

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/117574

Sanchez, A.; Gracia Calandin, LI.; Morales, R.; Perez-Vidal, C. (2019). Representation of
Robots in Matlab. International Journal of Software Engineering and Knowledge
Engineering. 29(1):23-42. https://doi.org/10.1142/S0218194019500025

http://doi.org/10.1142/S0218194019500025

World Scientific

Electronic versíon of an article published as International Journal of Software Engineering
and Knowledge Engineering, Volume 29, issue 1, 2019, pp. 23-42.
10.1142/S0218194019500025 © World Scientific Publishing Company

International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

1

Research Notes: Representation of Robots in Matlab

Antonio Sanchez*, Luis Gracia†, Ricardo Morales* and Carlos Perez-Vidal*

*Universidad Miguel Hernández, Avda. de la Universidad s/n,
03202 Elche, Spain

†Instituto IDF, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain
luigraca@isa.upv.es

Received 29 May 2017
Revised 24 February 2018
Accepted 19 March 2018

This paper presents a new software tool, namely RoboClass, to include and manage realistic robots
and elements of the environment in Matlab simulations. These elements are load from CAD models
using an STL-file and can be as detailed as desired. All the steps involved in the process are
explained in detail. Furthermore, two illustrative examples are considered to show the effectiveness
and versatility of the proposed approach: the ABB-IRB120 industrial robot and the CSA research
robot. The developed tool is especially useful both for robotics research and teaching.

Keywords: Robot simulation; Matlab; STL Importation.

1. Introduction

 Nowadays, software tools are used in many engineering areas [1][2][3]. Matlab® is a
technical software environment that has become a standard in many fields of engineering
and education, including control systems and robotics [4]. This software allows the user
to program using a high-level language specially designed for numerical computation,
statistical analysis and data visualization. To this aim, Matlab includes a high amount of
mathematical libraries and toolboxes that work fast and keep the code clear. In this sense,
some toolboxes and open source code can be found for robotics although none of them
are especially devoted to improve the visualization quality of the elements involved.

This article presents a new open-source software tool, namely RoboClass, developed
to improve the appearance of serial robots to get a much more realistic representation
environment in computer simulation, which is useful both for research and educational
purposes. Each one of the different pieces is stored in a different Stereo-Lithographic file
(STL) that the class will load to visualize as a whole. This allows the class to load 3D
models from ASCII STL-files, that are easily readable by the user, or binary STL with
short load times. With different configuration files, it is possible to generate different
robots as objects with the capability of operate independently in the same simulation.
Thus, RoboClass is beyond educational purposes and can be adapted to act as a general
driver able to control and model the behavior of any serial robot using Matlab.
Furthermore, it is possible to create multiple objects within the same workspace for
research purposes like master-slave control algorithms or kinematic and dynamic
simulation of parallel robots, amongst others.

2 A. Sanchez et al.

Fig. 1. Representation of a robot using the Robotic Toolbox by Corke.

A realistic simulation is especially useful for some applications of robotic research,

like surgical interventions [5] or virtual reality [6], where the environment and the user
perception are relevant.

The structure of the paper is as follows. Section 2 describes the libraries related with
this work, while Section 3 describes the proposed method and the procedure to use it.
Section 4 illustrates the use of the class for an industrial robot and a research robot.
Finally some conclusions are presented in Section 5.

2. Libraries related with RoboClass

 The Toolbox by P. Corke for Matlab [7] includes a set of functions to deal with the
robot system, whereas its visualization is based on a wired drawing, see Fig. 1. This
toolbox was the first one of its type and is still a reference for robotics research and
teaching. In fact, it is probably the most used library in robotics nowadays all over the
world and, typically, new contributions in this area are compared with it. The Kuka
Control Toolbox [8] integrates a good amount of functions for robot simulation but only
Kuka robots can be involved. The IGES Toolbox [9] is designed to load Initial Graphics
Exchange Specification (IGES) format files to Matlab and operate with models. To do
that, it adds commands and utilities to perform plots, transformations and projections.
The Puma project [10] simulates a six degrees-of-freedom (DOFs) 3D Puma 560 robot
with pre-loaded easy models to help the user on the visual comprehension of the robot
position. In addition, it includes a GUI with slides to move the joints. This approach has
inspired other practice program projects [11], where students are encouraged to choose a
robot and build a simulator to better understand the kinematics related to it. Dynamics
can be simulated using SimMechanics [12], which is a library in SolidWorks® software
to model mechanical systems and that uses Simulink toolbox to perform the control of the
systems. Simbad [13] is a Java 3D robot simulator dedicated to help researchers and

 Realistic Representation of Robots in Matlab 3

programmers at study of situated artificial intelligence, machine learning, and artificial
intelligence algorithms but, like others robot simulators as [14], [15] is focused on
teaching purposes and not to use it in an actual environment.

