Document downloaded from:

http://hdl.handle.net/10251/117902

This paper must be cited as:

Campo García, ADD.; González Sanchís, MDC.; Garcia-Prats, A.; Ceacero Ruiz, CJ.; Lull, C. (2019). The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology. 264:266-282. https://doi.org/10.1016/j.agrformet.2018.10.016

The final publication is available at https://doi.org/10.1016/j.agrformet.2018.10.016

Copyright Elsevier

Additional Information

- 1 The impact of adaptive forest management on water fluxes and growth dynamics
- 2 in a water-limited low-biomass oak coppice
- 3 Antonio D. del Campo^{a*}, María González-Sanchis^a, Alberto García-Prats^a, Carlos J.
- 4 Ceacero^b, Cristina Lull^a
- 5 a. Research Group in Forest Science and Technology (Re-ForeST), Research Institute of
- 6 Water and Environmental Engineering (IIAMA), Universitat Politècnica de València,
- 7 Camí de Vera s/n, E-46022 València (Spain)
- 8 b. Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de
- 9 Olavide, E-41013, Sevilla (Spain)
- 10 * Corresponding Author: ancamga@upv.es

11 Abstract

12 Marginal semi-arid forests in areas currently affected by climate change are a challenge 13 to forest management, which has to focus on key functional traits that can effectively 14 contribute to resistance under extreme drought. We studied the effects of thinning in a 15 marginal forest by quantifying functional responses relating to growth, carbon and 16 water fluxes. Two experimental plots were established, one thinned in 2012 and the 17 other one left as a control. The environmental conditions varied substantially during the 18 4-year study period, although dry years predominated. There were signs of dieback in 19 the control with a decreasing inter-annual trend in LAI, as opposed to the treated plots, 20 where LAI by the end of the study almost reached pre-thinning levels. Sap flow and 21 transpiration were greatly enhanced by the treatment, with thinned trees transpiring 22.4 22 1 tree⁻¹ day⁻¹ in the growing season, about twice the control figures. The seasonal 23 patterns of transpiration and soil moisture were uncoupled, indicating a contribution of 24 deep groundwater to the former flux. In the control, limitations to water and carbon 25 dynamics (canopy conductance) occurred at soil moisture values below 16%, whereas in 26 the thinned trees these limitations appeared when soil moisture dropped below 10%. 27 Overall, oaks' transpiration was enhanced with thinning to the point that stand-water 28 use surpassed that of the control by the second half of the study period, averaging 24% 29 of gross rainfall in both plots. Soil evaporation increased from 12 to 20% of gross 30 rainfall after treatment in the overall period. The treatment had a profound watering 31 effect in this marginal forest, led by fewer trees using the same amount of water as those in the untreated overstocked plot. This research may provide guidelines for 32 33 ecohydrology-oriented silviculture in stands experiencing tree encroachment and 34 transformation into shrublands that are more prone to global change-induced 35 disturbances.

- 36 **Key words:** transpiration, sap-flow, canopy conductance, Shuttleworth–Wallace model,
- holm oak, sparse forest.

38	List of	Symbols
39	D_B	Basal diameter (cm)
40	D_{BH}	Diameter at breast height (cm)
41	BA	Basal area (m2 ha-1)
42	De	Density (trees ha-1)
43	FC	Forest cover (%)
44	Сра	Crown projected area (m^2)
45	LAI	Leaf area index $(m^2 m^{-2})$
46	SLA	Specific leaf area $(cm^2 g^{-1})$
47	Pg	Precipitation or gross rainfall (mm)
48	Т	Temperature (°C)
49	RH	Relative humidity (%)
50	U	Wind speed (m s^{-1})
51	D	Vapour pressure deficit (kPa)
52	R _{s,a}	Solar radiation (W m^{-2})
53	R _{n,t}	Net radiation (W m ⁻²)
54	R _{n,f}	Net radiation over the vegetated area (foliage) ($W m^{-2}$)
55	R _{n,s}	Net radiation over the bare soil (substrate) (W m ⁻²)
56	f	Fractional vegetation cover (proportion)
57	α	Surface albedo (proportion)
58	R _{l,a,d}	Downwards long-wave atmospheric radiation (W m ⁻²)
59	$R_{l,f,u}$	Long-wave upwelling radiation from vegetation (W m^{-2})
60	R _{l,s,u}	Long-wave upwelling radiation from bare soil $(W_{\rm m}^{-2})$
61	σ	Stefan-Boltzmann constant $(5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4})$
62	\mathcal{E}_a	Air emissivity
63	\mathcal{E}_{f}	Vegetation emissivity
64	\mathcal{E}_{S}	Bare soil emissivity
65	T _a	Air temperature (K)
66	T_{f}	Vegetation temperature (K)
67	Ts	Bare soil temperature (K)
68	θ	Soil water content (SWC) (m ³ m ⁻³)
69	θ_{rel}	Relative soil water content (or relative extractable water, REW) $(m^3 m^{-3})$
70	θ_{mx}	Saturated (maximum) soil water content $(m^3 m^{-3})$
71	θ_{mn}	Minimum soil water content $(m^3 m^{-3})$
72	θ_{fc}	Field capacity $(m^3 m^{-3})$
73	Vs	Sap flow velocity (cm h^{-1})
74	Sa	Sapwood area (cm ²)
75	$\mathbf{S}_{\mathbf{f}}$	Sap flow (1 tree ⁻¹ hour ⁻¹)
76	ET	Evapotranspiration (mm)
77	Et	Stand transpiration (mm)
78	Es	Evaporation from soil (mm)
79	Er	Residual evapotranspiration (mm)
80	Ei	Interception or wet canopy evaporation (mm)
81	Gs	Canopy conductance (mm s-1)
82	${\it \Omega}$	Decoupling coefficient
83	γ	Psychrometric constant (kPa K ⁻¹)

84	Δ	Slope of the saturated vapor pressure curve (kPa K ⁻¹)
85	Е	Ratio of Δ to γ
86	ga	Aerodynamic conductance (m s^{-1})
87	Zh	Mean canopy height (m)
88	Zr	Reference height (m)
89	Z_0	Vegetation surface roughness length (m)
90	d	Zero-plane displacement of vegetated surfaces (m)
91	k	von Kármán's constant (dimensionless)
92	m	Slope or stomatal sensitivity to D
93	G _{sref}	Reference canopy conductance at D=1 kPa,
94	λΕΤ	Latent heat flux from the complete canopy (W m ⁻²)
95	λE_t	Latent heat flux from foliage (W m^{-2})
96	λE_s	Latent heat flux from substrate (W m^{-2})
97	A_{f}	Available energy at the foliage $(W m^{-2})$
98	As	Available energy at the substrate $(W m^{-2})$
99	c _p	Specific heat of air at constant pressure $(J \text{ kg}^{-1} \text{ K}^{-1})$
100	D_m	Vapor pressure deficit at canopy source height (kPa)
101	ρ	Air density (kg m ⁻³)
102	n	Parameter with value of 2 for hypostomatous leaves
103	r _a	Aerodynamic resistance above the canopy (s m ⁻¹)
104	r _{a,f,h}	Bulk boundary-layer resistance of the foliage for sensible heat (s m ⁻¹)
105	r _{a,l}	Leaf boundary-layer resistance for sensible heat and water vapour (s m ⁻¹)
106	r _{a,s}	Aerodynamic resistance between the substrate (s m ⁻¹)
107	$r_{s,f}$	Bulk stomatal resistance of the foliage (s m ⁻¹)
108	$r_{s,s}$	Substrate (soil and mulch) resistance to evaporation (s m ⁻¹)
109	rs	Soil layer surface resistance (s m ⁻¹)
110	r _m	Extraneous mulch resistance (s m ⁻¹)
111	r _d	Diffusive component of the vapor transport resistance (s m ⁻¹)
112	h_m	Thickness of the mulch (m)
113	D_{eff}	Effective diffusivity of water vapor in the porous medium (m ² s ⁻¹)
114		
115		
116	1. Int	roduction
117	Mediterranean forests, a particular case of semi-arid forests, suffer from a combination	

118 of stressors that trigger tree mortality (Allen et al., 2010; García de la Serrana, 2015;

- 119 Doblas-Miranda et al., 2017) and require urgently proactive-adaptive silviculture
- 120 (Lindner et al., 2014). Holm oak (Quercus ilex L.) is one of the most important forest
- 121 species in the western Mediterranean basin, covering about 5.4 Mha, more than half of
- 122 which are in Spain (Terradas, 1999; Ruiz de la Torre, 2006). While at the northern edge
- 123 of its distribution range, the species is colonizing new areas (Delzon et al., 2013), in
- 124 Mediterranean Spain holm oak forests have shown climate-related mortality and growth

125 decline since the last century (Barbeta and Peñuelas, 2016; Camarero et al., 2016; 126 Peñuelas et al., 2017; Gentilesca et al., 2017). In fact, observed trends in climate may 127 push marginal populations of holm oak close to their distributional limit (Terradas and 128 Savè, 1992; Martinez-Vilalta et al., 2003; Peñuelas et al., 2017). Following a decreasing 129 precipitation gradient, holm oak forests become scarcer towards south-eastern Spain 130 where they can be found growing on highlands and mountains with less xeric conditions 131 (Terradas and Savè, 1992; Ruiz de la Torre, 2006). These scattered forests can be 132 considered as the rear edge of the species' distribution (Hampe and Petit, 2005) and 133 may have a comparably different ecophysiological response to drought stress (Gratani et 134 al., 2003; Valero-Galván et al., 2011). In this sense, these remnant populations are of 135 critical importance in a global change context, not only from a conservation and 136 management perspective, but also for the deployment of climate-adjusted or admixture 137 provenancing strategies elsewhere in assisted migration programs (Prober et al., 2015). 138 The management implications of either ongoing-declining or prone-to-decline oak 139 stands have received attention from the research community, seeking appropriate 140 measures for improving the resilience and resistance of forests (Mayor and Rodà, 1993; 141 Gracia et al., 1999; López et al., 2003; Moreno and Cubera, 2008; Limousin et al., 2008, 142 2009; Cotillas et al., 2009; Gea-Izquierdo et al., 2009; Gentilesca et al., 2017; Cabon et 143 al., 2018). In these studies, selective thinning was studied as an adaptive measure to 144 compensate for rainfall reduction and, in corroboration of studies of other species and 145 forest-types (Bréda et al., 1995), they report enhanced tree growth and climate-growth 146 relationships, increased soil water content, higher tree-water use and reduced stand 147 transpiration after thinning. 148 However, the structural characteristics of the oak stands found across the distribution

range of the species as well as their site conditions are very different, just as their

150 potential responses to extreme droughts are (Barbeta and Peñuelas, 2016), so that the 151 specific targets/effects of thinning may vary. Some researchers (Moreno and Cubera, 152 2008; Cotillas et al., 2009; Gea-Izquierdo et al., 2009) have studied open holm oak 153 woodlands (silvopastoral systems), where tree density and competition are low (usually fewer than 200 trees ha⁻¹) and tree structure is relatively homogeneous (tall trees with 154 155 large basal areas). On the other hand, most studies of thinning (carried out in north-156 eastern Spain and southern France) have examined dense multi-stemmed coppices of *Quercus ilex* subsp. *ilex* (LAI ~ $2.0 - 4.0 \text{ m}^2 \text{ m}^{-2}$) that result from historical harvesting 157 158 for charcoal (López et al., 2003), with contrasting responses appearing between trees of different crown classes (Galiano et al., 2012; Olivar et al., 2014). Structurally, thinning 159 160 reduces stand density, decreases competition and increases the availability of resources 161 (light, water, nutrients) for the remaining trees (Bréda et al., 1995), thus promoting 162 functional changes as long as the increased availability remains significant (Limousin et 163 al., 2009; Cabon et al., 2018). The sequence of functional responses to drought in holm 164 oak on different timescales has been extensively studied and was recently compiled by 165 Barbeta and Peñuelas (2016). Responses related to carbon and water cycles, phenology 166 and growth are the key traits in this regard. A focus on maintaining and/or enhancing 167 these ecological processes and functional characteristics, rather than specific structures 168 and species composition, must guide forest treatments designed to enhance resilience 169 (Seidl et al., 2016). This function-to-structure approach can identify those structure 170 assemblages that are less prone to drought-induced decline and that could benefit more 171 from management practices, thus optimizing the limited budgets and practical decision-172 making. Targeting functional traits must be related to a species' drought tolerance and 173 resource use strategy and must respond positively to stand density reduction, such as 174 growth, leaf traits (specific leaf area, SLA) (Cotillas et al., 2009; Gea-Izquierdo et al.,

175 2009; Stahl et al., 2014), canopy conductance (G_s) and its variations with both soil

176 moisture (θ) and atmospheric demand for water (D) (Novick et al., 2016; Grossiord et

177 al., 2017), tree transpiration and evapotranspiration (ET) components at the stand scale,

178 etc. (Grant et al., 2013; Klein et al., 2013; del Campo et al., 2014).

179 Unfortunately, adaptive management in low-biomass shrublands has received much less

180 attention, as most studies have been conducted in core or central habitats of the species,

181 where dry years are more the exception than the rule. Following the approach explained

above, the aim of this study is to evaluate the effects of selective thinning and shrub

183 clearance in a marginal low-biomass forest of Holm oak by examining the response to

184 selected functional traits related to carbon and water cycles over an inter-annual span

185 (Barbeta and Peñuelas, 2016). The specific objectives are to study the effect of the

186 treatment i) on growth and leaf traits in the years following thinning, ii) on sap flow and

187 the response of transpiration to environmental variables, iii) on G_s as a proxy for the

188 trade-offs between carbon and water fluxes at the stand scale and iv) on the stand ET

and its components (transpiration and soil evaporation).

190 We hypothesize that thinning will increase water availability for the remaining trees,

191 triggering eco-physiological responses that will improve drought resistance at the tree

192 level whilst decreasing stand water-use. We expect these effects to last during the four

193 years studied (short-term effect).

