that the surface 
representing the outer surface of the breast resulted in an irregular tessellation, pointing out the 
need of being refined. The outer surface of the breast was exported to ABAQUS software package 
(Simulia 2007) and re-meshed by means of an automated algorithm to obtain a regular mesh of 
linear triangular elements. Afterwards, a semi-automated meshing technique was employed to 
generate two 4-noded solid linear tetrahedral meshes: one filled the space enclosed by the outer 
surface of the tumor, and the other filled the space comprised between the surface of skin breast 
and the outer surface of the tumor, as can also be seen in Figure 2. Finally, tumor location was 
checked in the FE model by comparing its position with measurements carried out in the MR 
images. Table 1 summarizes the entities belonging to the FE model of the breast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The tessellation of the surfaces obtained in MIMICS (Materialise 2006) (left) was 

smoothed in order to obtain a good quality mesh. On the right, the remeshing of the model by 
using linear triangular elements in the outermost surface of the breast. Nodes with fully 

restricted degrees of freedom are also indicated. 
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Table 1. Entities of the FE model of the breast.  
 

MODEL REGION FE ENTITY NUMBER 
Model Nodes 9678 

Internal tissues 
Linear tetrahedrons 49291 

Nodes 5802 

Tumor 
Linear tetrahedrons 1934 

Nodes 769 

Skin 
Linear triangles 6210 

Nodes 3107 
 

 

2.2. Constitutive modeling 

Mechanical properties of breast tissues are highly dependent on factors such as age or physical 
condition (Lorenzen et al 2008). Also, in order to take into account the high deformability of the 
breast constitutive modeling of breast tissues has to be performed from the basis of finite elasticity 
(Fung 1999) (Holzapfel 2000).   

The proposed model included four tissues: fat, gland, tumor and skin. Internal breast tissues 
(fat and gland) were assumed together as a homogenous media, as it was done in previous works 
(Pérez del Palomar et al 2008) (Lapuebla-Ferri et al 2011) (Roose et al 2005), and a constitutive 
neo-Hookean model was assumed for this homogenized tissue. The neo-Hookean model is used 
to characterize quasi-incompressible and hyperelastic media, such as the breast tissues. It uses the 
following strain-energy function: 

1 1·( 3)c I          (1) 

where I1 is the first invariant of the right Cauchy-Green deformation tensor and c1 a constant that 
is equal to half the initial shear modulus μ of the tissue, which takes into account the rigidity of 
the breast.   

Values previously reported by Samani and co-workers (Samani et al 2007) were used to 
compute the model constant c1. In that work, mean values of elasticity moduli were computed 
from breast samples by using inverse analysis techniques (Efat  Egland = 3.24 kPa) so an average 
value of Ehom = 3.24 kPa was assigned to the tetrahedrons of the FE model comprised between 
the outer surfaces of tumor and breast. Therefore, considering a Poisson’s ratio of 0.49 a value of 
c1= 0.54 kPa was obtained. Moreover, a parametric analysis was done to identify its relation with 
the accuracy of the results. On the other hand, a neo-Hookean model was also considered for the 
tumor. Since most breast tumors are several orders of magnitude stiffer than the surrounding tissue 
(Krouskop et al 1998) (O’Haggan and Samani 2008) a constant c1 = 5.44 kPa corresponding to a 
tenfold Ehom and the same Poisson’s ratio as the homogenized tissue was assigned to the finite 
elements representing the tumor. This value falls into the range of tumor stiffness stated by 
Samani et al (2007). Besides, skin mechanical properties also depend on the patient (Ulger et al 
2003) so a hyperelastic model with a polynomial strain-energy density function Ψsk was assumed 
(Tong and Fung 1976): 


 

   1 21
∙( 3) ∙( 3)

N i j
sk iji j

c I I      (2) 

where I1 and I2 are the first and second invariants of the right Cauchy-Green tensor, respectively. 
In order to compute the constants cij, expression (2) was fitted for N=2 to the stress-strain 
experimental results obtained by Gambarotta et al (2005). By using the least-square method, the 
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following values were obtained: c10 = 31 Pa, c01 = 30 Pa, c11 = 22.5 Pa, c20 = 50 Pa and c02 = 60 
Pa. These properties were assigned to the outermost triangular elements of the FE model with a 
uniform average thickness of 1 mm as reported in previous works (Han et al 2012) (Samani et al 
2001) (Schnabel et al 2003) and assuming membrane behavior. 