3. Description of the Files and Configuration

As mentioned above, this work presents an open-source class to simulate serial robots in
realistic Matlab environments. The class loads the STL-files of the robot (commercial
robot or custom made robot) establishing the mechanical restriction for each joint. Joints
can be defined as rotational or prismatic with a maximum of seven joints, although the
class can be easily modified to consider robots with more than 7-DOFs. RoboClass has a
wide group of functions to set and move the robot, see Fig. 2 and Fig. 3. These functions
allow adjusting of the simulation view, computing the forward and inverse kinematics of
the robot and operating with the robot dynamics. Moreover, the class also includes many
functions of the Robotics Toolbox [7] to improve its versatility.

RoboClass creates robot objects from an external configuration files, therefore, it is
possible to build different robots in the same workspace, perform cooperative simulations
or even include realistic elements of the environment loading STL-files as well.

RoboClass has been developed for serial arms, but it is feasible to use it with other
kinematic architectures such as parallel robots. In this case, the class should be modified
to use it with this kind of mechanism but it will generate a different class for that
particular mechanical structure.

As public information, a file called RoboClass.zip can be downloaded from the
website: http://personales.upv.es/luigraca/RoboClass/code.htm

This file contains all the information regarding the class itself, Robotics Toolbox
Matlab functions, several samples of use and many STL-files for different robots. The
general procedure to work with a serial robot is described in 4 basic steps: (1) Generation
or downloading the STL-files; (2) Editing of the configuration file; (3) Creation and use
of functions; (4) Visualization. Next, the procedure to deal with these basic steps is
detailed.

3.1. Generation of STL-files

The STL-file format can be generated by many mechanical software packages from a
CAD model. It is widely used for rapid prototyping, 3D printing and computer-aided
manufacturing. STL files describe only the surface geometry of a 3D object without any
representation of surface texture, color or other model attributes. An STL file describes a
raw unstructured triangulated surface by vertices. STL files contain no scale information,
and the units are arbitrary.

4 A. Sanchez et al.

Fig. 2. Class information schematic.

Fig. 3. Description of files included in RoboClass.

 Realistic Representation of Robots in Matlab 5

As far as this file is only used for display and not to perform the calculations, a low
quality model results in an image with fewer triangles, which will reduce the load time
and improve the frame-rate of the image in the simulation. The class loader can load both
ASCII and binary files, although the latter are loaded considerably faster. However, the
ASCII files' information is readable for the user, which is useful to hand-edit it. All the
STL-files must be placed in the same folder. This path will be indicated in a field at the
configuration file. With all the files ready, open Matlab and select the folder that contains
RoboClass as Current folder.

3.2. Configuration file

The configuration file creates a structure with all the parameters related to the robot
behavior and the information about the STL-files to load. This data structure is sent as an
argument to the constructor function to create a robot object. Thus, multiple different
robots can be simulated in a single workspace. The parameters contained in the data
structure of the configuration file are divided into different fields.
• General parameters: Robot name and paths.
• Kinematics: Degrees-of-freedom (DOFs), Denavit–Hartenberg (DH) parameters and

joint vector.
• Dynamics: link dynamic properties.
• STL info: Link number, file name of the elements of the link and their colors.
• View info: Axes range limits and camera position.

The data structure has another field called Real. The purpose of this field is containing
the drivers to manipulate an actual robot. Thus, this field will have the Matlab conversion
of the manufacturer commands, which are different for each robot brand. The developing
related to this field is not included in this work and remains as further work.

Next, the five fields indicated above for the configuration file are explained.