- 194 **2. Materials and Methods**
- 195 2.1. Study site and experimental trial

196 The study was carried out in a marginal oak forest located in the southwest region of

- 197 Valencia province in Spain (39°04'-N, 1°14'-W elevation 1,080-1,100 m a.s.l.). The
- average annual rainfall in a meteorological station located nearby at 900 m a.s.l. is 466
- 199 mm. This rainfall typically shows high intra- and inter-annual variability with seasonal

200 and annual coefficients of variation of 52 and 28%, respectively (Perez-Cueva, 1994). 201 Mean annual temperature is 12.8°C, and the mean annual potential evapotranspiration is 202 749 mm (Thornthwaite, 1948). The soil is relatively shallow (10-40 cm), sandy-silty-203 loam textured (44% sand; 33% silt; 23% clay, on the top 10 cm; below that depth, sand: 204 52%; silt: 28; clay: 20%) and basic pH (8.0±0.1). Additional properties of soils are 205 described in di Prima et al. (2017). Parent rock is a karstified limestone that gives rise to 206 rocky soils with volumetric content of stones and rocks that ranges between 48 and 207 69%, depending on depth. Boreholes in the plots (up to 4 meters deep) revealed a high 208 degree of rock fissuring that provides reservoirs of deep water. 209 The dominant species at the study site is Holm oak (*Ouercus ilex* subsp. *ballota* (Desf.) 210 Samp.) and accompanying species are Q. faginea Lam., Pinus halepensis Mill., 211 Juniperus phoenicea L. and J. oxycedrus L. This coppice oak forest is the result of 212 traditional fuelwood harvesting that fell into disuse in the 1970's, has high stem 213 densities (Table 1) and, accordingly, high intraspecific competition that might be 214 responsible for the dieback observed after severe dry years. The forest has low biomass, 215 with aboveground values of 49.7 Mg/ha (23.1 Mg C/ha) calculated from site/species-216 specific allometric equations developed at the time of thinning (see below): Biomass $(\text{kg}) = 1.08 * D_{\text{BH}}^2 (\text{cm}) - 16.4 * D_{\text{BH}} (\text{cm}) + 68.67$, with $D_{\text{BH}} > 7 \text{ cm}$, $r^2 = 0.95$). There 217 218 has been no forest management, as this is marginal and protective forest. Site conditions 219 are harsh (soil and recurrent droughts (Fernandes et al., 2016)) and symptoms of decay, 220 such as top-tree death, foliage loss, death of interspersed *Q. faginea* trees and increasing 221 frequency of pine saplings, can be observed inside the experimental plots. 222 This study is part of a broader study where water and nutrient cycles and soil properties 223 are monitored for an integrated assessment of the ecohydrology of the ecosystem. In 224 May 2012, experimental thinning (and shrub clearance) took place in a rectangular plot

(T), slope 31%, NW aspect, of about 1,800 m^2 , split into three replicates or blocks of 225 226 similar size, leaving about one third of the initial standing trees (about 315 trees/ha) 227 (Table 1). A run-off collecting trench at the lower boundary of the slope forced us to 228 site the three blocks consecutively from upslope to downslope (no randomized layout). 229 Adjoining the thinned area, a control plot (C) of similar size was established and also 230 split into three blocks. The thinning/clearance removed most of the shrubs, the trees 231 with smaller diameters and multi-stemmed trees (leaving only the bigger stem). The 232 thinning aimed to achieve relatively homogeneous tree distribution, based on forest 233 cover. Thinning was conducted and supervised by the Forest Service of Valencia; 234 timber and coarse woody debris were removed outside the plots, whereas fine woody 235 debris was piled and grinded into mulch on the plots. Climate, parent material (soil 236 origin), topography and biota were considered as the constant in both plots, whereas 237 forest management (thinning treatment) was taken as the factor.

238 2.2. Forest structure and tree growth measurement

239 Forest structure within the plots was characterized in May 2012 and at the end of the

study period in November 2016, recording the following variables: diameter at basal

and breast heights (D_{B_1} and D_{BH} respectively, cm), basal area (BA, m² ha⁻¹) and density

242 (De, trees ha⁻¹). Measuring tree diameters and counting all trees in the plots calculated

243 BA and De. Diameter distribution was classified into 4 classes: $D_{BH} \leq 7.5$ (DC1),

244 7.5<D_{BH} \le 11 (DC2), 11<D_{BH} \le 15 (DC3), D_{BH}>15 (DC4) (figures in cm). Forest cover

245 (FC, %) was determined just once in October 2015, with a vertical densitometer (GRS,

Arcata, CA, USA) with 50 readings per block taken above 1.7 m in a 3x3 m grid, giving

a value of 39.3±3.4 and 62.7±1.9% for the treated and control plots, respectively (shrubs

below that height make total ground cover higher). All measurements were made in

areas at least 2 m away from the plot limits to avoid edge effects. Crown projected area

250 (Cpa, m²) was calculated by averaging the measurements of 8-10 orthogonal crown diameter projections in 9-12 trees per treatment. Leaf Area Index (LAI, m² m⁻²) was 251 252 measured once per season in each block by a LAI-2000 sensor (LI-Cor, 1991, LI-Cor 253 Inc., Lincoln, NE, USA) under direct solar radiation, as described in Molina and del 254 Campo (2011) and Leblanc and Chen (2001). Average measured values were 0.61±0.07 and $1.13\pm0.22 \text{ m}^2 \text{ m}^{-2}$ for the treated and control plots, respectively. Inadequate 255 256 atmospheric conditions led to defective readings and gaps that were corrected and filled 257 with estimations from the level-4 MODIS global Leaf Area Index satellite product 258 (NASA, LPDAAC) in order to complete the seasonal series. The product is composited 259 every 8 days (monthly averages were performed) at 1-kilometer resolution on a 260 sinusoidal grid. For the coverage of the study site, the h17v05 tile is required, where h 261 and v denote the horizontal and vertical tile number, respectively. The MODIS LAI 262 dataset provided in Hierarchical Data Format (HDF) was imported to GeoTIFF format 263 by MODIS Reprojection Tool (MRT) (NASA) and reprojected from the Integerized 264 Sinusoidal (ISIN) projection to the UTM projection system. 265 Growth and leaf traits were measured at the end of each year in 16-21 trees per plot 266 proportionally distributed across diameter classes and blocks, adapting the basic concepts 267 and methodology for oaks from Girard et al. (2011). In each surveyed tree, six dominant 268 branches were selected in the upper half of the crown, distributed on both north and 269 south aspects. Then, the shoots of the last growing season were identified and counted for 270 each branch. A sample of 10-15 shoots of the annual growth per tree were measured in 271 the following metrics: shoot length (cm), basal diameter of the shoot (mm), number of 272 growth cycles (in case there was more than one), number of leaves of the shoot, total leaf 273 area of the shoot (measuring maximum width and length of individual leaves and computing the area of the oval, cm^2), and specific leaf area (SLA, $cm^2 g^{-1}$). This assay 274

was also done for the epicormic shoots and resprouts in the treated plot in the last year's

growth (2016), as this growth became very apparent from 2015 on. Finally, for a

- 277 calculation of tree-based LAI, an independent set of LAI was measured in November
- 278 2016 under the crown in a subsample of 18 trees (9 per treatment, three per block)
- 279 belonging to the four diametric classes. For each tree, a set of A-type (same clearing as
- 280 in the measurements for the LAI plot) and B-type (front, right and left sides of the trunk
- at 1.0 m above ground) measurements were taken.
- 282 2.3. Environmental variables and field instrumentation
- 283 This study spans the period from October 1, 2012 to December 30, 2016. As the
- thinning treatment took place in May 2012, we considered it appropriate to provide
- values in the first year of the treatment even though that year was monitored only in its
- 286 last quarter. Precipitation or gross rainfall (Pg) was continuously measured by means of
- a tipping-bucket rain gauge located in an open area apart from the experimental plots
- with 0.2-mm resolution (7852, Davis Instruments Corp., Hayward, CA, USA),
- programmed to measure at 10-min intervals and connected to a CR1000 data-logger
- 290 (Campbell Sci., UT, USA). Gaps were filled in with records from a standard rain gauge
- station located 1.5 km away with a daily timescale (Ayora-La Hunde SAIH network).
- Air temperature (T, °C) and relative humidity (RH, %) were measured inside the
- experimental plots (2 m above ground) and above the canopy (6.5 m above ground) in
- the buffer zone between both plots. The sensors (RH/T sensor, Decagon Devices,
- 295 Pullman, WA, USA) were connected to EM50 (Decagon) dataloggers and programmed
- to measure at 10-min intervals. Wind speed (U, m s⁻¹, 7911 anemometer, Davis
- 297 Instruments Corp.) and solar radiation (R_{s.a}, W m⁻², Campbell CS300 pyranometer,
- 298 Campbell Sci., Logan, UT, USA) were measured above the canopy (6.5 m) on the same
- 299 RH/T mast and recorded on the CR1000. Temperature and RH data were subsequently

300 used to obtain values for the vapor pressure deficit (D, kPa). In line with the two-layer 301 approach for ET calculation (see below), net radiation ($R_{n,t}$) was estimated as in 302 Domingo et al. (2000):

 $R_{n,t} = fR_{n,f} + (1-f)R_{n,s} = R_{s,a}(1-\alpha) + R_{l,a,d} - fR_{l,f,u} - (1-f)R_{l,s,u}$ (1) 303 where $R_{n,f}$ and $R_{n,s}$ are the net radiation terms (W m⁻²) over the vegetated area (foliage) 304 305 and over the bare soil (substrate), respectively. The term f is the fractional vegetation 306 cover (total cover, not just trees; C: 0.769; T: 0.393 until summer 2014, and 307 exponentially growing up to 0.569 in summer 2016). The term α is the surface albedo, 308 calculated for C and T plots by using Landsat 8 OLI/TIRS Data (30x30 m resolution) 309 and following the Surface Energy Balance Algorithm for Land (SEBAL; Bastiaanssen 310 et al., 1998). The term $R_{l,a,d}$, is the downwards long-wave atmospheric radiation and 311 $R_{l,f,u}$ and $R_{l,s,u}$ are the long-wave upwelling radiation from vegetation and bare soil, 312 respectively. These were calculated as:

313
$$R_{l,a,d} = \sigma \varepsilon_a T_a^4$$
 (2)

314 $R_{l,f,u} = \sigma \varepsilon_f T_f^4$ (3)

315
$$R_{l,s,u} = \sigma \varepsilon_s T_s^4$$
 (4)

With σ the Stefan-Boltzmann constant (5.67 x 10⁻⁸ W m⁻² K⁻⁴), ε_a , ε_f and ε_s are the air, vegetation and bare soil emissivity, respectively, and T_a , T_f and T_s are the air, vegetation and bare soil temperatures (K), respectively. Soil temperature at 1 cm depth was linearly inferred from readings at 5 and 15 cm depth (see below); ε_f and ε_s were set to 0.985 and 0.986, respectively (Rubio et al., 1997); and ε_a was calculated as proposed by Idso (1981).

322 Soil water content (SWC, θ , m³ m⁻³) was continuously measured for the whole period

323 every 10 minutes by means of FDR probes (5TE and EC-5, Decagon Devices Inc.,

324 Pullman, WA, USA) connected to the CR1000 data-logger. Sensors were installed by

325 digging three pits per block (9 per plot and 18 total) along contour lines. In the central 326 pit of each block, three sensors (5TE, which also provide soil temperature) were 327 inserted horizontally at depths of 5, 15 and 30 cm into the unaltered upslope pit face, 328 whereas in the other two pits in the block, only one sensor (EC-5) was inserted at 15 cm 329 depth. Total sample size per plot (treated/control) was 15 sensors in the 9 spots. After 330 installation, the pits were backfilled with the excavated soils and slightly compacted up 331 to similar bulk density to that of unaltered soil. Thus, sensor readings include the effect 332 of stoniness in the pit (as rocks do not hold moisture). Calibrations were discarded as 333 the observed increase in θ after calibrating was offset when taking into account the 334 stoniness effect in field conditions (which we did not want to obviate), and because of 335 the temporal drifts observed in several cases. Thus, we used default calibration (for 336 mineral soils) in all cases after observing that the use of relative variables rather than 337 absolute θ would minimize the impact of any changes from the calibration curve on the 338 patterns of θ fluctuations (Detty and McGuire, 2010). The relative θ (or relative 339 extractable water, REW) was computed for the 10-min θ values as:

$$340 \qquad \theta_{rel} = \frac{\theta - \theta_{mn}}{\theta_{mx} - \theta_{mn}} \tag{5}$$

where θ_{mx} and θ_{mn} are the saturated (maximum) and minimum soil water content of the probe. The range of θ for each probe was computed as the extreme values that the sensor recorded during the entire monitoring period. Field capacity for each probe was calculated from the steady values of θ following gentle rainfall events with at least 20 mm (θ_{fc}). Averaged soil water content at field capacity was 0.19 and 0.20 m³ m⁻³ for C and T, respectively; θ_{mx} and θ_{mn} averaged, respectively, 0.33 and 0.02 m³ m⁻³ in both plots.

Sap flow velocity $(v_s, cm h^{-1})$ was measured hourly through the Heat Ratio Method, 349 350 HRM (Burgess et al., 2001) by 14 sap flow sensors powered by a 12 V battery 351 connected to a solar panel and a data-logger (Smart Logger, ICT International, 352 Armidale, NSW, Australia). Sensors were installed on the upslope side of the trunk at a 353 variable height depending on the trunk's shape (at between 0.3 and 1.0 m height). Each 354 sensor has a heater between two needles containing two thermocouples each, located 355 27.5 mm and 12.5 mm from their bases. The sensors were distributed in both plots 356 proportionally to the different diameter classes. This sample size falls within the range 357 normally considered in tree water-relations studies (Granier, 1987; Klein et al., 2013; 358 Martínez-Vilalta et al., 2003). Sapwood area (Sa, cm²) was at first calculated by subtracting heartwood area from the 359 360 inner-bark area in a sample of cores and slices obtained when applying the treatments. 361 However, we discarded this method due to its high subjectivity and lack of direct 362 sapwood data from the sampled trees. Instead, we opted for a linear fit of v_s from both 363 thermocouples at both depths to obtain the depth at which v_s equals 0 (del Campo et al., 364 2014). This linear approach is expected to slightly underestimate the innermost Sa, 365 which usually has very low sap flux values (Berdanier et al., 2016). Sa was divided into 366 three different sections to assign different v_s values and consequently to calculate hourly and daily values of sap flow (S_f , 1 tree⁻¹ hour⁻¹) (Hatton et al., 1990; Delzon et al., 2004) 367 368 as follows: 1) the v_s from the outer thermocouple was assigned to the Sa from the 369 cambium to the mid-point between the outer and inner thermocouples (i.e. 20 mm 370 depth); (2) the v_s from the inner thermocouple was assigned to the Sa from 20 mm to 371 the depth of the probe (35 mm depth from the cambium); and (3) $0.5v_s$ from the inner 372 thermocouple was assigned to the remaining area from 35 mm deep to the beginning of the heartwood or to the pith (if heartwood was not present). Up-scaling S_f (1 tree⁻¹) to 373

- 374 stand transpiration per plot (E_t , mm, 1 m⁻²) used the number of trees (De, tree m⁻²) as
- 375 scalar. We obtained a correction factor (cf) by regressing S_f on Sa (r²>91%) so that the
- 376 S_f corresponding to the mean sampled tree was corrected to the mean plot tree.
- 377 Accordingly, Et per plot was calculated as:

 $378 \quad E_t = S_f \ De \ cf \quad (6)$

379 Data were quality-controlled for any possible spikes and gaps. In some cases, v_s flow

data were lost for more than 15-day spells, because of datalogger/sensor malfunction,

381 battery failure and/or rodents' activity. In these cases, an Artificial Neural Network

model was used to estimate E_t , as described in Fernandes et al. (2015).