Constitutive relationships for the tissues were implemented in ABAQUS (Simulia 2007). 
Taking into account finite deformations and incompressibility of media, hybrid elements were 
considered to prevent excessive distortions. 

 

2.3. Boundary conditions 

Realistic boundary conditions were considered by observing the biomechanical behavior of 
the breast during mammography. As it is shown in Figure 2, displacements were fully restricted 
in the posterior nodes of the FE model. These nodes corresponded to the thoracic wall, which was 
assumed to be fixed. In addition, nodes located in the upper part and in the sagittal plane were 
also fully restricted by assuming that the body structures beyond this location do not interfere 
with breast deformation. 

In order to simulate breast compressions in CC and MLO directions, two new meshes 
representing the compressing plates used in a mammography were included in the model (Figure 
3). These plates were assumed to be rigid bodies compared to the breast tissues. In Figure 3 it can 
be seen that superior plate was modeled as a curved surface, and the inferior plate was modeled 
with its posterior part curved. This geometry assumption avoids convergence problems that arise 
when a sharp-edged rigid body contacts with a soft one.  

 

 

 

Figure 3. Non-rendered views of the FE breast model used to simulate mammographic 
compressions in the CC (left) and MLO (right) directions. Tumor is highlighted. Anatomical 

directions are also shown in the left views. A: anterior; P: posterior; Cl: cranial; Cd: caudal; L: 
lateral; M: medial. 

 
 
 Table 2 summarizes the features of the compressing plates in the FE model.  
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Table 2. FE entities of the compressing plates.  
 

PLATE NODES ELEMENTS SIZE (mm) 
Superior 450 360 8.0 ± 1.70 
Inferior 1035 972 5.5 ± 0.73 

 
 

2.4. Simulation of breast compressions 

Simulation steps of CC and MLO compressions were performed in ABAQUS (Simulia 2007) 
using the FE model following the reconstruction of the resonance magnetic images described 
before. Figure 4 illustrates how CC compression was simulated. Simulation of MLO compression 
followed a similar procedure, but the model was previously rotated 45º clockwise around an 
imaginary AP axis passing through the nipple and normal to the posterior surface of the model.  

Each compression simulation comprised the following steps: 

a) Gravity action was applied upwards to breast in AP direction in order to counteract breast 
deformation when MR images were obtained. 

b) Lower plate was raised until it contacted the breast. 
c) Gravity action was applied downwards until the breast rested on the inferior plate. Since 

then, the inferior plate remained fixed until the end of the simulation. 
d) Superior plate was lowered until breast was highly compressed. 

Coulomb’s model was assumed to consider friction between the elements of the plates and 
the skin in contact during simulations. In such model, shearing stress developed in the interface 
varied linearly with the contact pressure between the two bodies. A constant friction coefficient 
fC = 0.1 was assumed to relate both magnitudes, likewise in previous works (Chun et al 2012). 

 

2.5. Tumor tracking methodology 

The proposed methodology to track breast tumors is depicted in Figure 5. It consists of 
comparing the real mammograms of the patient obtained in CC and MLO directions with those 
computer-generated by means of FE simulations of mammographic compressions, which will be 
referred hereafter as virtual mammograms.  