General Parameters. The user must introduce the name of the robot model. If the main
path has the pwd command it will detect automatically the class path. In stlpath specify
the folder where the STL-files are.

nameRobot = <’robotName’>;
path = pwd;

stlpath = <STL files path>;

Kinematics. Robot kinematics describes the motion of the rigid bodies related to the robot
joint angles. The kinematic parameters of the configuration file are: the robot DOFs, the
DH parameters and a vector with the rotational or prismatic character for each joint as
shown below:

dof = <degrees of freedom>;
originTr = <placement matrix>;
joinType = <joints vector>;
theta = <DH theta vector>; % theta is the kinematic joint angle
d = <DH d vector>; % d is the kinematic link offset

a = <DH a vector>; % a is the kinematic link length
alpha = <DH alpha vector>; % alpha is the kinematic link twist [2]

6 A. Sanchez et al.

Dynamics. Robot dynamics describes how the robot moves in response to the actuator
torques or forces. Dynamic vectors and the Jacobian matrix of each joint define this
information. Dynamic parameters must be given by the manufacturer in order to perform
dynamic calculations, as can be seen in Fig. 4.

Fig. 4. Dynamics of the robot.

STL Info. The STL structure contains a field for each of the N-links of the robot. Each
link has a field with the number of the previous joint and other M-fields, one for each
element composing the link. Each element field has the name and color of one STL-file.

LinkN.Link = <linkNumber>; LinkN.robot = [];
LinkN.element1.name = <’nameStlFile’>;
LinkN.element1.color = <color in [r g b] format>;

 ...
LinkN.elementM.name = <’nameStlFile’>;
LinkN.elementM.color =<colorin[rgb]format>;

View Info. The view field contains the plot values: maximum and minimum limit of each
axis and the angles of the camera (azimuth, i.e. horizontal rotation, and the vertical
elevation).

minX = <minimum value axis X>;
maxX = <maximum value axis X>;
minY = <minimum value axis Y>;
maxY = <maximum value axis Y>;

minZ = <minimum value axis Z>;
maxZ = <maximum value axis Z>;
cameraAZ = <azimuth>;
cameraEL =<elevation>;

3.3. Handling functions

To create robot objects it is necessary to call the constructor with the configuration
file as parameter. To do that, the line below must be written in Matlab command window.

 Realistic Representation of Robots in Matlab 7

≫ MyRobot = Robot(config());

Once the robot is created, it is possible to use all their functions. As shown in Fig. 2

and Fig. 3, most of the functions of the Robotics Toolbox [2] are included to help the
robot handling. Fig. 3 shows the complete set of functions contained in @Robot folder
together with the functions to configure and test this Class. The files contained into the
External Classes folder define the data structure meanwhile the STL-files are in separate
folders. In the application examples shown in Section 4 and Section 5 there are some
examples of use. The function showRobot places the robot in a plot. If the function is
called without arguments, the robot will be showed in the export position or
configuration.

≫ MyRobot.showRobot();

If the function is called has a vector argument with the αi angles of the joints, the

robot will be showed in the configuration defined by the vector.

≫ MyRobot.showRobot([α1 α2 α3 α4 α5 α6]);

In order to visualize a robot in movement insert this function within a for loop. The

function configView can adjust the viewing parameters. If the p does not receive
parameters, it adjusts the plot view to a standard.

≫ MyRobot.configView();

If this function receives a vector v, it can adjust the view of the plot. This vector can

have three different sizes: azimuth (Az) and vertical elevation (El), the XYZ axes limits,
or all of them.

v = [Az El]
v = [XMIN XMAX YMIN YMAX ZMIN ZMAX]

v = [XMIN XMAX YMIN YMAX ZMIN ZMAX Az El]
≫ MyRobot.configView(v);

The user can simulate the interaction between the robot and other objects. To insert

objects in the workspace use the external class LoadObject (<fileName>, <color>, Tr):

≫ MyObject = LoadObject(’box’, [1 0 0], eye(4));

To create and show the axes of the reference system use the external class RefSystem:

≫ SR=RefSystem();

Note that it is required to add the External classes folder to the Matlab path in order to

create objects of these classes. To do this, in Matlab interface, click with the right button
of the mouse on the folder you want to add and select Add to Path→Selected Folders.

8 A. Sanchez et al.

3.4. How to make a GUI

It may be interesting to create a visual interface to modify the position of the robot.
This section explains the general procedural to create a GUI and how to adapt it to a
robot. The applied steps are shown for the ABB application example in this work.
The steps required to get a GUI are described below:

• Type the command guide in the Matlab console and the quick start window will
appear. In that window, select Blank GUI and press OK button. In the editing
window add a slider object for each of the robot joints. Click on the image of
each slide with the second mouse button to open the properties. To be able to
identify what slide is linked to each joint, rename the field slider of each slide
with the name of the joint that the slide will change. Edit Max and Min fields
with maximum and minimum rotation for each joint too. Save the file as
guideRobot.m and open that file with the text editor.