383 2.5. Canopy conductance (G_s)

 G_{s} (mm s⁻¹) is an essential parameter that represents the physiological control of

385 transpiration by environmental variations, and thus regulates tree-water use and carbon

uptake (Novick et al., 2016; Grossiord et al., 2017). G_s is usually calculated from sap

387 flow measurements by means of the reverse form of the Penman-Monteith equation

(Granier and Breda, 1996). Due to the sparseness of the trees, G_s was calculated in a

389 similar way, but including the sparse canopy and using the Shuttleworth and Wallace

(1985) physical model as detailed in Lhomme et al. (2012). Thus, G_s derived in this way

391 reflects contributions only from stomatal conductance and not from the whole surface.

392 Climate data above the canopy (6.5 m) were used in the model (see point 2.6 ET

393 partitioning). Periods when $R_{s,a}$ was lower than 400 W m⁻² and sap flow (v_s) was close

394 to zero were eliminated in order to decrease relative inaccuracy in G_s calculation

395 (Granier et al., 2000). A threshold of D was taken as 0.6 kPa to remove the wettest air

396 conditions when errors in G_s estimates are higher than 10% (Ewers and Oren, 2000).

397 We assumed negligible stem capacitance and no time lag between transpiration and soil

398 water uptake for this subspecies (Trifilò et al., 2015). The threshold for $R_{s,a}$ adopted

399 here minimizes a possible capacitance effect of the trees, as previously observed

400 (Lhomme et al. 2001). In any case, the condition of high aerodynamic coupling between

401 the air inside the canopy and the air from the bulk atmosphere was tested by calculating

402 the decoupling coefficient Ω (Jarvis and McNaughton, 1986) that ranges between 0 and

403 1, with 0 representing full stomatal control of E_t (highly coupled):

404
$$\Omega = \frac{(\varepsilon + 1)}{\left(\varepsilon + 1 + \frac{g_a}{G_s}\right)}$$
(7)

405 where ε is the ratio of the slope of the relationship between saturation vapor pressure

406 and temperature (Δ) to the psychrometric constant (γ); ga is the aerodynamic

407 conductance (m s^{-1}) above the canopy calculated for neutral conditions as:

408
$$g_a = \frac{k^2 U}{ln^2 \left[\frac{(z_r - d)}{z_0}\right]}$$
 (8)

409 expressed as a function of wind speed; z_0 is vegetation surface roughness length and d is 410 the zero-plane displacement of vegetated surfaces, both calculated according to Shaw 411 and Pereira (1982) as functions of mean canopy height (dominant and co-dominant 412 trees, z_h =5.20 and 5.78 m for C and T, respectively) and LAI (mean LAI = 1.13 and 413 0.61 for C and T); $d_{C}=3.32$; $d_{T}=3.29$; $z_{0} = 0.624$; $z_{0} = 0.642$. The term k is the von Kármán constant (0.41) and U (m s⁻¹) is the wind speed at reference height z_r (6.5 m). 414 415 G_s is affected by θ and D: decreasing θ limits the movement of water to evaporating 416 stomata and reduces G_s; and increasing D causes stomata closure, thus affecting G_s in an 417 independent fashion (Novick et al., 2016). Disentangling the impact of these two drivers 418 is important as θ and D are decoupled at short temporal scales and the effects of 419 thinning on the magnitude of carbon and water fluxes may become less effective 420 (Novick et al., 2016). To calculate G_s sensitivity to D, we used (Granier et al., 1996): $G_{s} = -m \ln(D) + G_{sref}$ 421 (9)

where G_s is an estimate of average stomatal conductance over the canopy (mm s⁻¹), -m 422 423 is the slope or stomatal sensitivity to D ($-dG_s/dln(D)$) and G_{sref} is the reference canopy 424 conductance at D=1 kPa and can be used as surrogate for G_{smax} (Chen et al., 2014). The 425 analysis sorted the G_s data set into 4 categories of θ_{rel} ($\theta_{rel} \leq 0.2$; $0.2 < \theta_{rel} \leq 0.4$; 426 $0.4 \le \theta_{rel} \le 0.6$; $\theta_{rel} \ge 0.6$). A boundary line analysis on G_s versus D within each category 427 was carried out (Erwens et al., 2005; Chen et al., 2014). The term G_s is also sensitive to variations in $R_{s,a}$ and T. However, we filtered for $R_{s,a}$ >400 W m⁻². Variations in diurnal 428 G_s can often be explained mostly by D, which correlates directly with R_{s,a} and T, so that 429 430 neglect of these dependencies does not bias the analysis (Novick et al., 2016). In each 431 category of θ_{rel} , G_s was further partitioned into 0.2 kPa D intervals and the mean and 432 standard deviation of G_s within each interval were calculated. The outliers were 433 removed (p<0.05, Dixon's test) and the data above the mean and one standard deviation 434 of G_s were selected (Ewers et al., 2005). The parameters of equation 9 can then be 435 related to the categorizing variables (D and θ). This boundary analysis provides the best 436 estimate of physiological response because the boundary line occurs during conditions 437 that lead to the highest G_s at any given D (Ewers et al., 2005). G_{sref} accounts for the 438 effects of soil water on G_s whereas -m describes the effects of D on G_s. The ratio of -m 439 to G_{sref} is 0.6 across a wide range of species and environments (Oren et al., 1999), with 440 lower values than 0.6 when trees show less strict regulation of the leaf water potential 441 (allowing the minimum leaf water potential to drop with increasing D) or the range of D 442 broadens so that the slope decreases; and higher than 0.6 when the ratio of boundary 443 layer conductance to stomatal conductance is low (Oren et al., 1999). 444 2.6. *ET partitioning*

The low values of both LAI and FC at our experimental site indicate that this cannot beconsidered as dense vegetated canopy, especially in the treated plot. This, together with

447 the need to distinguish between soil evaporation and transpiration, made it advisable to 448 use the Shuttleworth and Wallace (1985) two-layer model to calculate soil evaporation 449 separately. The Shuttleworth–Wallace (S–W) model assumes that the evaporation from 450 a stand of sparse vegetation consists of fluxes from the upper canopy (main foliage) and 451 the substrate (which may be bare soil or grass). Although the Penman-Monteith one-452 layer model (Monteith and Unsworth, 1990) has been widely used and tested, it may be 453 inappropriate for sparsely vegetated canopies (Zhang et al., 2008). In the two-layer S-W 454 model, the latent heat flux from the complete canopy (λET) is expressed as the simple 455 sum of two components: λE_t (latent heat flux from foliage) and λE_s (latent heat flux 456 from substrate; substrate is defined here as the non-vegetated area) (Lhomme et al., 457 2012):

458
$$\lambda E_t = \left(\frac{\Delta A_f + \rho C_p \frac{D_m}{r_{a,f,h}}}{\Delta + \gamma \left(n + \frac{r_{s,f}}{r_{a,f,h}}\right)}\right)$$
(10)

459
$$\lambda E_s = \left(\frac{\Delta A_s + \rho C_p \frac{D_m}{r_{a,s}}}{\Delta + \gamma \left(1 + \frac{r_{s,s}}{r_{a,s}}\right)}\right)$$
(11)

460 where A_f and A_s, are the available energy at the foliage and substrate, respectively (W m^{-2}), calculated according to eq. (1) as in Domingo et al. (2000); c_p , the specific heat of 461 air at constant pressure (J kg⁻¹ K⁻¹); γ , the psychrometric constant (kPa K⁻¹); Δ , the 462 slope of the saturated vapor pressure curve (kPa K⁻¹); D_m, vapor pressure deficit at 463 464 canopy source height (kPa), assumed to be located at the apparent sink for momentum $(d+z_0, \text{ sensors were located at } z=2 \text{ m in our plots}); \rho, air density (kg m⁻³); and n = 2 for$ 465 466 hypostomatous leaves (stomata present only on the lower surface of the leaf). The resistance terms are: r_a (s m⁻¹), aerodynamic resistance above the canopy (between 467 468 source and reference heights), calculated according to Lhomme et al. (2012) for neutral conditions as $1/g_a$ (see Eq. 8); $r_{a f h}$ (s m⁻¹), bulk boundary-layer resistance of the foliage 469

for sensible heat, calculated as $r_{a,l} / 2LAI$, with $r_{a,l}$ the leaf boundary-layer resistance for 470 sensible heat and water vapor (s m⁻¹), expressed as a function of the wind speed at 471 canopy height U(z_h) (Lhomme et al., 2012); $r_{a.s}$ (s m⁻¹), aerodynamic resistance between 472 473 the substrate (roughness length $z_0=0.01$ m) and the canopy source height (d+ z_0 different in each plot, see 2.5) (Lhomme et al., 2012; Lhomme and Montes, 2014); r_{s f} (s m⁻¹), 474 bulk stomatal resistance of the foliage, isolated in Eq. 10 using Et calculated with sap 475 476 flow data; and $1/r_{s f}$, the estimated stomatal conductance of the foliage (G_s). $r_{s,s}$ is the substrate (soil and mulch) resistance to evaporation (s m⁻¹), or the resistance to 477 478 water vapor movement from the interior to the surface of the soil. It is strongly 479 dependent on the water content of the upper soil surface layer. Soil layer surface 480 resistance r_s was calculated as (Anadranistakis et al., 2000): 481 $r_s = r_{s\,min}f(\theta_s)$ (12)

$$482 \quad f(\theta_s) = 2.5 \left(\frac{\theta_{fc}}{\theta_s}\right) - 1.5 \tag{13}$$

483 where $r_{s min}$ is the minimum soil surface resistance, which corresponds to soil moisture

484 at field capacity (θ_{fc}) and its value is assumed equal to 100 s m⁻¹ (Thompson et al.,

485 1981, cit. in Zhang et al., 2008); and θ_s is the water content of an upper soil surface

486 layer $(cm^3 cm^{-3})$, calculated by linear interpolation of our soil moisture readings (at 5, 15 487 and 30 cm) to 1 cm.

488 When an extraneous mulch is on top of a dry layer of soil $r_{s,s} = r_s + r_m$, with r_m transport 489 resistance of extraneous mulch (s m⁻¹), resistance of mulch was calculated following 490 Fuchs and Hadas (2011):

491
$$r_m = r_d - r_x \left[1 - exp\left(-\frac{h_m}{h_x} \right) \right]$$
(14)

$$492 r_d = \frac{h_m}{D_{eff}} (15)$$

- 493 where r_d is the diffusive component of the vapor transport resistance defined as the ratio
- 494 of the thickness of the mulch (h_m , average 0.0461 m for both plots) over the effective
- 495 diffusivity of water vapor in the porous medium ($D_{eff} = 1.05 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$ according to
- 496 Flurry et al., 2009). r_x and h_x are fitting parameters (Fuchs and Hadas, 2011) that depend
- 497 on the wind speed at 0.125 m (estimated according to Wang, 2014).
- 498 Finally, to obtain $r_{s,s}$ for the area of the plots, resistances for the different surface covers
- 499 $(r_s \text{ and } r_m)$ were weighted according to the proportion of bare soil (21.5 and 22.6% for C
- 500 and T, respectively), the proportion covered by mulch and litter (53.0 and 48.5% for C
- 501 and T) and the proportion of surface covered by rock fragments/outcrops (25.5 and
- 502 28.8% for C and T). The resistance of the latter was fixed to the highest value of
- resistances found in our data set $(21,500 \text{ sm}^{-1})$, assuming that its evaporation will be close to zero.
- 505 In S-W's original study, $\lambda ET = \lambda E_t + \lambda E_s$, but here we followed the modified expression
- 506 from Lhomme et al. (2012):

507
$$\lambda E = \left(\frac{\Delta + \gamma}{\gamma}\right) \frac{\left(R'_f + R'_s\right)r_a}{R'_f R'_s + R'_a \left(R'_f + R'_s\right)} \left(\frac{\Delta A + \rho C_p \frac{D_a}{r_a}}{\Delta + \gamma}\right) + \frac{\Delta}{\gamma} \left(\frac{R'_s A_f r_{a,f,h} + R'_f A_s r_{a,s}}{R'_f R'_s + R'_a \left(R'_f + R'_s\right)}\right)$$
(16)

508 where R' are the modified resistances terms (aerodynamic, foliage and substrate)

509 (Lhomme et al., 2012) from the original R terms in the S-W model:

510
$$R'_{f} = \frac{R_{f}}{\gamma} = r_{s,f} + \left(n + \frac{\Delta}{\gamma}\right)r_{a,f,h}$$
(17)

511
$$R'_{s} = \frac{R_{s}}{\gamma} = r_{s,s} + \left(1 + \frac{\Delta}{\gamma}\right)r_{a,s}$$
(18)

512
$$R'_{a} = \frac{R_{a}}{\gamma} = r_{a} + \left(1 + \frac{\Delta}{\gamma}\right)$$
(19)

513
$$R_f = (\Delta + n\gamma)r_{a,f,h} + \gamma r_{s,f}$$
(20)

- 514 $R_s = (\Delta + \gamma)r_{a,s} + \gamma r_{s,s}$ (21)
- 515 $R_a = (\Delta + \gamma)r_a \tag{22}$

516	The difference between E (ET) in Eq. 16 and the sum of E_t (sap flow data) and E_s (Eqs.
517	10 and 11) was considered as a miscellaneous residual term (E_r) including shrub
518	evapotranspiration, damp litter evaporation and errors from calculations.
519	2.7. Data analysis
520	Differences between control and treated plots were analyzed with ANOVA (treatment
521	and block as fixed factors) or, alternatively, a non-parametric Kruskal-Wallis test was
522	used when data did not fulfill the assumption of homoscedasticity (this was the case for
523	sap flow variables, sorted by diameter classes). We studied the relative contribution of
524	the treatment, atmospheric variables and tree structure metrics on tree transpiration. To
525	this end, relationships were investigated through Pearson correlations and multiple
526	linear regression models. The regression models are not intended for predictive
527	purposes but for quantifying the relative importance of the different independent
528	variables (treatment, atmospheric variables and tree metrics) in explaining the variance
529	of v_{s} and $S_{\rm f}$ (dependent variables). The relative importance of any independent variable
530	was computed from its individual contribution to the sum of squares in the regression
531	model. We performed stepwise multiple linear regression (MLR) for fitting the
532	regression models in order to account only for independent variables that explained
533	additional variance (criterion to select a variable: F probability for including < 0.05; F
534	probability for excluding > 0.10). The residuals were examined for normality,
535	independence and homoscedasticity (Q-Q plots), linearity between dependent and
536	independent variables was assessed (Pearson coefficient) and autocorrelation and
537	multicollinearity in independent variables were checked through the Durbin-Watson
538	coefficient and tolerance, respectively. Statistical proofs took into account only
539	measured data, i.e. data calculated to fill in gaps were excluded and were used only for
540	year-round balances. The cumulative effect of the treatment on E_{t} and E_{s} was evaluated

541 in terms of a shift in the daily ratio of treated/control following the intervention: In

542 (T/C) (Perry and Jones, 2016). Because of the complete block design layout, we

543 assumed baseline (in the pre-operational period) to be zero. A significance level of

544 p<0.05 was used for all analyses. Data were handled and analyzed with Excel, SPSS

545 20.0 and R studio software (RStudio Team, 2015).