Virtual mammograms for each direction of compression were obtained by projecting the 
nodes of the deformed configuration of the model to the inferior compressing plate. From the 
resulting 2D point cloud, the nodes corresponding to the outermost contours of the breast and the 
tumor were isolated by means of an automated algorithm implemented in the software package 
MATLAB (The Mathworks 2013). 
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Figure 4. Steps of the simulation of mammographic compression in CC direction. (a) Gravity 
action applied to counteract breast deformation in MRI. (b) Lower plate is raised. (c) Gravity 

acting on the breast. (d) Upper plate descends to compress the breast. 
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Figure 5. Scheme that shows the patient-based FE simulation methodology described in this 
work, from the numerical model construction to the tumour tracking. It is shown that virtual 

mammograms are generated from model compressions in CC and MLO directions and 
subsequently compared with the corresponding real mammograms. 
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Each real mammogram of the patient was discretized to compare it with the corresponding 
virtual mammogram and was turned into an in-plane tessellation, where only the nodes falling 
within the contours of the breast and the tumor were taken into consideration (Figure 6). Because 
of the mesh density, the contours could be considered as a continuous curve. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Discretization and contour extraction of the real mammograms of the patient depicted 

in Figure 1. (a) CC real mammogram. (b) MLO real mammogram.  
 

 

For quantifying the similarity between real and virtual mammograms in each direction of 
compression, an automated algorithm based in the Golden Search Method (Yang et al 2005) was 
implemented in MATLAB. Two different planar regions were considered from the real and virtual 
mammogram contours (Figure 7): region  (blue) represented the real mammogram and region 
’ (grey) accounted for the virtual mammogram. Also, each region was composed by two 
contours: an open one representing the breast contour (b and ’b) and a closed one representing 
the tumor contour (t and ’t). Initially, regions  and ’ were superimposed at a point np, which 
coincided with the projected position of the centroid of the nipple in the real and virtual 
mammograms. Hereafter, region  would remain fixed and region ’ was subjected to a rotation 
angle θ  ] – , + [ around the point np. Rotation angle θ take into account turning movement 

Breast contour 
Tumor contour 

(a) 

Breast contour 
Tumor contour 

(b) 
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exerted (voluntary or involuntarily) by the patient around a vertical axis during X-Ray 
mammography. 

Proceeding in this way, a rigid transformation of the moving image contour was performed, 
and a new configuration ’ (θ) was acquired for each value of θ. Each point i  ’b (θ) and j  
’t (θ) was mapped to the closest points k  b and l  t in the breast and tumor contours, 
respectively, of the real mammogram.  

 

 
 
Figure 7. Comparison scheme of the contours of breast and tumor. Blue lines are the contours in 

the real mammogram. Virtual mammogram is represented in two colors: grey (initial 
orientation) and green (rotated).  

 

Thus, the minimum difference between contours was obtained by solving an optimization 
problem by minimizing the value of a functional F (θ): 





 

 

  
 




2

, ,1

2

, ,1

' ( )
min ( )

' ( )

n

b i b ki k

n

t j t lj l

F     (3) 

being n the total number of points comprised into each contour in the region . It was expected 
to find a single value of rotation angle θ – named optimum angle θp – capable to simultaneously 
satisfy expression (3), and so the best matching between breast and tumor contours would be 
achieved. Instead of this, two different values of θp were found for outer breast (θp,b) and tumor 
contours (θp,t). Finally, θp was computed as the average between θp,b and θp,t. This will be properly 
discussed in Discussion section. 

Assuming that a best matching situation exists, the following indicators were proposed: 

 BSAv (Averaged Breast Similarity). Accounted the averaged, percent similarity of breast 
contours (4). 
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 TSAv (Averaged Tumor Similarity). Accounted the averaged, percent similarity of tumor 

contours (5). 
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In equations (4) and (5), the term located in the numerator expressed the cumulative 

Euclidean distance between each point in a real contour and the closest one in the corresponding 
virtual contour for a given optimum angle θp. The resulting value is related to the expression in 
the denominator which computes the same distance prior to rotate the virtual mammogram (i. e., 
rotation angle θ= 0º). 

On the other hand, a mesh convergence test was performed first to check the mesh density of 
the model and thus guarantee its suitability in the context of the proposed simulation 
methodology.  