• Execute the function robotGuide_OpeningFcn after the guide is opening. That
function must create the robot and a vector to handle the angles from the slides.

≫ handles.MyRobot = Robot(configFile());
≫ handles.q = zeros(1,handles.MyRobot.kinematics.dof);

• Link each slide to the robot joint angles. To do that, it is necessary to add some

code under the callback function of each slide. The code must get the angle from
the slide, set the robot position and save the values with guidata function.

≫ handles.q(<jointN>) = get(hObject,’Value’);
≫ handles.MyRobot.plot(handles.q);
≫ guidata(hObject, handles);

• Follow the step above to add as much elements as needed. The general guide is

described below:
o shown with the slides,
o add an element in the editing window,
o open the guide file,
o add the code linking the robot parameters with the object values.

3.5. Denavit–Hartenberg parameters

The DH parameters have to be properly defined to use the proposed method for
graphically representing the robot system. These parameters are used for attaching
reference frames to the links of a spatial kinematic chain or robot. The procedure to
obtain the DH parameters is depicted in Fig. 5 and it is composed of the following steps:

1. Identify links and joints: Links are numbered from 0 (base) to n (end-effector).
Joints are numbered from 1 to n. In this version of the procedure, joint i connects
links i-1 and i.

2. Define the reference frames for the internal links: Locate zi axis along the axis of
joint i+1. The origin of the frame Oi is positioned along joint i+1 axis. If the z axes

 Realistic Representation of Robots in Matlab 9

are parallel Oi is arbitrarily chosen. Otherwise, it is located in the intersection
between zi and the common normal to zi-1 and zi. yi axis is chosen to compose a
right-hand frame.

3. Define the reference frames for the extremities links: z0 is located along the axis of
joint 1. x0 and y0 are arbitrary. xn axis is normal to the joint n axis, while yn and zn
are arbitrarily defined.

4. Identify the DH parameters for each link: ai is the distance between zi-1 and zi. di is
the distance between xi-1 and xi. ai is the angle between zi-1 and zi measured along xi,
while yi is the angle between xi-1 and xi, measured along zi.

5. Determine the homogeneous transformation matrices for each joint.
6. Determine the overall homogeneous transformation matrix by premultiplication of

the individual joint transformation matrices.
The homogeneous transformation matrix i-1Ai mentioned in Step 5 can be seen as a

composition of rotations and translations by the DH parameter values in order to move a
frame coincident to frame i-1 until it coincides with frame i [1]. Its complete form is in
Eq. (1), where c and s correspond to the trigonometric functions cos(·) and sin(·),
respectively. The overall transformation matrix is defined in Eq. (2), where 0Rn and 0pn
represent the orientation (in rotation matrix form) and the position, respectively, of the
robot end-effector.

 (1)

 (2)

Fig. 5. Graphical representation of the Denavit–Hartenberg parameters.

10 A. Sanchez et al.

Fig. 6. Representation of the ABB-IRB120 robot with a guide (visual interface).

4. Application Examples

Two examples are shown below to illustrate the applicability of the proposed class. The
first one is referred to the ABB-IRB120, see Fig. 6, which is a 6-DOFs commercial
industrial robot. It will be shown how to export the links of the IRB120 robot from
Autodesk Inventor, to set the configuration file to consider its behavior, to use the basic
functions and to make a GUI to move each joint.

4.1. Export STL-files

One of the available options to generate the STL-files is through Autodesk Inventor®
although the process is analogue for any other CAD modeling tool. Once the robot links
and any other possible objects are loaded on the workspace, the robot base frame has to
be located at the axes origin and the auxiliary frames for each robot link must be located
according to the DH convention. Then, each piece is exported individually to a file.

STL-files can be exported in ASCII mode or binary mode. To export each file in
Autodesk Inventor, uncheck the visibility field of all the pieces of the robot except the
one to be exported. To do this, select all the pieces to hide and click with the right mouse
button. In the emergent menu, uncheck the visibility parameter. With only one piece in
the workspace, select File→Export→Cad model. The export window specifies the name
and type of the file to be created, in this case STL. If you click on the options button, you
can select the file type and the resolution of the new model.