546 **3. Results**

547 3.1 Meteorological data

548 Annual precipitation during the study period was usually below the area average of 466 549 mm, with 405 mm (2013), 354 mm (2014), 320 mm (2015) and 499 mm (2016), i.e. 550 only the most recent year was wetter than the average (Figure 1). However, by water 551 years, the figures changed notably, with 534, 271, 426 and 297 mm for water years 552 2012-2013 to 2015-2016, respectively, where 2014 came out as very dry (Pg between Jan 1st to Sep 20th accumulated only 139 mm) and 2013 as very wet, with marked 553 554 influence on the soil moisture pattern (Figure 1). Temporal trends of temperature were 555 closely coupled with seasonal variation: the coldest period was recorded between late 556 January and early February 2015 (daily average -2.3°C, minimum -10.4°C), and the 557 hottest days occurred in the summer of the same year (daily average and daily 558 maximum T were above 26 and 37°C, respectively, for most of the days between late 559 June and early August that year). Mean value of T in 2013, 11.1°C, contrasts with those 560 of the following years: 12.2, 12.0 and 12.5°C in 2014, 2015 and 2016. Temporal trends 561 of D and R_{s.a} were also coupled with seasonal variation (Figure 1), with high inter-562 annual variability too: mean D in 2013 (0.52 kPa) contrasts with that of the following 563 years (0.59, 0.63 and 0.59 kPa for 2014 to 2016).

564 *3.2 Tree growth traits and stand structure*

565 Growth traits were affected after the clearing treatment in different ways. Shoot length 566 and diameter were not affected by the treatment, whereas the number of leaves, leaf area 567 and SLA were all significantly affected (Table 2). In the crown, the number of shoots 568 per branch increased significantly in the cleared plot from 35 to about 49 shoots, and the tree-based LAI was also higher there (0.93 and 0.81 $\text{m}^2 \text{m}^{-2}$ for T and C, respectively), 569 570 though not significantly. In addition, sorting the data by diameter class and year 571 changed several of these results (Figure 2). The presence of epicormic shoots and stump 572 sprouts in T that came out in 2014, but became much more apparent in 2015, is also 573 worth mentioning. These shoots generally had two growth cycles (spring and autumn) 574 and morphological features that were far above the values of the shoots in the crown 575 (Table 2). 576 Ground-based LAI followed a seasonal variation pattern in both plots, with the lowest

577 values reached in summer, matching the period of foliage throughfall (Figure 3). Except

578 for the re-sprouts and epicormic shoots, the leaf carriage period was found to spread

579 from spring to summer of the following year (about 15 months) in both plots. That

580 made summer LAI fluctuate sharply, dropping to 0.58 and 0.35 $m^2 m^{-2}$ for C and T,

respectively, in the driest period in summer 2014. LAI was higher in C than in T until

spring 2016, when a decreasing trend in C made the series of the thinned plot catch up

583 with that of the untreated trees. In fact, by the end of the study, summer LAI in T

reached values close to those measured before thinning in May 2012.

585 *3.3 Sap flow, tree-water use and soil moisture*

586 Sapwood depth varied between 3.18 and 7.55 cm into the xylem, which accounted for

between 62 and 100% of the BA of the sampled trees. Sapwood area (Sa) was strongly

588 related either to D_{BH} or to tree BA (Sa=1.453 $D_{BH}^{1.6794}$, r = 0.964; Sa=0.652BA+17.425,

589 r = 0.982, units either in cm or cm²). In C and T plots, mean Sa values in the sampled 590 trees were 139±110 and 218±228 cm², respectively.

Both mean sap flow velocity (v_s) and mean sap flow (S_f) per tree had a wide range of

592 values throughout the study period (Figure 4). Even so, the effect of the treatment was 593 highly significant (p ≤ 0.001) in all diameter classes (DC). In the control, v_s and S_f 594 averages, either for the entire period or the growing season period (Mar-Oct), were just 595 48 and 35% respectively of the treatment averages in the lower DC, or 66 and 40% (for 596 v_s and Sf respectively) in the dominant/co-dominant DC's. Thus, the effect of thinning 597 on tree transpiration was proportionally higher in the smaller trees. On average, a dominant or co-dominant tree in the treatment consumed 22.4 l day⁻¹ during the 598 growing season (or 18.5 l day⁻¹ when averaging over the entire period), whereas a tree 599 in the control took up only 9.0 l day⁻¹ (or 7.5 l day⁻¹ in the entire period). However, 600 601 these values are biased by the different means in tree Sa between treatments; on normalizing by this metric, the above values correspond to 0.089 l day⁻¹ cm⁻² and 0.047 l 602 day⁻¹cm⁻² for T and C in the growing season, or 0.073 l day⁻¹cm⁻² and 0.039 l day⁻¹cm⁻² 603 604 for T and C in the whole period. v_s showed higher values in T trees in the lower DC1-2

605 than in C trees in the higher DC3-4 (Figure 4).

591

606 As well as thinning treatment and tree size, other variables relating to atmospheric

607 conditions, soil moisture and date were also linearly related to the transpiration

 v_{s} and S_{f} at different temporal scales (Table 3). Among them, the linear

609 correlations with date, T, R_{s,a} and D stand out, although they are from moderate to low

610 (r<0.5) depending on both the period under consideration (growing season vs. entire

- 611 period) and the time scale. The significant correlations in the date-related variables
- 612 indicate that, in the span of our study, transpiration showed an increasing trend, in
- 613 parallel with the observed trend in D and T. Soil moisture (θ) and transpiration showed

614 opposite temporal patterns (negative relationship) that persisted regardless of the 615 temporal scale when looking at the entire period, although that correlation weakened or 616 even became insignificant when considering only the growing season. Figure 1 shows 617 that θ had a general seasonal trend responding to Pg, but with slight differences between 618 T and C throughout the temporal span 2012-2016. During the first year (2012), θ was 619 higher in T (47% and 56% of θ_{rel} at 15 cm for C and T, respectively), and this difference 620 increased with the depth of the soil (absolute θ at 5, 15 and 30 cm was 15.1, 18.4 and 621 21.2% respectively for C and 16.3, 21.9 and 25.6% for T). On the contrary, during the 622 rainy year 2013, the differences were absent (θ_{rel} 46% and 44% on average in C and T, 623 respectively), but appeared again in the following dry year 2014 (θ_{rel} 28% and 39% for 624 C and T). In the final two years, both plots showed similar values again (about 36% 625 θ_{rel}).

626 The MLR models fitted to study the relative importance of the independent variables in 627 the explained variance of transpiration (filtered by growing season and daylight hours) 628 were significant in all cases, although some of them showed autocorrelation and 629 multicollinearity, together with limited explanation of variation (Table 4). However, 630 beyond their predictive ability, they showed that the treatment and the structure of the 631 tree (which is also directly affected by the treatment) were the most important variables 632 in explaining both v_s and S_f at the different temporal scales considered. The treatment 633 accounted for about a quarter of daily transpiration; and the size of the trees, for an 634 additional half. As the treatment affects the frequency distribution of the diameter 635 classes, it can be assumed that the size of the mean tree in the thinned plot is affected by the treatment. Weighted by r^2 , the treatment explained about 20% of total variance in 636 637 daily S_f.

638 3.4. Response of G_s to environmental (θ and D) constraints

639	G_s was studied to better address the effect of the treatment on how $\boldsymbol{\theta}$ and D constrained
640	carbon and water fluxes. The relationship between G_s and D showed a clear logarithmic
641	response, which was markedly affected by limitation from θ (Figures 5, 6), with low G _s
642	and G_{sref} and low sensitivity to D (-m) when the soil was dry ($\theta_{rel} \le 0.2$) regardless of the
643	treatment. In spite of the similar sensitivity to D in both treatments under dry soil, G_s
644	and G_{sref} remained higher in the T plot. However, under wetter soil conditions (θ_{rel} >0.4),
645	both G_s and G_{sref} were higher and more responsive to D (Figures 5, 6), showing higher
646	stomatal sensitivity, especially in the control plot (-m was 0.71 and 0.43 in C and T,
647	respectively). Above severe soil water deficit ($\theta_{rel} > 0.2$), G _{sref} remained constant in T but
648	still increased in C between 0.2< θ_{rel} <0.4 and θ_{rel} >0.4, indicating more θ limitations on
649	G _s in the latter. Likewise, lower values absolute values of m in T indicated less stomatal
650	responsiveness to increasing D, and hence the carbon and water fluxes were less
651	affected by air dryness. The slope of $-m$ to G_{sref} was found to be in most cases less than
652	0.6: between 0.30 and 0.65 in C and between 0.22 and 0.50 in T (Figure 6a).
653	3.5. Stand transpiration (E_t) and dry canopy evapotranspiration partitioning
654	For the distribution of diameters in both plots as well as tree density (Table 1), the
655	previous $S_{\rm f}$ values corresponded to 0.253 ± 0.153 and 0.248 ± 0.162 mm transpired per
656	day in the entire period for C and T, respectively, and 0.317 ± 0.152 and 0.306 ± 0.156
657	mm transpired per day in C and T in the growing season (Mar-Oct) (Figure 7). These
658	values of E_t were variable between years, with 2013 having the lowest daily mean in
659	both plots (0.211±0.117 and 0.159±0.096 mm day ⁻¹ for C and T, respectively) and the
660	years 2014 and 2015 showing the highest daily means for C (0.297 \pm 0.183 mm day ⁻¹ in
661	2014) and T (0.332 ± 0.178 mm day ⁻¹ in 2015) (Figure 7). Non-parametric tests indicated
662	no significant differences between C and T in E_t . Annually, the canopy of holm oaks in

- 663 C transpired between 77 mm in 2013 and 108 mm in 2014 (Table 5), whereas in T these 664 values ranged between 58 mm (2013) and 121 mm (2015) (Table 5).
- 665 The physically-based model of S-W allowed a further partitioning of total dry canopy
- 666 ET into its different components (Table 5 and Figures 7, 8). The greater contribution of
- soil evaporation (E_s) to total ET in the treated plot (~40% of ET) than in the control plot
- $(\sim 28\% \text{ of ET})$ stands out. On a daily basis, T always showed higher E_s than C did
- $(0.212\pm0.216 \text{ and } 0.124\pm0.123 \text{ mm day}^{-1} \text{ for T and C, respectively}), with significant$
- 670 differences (p<0.001). Also, inter-annual variability in E_s was lower than in E_t (or E_r),
- with mean annual values (2013-2016) ranging between 0.122 and 0.139 mm day⁻¹ in the
- 672 control and 0.180-0.245 mm day⁻¹ in the treatment. The residual term, E_r, including the
- 673 unaccounted understory transpiration, litter evaporation and noise, was slightly higher
- 674 in C (0.067±0.109 mm day⁻¹, 15% of ET) than in T (0.063±0.105 mm day⁻¹, 12% of ET)
- and ranged between 0.033 and 0.041 mm day⁻¹ for C (2014) and T (2013), respectively,
- and between 0.127 and 0.120 mm day⁻¹ for C and T in 2015.
- 677 The components of ET showed a typical seasonal pattern in both plots, with most of the
- 678 evaporation occurring during summer and spring. It is clear that, in the span of this
- 679 study, E_t in the treatment (T) surpassed that of the control (C) during the main dry
- spells, from mid-July onwards (Figure 8 and Figure 9, $\ln [E_t_T/E_t_C]$), indicating that
- the cleared oaks are using a water reservoir that is not available to the control trees
- 682 during summer months. In fact, annual balances (Table 5) show that the difference C
- 683 minus T for annual E_t ranged from +19 mm (2013) to -16 mm (2015).
- 684 4. Discussion
- 685 The results showed that the silvicultural treatment affected the variables studied at
- 686 different spatial (tree and stand) and temporal scales.
- 687 4.1 Growth and leaf traits

688 The forest treatment enhanced growth as compared to the control plot, as expected. 689 Increased height and diameter growth in holm oak after thinning have been previously 690 reported under similar conditions (Mayor and Rodà, 1993; López et al., 2003; Cotillas et 691 al., 2009; Gea-Izquierdo et al., 2009; Cabon et al., 2018). Annual shoot growth results 692 from equilibrium between endogenous growth processes and exogenous constraints 693 exerted by the environment (Barthélémy and Caraglio, 2007), which were 694 experimentally altered in our study. However, the length of the growing season's shoots 695 (a surrogate for height growth) was only marginally affected (only in 2013). Rather, it 696 was the leaf traits (leaves per shoot and number of shoots per dominant branch in a tree) 697 that were most enhanced by the treatment, which corroborates similar results previously 698 reported in the species (López et al., 2003). The treated trees had higher SLA and lower 699 leaf mass area (LMA=1/SLA) than the trees in C. LMA is a key trait that reflects the dry-700 mass cost of making new leaf area, whilst leaf lifespan represents the duration over 701 which photosynthetic revenue is returned (Wright et al., 2004). As we found no 702 difference in lifespans between C and T (about 15 months), the cost of deploying new 703 leaves was higher in C, which meant that its resource-use strategy was more 704 conservative (Stahl et al., 2014). In evergreen shrubs and trees growing in harsh climate, 705 high LMA correlates negatively with rainfall (Wright et al., 2004), and net rainfall was 706 indeed lower in the control plot (del Campo et al., 2018). Our tree-based LAI was also 707 higher in the treatment, although not significantly, reinforcing the idea that leaf traits were 708 particularly affected by the treatment. Growth was very variable inter-annually, with some 709 years (2013 and 2015) showing less growth than others (2014 and 2016), which is 710 especially true for the trees in the control (Figure 2). 2013 was the coolest and rainiest 711 year, with a mean T of 8.4°C in the Jan-Jun period, 1.6°C lower than the corresponding T 712 of the following year. This probably had an impact on most growth traits in both C and T,

713 which had minima that year. However, it had a positive impact on the following year's 714 growth in both plots, even though 2014 was the driest year: available resources were first 715 used to build new shoots and leaves. This meant that growth was positively enhanced by 716 the previous year's precipitation, as reported earlier for holm oak (Gea-Izquierdo et al., 717 2009) and for pine trees at a nearby site (Fernandes et al., 2016). 2015, following the 718 previous year's pronounced drought, with moderate Pg in late spring-early summer and 719 high summer temperatures, had a negative impact on growth in C trees, but almost no 720 effect on the dominant-codominant trees of T. The combined effects of the treatment and 721 climate-growth relationships can be better observed in E_t in 2015 (Table 5): with total ET 722 increasing, Et decreased in C, whilst T showed the highest tree-water use and Et values of 723 the series. The impact of thinning on growth also depended on the size of the trees (Figure 724 2), so that growth was higher in larger trees than in smaller ones, as previously reported 725 (Mayor and Rodà, 1993). Quercus ilex may show several growth units annually or 726 polycyclism (Barthélémy and Caraglio, 2007; Barbeta and Peñuelas, 2016), which is 727 related to the meteorological conditions in the current and previous years (Girard et al., 728 2011). In our plots, we only observed one annual shoot growth unit (monocyclism) on 729 the trees in either C or T, with the exception of re-sprouts and epicormic shoots, which 730 had two cycles. The importance of the re-sprouting growth from 2015 onwards cannot be 731 overlooked, as both epicormic shoots (in pruned trees) and stump sprouts were notably 732 enhanced with the treatment. This undesirable feature is typical of the species, as it is 733 likely to cause rapid decline in the positive effects of clearing in the first three years after 734 the treatment (Cotillas et al., 2009). In our case, vigorous re-sprouting shoots, although 735 shorter than in Cotillas et al.'s study (~ 25 cm in the reference vs. 13 cm in this study), are 736 probably related to the relative increase of the E_r term in the treatment in 2015. 737 4.2 Tree and stand-water use