It should be considered that the proposed methodology was intended to involve the least 
number of parameters as possible in order to its future applicability in the clinical area. Thus, it is 
important to study the influence of the material parameters on the mechanical response of the 
model, especially its relevance over the indicators BSAv and TSAv. As the breast tissues have been 
considered as a single, homogenized media, the elastic constant to be taken into account are the 
neo-Hookean constant c1 and the Poisson’s ratio . A parametrical study was carried out, and the 
results are depicted in the graphs of Figure 8. In that figure, it is shown that values of c1  [0.5 – 
4] kPa and   [0.45 – 0.49] were considered. These ranks of elastic constants are found in 
previous works involving breast simulations, and summaries of such values can be found in 
previous works (Pérez del Palomar et al 2008) (Tanner et al 2006). These results will be 
commented in Results section. 

  
 

Figure 8. Relations between the neo-Hookean constant c1 of the homogenized breast tissue and 
the proposed indicators BSAv and TSAv. 
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3. Results 

Comparisons between contours of real and virtual mammograms for CC and MLO 
compressions are depicted in Figures 9a and 9b, respectively.  

 

(a) 

 

 

(b) 

Figure 9. Superposition of real and virtual mammogram contours. (a) CC. (b) MLO. The 
centroid of each contour is remarked. Blue: contours of the real mammogram. Grey: contours of 

the virtual mammograms (initial position). Green: virtual mammogram position for the 
optimum angle θp. 

 

From a qualitative point of view, contours of real and virtual mammograms showed a good 
similarity, especially in those concerning to CC compression. In Figure 9b, it is seen that the 
virtual MLO mammogram needs to be rotated 45º before performing a new rotation to find the 
optimum angle θp between virtual and real mammograms in this direction.  

On another hand, three important results can also be noted by observing trends from Figure 
8. First, it is noted the marked nonlinear relationship between the neo-Hookean constant and the 
proposed indicators BSAv and TSAv. Second, indicator BSAv is higher than TSAv throughout all the 
evaluated rank. This is probably influenced by the compression of the breast model that was 
reached throughout the simulation process. The degree of model compression D was evaluated 
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for the situation when the contours of virtual and real mammograms exhibited the maximum 
similitude (i. e., for θp,av). The value of D was computed as the difference percentage of the 
average thickness of breast between the deformed and the undeformed configurations for each 
direction of compression, as can be seen of Table 3.  

 
Table 3. Maximum values reached for the proposed indicators.  

 
INDICATOR CC MLO 

Optimum angle θp (deg) 
Breast θp,b 6 14.0 
Tumor θp,t 8 13.0 

Averaged θp,av (deg) 7 13.5 
BSAv (%) 63 66.2 
TSAv (%) 94 97.9 
D (%) 38 28 

 
 

The amount of breast compression for the patient’s breast in this study is unknown, since 
force exerted during a mammographic compression is usually not recorded. Nevertheless, the 
compression values around the 30% are comprised within the values reported in previous works 
(Tanner et al 2016). Finally, the asymptotic trend of the curves of Figure 8 enforces the nonlinear 
nature of the problem. Considering these facts, and taking into account the uncertainties related 
to the mechanical constants of the tissues of the patient, constants c1 and  were assumed as 
adjustment parameters in order to achieve a compression degree comparable to what is reached 
during a clinical setting and also to maximize the proposed indicators BSAv and TSAv. In fact, the 
optimum values shown in Table 3 were c1 = 1.98 kPa and  = 0.485, and these are comprised 
within the ranks reported by Del Palomar et al (2008). When indicators BSAv and TSAv were 
maximized, the Euclidean distances between the centroids of the tumor and the breast contour 
between the real and the virtual mammograms – respectively, dT and dB – were measured for each 
direction of compression, as it can be seen in Table 4.  

 

Table 4. Distances between centroids of the tumor (dT) and the breast (dM) contours measured 
between the real and virtual mammograms. 