First, the CAD files (STEP type) have been downloaded from the ABB website [16].
The representation of this robot is made of 7 files. The first file has the base model of the
robot. The base must be placed on the origin of the coordinates system. The other six
links will be placed according to the DH convention. To export the base model in a STL-
file Autodesk Inventor software, amongst others, can be used following the next steps.
Uncheck the visibility field of the other pieces but the robot base. To do this, select all the
models of the robot and then unselect the base model. Click with the right mouse button

 Realistic Representation of Robots in Matlab 11

on the selected group of pieces and uncheck the visibility parameter. With only the base
model in the workspace, select File→Export→Cad format.

In the export window shown in Fig. 7, introduce the name of the file to be created,
and select STL-file in the type field. Click on options button, select binary format and set
the resolution of the model. It is possible to check the export resolution clicking on the
preview button. Note that less resolution results in a model with fewer faces. This
impacts directly on the appearance of the link/s, see Fig. 8 and the performance of the
simulation, see Fig. 9.

Fig. 7. STL options file window.

Fig. 8. Differences between model qualities.

Different simulations have been done to compare the load time of STL ASCII and
binary files depending on the number of triangles. Table 1 shows load times for a
complete robot. Loading binary files is always faster than loading ASCII files. However,
as the complexity of the model increases, the difference between load times raises
dramatically. Fig. 9 shows how fast raises up ASCII load time when the number of
triangles increases in comparison to binary load times. In this example there are 7 files:

12 A. Sanchez et al.

base, five links and final effector. All the files are stored in a folder called stl IRB beside
to RoboClass folder.

Table 1. Load time of STL files.

Fig. 9. Load time vs. Number of faces. a) ASCII files. b) Binary files.

4.2. Configuration file

Open the configuration file template, save it as configIRB.m and begin to adapt the
parameters to the ABB-IRB120 robot.

General Parameters. The robot name and paths are defined in the general parameters.
The robot name is 'IRB120'. The general path has the pwd command to detect
automatically the class path. The STL-files are all in a folder called stl IRB.

nameRobot = ’IRB120’;

path = pwd;
stlpath = [pwd ’\ stl IRB \’];

 Realistic Representation of Robots in Matlab 13

Kinematics. The robot has 6-DOFs and all the joints have a rotational behavior.
Moreover, the DH parameters (theta, d, a, alpha) are obtained applying the DH algorithm
to the IRB120 robot.

dof = 6; originTr = eye(4);
jointType = [’r’ ’r’ ’r’ ’r’ ’r’ ’r’];
theta = [0 -π/2 0 0 0 0];
d = [0.29 0 0 0.30 0 0.072];

a=[0 0.27 0.07 0 0 0];
alpha = [-π/2 0 -π/2 -π/2 π/2 0];

Dynamics. The dynamic parameters are required to perform dynamic calculations and
must be given by the manufacturer and filled as indicated in previous section.

STL Info. As shown in Table 2, the base and each link are made by one element. Each
element has a field with the name of the STL-file and another field with the color of the
model in Red-Green-Blue (RGB) format. The code must be modified as shown in
previous section.

base.Link=0;

base.robot=[];
base.element1.name='IRB120_base';
base.element1.color=[0.89 0.39 0.21];

View Info. The selected maximum and minimum axes limit and camera angles are shown
below:

minX = -0.4; minY = -0.8; minZ = -0.4; maxX=1.0; maxY=1.8; maxZ=1.0;
AZ = 40; EL=10;

Table 2. STL structure for the ABB-IRB120 robot.

4.3. Handling functions

An IRB120 robot object is created when the constructor is called with the IRB120
configuration file as argument.

14 A. Sanchez et al.

≫ MyIRB = Robot(configIRB());

To show a plot of the robot in the export position use the showRobot function.

≫ MyIRB.showRobot()

To set the transparency level to 50% use the function setTransparency as follows:

≫ MyIRB.setTransparency(0.5)

To set the robot in a specific configuration, introduce a vector with the joint angles in

radians.