738 Transpiration notably increased with thinning both on a tree basis and at stand scale, 739 especially during the summer months of the second half of the study period. Daily treewater use in the dominant and co-dominant trees in T (22.4 l tree⁻¹ in the growing 740 741 season) was very close to the values reported in Reves-Acosta and Lubczynski (2013) 742 for the same species at low density and with similar-sized trees (D_{BH} : 22-31 cm, ~ 21 l tree⁻¹). These authors also reported stand transpiration between $0.26-0.48 \text{ mm day}^{-1}$ for 743 areas with tree densities between 181-280 trees ha⁻¹, which again confirms our growing 744 season transpiration in the treated trees $(0.31 \text{ mm day}^{-1} \text{ for a density of } 299 \text{ trees ha}^{-1})$. 745 However, other studies with sparse stand (Infante et al., 2003) have reported both higher 746 tree-water use (between 24 l tree⁻¹ day⁻¹ -autumn/winter- and 80 l tree⁻¹ day⁻¹ -747 748 spring/summer) in trees of a similar size to our dominant oaks in the thinned plot, and 749 higher stand transpiration (169-205 mm year⁻¹). In spite of the similarity in canopy cover between that study (34%) and our treatment plot, the higher LAI (1.9 $m^2 m^{-2}$) at 750 751 that site may explain the differences. Moreno and Cubera (2008) provided an empirical fit between stand E_t and cover in a warmer site on deep soil that, when used with our 752 data, gives stand E_t between 0.55-0.86 and 0.43-0.57 mm day⁻¹ for C and T, 753 754 respectively. Our plots, especially the control, remain out of that range. Other studies 755 dealing with holm oak transpiration in wetter climates and higher LAI (Limousin et al., 2009) also reported higher values of stand E_t (243-430 mm year⁻¹ Pg>680 mm; LAI: 756 1.5-1.9 m² m⁻²). Thus, sap flow values in this study are the lowest among those found in 757 758 the literature, which confirms the marginality of this population and the appropriateness 759 of adaptive management. The values reported in a nearby experiment in thinned Aleppo 760 pine were lower (5.2 and 17.8 l tree⁻¹ day⁻¹ for similar covers to C and T, respectively) 761 (del Campo et al., 2014), which might be due to the different water use strategies of the 762 two species (Martínez-Ferri et al., 2000).

763 Apart from the treatment and the size of the trees, tree transpiration was mostly 764 explained by variation in D and other atmospheric driving variables, with no or negative 765 influence of θ (negative relationship in short time scales and no relation at the growing 766 season scale). The increase of transpiration with time along the span considered in this 767 study coincides with an observed parallel increase in D (Figure S1. Supplementary 768 Material). Other studies (Infante et al., 2003; Reyes-Acosta and Lubczynski, 2013) also 769 reported no effect of θ or drought on the transpiration of holm oaks, arguing either 770 strong stomatal regulation or the access of tapping roots to the water-table that satisfied 771 the need of water whenever demanded, which is a well-known response in this species 772 (Barbeta and Peñuelas, 2016). Large trees have large root diameters that exert greater 773 force and have greater ability to penetrate shallow and stony soils (López et al., 1998). 774 This adaptation to stoniness makes large trees very resilient as they are able to prevent 775 water stress and maintain a favorable leaf water balance by tapping water from deep soil 776 layers. As θ was affected after clearing, especially in the first 2-3 years of the study, 777 deep water reservoirs must be affected too (in the wet year 2013, there was evidence of 778 deep water recharge in both plots); during the driest year 2014, the differences were 779 especially important. However, this variable had a transient effect, and by 2015 the 780 differences between both plots had almost disappeared. This is consistent with previous 781 results reported by Cotillas et al. (2009), who found significant differences in soil 782 moisture associated with thinning only in the first year after the treatment. 783 The unexpected finding in our study is that E_t in the T plot slightly decreased with 784 respect to C during the first half of the studied span, and caught up with it in the second 785 half, with no significant differences over the whole period. The decrease in stand E_t 786 following a reduction in density and/or cover is a common response that has been 787 widely reported (Moreno and Cubera, 2008; Limousin et al., 2009; Ungar et al., 2013;

788 del Campo et al., 2014; Ilstedt et al., 2016). The explanation for this is grounded in the 789 very different frequency of age classes after the treatment, together with the very low water consumption observed in the lower DC in the control $(0.062 \ l \ tree^{-1} \ h^{-1})$. This 790 implied 49 l h^{-1} for a total of 808 trees ha^{-1} , whereas in the treatment that amount 791 decreased by only one half (24 1 h⁻¹) for about 18% of the trees (total of 134 trees ha⁻¹ in 792 DC1-2). In the higher DC's, these figures rose to 102 and 141 $1 h^{-1}$ in C and T, 793 respectively, for a total of 325 and 183 trees ha⁻¹. The number of trees in the highest DC 794 remained essentially the same in the treatment (127 and 109 trees ha⁻¹ in C and T, 795 796 respectively), while its water use was more than twice that of the control. Smaller tree 797 size and heavy competition might worsen the effect of extreme droughts on tree vigor 798 (Barbeta and Peñuelas, 2016; Gentilesca et al., 2017). Moreover, the reported lag of the 799 response to thinning for fine root growth is about 1.5 years (López et al., 2003), a span 800 that in our case would explain why during the first months/year after clearing E_t was 801 slightly higher in C, whilst in the second half of our study period T figures began to 802 depart from C in this water flux. The increase in fine root biomass after thinning has 803 been reported for similar conditions (López et al., 2003) and is probably the response to 804 higher net precipitation, soil temperature and soil nutrient content. The slash from 805 thinning was left on the soil and had a significant effect on the mineralization of organic 806 matter and a subsequent fertilization effect (unpublished data). 807 4.3 Environmental controls on G_s

808 Low water availability in the soil ($\theta_{rel} < 0.2$) reduced G_{sref} and stomata responsiveness to

D(-m) in both plots, with the advantage of smaller absolute change in G_s with

810 increasing D. Under water stress, Q. ilex shows great stomatal control to avoid low leaf

811 water potentials and minimize the risk of xylem cavitation (Martinez-Vilalta et al.,

812 2003; Barbeta and Peñuelas, 2016). Therefore, G_s remained at low values regardless of

813 D. However, the treated oaks showed slightly higher G_{sref} and hence less θ limitation on 814 G_s, which was supported by the high tree-water use observed in this plot during the dry 815 spells (Figure 9). This implied that, in spite of the dry conditions that prevailed during 816 most of our study span, these trees maintained water and carbon dynamics at higher 817 rates than the control. This higher G_{sref} under θ limitation can be considered as an active 818 acclimation in the thinned trees, which may be due to the development of deeper roots 819 (Grossiord et al., 2017). With plenty of soil moisture ($\theta_{rel} > 0.4$), G_{sref} and -m increased 820 markedly, especially in the C trees, in which the greater sensitivity of G_s to D is 821 indicative of higher stomata responsiveness to air dryness, i.e. they are more reactive to 822 stimuli that may provoke their closure. Higher sensitivity (-m) has the disadvantage of 823 having greater absolute reduction in G_s with increasing D in spite of soil water 824 availability. This might be due to quicker water depletion in the overstocked control 825 plot and the subsequent risk of loss of hydraulic conductivity at high D (Oren et al., 826 1999). Hydraulic conductivity is a key trait to be maintained in holm oak trees, as 827 embolism recovery is much more limited than in other co-occurring species (Trifilò et al., 2015). It is also important to highlight the different response in G_{sref} between classes 828 829 $0.2 < \theta_{rel} < 0.4$ and $\theta_{rel} > 0.4$ in both treatments: in T, G_{sref} remained essentially constant 830 between the two classes, thus reflecting no θ limitation and stomatal acclimation (size, 831 density and/or osmotic adjustment) so that trees are less responsive to air dryness 832 (Grossiord et al., 2017). On the other hand, G_{sref} increased in C, indicating that θ 833 limitations still persisted in the class $0.2 < \theta_{rel} < 0.4$ (absolute θ between 10 and 16%), as 834 compared to class $\theta_{rel} > 0.4$ (absolute $\theta > 16\%$). 835 Whenever the stomata are regulating leaf water potential near a constant value, a slope 836 close to 0.6 is expected (Oren et al., 1999). In our case, the wider range of D in the

837 $\theta_{rel} < 0.4$ classes and the very low influence of boundary layer conductance (mean values

838 of the decoupling coefficient Ω were below 0.1, indicating high coupling to D, Figure 839 S2. Supplementary Material) may explain why in most cases our data are below the 0.6 840 slope (Oren et al., 1999).

841 *4.4 ET partitioning*

842 The significant increase in soil evaporation (E_s) after clearing was the main impact of 843 the treatment on ET partitioning. The value of E_s calculated in our plots was in the 844 range of values previously reported in the literature and validate the S-W approach of 845 this study. For instance, in a similar climate with the same species, Balugani et al. 846 (2011) reported daily bare soil evaporation in the dry season of 0.55 mm day⁻¹, with 0.28 mm day^{-1} of this corresponding to the unsaturated zone evaporation and the 847 848 remainder to the saturated water zone. In our plots, spots of saturated water are assumed 849 to exist locally in deep fractured rock; during the March-October period the daily mean was 0.17 and 0.29 mm day⁻¹ for C and T, respectively. Other studies on the 850 851 Mediterranean (Raz-Yaseef et al., 2010a) have reported higher ranges of E_s (0.24 to 3.6 mm day⁻¹) and higher E_s/Pg ratio (30-53%) at a warmer and drier site. The important 852 853 result in our study is that this component made total ET higher in the treated plot on 854 average, as Et did not differ substantially between treatments. However, closer 855 examination of the temporal trends (Figure 9 bottom) reveals that, during wet spells, ET 856 remained lower in the treated plot whereas in dry spells the pattern was reversed. In this 857 regard, it appears that the dominance of dry years during our study period biased the 858 overall average. Also, in the treated plot, the contribution of E_s to total ET decreased 859 from about 50% in 2013 to around 35% in the following years, close to the range 860 reported for the Yatir forest (36-38%) in Israel (Raz-Yaseef et al., 2010b). Wet canopy 861 evaporation (interception, E_i) is not shown here, although it was monitored 862 simultaneously (del Campo et al., 2018). Figure 9 (up) shows total accumulated dry and

863 wet canopy evaporation $(ET+E_i)$ and similar conclusions: in the drier spells in 2014 and 864 2015 the control plot used slightly less water than the treatment, whereas in the first 865 wetter half of the study period, the control plot used significantly more water. The main 866 point is that the ET differences between treatment and control took place in dry spells, 867 from mid-summer to early autumn, so that the increased net precipitation in the T plot 868 was used later on for E_t, mainly in the bigger oaks. G_s was in fact higher in the dry 869 spells in T, as already mentioned. In addition to the wet and dry spells' turnover, Figure 870 9 also confirms the lagged effect after thinning of about 1.5 years, supporting that root 871 growth might have enhanced the stand E_t (López et al., 1998, 2003). Also, stump 872 regrowth was marked after 2014. This means that E_s and E_t tend to offset mutually, as 873 seen in the final year (Table 5). These results contrast with previous values obtained 874 nearby in a 70 year-old Aleppo pine plantation (del Campo et al., 2014). Apart from the 875 important difference in Pg in that study (1,545 mm in 25 months), these authors found 876 no greater increase in stand Et or ET in the thinned trees than in the control, which could 877 be because, during rainy periods without soil moisture restriction, the control is able to 878 take up much more water because of the number of trees. However, in drier years, soil 879 water limits G_s in the control and fewer well-watered trees in the treatment can surpass 880 the E_t of the control. The finding that the main differences between the two treatments 881 occurred during the dry spells supports this assertion. In this context, the difference Pg 882 minus total ET in C ranged between 44 mm (2015) and 285 mm (2016) and between 19 883 and 281 mm for T in the same years. The net mean difference between both plots across 884 the years is of 65 mm of extra blue water (runoff and deep percolation; 15 mm per year) 885 in T. Thus, the overall results given here show that the treatment mostly had a watering 886 effect on a thirsty declining forest (Grant et al., 2013).

887 **5.** Conclusions

888 Key functional responses related to drought were triggered by thinning in a marginal 889 forest that enhanced growth, carbon and water cycles. This performance was driven by 890 leaf and growth traits that promoted a more efficient (and less conservative) use of 891 resources, by improved stomatal behavior with regard to air dryness and declining soil 892 moisture, and by increased deep-water access. The development of deep roots that 893 enable access to deep-water reservoirs during dry spells is one of the key traits in the 894 drought resistance of holm oaks (Barbeta and Peñuelas, 2016) and of other semi-arid 895 species (Grossiord et al., 2017). From a water-balance point of view, the overall results 896 reveal an increase in ET with the treatment, especially in E_s. Thinning from below 897 resulted in little change in the frequency of oaks in the upper diameter classes (with 898 significant water-use), which, together with decreased competition and increased net 899 rainfall, fueled tree and stand-water use in the treatment, especially during the frequent 900 dry spells recorded in our study. By the end of the study period, E_s and E_t in the 901 treatment appeared to offset each other mutually due to higher soil coverage from 902 stumps' regrowth. Thus, the net result in the 4-year span is a significant increase in ET 903 and very limited decrease in total ET when adding wet canopy evaporation (E_i) . 904 Additional monitoring is needed in order to assess the observed trends of both climate 905 and vegetation. Data presented here demonstrate that this oak stand is experiencing a 906 clear decline that has been counterbalanced by the effectiveness of forest management, 907 with a profound effect on the carbon and water fluxes at tree and stand scales. This 908 study may provide some generalizations or guidelines for eco-hydrology-oriented 909 silviculture in stands experiencing tree encroachment and transformation into 910 shrublands, that are more prone to global change-induced disturbances (droughts, 911 blue/green water impairment, fire hazard, etc.). In this regard, rather than just defining a 912 particular forest structure, silviculture must be thought to improve responses in i) key

913 growth and leaf traits such as SLA or LAI, with particular attention to its temporal 914 dynamics; ii) G_s and its behavior with regard to declining soil moisture and increasing 915 air dryness; and iii) tree-water use and deep water access. Also, under below-average 916 rainfall conditions like those recorded here, improvement in blue water flows (run-off 917 and groundwater) seems unlikely and such a potential side-effect cannot be used to 918 argue in favor of adaptive management. Fewer trees led to higher θ , but also to higher 919 E_s, with little change in the stand E_t. Thus, simplifying, we could say that the observed 920 responses are not because of more water but because of fewer trees using a similar 921 amount of water to that in the untreated stand.