 

CENTROID DISTANCE (mm) CC MLO 
dT 3.84 2.41 
dB 4.91 12.20 

 
 

The maximum value for dT was lower than 4 mm in both directions of compressions. On the 
other hand, the values of dB were higher, specially the measured in MLO compression, which was 
two-fold higher than the measured in CC compression. Once more, this is believed to be caused 
by the amount of compression of the breast model which is lower in MLO compression than in 
CC compression. It is interesting to note that even BSAv shows a moderate value around 65%, the 
distance of between centroids of breast contour between both mammograms is significantly low. 
The presence of image artifacts – such the pectoral muscle – should also partly explain this 
difference.   
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In addition, the value of the friction coefficient fC was kept constant to 0.1 during the 
simulations. This value is virtually impossible to know for every clinical setting. In previous 
works, in fact, friction between plates and skin is not accounted (Azar et al 2001) (Han et al 2012) 
or even taken into account with friction coefficient values that range from unspecified (Chung et 
al 2008) to low or moderate (Tanner et al 2006). 

 

4. Discussion  

A nonlinear mechanistic patient-specific FE model which reproduces the external features of 
a breast was built from MRI. Thus, it is assumed that a data set exist in the clinical scenario from 
which a FE model with a realistic geometry can be built. As an alternative to the medical images, 
other techniques can also be used – such as stereophotography (Khatam et al 2015) – but they are 
not usually found in the clinical practice because they are not used in breast diagnosis. It has to 
be taken into account that the authors did not participate in the taking of medical images from the 
patient, so some parameters that could have been properly measured during the process remained 
unknown, such as the angle of the plates relative to the breast, the amount of compression of 
breast patients, the force exerted to the breast, etc. As this is an obvious disadvantage, this kind 
of blind methodology obeys to the reality of clinical practice, in which image acquisition follows 
a different protocol than image analysis and thus the aforementioned parameters are not usually 
needed to be recorded. Nevertheless, the proposed methodology is intended to be as simple and 
straightforward as possible, and subsequently it uses the least number of parameters as possible.      
Besides, it is considered that a commercial simulation package – such the employed in the present 
framework – is more available to the physicians than an ad hoc software as used in another works 
(Solves-Llorens et al 2014). 

A three-dimensional, FE model of the breast is complex because has to deal with three sources 
of nonlinearities: (1) geometrical, due to the large deformations arisen, (2) mechanical, due to the 
material models included and (3) the contact mechanics that appears when mammographic 
compressions are simulated. Regarding the first one, tetrahedral elements may not be adequate to 
support large deformations in a contact simulation, but they were chosen because their suitability 
to match a complex geometry such the breast is. Tetrahedrons also allow a rapid meshing of the 
model, which is interesting in order to a perform a quick surgery planning. Previous references of 
this kind of meshing to the breast – see for example Tanner et al (2011) – . The authors believe 
that a realistic geometry of a FE model is necessary in the context of this kind of methodology. 
Even previous works achieved good simulation results these are called into question since the 
model geometries were unrealistic (Mertzanidou et al 2014) (Solves-Llorens et al 2014). 

Secondly, concerning mechanical properties, some simplifications were considered in this 
work to deal with constitutive modeling of breast tissues. Since the rigorous parametrization of 
breast material properties of the patient is not the aim of this work, internal arrangement of the 
breast tissues of the patient was not taken into account, so isotropy was assumed for all the internal 
breast tissues since they do not have a preferential fiber direction. As a consequence, a 
homogeneous and hyperelastic media was considered to englobe fat and gland. Besides, the 
homogeneity assumptions overlooked some uncertainties regarding the particular mechanical 
properties of the patient, since realistic mechanical properties of the tissues are difficult to be 
measured in a clinical situation. Average values from the literature were chosen for simplicity, as 
it was sustained from previous works (Samani et al 2000) (Lapuebla-Ferri et al 2011) and then 
assigned to some mechanical properties of breast internal. It was adopted the simplest non-linear 
constitutive model for the homogenized media, which is the neo-Hookean model, in which 
constant c1 and Poisson’s ratio  were addressed as adjustment parameters. Besides, and for the 
sake of simplicity, the dependency of breast mechanical response with time was also neglected. 
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For example, viscoelastic behavior was not considered – unlike Hsu et al (2011) –. Finally, the 
contact problem implies the existence of contact pairs with a highly non-linear response. The 
authors believe that the contact nonlinearities involved in the simulations prevented the model to 
reach a higher compression degree, similar to that achieved during the clinical practice. There is 
little information about the contact mechanics which govern the interaction between skin and 
plates, so values of the friction coefficient were taken from literature in this work (Chung et al 
2008). The geometry of the compressing plates was designed to be curved to allow the model to 
converge under a large compression.   