≫ MyIRB.showRobot([pi/4 pi/4 0 pi/2 0 0])

To simulate a movement use a for loop and the drawnow command as follows:

≫ for i=0:0.05:pi/2,
≫ MyIRB.showRobot([i/4 i/4 0 i 0 0]);
≫ drawnow;
≫ end;

If needed, use the configView function to adjust the viewing parameters. Calling the

function without an argument, i.e. MyIRB.configView(), will set the viewing parameters
to x[-1,1], y[-1,1], z[0,1], azimuth to 40 degrees and vertical elevation to 10 degrees. To
set a specific view, e.g., x[-0.5,0.5], y[-0.4,0.4], z[0,0.8], azimuth=40 and vertical
elevation=10, type the command:

≫ MyIRB.configView([-0.5 0.5 -0.4 0.4 0 0.8 40 10]);

4.4. Makin a GUI

Create a Blank GUI as explained in subsection 2.4. In the editing window guide add
six slides, one for each of the robot joints. Open the properties of the first slide and
rename the slider field with the name slide_Q1 and the Max and Min fields with rotation
the rotation limits. Repeat for each joint the steps described for slide_Q1. Save the file as
guideIRB.m next to configuration files, and open that file with the text editor. At the
function robotGuide_OpeningFcn create the robot and the vector to handle the angles
from the slides:

≫ handles.MyIRB = Robot(configIRB());
≫ handles.q = zeros(1,handles.MyIRB.kinematics.dof);

To link the slides to the robot joints and show it in the guide, follow the instructions

below. Under slider_Q1_Callback get the angle from the slide and show the robot with
the updated position. Then, save the values with guidata function.

 Realistic Representation of Robots in Matlab 15

≫ handles.q(1) = get(hObject,’Value’);
≫ handles.MyIRB.showRobot(handles.q);
≫ guidata(hObject, handles);

To add more elements to the guide as in Fig. 6 the same steps are repeated.

4.5. Second application example

The second example is referred to a 7-DOFs robot arm developed at the Miguel
Hernandez University: the Custom Schunk Arm (CSA). The procedure is basically the
same to that used for the IRB120 example in Sections 3.1 to 3.4, except that the CSA
comprises more elements: 36. Details omitted for brevity. The result obtained for this
second example is shown in Fig. 10, while Fig. 11-a) to Fig. 11-i) represent a sequence of
nine frames showing the CSA robot during the tracking of a linear trajectory.

Fig. 10. Custom Schunk Arm (CSA), a 7-DOFs robot, with a detail view of link 3

Detail view of link 3

16 A. Sanchez et al.

Fig. 11. CSA movement through a linear trajectory.

5. Conclusion

 In this article a novel open-source software tool to simulate realistic serial robots in
Matlab has been presented. The library allows loading the CAD models of the robot links
from ASCII or binary STL format in order to avoid a representation of the robot based on

 Realistic Representation of Robots in Matlab 17

wires. As such, it allows performing very realistic simulations (e.g., see Fig. 6 in
comparison to Fig. 1) in an easy and fast way, which is useful both for research and
teaching purposes due to the increase in simulation accuracy. The effectiveness and
usability of RoboClass use has been demonstrated throughout two application examples.
The class presented in this paper is ready to adapt the CAD models of each robot
manufacturer to Matlab environment in order to control serial robots in a realistic scene.
This adaptation must be done only once for a given robot before using it.

Since the class creates the robot parts from external configuration files, it is possible
to include different robots in the same workspace, see Fig. 12, or even to include other
elements of the manufacturing process (e.g., elements of the production line, security
elements, manipulated pieces, etc.) in order to get a more complete simulation scene.

Although the class has been developed for serial arms, it is possible to use it with
other kinematic architectures, like parallel kinematic machines. The class is basically a
wrapper for the mechanical information (STL and dynamic parameters) and the robot
analysis libraries (Robotics Toolbox). When using another toolbox for parallel robots,
like the one for a 3UPS1S robot in [17] or the toolbox for planar 3RRR device [18], the
class could be extended to use it with this kind of mechanism but it will be a different
class for each parallel robot, not a generalized class like in the case of serial robots.

The developed tool is especially useful both for robotics research and teaching in
order to show a realistic representation of the robot and its environment in the widespread
software Matlab. Moreover, the user can customize the open source code to its
requirements and use the advanced functions to get an accurate simulation.

The main advantages of the simulation tool developed in this work are listed below:
It can be used both for research and education purposes; It allows a realistic
representation of the robot and its environment; It is compatible with kinematic and
dynamic analysis; It can be easily extended to be used with parallel robots.

Fig. 12. Multiple robot simulation.