922 Acknowledgements

923 This study is a component of the research projects HYDROSIL (CGL2011-28776-C02-

924 02), SILWAMED (CGL2014-58127-C3-2) and CEHYRFO-MED (CGL2017-86839-

925 C3-2-R), funded by the Spanish Ministry of Science and Innovation and FEDER funds.

926 The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat

- 927 Valenciana) and ACCIONA for their support in allowing the use of the experimental
- 928 forest La Hunde and for their assistance in the fieldwork.

929 **References**

- 930 Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier,
- 931 M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham,
- 932 R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S. W., Semerci,
- A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality
- reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684.
- 935 Anadranistakis, M., Liakatas, A., Kerkides, P., Rizos, S., Gavanosis, J., Poulovassilis,
- A., 2000. Crop water requirements model tested for crops grown in Greece. Agric.
- 937 Water Manage. 45, 297–316.

- Barbeta, A., Peñuelas, J., 2016. Sequence of plant responses to droughts of different
 timescales: lessons from holm oak (*Quercus ilex*) forests. Plant Ecol. Diver. 9(4), 321338.
- 941 Balugani, E., Reyes-Acosta, J.L., van der Tol, C., Francs, A.P., Lubczynski, M.W.,
- 942 2011. Partitioning and sourcing of dry season evapotranspiration fluxes at the foot-print
- 943 of the eddy covariance tower in Sardón semi-arid location in Spain. Estudios en la Zona
- no Saturada del Suelo, X: 297-302.
- 945 Barthélémy, D., Caraglio, Y., 2007. Plant architecture: a dynamic, multilevel and
- 946 comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99(3), 375-
- 947 407. http://doi.org/10.1093/aob/mcl260
- 948 Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holtslag, A.A.M, 1998. A remote
- 949 sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol.
 950 212-213, 198-212.
- 951 Berdanier, A.B., Miniat, C.F., Clark, J.S., 2016. Predictive models for radial sap flux
- 952 variation in coniferous, diffuse-porous and ring-porous temperate trees. Tree Physiol.
- 953 36(8): 929–931, doi:10.1093/treephys/tpw027
- 954 Bréda, N., Granier, A., Aussenac, G., 1995. Effects of thinning on soil and tree water
- 955 relations, transpiration and growth in an oak forest (*Quercus petraea* (Matt.) Liebl.).
- 956 Tree Physiol. 15 (5), 295-306.
- 957 Burgess, S.S.O., Adams, M.A., Turner, N.C., Beverly, C.R., Ong, C.K., Khan, A.A.H.,
- 958 Bleby, T.M., 2001. An improved heat pulse method to measure low and reverse rates of
- sap flow in woody plants. Tree Physiol. 21, 589-598.

- 960 Cabon, A., Mouillot, F., Lempereur, M., Ourcival, J.M., Simioni, G., Limousin, J.M.,
- 961 2018. Thinning increases tree growth by delaying drought-induced growth cessation in
- 962 a Mediterranean evergreen oak coppice. For. Ecol. Manage. 409, 333-342.
- 963 Camarero, J.J., Sanguesa-Barreda, G., Vergarechea, M., 2016. Prior height, growth, and
- 964 wood anatomy differently predispose to drought induced dieback in two Mediterranean
- 965 oak species. Ann. For. Sci. 73, 341-351.
- 966 Chen, L., Zhang, Z., Zeppel, M., Liu, C., Guo, J., Zhu, J., Zhang, X., Zhang, J., Zha, T.,
- 967 2014. Response of transpiration to rain pulses for two tree species in a semiarid
- 968 plantation. Int. J. Biometeorol. 58, 1569–1581. doi: 10.1007/s00484-013-0761-9
- 969 Cotillas, M. Sabaté, S., Gracia, C., Espelta, J.M., 2009. Growth response of mixed
- 970 mediterranean oak coppices to rainfall reduction. Could selective thinning have any
- 971 influence on it? For. Ecol. Manage. 258, 1677–1683. doi:10.1016/j.foreco.2009.07.033
- 972 del Campo, A.D., Fernandes, T.J.G., Molina, A.J., 2014. Hydrology-oriented (adaptive)
- 973 silviculture in a semiarid pine plantation: How much can be modified the water cycle
- 974 through forest management? Eur. J. Forest. Res., 133(5), 879-894.
- 975 del Campo, A.D., González-Sanchis, M., Lidón, A., Ceacero, C.J., García-Prats, A.,
- 976 2018. Rainfall partitioning after thinning in two low-biomass semiarid forests: impact of
- 977 meteorological variables and forest structure on the effectiveness of water-oriented
- 978 treatments. Journal of Hydrology. Accepted.
- 979 Delzon, S., Sartore, M., Granier, A., Loustau, D., 2004. Radial profiles of sap flow with
- 980 increasing tree size in maritime pine. Tree Physiol. 24, 1285–1293.
- 981 Delzon, S., Urli, M., Samalens, J.C., Lamy, J.B., Lischke, H., Sin, F., Zimmermann,
- 982 N.E., Porté, A.J., 2013. Field evidence of colonisation by Holm Oak, at the northern

- 983 margin of its distribution range, during the anthropocene period. PLoS ONE 8(11),
- 984 e80443. doi: 10.1371/journal.pone.0080443
- 985 Detty, J. M., McGuire, K. J., 2010. Topographical controls on shallow groundwater
- 986 dynamics: implications of hydrologic connectivity between hillslopes and riparian zones
- 987 in a till mantled catchment. Hydrol. Process. 24, 2222-2236. doi:10.1002/hyp.7656.
- 988 di Prima, S., Bagarello, V., Angulo-Jaramillo, R., Bautista, I., Cerdà, A., del Campo, A.,
- 989 González-Sanchis, M., Iovino, M., Lassabatere, L., Maetzke, F. 2017. Impacts of
- 990 thinning of a Mediterranean oak forest on soil properties influencing water infiltration.
- 991 J. Hydrol. Hydromech., 65, 3, 276–286.
- 992 Doblas-Miranda, E., Alonso, R., Arnan, X., Bermejo, V., Brotons, L., de las Heras, J.,
- 993 Estiarte, M., Hódar, J.A., Llorens, P., Lloret, F., López-Serrano, F.R., Martínez-Vilalta,
- 994 J., Moya, D., Peñuelas, J., Pino, J., Rodrigo, A., Roura-Pascual, N., Valladares, F., Vilà,
- 995 M., Zamora, R., Retana, J., 2017. A review of the combination among global change
- 996 factors in forests, shrublands and pastures of the Mediterranean Region: Beyond
- 997 drought effects. Glob. Planet. Change 148, 42-54.
- 998 Domingo, F., Villagarcía, L., Brenner, A. J., Puigdefábregas, J., 2000. Measuring and
- 999 modelling the radiation balance of a heterogeneous shrubland. Plant Cell Environ. 23,
- 1000 27–38. doi:10.1046/j.1365-3040.2000.00532.x
- 1001 Ewers, B.E., Gower, S.T., Bond-Lamberty, B., Wang, C.K., 2005. Effects of stand age
- and tree species on canopy transpiration and average stomatal conductance of boreal
- 1003 forests. Plant Cell Environ. 28, 660–678.
- 1004 Ewers, B.E., Oren R., 2000. Analyses of assumptions and errors in the calculation of
- stomatal conductance from sap flux measurements. Tree Physiol. 20(9), 579-589.

- 1006 Fernandes, T.J.G., del Campo, A.D., García-Bartual, R., González-Sanchis, M., 2015.
- 1007 Coupling daily transpiration modelling with forest management in a semiarid pine
- 1008 plantation. iForest 9, 38-48. doi: 10.3832/ifor1290-008
- 1009 Fernandes, T. J., del Campo, A. D., Herrera, R., Molina, A. J., 2016. Simultaneous
- 1010 assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in
- 1011 thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not
- 1012 in WUEi. For. Ecol. Manag. 361, 298-308.
- 1013 Flury M., Mathison J.B., Wu J.Q., Schillinger W.F., Stöckle C.O., 2009. Water vapor
- 1014 diffusion through wheat straw residue. Soil Sci. Soc. Am. J. 73, 37-45.
- 1015 Fuchs, M., Hadas, A., 2011. Mulch resistance to water vapor transport. Agric. Water
- 1016 Manage. 98 (6), 990-998
- 1017 Galiano, L., Martínez-Vilalta, J., Sabaté, S., Lloret, F. 2012. Determinants of drought
- 1018 effects on crown condition and their relationship with depletion of carbon reserves in a
- 1019 Mediterranean holm oak forest. Tree Physiol. 32 (4), 478–489
- 1020 doi:10.1093/treephys/tps025.
- 1021 García de la Serrana, R., Vilagrosa, A., Alloza, J. A., 2015. Pine mortality in southeast
- 1022 Spain after an extreme dry and warm year: interactions among drought stress,
- 1023 carbohydrates and bark beetle attack. Trees 29, 1791-1804.
- 1024 Gea-Izquierdo, G., Martín-Benito, D., Cherubini, P., Cañellas, I., 2009. Climate-growth
- 1025 variability in *Quercus ilex* L. west Iberian open woodlands of different stand density.
- 1026 Ann. For. Sci. 66, 802. doi: 10.1051/forest/2009080
- 1027 Gentilesca, T., Camarero, J.J., Colangelo, M., Nolè, A., Ripullone, F., 2017. Drought-

- 1028 induced oak decline in the western Mediterranean region: an overview on current
- 1029 evidences, mechanisms and management options to improve forest resilience. iForest 10
- 1030 (5), 796-806. doi: 10.3832/ifor2317-010
- 1031 Girard, F., Vennetier, M., Ourmim, S., Caraglio, Y., Misson, L., 2011. Polycyclism, a
- 1032 fundamental tree growth process, decline with recent climate change: the example of
- 1033 *Pinus halepensis* Mill. in Mediterranean France. Trees 25, 311–322.
- 1034 Gracia, C.A., Sabaté, S., Martínez, J.M., Albeza, E., 1999. Functional responses to
- 1035 thinning, in: Rodà, F., Retana, J., Gracia, C.A., Bellot, J. (Eds.), Ecological Studies,
- 1036 137. Ecology of Mediterranean Evergreen Oak Forests. Springer, Berlin, pp. 329–338.
- 1037 Granier, A., 1987. Sap flow measurements in Douglas fir tree trunks by means of a new
- 1038 thermal method. Ann. For. Sci. 44(1), 1–14.
- 1039 Granier, A., Biron, P., Köstner, B., Gay, L.W., Najjar, G., 1996. Comparisons of xylem
- sap flow and water vapour flux at the stand level and derivation of canopy conductance
- 1041 for Scots pine. Theor. Appl. Climat. 53, 115–122.
- 1042 Granier, A., Biron, P., Lemoine, D., 2000. Water balance, transpiration and canopy
- 1043 conductance in two beech stands. Agric. For. Meteorol. 100, 291-308.
- 1044 Granier, A., Breda, N., 1996. Modelling canopy conductance and stand transpiration of
- an oak forest from sap flow measurements. Ann. For. Sci. 53(2-3), 537-546.
- 1046 Grant, G.E., Tague, C.L., Allen, C.D., 2013. Watering the forest for the trees: an
- 1047 emerging priority for managing water in forest landscapes. Front. Ecol. Environ. 11(6),
- 1048 314–321. doi:10.1890/120209
- 1049 Gratani, L., Meneghini, M., Pesoli, P., Crescente, M.F., 2003. Structural and functional

- 1050 plasticity of Quercus ilex seedlings of different provenances in Italy. Trees 17, 515-52.
- 1051 Grossiord, C., Sevanto, S., Borrego, I., Chan, A. M., Collins, A. D., Dickman, L. T.,
- 1052 Hudson, P. J., McBranch, N., Michaletz, S. T., Pockman, W. T., Ryan, M., Vilagrosa,
- 1053 A., McDowell, N. G., 2017. Tree water dynamics in a drying and warming world. Plant
- 1054 Cell Environ. 40, 1861–1873. doi: 10.1111/pce.12991.
- 1055 Hampe, A., Petit, R.J., 2005. Conserving biodiversity under climate change: the rear
- 1056 edge matters. Ecol. Lett. 8, 461–67.
- 1057 Hatton, T.J., Catchpole, E.A., Vertessy, R.A., 1990. Integration of sapflow velocity to
- 1058 estimate plant water use. Tree Physiol. 6, 201–209.
- 1059 Idso, S. B., 1981. A set of equations for full spectrum and 8- to 14-µm and 10.5- to
- 1060 12.5-μm thermal radiation from cloudless skies. Water Resour. Res. 17(2), 295–304.
- 1061 doi:10.1029/WR017i002p00295.
- 1062 Ilstedt, U., Bargués Tobella, A., Bazié, H.R., Bayala, J., Verbeeten, E., Nyberg, G.,
- 1063 Sanou, J., Benegas, L., Murdiyarso, D., Laudon, H., Sheil, D., Malmer, A., 2016.
- 1064 Intermediate tree cover can maximize groundwater recharge in the seasonally dry
- 1065 tropics. Sci. Rep. 6, 21930, 1-12. doi:10.1038/srep21930
- 1066 Infante, J., Domingo, F., Fernández-Alés, R., Joffre, R., Rambal, S., 2003. Quercus
- 1067 *ilex* transpiration as affected by a prolonged drought period. Biol. Plantarum, 46(1), 49-
- 1068 55. https://doi.org/10.1023/A:1022353915578
- 1069 Jarvis, P.G., McNaughton, K.G., 1986. Stomatal control of transpiration: Scaling up
- 1070 from leaf to region. Adv. Ecol. Res. 15, 1–49.
- 1071 Klein, T., Shpringer, I., Fikler, B., Elbaz, G., Cohen, S., Yakir, Y., 2013. Relationships

- 1072 between stomatal regulation, water-use, and water-use efficiency of two coexisting key
- 1073 Mediterranean tree species. For. Ecol. Manag. 302, 34–42.
- 1074 Leblanc, S.G., Chen, J. M., 2001. A practical scheme for correcting multiple scattering
- 1075 effects on optical LAI measurements. Agric. Forest Meterol. 110, 125–139.
- 1076 Lhomme, J. P., Montes, C., 2014. Generalized combination equations for canopy
- 1077 evaporation under dry and wet conditions. Hydrol. Earth Syst. Sci. 18, 1137-1149.
- 1078 https://doi.org/10.5194/hess-18-1137-2014, 2014.
- 1079 Lhomme, J. P., Montes, C., Jacob, F., Prévot, L., 2012. Evaporation from heterogeneous
- 1080 and sparse canopies: on the formulations related to multi-source representations.
- 1081 Boundary Layer Meteorol. 144, 243–262. https://doi.org/10.1007/s10546-012-9713-x
- 1082 Lhomme J.P., Rocheteau, A., Ourcival, J.M., Rambal, S., 2001. Nonsteady-state
- 1083 modelling of water transfer in a Mediterranean evergreen canopy. Agric. Forest
- 1084 Meterol. 108, 67–83.
- 1085 Limousin, J.M., Rambal, S., Ourcival, J.M., Joffre, R., 2008. Modelling rainfall
- 1086 interception in a mediterranean Quercus ilex ecosystem: Lesson from a throughfall
- 1087 exclusion experiment. J. Hydrol. 357, 57-66.
- 1088 Limousin, J.M., Rambal, S., Ourcival, J.M., Rocheteau, A., Joffre, R., Rodriguez-
- 1089 Cortinta, R., 2009. Long-term transpiration change with rainfall decline in a
- 1090 Mediterranean *Quercus ilex* forest. Glob. Change Biol. 15, 2163–2175.
- 1091 Lindner, M., Fitzgerald, J. B., Zimmermann, N., Reyer, C., Delzon, S., van der Maaten,
- 1092 E., Schelhaas, M. J., Lasch, P., Eggers, J., van der Maaten-Theunissen, M., Suckow, F.
- 1093 Psomas, A., Poulter, B., Hanewinkel, M., 2014. Climate change and European forests:

- 1094 what do we know, what are the uncertainties, and what are the implications for forest
- 1095 management? J. Environ. Manage. 146, 69-83.
- 1096 López, B.C., Sabaté, S., Gracia, C.A., 1998. Fine roots dynamics in a Mediterranean
- 1097 forest: effects of drought and stem density. Tree Physiol. 18, 601–606.
- 1098 López, B.C., Sabaté, S., Gracia, C.A., 2003. Thinning effects on carbon allocation to
- 1099 fine roots in a *Quercus ilex* forest. Tree Physiol. 23, 1217–1224.
- 1100 Martínez-Ferri, E., Balaguer, L., Valladares, F., Chico, J.M., Manrique, E., 2000.
- 1101 Energy dissipation in drought-avoiding and drought-tolerant tree species at midday
- 1102 during the Mediterranean summer. Tree Physiol. 20, 131–138.
- 1103 Martínez-Vilalta, J., Mangirón, M., Ogaya, R., Sauret, M., Serrano, L., Peñuelas, J.,
- 1104 Piñol, J., 2003. Sap flow of three co-occurring Mediterranean woody species under
- 1105 varying atmospheric and soil water conditions. Tree Physiol. 23, 747–758.
- 1106 Mayor, X., Rodà, F., 1993. Growth response of holm oak (Quercus ilex L) to
- 1107 commercial thinning in the Montseny mountains (NE Spain). Ann. For. Sci. 50, 247-
- 1108 256.
- 1109 Monteith, J.L., Unsworth, M., 1990. Principles of environmental physics. Butterworth-
- 1110 Heinemann, 2nd edition. Burlington-MA, 304 pages.
- 1111 Molina, A., del Campo, A.D., 2012. The effects of experimental thinning on throughfall
- and stemflow: a contribution towards hydrology-oriented silviculture in Aleppopine
- 1113 plantations. For. Ecol. Manage. 269, 206–213.
- 1114 Moreno, G., Cubera, E., 2008. Impact of stand density on water status and leaf gas
- 1115 exchange in Quercus ilex. For. Ecol. Manage. 254, 74–84.

- 1116 doi:10.1016/j.foreco.2007.07.029
- 1117 Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C.,
- 1118 Papuga, S.A., Blanken, P.D., Noormets, A., Sulman, B.N., Scott, R.L., Wang, L.,
- 1119 Phillips, R.P., 2016. The increasing importance of atmospheric demand for ecosystem
- 1120 water and carbon fluxes. Nat. Clim. Change 6(11), 1023-1027. doi:
- 1121 10.1038/nclimate3114
- 1122 Olivar, J., Bogino, S., Rathgeber, C., Bonnesoeur, V., Bravo, F., 2014. Thinning has a
- 1123 positive effect on growth dynamics and growth–climate relationships in Aleppo pine
- 1124 (*Pinus halepensis*) trees of different crown classes. Ann. For. Sci. 71, 395–404. doi:
- 1125 10.1007/s13595-013-0348-y
- 1126 Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer,
- K.V.R., 1999. Intra- and interspecific responses of canopy stomatal conductance to
 vapour pressure deficit. Plant Cell Environ. 22, 1515–1526.
- 1129 Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J.,
- 1130 Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S.,
- 1131 Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A.,
- 1132 Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G.,
- 1133 Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-
- 1134 Sala, D., Sabaté, S., Gracia, C., Terradas, J., 2017. Assessment of the impacts of climate
- 1135 change on Mediterranean terrestrial ecosystems based on data from field experiments
- and long-term monitored field gradients in Catalonia. Environ. Exp. Bot.,
- 1137 https://doi.org/10.1016/j.envexpbot.2017.05.012
- 1138 Pérez- Cueva, A.J., 1994. Atlas climático de la Comunidad Valenciana. COPUT,

- 1139 Generalitat Valenciana.
- 1140 Perry, T. D., Jones, J. A., 2016. Summer streamflow deficits from regenerating
- 1141 Douglas-fir forest in the Pacific Northwest, USA. Ecohydrology,
- 1142 https://doi.org/10.1002/eco.1790
- 1143 Prober, S.M., Byrne, M., McLean, E.H., Steane, D.A., Potts, B.M., Vaillancourt, R.E.,
- 1144 Stock, W.D., 2015. Climate-adjusted provenancing: a strategy for climate-resilient
- ecological restoration. Front. Ecol. Evol. 3, 65, 1-8. doi: 10.3389/fevo.2015.00065
- 1146 RStudio Team, 2015. RStudio: Integrated Development for R. RStudio, Inc., Boston,
- 1147 MA URL http://www.rstudio.com/.
- 1148 Raz Yaseef, N., Rotenberg, E., Yakir, D., 2010a. Effects of spatial variations in soil
- 1149 evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest.
- 1150 Agric. For. Meteorol. 150, 454–462.
- 1151 Raz Yaseef, N., Yakir, D., Rotenberg, E., Schiller, G., Cohen, S., 2010b. Ecohydrology
- 1152 of a semi-arid forest: partitioning among water balance components and its implications
- 1153 for predicted precipitation changes. Ecohydrology 3, 143–154.
- 1154 Reyes-Acosta, L. J., Lubczynski, M. W., 2013. Mapping dry-season tree transpiration of
- an oak woodland at the catchment scale, using object-attributes derived from satellite
- 1156 imagery and sap flow measurements. Agric. For. Meteorol. 174-175, 184–201.
- 1157 Rubio, E., Caselles, V., Badenas, C., 1997. Emissivity measurements of several soils
- and vegetation types in the 8-14 mm waveband: analysis of two field methods. Remote
- 1159 Sens. Environ. 59, 490–521.
- 1160 Ruiz de la Torre J., 2006. Flora Mayor. Organismo Autónomo Parques Nacionales.

- 1161 Dirección General para la Biodiversidad, Madrid. pp. 1293-1295.
- 1162 Seidl, R., Spies, T. A., Peterson, D. L., Stephens, S. L., Hicke, J. A., 2016. Searching
- 1163 for resilience: addressing the impacts of changing disturbance regimes on forest
- 1164 ecosystem services. J. Appl. Ecol. 53, 120–129.
- 1165 Shaw, R. H., Pereira, A. R., 1982. Aerodynamic roughness of a plant canopy: a
- 1166 numerical experiment. Agric. Meteorol. 26, 51-65.
- 1167 Shuttleworth, W.J., Wallace, J.S., 1985. Evaporation from sparse crops-an energy
- 1168 combination theory. Q J R Meteorol. Soc. 111, 839–855.
- 1169 Stahl, U., Reu, B., Wirth, C., 2014. Predicting species' range limits from functional
- traits for the tree flora of North America. PNAS 111 (38), 13739-13744.
- 1171 doi:10.1073/pnas.1300673111
- 1172 Terradas, J., 1999. Holm oak and Holm oak forests: an introduction. In: Rodá, F.,
- 1173 Retana, J., Gracia, C.A., Bellot, J. (Eds.), Ecological Studies, 137. Ecology of
- 1174 Mediterranean Evergreen Oak Forests. Springer, Berlin, pp. 1–14.
- 1175 Terradas, J., Savè, R., 1992. The influence of summer and winter water relationships on
- 1176 the distribution of Quercus ilex L. Vegetatio, 99(100), 137-145.
- 1177 Thornthwaite, C. W., 1948. An approach toward a rational classification of climate.
- 1178 Geographical Review, 38(1), 55–94.
- 1179 Trifilò, P., Nardini, A., Lo Gullo, M.A., Barbera, P.M., Savi, T., Raimondo F., 2015.
- 1180 Diurnal changes in embolism rate in nine dry forest trees: relationships with species-
- 1181 specific xylem vulnerability, hydraulic strategy and wood traits. Tree Physiol. 35, 694–
- 1182 705. doi:10.1093/treephys/tpv049

- 1183 Ungar, E.D., Rotenberg, E., Raz-Yaseef, N., Cohen, S., Yakir, D., Schiller, G., 2013.
- 1184 Transpiration and annual water balance of Aleppo pine in a semiarid region:
- 1185 implications for forest management. For. Ecol. Manag. 298, 39–51.
- 1186 Valero-Galván, J., Valledor, L., Navarro-Cerrillo, R.M., Gil-Pelegrín, E., Jorrín-Novo,
- 1187 J.V., 2011. Studies of variability in Holm oak (*Quercus ilex* subsp. ballota [Desf.]
- 1188 Samp.) through acorn protein profile analysis. J. Proteomics 74(8), 1244-55. doi:
- 1189 10.1016/j.jprot.2011.05.003.
- 1190 Wang, W., 2014. Analytically Modelling Mean Wind and Stress Profiles in Canopies
- 1191 Boundary-Layer Meteorol 151, 239–256 doi: 10.1007/s10546-013-9899-6
- 1192 Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., 2004.
- 1193 The worldwide leaf economics spectrum. Nature 428, 821–827.
- 1194 doi:10.1038/nature02403
- 1195 Zhang, B., Kang, S., Li, F., Zhang, L., 2008. Comparison of three evapotranspiration
- 1196 models to Bowen ratio-energy balance method for a vineyard in an arid desert region of
- 1197 northwest China. Agricultural and Forest Meteorology 148, 1629 1640. doi:
- 1198 10.1016/j.agrformet.2008.05.016
- 1199

1200 TABLE CAPTIONS

- 1201 **Table 1.** Biometric and inventory variables of holm oaks in the control and treated
- 1202 plots. C: control; T: Treated; BA: basal area; D_B: basal diameter; D_{BH}: diameter at
- 1203 breast height; De: density. See text for intervals of diameter classes. The frequency of
- 1204 diameter classes between both inventories is assumed to be constant even though there

was a slight variation between the dates for the two. Only trees/stems higher than 1.5 m
were inventoried; lower heights were considered as shrubs. All tree groups integrate
interspersed trees of *Pinus halepensis*, *Juniperus sp.* and *Quercus faginea*.

1208 **Table 2.** Mean annual values of the growth variables after the clearing treatment for

both the control and the cleared plots. Bold font indicates significant ($p \le 0.05$)

1210 differences between control and treatment. The column on the right gives the values of

the same variables for the epicormic shoots and stump sprouts observed in the thinnedplot.

1213 **Table 3.** Significant correlations ($p \le 0.01$, $p \le 0.05$ in italic font) between tree

1214 transpiration (sap flow velocity, vs, cm h^{-1} ; and sap flow, Sf, L tree⁻¹ h^{-1}) and the

1215 explanatory variables related to date, atmosphere, soil moisture, tree structure and

1216 cultural treatment at different temporal scales (hourly, daily and seasonal) either for the

1217 entire study period or in the growing season (Mar-Oct) within daylight hours (11 am - 4

1218 pm, only at the hourly time step); blank cells: non-significant correlation. Shaded cells:

1219 not applicable. Year: 2012-2016, MJD: Modified Julian Date, D: vapor pressure deficit

1220 (kPa), U: wind speed (m s⁻¹), Rs,a: Solar radiation (W m⁻²), T: Temperature (°C), θ_{rel} :

1221 relative soil moisture content at 15 cm (%), Treatment: Clearing treatment (C,T), DC:

1222 diameter class (1-2, 3-4), DBH: diameter breast height (cm), Sa: tree sapwood area

1223 (cm²), Cpa: tree crown projected area (m²). N varied between 50 and 315,000,

1224 depending on the scale.

1225 **Table 4.** Importance of the independent variables (sorted by date, atmosphere, soil

1226 moisture, tree structure and culture treatment) in the variance explained by the MLR

- 1227 models fitted for tree transpiration (vs, cm h-1 and Sf, L tree-1 h-1). Importance, a
- 1228 relative term from 0 to 100, was computed as the contribution of each specific variable
- 1229 to the sum of squares in the fitted models (totals for each sorted class are given). In all

1230 cases, data were filtered by growing season (Mar-Oct) and by daylight hours (11 am - 4

1231 pm) in the hourly step analyses. Full models are available in Supplementary Material.

1232 **Table 5.** Partitioning of annual dry-canopy evapotranspiration, ET (mm and % of Pg) in

1233 the control plot (C) and the cleared plot (T). Pg: gross rainfall; Et: stand transpiration;

1234 E_s: evaporation from soil, E_r: residual term including transpiration from grass/shrub.

1235

1236 FIGURE CAPTIONS

1237 **Figure 1.** Progression of environmental and climatic variables during the study period:

1238 cumulative precipitation (annual P, cm, gray staked area), daily precipitation (P, mm,

bars), daily mean solar radiation (Rs,a, W m⁻²), daily mean air temperature (T, °C), daily
mean vapor pressure deficit (D, hPa). Daily mean relative soil water content at 15 cm in

1241 both plots (treatments) is also plotted.

1242 **Figure 2.** Mean annual values of the growth variables in both the control (C) and the

1243 thinned (T) plots in the suppressed-intermediate trees (diameter classes 1 and 2) and the

1244 dominant-codominant trees (diameter classes 3 and 4). Asterisk indicates significant

1245 $(p \le 0.05)$ differences between control and treatment regardless of the diameter class.

1246 Figure 3. Seasonal values of LAI in both the control (C) and the cleared (T) plots

1247 measured at 0.5 m above ground. From mid-2015 on, resprouting became more

1248 important in the cleared plot and prevented the summer drop in 2016, surpassing the

1249 value of the control plot by the end of the study. Linear trend lines are given in each

1250 series. Dashed line represents the series of the MODIS LAI product averaged by month.

1251 Figure 4. Box and whiskers plots for sap flow velocity and sap flow in control (C) and

- 1252 cleared (T) trees in both the suppressed-intermediate trees (diameter classes 1 and 2)
- and the dominant-codominant trees (diameter classes 3 and 4). Plots are given for either
- 1254 the entire study period (left) or the growing season period (right, March to October,

both included). Black dots and figures represent the mean value. Whiskers are for the5th and 95th percentiles.

Figure 5. Influence of vapor pressure deficit (D) on simultaneous canopy conductance (G_s) on an hourly basis after applying boundary line analysis in the control plot (black circles and lines) and the thinned plot (gray triangles and lines) under different relative soil water conditions (θ_{rel}). Both the absolute and the ln values of D (with constant slope over the entire range of D) are shown.