The breast model was compressed in CC and MLO directions, as in a mammography. Virtual 
and real mammograms were compared by performing the following rigid transformations in-
plane: superposition (translation) of the real and virtual mammogram in the node representing the 
nipple and rotation of one mammogram with respect to the other. This rotation accounted for 
patient rotations about her when in standing position. This was considered as the main reason why 
the two mammograms did not match. In the clinical practice of mammography, is difficult to 
prevent involuntary movements of the patient during the process. By means of this model, a 
mapping between the deformed shape of the breast during mammographic compression and the 
shape in MR imaging could found. When virtual mammograms were obtained, it was noted the 
anisotropic response of the breast at macro-scale stated by Ruiter and co-workers (Ruiter et al 
2006). About the proposed indicators, the values of the angles θp,b and θp,t for the breast and the 
tumor were close enough to consider that the comparison method of both mammograms is 
adequate for each direction of compression. The low value of these angles indicated that the 
patient could rotate involuntarily during the clinical setting. According to these values, it can be 
assumed that there is a good matching especially between CC mammograms. The measured 
difference between centroids of the tumors is lower than 4 mm. By contrast, Mertzanidou et al 
(2014) accounted for a difference of around 11 mm mean with its intensity-based image 
registration framework. The authors postulate that the validity of this methodology is only 
achieved if a sufficient compression degree is reached, but its values are within the range of 
compressions reported in previous works (Samani et al 2001) (Ruiter et al 2006). In fact, in the 
latter work it was found a difference of 3.8 mm between real and simulated measurements in a 
similar work with a compression of 21%.  

In this work, the stress-free reference configuration of the breast was not obtained. A stress-
free configuration of the breast is not its natural state since biological tissues are subjected to 
stresses and strains in vivo. Moreover, MRI from which the model was built accounted for the 
breast to be highly deformed due to gravity. Although determining the stress-free reference 
configuration of the breast could lead to more reliable results (Rajagopal et al 2007), this practice 
is not easily implemented in a clinical setting. However, considering all the assumptions made in 
this work, it is possible to conceive a simulation framework without previously determine the 
breast reference state.  

 

5. Conclusion 

Human breast is a complex and heterogeneous organ composed of several soft tissues – 
mostly skin, gland and fat –. Biomechanically, breast has not a load-bearing function but it is able 
to withstand large deformations. On the other hand, X-ray-based mammography is a diagnostic 
and screening technique in which breast is highly compressed between two plates and radiated, 
thus obtaining and image called mammogram from which a suspicious mass can be easily 
detected. Besides, it is usual to employ other imaging techniques – such as MRI –to complement 
the initial diagnosis. Due to the high mobility of the breast, difficulties arise when a breast tumor 
must be tracked across images from the same of even different techniques. In fact, fusing 
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information from that variety of sources is a challenging task that can be facilitated by using 
computer simulations performed on numerical models. In this work, the authors propose a FE-
based framework to help medical physicians to track breast tumors in-plane by using these image 
modalities.  

 

The proposed simulation framework was intended to be implemented in a reasonable amount 
of time. Although some simplifications were considered in view of further translations into the 
clinical area, the obtained results were promising. Results indicate that it is possible to track in-
plane a tumor with an error lesser than 5 mm by using exclusively rigid transformations, as was 
stated by Hipwell et al (2016). Deviation of the position estimate should be within 5 mm to be 
applicable for early breast diagnosis. Mapping of tumor tracking to tridimensional, physical space 
could be a future research step. 

Finally, the proposed methodology is restricted to cases in which a suspicious mass is clearly 
defined against surrounding healthy tissue. In these cases, FE simulations provide a valuable 
insight into the biomechanical behavior of the subject involved, and, therefore, it can be come 
potentially useful to the clinicians. Nevertheless, future works in this direction requires of 
validation on a larger data set and a strategy to customize the model for each patient. 
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