18 A. Sanchez et al.

References

[1] M. Bashari, E. Bagheri and W. Du, "Dynamic Software Product Line Engineering: A
Reference Framework", International Journal of Software Engineering and Knowledge
Engineering, 2017, Vol. 27, No. 2, pp. 191-234.

[2] K. Honda, H. Washizaki and Y. Fukazawa, "Generalized Software Reliability Model
Considering Uncertainty and Dynamics: Model and Applications", International Journal of
Software Engineering and Knowledge Engineering, 2017, Vol. 27, No. 6, pp. 967-993.

[3] Z.K. Aghdamand B. Arasteh, "An Efficient Method to Generate Test Data for Software
Structural Testing Using Artificial Bee Colony Optimization Algorithm", Int. Journal of
Software Engineering and Knowledge Engineering, 2017, Vol. 27, No. 6, pp. 951-966.

[4] M. Flanders and R.C. Kavanagh, "Build-A-Robot: Using virtual reality to visualize the
Denavit–Hartenberg parameters", Computer Applications in Engineering Education, 2015,
Vol. 23, No. 6, p. 846-853.

[5] N.A. Bates, A.L. McPherson, R.J. Nesbitt, J.T. Shearn and G.D. Myer, T.E. Hewett. Robotic
simulation of identical athletic-task kinematics on cadaveric limbs exhibits a lack of
differences in knee mechanics between contralateral pairs, Journal of Biomechanics, Vol. 53,
No. 28, February 2017, pp. 36-44.

[6] A. Doshi, R.T. Smith, B.H. Thomas and C. Bouras, "Use of projector based augmented reality
to improve manual spot-welding precision and accuracy for automotive manufacturing", The
Int. Journal of Advanced Manufacturing Technology, 2017, Vol. 89, No. 5-8, pp. 1279-1293.

[7] P. Corke, "A Robotics Toolbox for MATLAB", IEEE Robotics and Automation Magazine,
March 1996, Vol.3-1, p.24-32.

[8] F. Chinello, S. Scheggi, F. Morbidi and D. Prattichizzo, "Kuka Control Toolbox", IEEE
Robotics and Automation Magazine, December 2011, Vol.18-1, p.69-79.

[9] PerBergström,"IGESToolbox".Mathworks (accessed May 2017),
http://www.mathworks.com/matlabcentral/fileexchange/13253-iges-toolbox.

[10] D. Riley, "3D Puma Robot Demo". Mathworks (accessed May 2017)
http://www.mathworks.com/matlabcentral/fileexchange/14932-3d-puma-robot-demo.

[11] Y. Cao, "Learning robotics through developing a virtual robot simulator in Matlab", American
Society for Engineering Education, August 2011, AC 2011-609.

[12] SimMechanics, The Mathworks, User ’s Guide, 2005.
[13] L. Huges, N. Bredeche and T. Futurs, "Simbad: an Autonomous Robot Simulation Package

for Education and Research", Proceedings of The International Conference on the Simulation
of Adaptive Behavior (SAB’06), Roma, Italy - Springer’s Lecture Notes in Computer
Sciences / Artificial Intelligence series (LNCS/LNAI), March 2006, p.831-842.

[14] I. Bonev, RoKiSim - Robot Kinematic Simulation, Multi-platform educational software tool
for 3D simulation of serial six-axis robots, (accessed October 2017)
https://www.parallemic.org/RoKiSim.html

[15] H. Arshad, J. Jamal and S. Sahran, "Teaching Robot Kinematic in a Virtual Environment",
Proc. of the World Congress on Eng. and Comp. Science, October 2010, Vol.1, p.307-310.

[16] ABB webpage (accessed May 2017), http://www.abb.es/product/en/9AAC100735.aspx
[17] J.M. Sabater-Navarro, N. García, C. Pérez, E. Fernández, R. Saltarén and M. Almonacid,

"Kinematics Of A Robotic 3ups1s Spherical Wrist Designed For Laparoscopic Applications",
Int J. of Medical Robotics and Computer Assisted Surgery, Vol. 6, No. 3, 2010, pp. 291-300.

[18] C. Jara, José M. Sabater-Navarro, J.M. Azorín, N. García C. Pérez, R. Saltarén and E. Yime,
"Analisis Del Espacio De Trabajo De Un Robot Paralelo 3RRR", Sep 2010, XXIX Jornadas
de Automática, Tarragona (Spain).