1262 Figure 6. Relationship between m (G_s sensitivity to D) and G_{sref} under different relative

soil moisture conditions (θ_{rel}) in the control plot (black circles) and the thinned plot

1264 (gray triangles). The two bottom plots represent the individual variation of either m or

1265 G_{sref} for the soil moisture classes defined. The gray line represents the theoretical

1266 proportionality of 0.6 described.

1267 Figure 7. Mean daily values of the different components of dry-canopy

1268 Evapotranspiration in both plots (C and T) sorted by year. Es: soil evaporation; Et: oak

1269 transpiration; Er: residual evaporation. Values are shown for both the entire year and the

1270 growing season (March to October, both included). Data in 2012 were from October 1st

1271 onwards.

1272 **Figure 8.** Progression of the different components of evapotranspiration (ET) in both

1273 plots (control: C and treatment: T) during the study period: Es: soil evaporation; Et: oak

1274 transpiration. In soil evaporation and canopy transpiration the relative soil water content

1275 (0-1) at 5 and 30 cm is provided for C and T plots, respectively.

1276 Figure 9. Seasonal progression of the daily ratio ln(Treated/Control) of ET and its three

1277 components (below) and the concomitant values of annual cumulative Pg (shaded area)

1278 and total ET plus E_i (dry plus wet canopy) (above) (see text for details). Baseline of the

1279 logarithmic ratio before treatment is assumed to be zero. Daily precipitation (black bars)

- 1280 is also reproduced here. In 2012, ET in both C and T was arbitrarily assigned to begin at
- 1281 115 mm. The E_r line represents 9 days running average.

Table 1.

Plot	Date	D _B	D _{BH}	De	BA	Dia	meter	class (DC)
		cm	cm	trees ha ⁻¹	$m^2 ha^{-1}$	1	2	3	4
				(oaks/all trees)					
						Bas	al area	$a (m^2 h)$	na⁻¹)
C,T	2012- Before	10.7	7.7		5.60	0.27	0.55	1.67	3.10
	Treatment			1059/1133					
Т	2012- After Treatment	16.0	12.3	289/317	2.82	0.07	0.24	0.50	2.01
С	2016	11.6	8.4	1059/1133	8.31	1.03	1.35	2.62	3.66
Т	2016	17.1	13.3	289/317	5.14	0.06	0.50	0.91	3.67
						Fı	requen	cy (0-	1)
С	2012-16					0.531	0.182	0.175	0.112
Т	2012-16					0.154	0.269	0.231	0.346

Table 2.

	Control (C)	Treated (T)	F, Chi	Treatment: epicormic and stump shoots
Shoot length (cm)	4.3±2.3	4.4±2.5	(ns)	13.4±4.0
Shoot diameter (mm)	1.69±0.44	1.81±0.71	(ns)	2.74±0.37
Shoot leaves (n°)	6.4±3.8	7.3±3.7	(*)	18.8±4
Shoot leaf area (cm ²)	32.3±20.2	28.8±16.9	(*)	79.5±23.1
Shoot SLA $(cm^2 mg^{-1})$	0.040±.002	0.042±.001	(*)	0.045±.009
Shoots per branch (n°)	34.9±13.3	49.4±30.5	(*)	-
Tree-based LAI $(m^2 m^{-2})$	0.81±0.31	0.93±0.22	2.36 (ns)	-

		Date		Atmo	sphere	1			θ_{rel}	Treat ment	Tree s	size		
		Year	MJD	Hour	D	U	R _{s,a}	Т			DC	D _{BH}	Sa	Сра
		I			H	Iourly	time s	tep						
period	Vs	0.08	0.07	0.09	0.26	0.04	0.19	0.28	-0.17	0.17	0.08	0.05	0.06	0.06
period	S_{f}	0.10	0.10	0.10	0.21	0.05	0.16	0.23	-0.12	0.19	0.22	0.38	0.44	0.44
Growing	Vs	0.39	0.38	0.09	0.18	0.18	0.07	0.16	-0.08	0.25	0.18	0.20	0.20	0.17
season	\mathbf{S}_{f}	0.24	0.23	0.06	0.12	0.11	0.05	0.11	-0.07	0.24	0.28	0.57	0.61	0.60
	I		I]	Daily t	ime ste	ep			I	I	I	
Entire period	Vs	0.13	0.12		0.43	-0.16	0.48	0.40	-0.29	0.29	0.08	0.15	0.16	0.13
period	\mathbf{S}_{f}	0.12	0.12		0.27	-0.08	0.27	0.25	-0.18	0.28	0.33	0.66	0.71	0.69
Growing season	Vs	0.10	0.08		0.30	-0.07	0.34	0.23	-0.16	0.35	0.09	0.18	0.18	0.15
season	\mathbf{S}_{f}	0.10	0.09		0.18	-0.02	0.18	0.15	-0.11	0.31	0.36	0.73	0.79	0.77
			Veg	etative	period	d time	step (N	lov-Fe	eb, Ma	r-Oct)				
Entire period	Vs	0.29			0.28		0.26	0.25	-0.23					
period	\mathbf{S}_{f}				0.34	-0.21	0.32	0.31	-0.27	0.29	0.35	0.69	0.74	0.72
Growing	Vs	0.31			0.47		0.39	0.49		0.43				
season	\mathbf{S}_{f}									0.33	0.39	0.78	0.84	0.82

Table 3.

Table	e 4.					
			Impo	ortance (0-	.100)	
	Adj.r ²	Date	Atmosphere	θ_{rel}	Treatment	Tree structure
			Hourly time s	tep		
Vs	0.283 ^{\$,#}	2.0	12.0	10.0	27.0	49.0
S_{f}	0.473 ^{\$,#}	2.0	11.0	5.0	29.0	53.0
			Daily time st	ep		
Vs	0.343#	9.9	9.6	0.8	25.6	53.9
\mathbf{S}_{f}	0.711#	10.4	13.9	0.7	26.8	48.1
		Gro	owing season (N	Mar-Oct)	·	·
Vs	0.392	-	57.0	-	43.0	-

S_{f}	0.774	-	9.0	-	2.0	89.0

1291 \$ showed autocorrelation; # showed multi-collinearity.

Table 5.

Table 5.						-	-	-					
Treatm	ET	Es	Et	Er	ET	Es	Et	Er					
ent	mm	mm	mm	mm	% Pg	% Pg	% Pg	% Pg					
	1			-Dec) (Pg		<u> </u>							
			(• – • – • – • – • ,	/							
С	19	3.5	11.5	4.0	7%	1%	4%	2%					
Т	18	7.0	8.0	3.1	7%	3%	3%	1%					
			2010										
			2013	8 (Pg: 405	mm)								
C	C 138 45 77 16 34% 11% 19% 4%												
C	130	43	//	10	5470	11/0	19/0	4/0					
Т	154	81	58	15	38%	20%	14%	4%					
1	101	01	50	10	5070	2070	11/0	170					
			2014	(Pg: 354	mm)								
	-			-									
C	C 171 51 108 12 48% 14% 31% 3%												
Т	208	89	101	18	59%	25%	29%	5%					
			2016	(D 200									
			2013	5 (Pg: 320	mm)								
C	201	49	105	46	63%	15%	33%	14%					
C	201	т <i>)</i>	105	40	0570	1370	5570	14/0					
Т	251	86	121	44	78%	27%	38%	14%					
						_ , , •		/ -					
			2016	6 (Pg: 499	mm)								
	1					Г	Г	T					
C	156	43	87	25	31%	9%	17%	5%					
	170		0.4	10	2.50/	120/	100/	40 /					
Т	176	64	94	18	35%	13%	19%	4%					
	I	<u> </u> ר		2016 (D~	1570		<u> </u>	<u> </u>					
		I	012013	-2016 (Pg	. 13/8 mn	1)							
C	665	188	378	99	42%	12%	24%	6%					
C	005	100	570	,,,	T2/0	12/0	27/0	0/0					
Т	789	320	374	94	50%	20%	24%	6%					
								-					

SUPPLEMENTAL MATERIAL

Table S1. Hourly MLR full models for sap flow

S1.a) Dependent Variable: Sap flow velocity (v_s , cm h^{-1})

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.283	.283	2.624867001030	.383	1336.680***

		lardized icients	Standardized Coefficients	t	Sig.	Collinearit	y Statistics	Importance
	В	Std. Error	Beta			Tolerance	VIF	
(Constant)	-1989.132	23.486		-84.695	.000			
year	.983	.012	.381	84.392	.000	.798	1.253	2
Treat.	3.613	.098	.583	36.960	.000	.065	15.273	27
D	.000	.000	.096	9.392	.000	.155	6.460	1
DC	.072	.003	.239	25.703	.000	.189	5.293	13
$\theta_{rel 15}$	2.248	.091	.134	24.582	.000	.550	1.817	10
Sa	007	.001	364	-7.318	.000	.007	152.019	1
U_av	.469	.033	.062	14.009	.000	.825	1.212	5
Т	.036	.004	.092	8.563	.000	.141	7.114	2
BA	088	.003	-7.299	-25.177	.000	.000	5164.556	13
Сра	1.065	.042	5.877	25.082	.000	.000	3371.358	13
D _{BH}	.703	.032	1.774	22.181	.000	.003	392.938	10
R _{s,a}	.001	.000	.051	9.780	.000	.598	1.673	2
Hour	.088	.010	.048	8.985	.000	.562	1.780	2

S1.b) Dependent Variable: Sap flow (Sf, l tree⁻¹ hour⁻¹)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.473	.473	.889392744849	.318	3553.263***

		lardized icients	Standardized Coefficients	t	Sig.	Collinearit	y Statistics	Importance
	В	Std. Error	Beta			Tolerance	VIF	
(Constant)	-470.179	7.164		-65.635	.000			
Sa	.004	.000	.513	14.444	.000	.008	123.142	6.5
year	.233	.004	.230	65.412	.000	.828	1.207	1.8
D_{BH}	.052	.009	.326	5.738	.000	.003	314.110	1
D	5.469E-5	.000	.050	6.153	.000	.154	6.479	0.4
Treat.	.746	.025	.304	30.384	.000	.102	9.799	28.7
θ _{rel 15}	.390	.029	.059	13.458	.000	.538	1.858	5.1
DC	.020	.001	.178	25.587	.000	.212	4.717	20.4
Сра	.246	.011	3.348	21.503	.000	.000	2365.037	14.4
BA	018	.001	-3.722	-18.665	.000	.000	3879.167	11
U_av	.119	.010	.042	11.674	.000	.808	1.238	5
Т	.012	.001	.078	9.048	.000	.137	7.281	2.6
Hour	.022	.003	.031	7.387	.000	.570	1.755	1.7
R _{s.a}	.000	.000	.028	6.660	.000	.597	1.676	1.3

Table S2. Daily MLR full models for sap flow

S2.a) Dependent Variable: Sap flow velocity (v_s , cm h^{-1})

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.344	.343	1.3990840	1.687	344.315***

	0	dardized icients	Standardized Coefficients	t	Sig.	Collinearity	V Statistics	Importance
	В	Std. Error	Beta			Tolerance	VIF	
(Constant)	-3172.947	199.397		-15.913	.000			
Treat.	3.582	.116	1.037	30.802	.000	.074	13.604	25.6
R _{s,a}	.004	.000	.184	14.905	.000	.549	1.822	5.5
D	.000	.000	.150	11.046	.000	.451	2.218	0.8
D_{BH}	.940	.038	4.243	24.498	.000	.003	359.815	16.2
U_av	879	.070	126	-12.473	.000	.819	1.221	3.3
year	1.696	.107	1.169	15.796	.000	.015	65.712	5.3
MJD	004	.000	-1.113	-14.716	.000	.015	68.559	4.6
$\theta_{rel 15}$	718	.126	077	-5.696	.000	.453	2.209	0.8
BA	106	.004	-15.782	-25.293	.000	.000	4670.135	17.3
Сра	1.217	.051	11.979	23.845	.000	.000	3027.480	15.4
DC	.045	.003	.273	12.903	.000	.187	5.352	4.5
Sa	005	.001	498	-4.488	.000	.007	147.481	0.5

S2.b) Dependent Variable: Sap flow (Sf, l tree⁻¹ hour⁻¹)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.712	.711	.3575846	1.664	1819.292***

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearit	y Statistics	Importance
	В	Std. Error	Beta			Tolerance	VIF	
(Constant)	-534.540	47.559		-11.239	.000			
Sa	.003	.000	.748	11.813	.000	.008	123.081	9.0
D	.000	.000	.106	12.415	.000	.449	2.227	2.9
D _{BH}	.036	.009	.413	4.079	.000	.003	314.032	1.1
Treat.	.485	.024	.364	20.371	.000	.102	9.803	26.7
R _{s,a}	.001	.000	.095	12.361	.000	.555	1.800	8.7
year	.283	.026	.514	11.065	.000	.015	66.075	6.2
DC	.012	.001	.194	15.642	.000	.212	4.713	15.8
Сра	.154	.011	3.853	13.879	.000	.000	2363.815	12.4
BA	012	.001	-4.391	-12.352	.000	.000	3877.536	9.8
MJD	001	.000	431	-9.120	.000	.015	68.555	4.2
U_av	125	.017	048	-7.559	.000	.812	1.231	2.3
$\theta_{rel 15}$	108	.030	030	-3.552	.000	.453	2.206	0.7

Table S3. Seasonal MLR full models for sap flow

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.418	.392	1.046155	2.293	16.131***

S3.a) Dependent Vari	able: Sap flow	v velocity (v _s ,	$\operatorname{cm} h^{-1}$)

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics		Importance
	В	Std. Error	Beta			Tolerance	VIF	
(Constant)	-4.919	1.528		-3.220	.002			
Т	.426	.100	.486	4.271	.000	1.000	1.000	57
Treat.	1.131	.302	.426	3.744	.001	1.000	1.000	43

S3.b) Dependent Variable: Sap flow (Sf, l tree⁻¹ hour⁻¹)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.788	.774	.266956	1.910	56.877***

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinea Statisti	2	Importance
	В	Std. Error	Beta			Tolerance	VIF	
(Constant)	-1.545	.390		-3.962	.000			
Treat.	.148	.078	.133	1.895	.064	.941	1.063	2
Т	.093	.025	.248	3.650	.001	1.000	1.000	9
Sa	.003	.000	.810	11.566	.000	.941	1.063	89

Figure S1. Mean annual values of sap flow variables (Vs, Sf) and vapour pressure deficit (D, mean of daily maximums) in both the control (C) and the cleared (T) plots in the supressed-intermediate trees (diameter classes 1 and 2) and the dominant-codominant trees (diameter classes 3 and 4).

Figure S2. Seasonal mean values of the decoupling coefficient Ω in both the control (C) and the cleared (T) plots.

T (°C) ; D (hPa)

Relative soil water content (proportion)

1

0

30

20

10

1.0

Rs,a (W m⁻²)

Pg daily (mm) ; Cumulat. Pg annual (cm)

Relative Soil moisture class

Figure 7a Click here to download high resolution image Jan-Dec

1- Veb mm

Figure 7b Click here to download high resolution image

Pg (mm)