Document downloaded from:

http://hdl.handle.net/10251/117902

This paper must be cited as:
Campo García, ADD.; González Sanchís, MDC.; Garcia-Prats, A.; Ceacero Ruiz, CJ.; Lull, C. (2019). The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology. 264:266282. https://doi.org/10.1016/j.agrformet.2018.10.016

The final publication is available at
https://doi.org/10.1016/j.agrformet.2018.10.016

Copyright
Elsevier

Additional Information

9 Olavide, E-41013, Sevilla (Spain)
10 in a water-limited low-biomass oak coppice Ceacero ${ }^{\mathrm{b}}$, Cristina Lull ${ }^{\mathrm{a}}$

7 Camí de Vera s/n, E-46022 València (Spain)

* Corresponding Author: ancamga@upv.es

The impact of adaptive forest management on water fluxes and growth dynamics

Antonio D. del Campo ${ }^{\mathrm{a}^{*}}$, María González-Sanchis ${ }^{\mathrm{a}}$, Alberto García-Prats ${ }^{\mathrm{a}}$, Carlos J.
a. Research Group in Forest Science and Technology (Re-ForeST), Research Institute of

Water and Environmental Engineering (IIAMA), Universitat Politècnica de València,

8 b. Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de

Abstract

Marginal semi-arid forests in areas currently affected by climate change are a challenge to forest management, which has to focus on key functional traits that can effectively contribute to resistance under extreme drought. We studied the effects of thinning in a marginal forest by quantifying functional responses relating to growth, carbon and water fluxes. Two experimental plots were established, one thinned in 2012 and the other one left as a control. The environmental conditions varied substantially during the 4-year study period, although dry years predominated. There were signs of dieback in the control with a decreasing inter-annual trend in LAI, as opposed to the treated plots, where LAI by the end of the study almost reached pre-thinning levels. Sap flow and transpiration were greatly enhanced by the treatment, with thinned trees transpiring 22.4 1 tree ${ }^{-1} \mathrm{day}^{-1}$ in the growing season, about twice the control figures. The seasonal patterns of transpiration and soil moisture were uncoupled, indicating a contribution of deep groundwater to the former flux. In the control, limitations to water and carbon dynamics (canopy conductance) occurred at soil moisture values below 16%, whereas in the thinned trees these limitations appeared when soil moisture dropped below 10%. Overall, oaks' transpiration was enhanced with thinning to the point that stand-water use surpassed that of the control by the second half of the study period, averaging 24% of gross rainfall in both plots. Soil evaporation increased from 12 to 20% of gross rainfall after treatment in the overall period. The treatment had a profound watering effect in this marginal forest, led by fewer trees using the same amount of water as those in the untreated overstocked plot. This research may provide guidelines for ecohydrology-oriented silviculture in stands experiencing tree encroachment and transformation into shrublands that are more prone to global change-induced disturbances.

36 Key words: transpiration, sap-flow, canopy conductance, Shuttleworth-Wallace model,
37 holm oak, sparse forest.
$39 \quad \mathrm{D}_{\mathrm{B}} \quad$ Basal diameter (cm)
$40 \quad \mathrm{D}_{\mathrm{BH}} \quad$ Diameter at breast height (cm)
41 BA Basal area (m2 ha-1)
42 De Density (trees ha-1)
43 FC Forest cover (\%)
44 Cpa Crown projected area $\left(\mathrm{m}^{2}\right)$
45 LAI Leaf area index $\left(\mathrm{m}^{2} \mathrm{~m}^{-2}\right)$
46 SLA Specific leaf area $\left(\mathrm{cm}^{2} \mathrm{~g}^{-1}\right)$
$47 \quad \mathrm{Pg} \quad$ Precipitation or gross rainfall (mm)
$48 \quad \mathrm{~T} \quad$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$
49 RH Relative humidity (\%)
$50 \quad \mathrm{U} \quad$ Wind speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
51 D Vapour pressure deficit (kPa)
$52 \quad \mathrm{R}_{\mathrm{s}, \mathrm{a}} \quad$ Solar radiation ($\mathrm{W} \mathrm{m}^{-2}$)
$53 \mathrm{R}_{\mathrm{n}, \mathrm{t}} \quad$ Net radiation ($\mathrm{W} \mathrm{m}^{-2}$)
$54 \quad \mathrm{R}_{\mathrm{n}, \mathrm{f}} \quad$ Net radiation over the vegetated area (foliage) ($\mathrm{W} \mathrm{m}^{-2}$)
$55 \mathrm{R}_{\mathrm{n}, \mathrm{s}} \quad$ Net radiation over the bare soil (substrate) $\left(\mathrm{W} \mathrm{m}^{-2}\right)$
$56 \quad f \quad$ Fractional vegetation cover (proportion)
$57 \quad \alpha \quad$ Surface albedo (proportion)
$58 \quad \mathrm{R}_{\mathrm{l}, \mathrm{a} \mathrm{d}} \quad$ Downwards long-wave atmospheric radiation ($\mathrm{W} \mathrm{m}^{-2}$)
$59 \quad \mathrm{R}_{\mathrm{l}, \mathrm{f}, \mathrm{u}} \quad$ Long-wave upwelling radiation from vegetation $\left(\mathrm{W} \mathrm{m}^{-2}\right)$
$60 \quad \mathrm{R}_{\mathrm{l}, \mathrm{s}, \mathrm{u}}$ Long-wave upwelling radiation from bare soil ($\mathrm{W} \mathrm{m}^{-2}$)
$61 \quad \sigma \quad$ Stefan-Boltzmann constant $\left(5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right)$
$62 \varepsilon_{a} \quad$ Air emissivity
$63 \quad \varepsilon_{f} \quad$ Vegetation emissivity
$64 \quad \varepsilon_{s} \quad$ Bare soil emissivity
$65 \quad \mathrm{~T}_{\mathrm{a}} \quad$ Air temperature (K)
$66 \quad \mathrm{~T}_{\mathrm{f}} \quad$ Vegetation temperature (K)
$67 \quad \mathrm{~T}_{\mathrm{s}} \quad$ Bare soil temperature (K)
$68 \quad \theta \quad$ Soil water content $(\mathrm{SWC})\left(\mathrm{m}^{3} \mathrm{~m}^{-3}\right)$
$69 \theta_{\text {rel }}$ Relative soil water content (or relative extractable water, REW) $\left(\mathrm{m}^{3} \mathrm{~m}^{-3}\right)$
$70 \quad \theta_{\mathrm{mx}} \quad$ Saturated (maximum) soil water content $\left(\mathrm{m}^{3} \mathrm{~m}^{-3}\right)$
$71 \quad \theta_{\mathrm{mn}} \quad$ Minimum soil water content $\left(\mathrm{m}^{3} \mathrm{~m}^{-3}\right)$
$72 \quad \theta_{\mathrm{fc}} \quad$ Field capacity $\left(\mathrm{m}^{3} \mathrm{~m}^{-3}\right)$
$73 \quad \mathrm{v}_{\mathrm{s}} \quad$ Sap flow velocity $\left(\mathrm{cm} \mathrm{h}^{-1}\right)$
$74 \quad \mathrm{Sa} \quad$ Sapwood area $\left(\mathrm{cm}^{2}\right)$
$75 \quad \mathrm{~S}_{\mathrm{f}} \quad$ Sap flow (1 tree ${ }^{-1}$ hour $^{-1}$)
76 ET Evapotranspiration (mm)
$77 \quad \mathrm{E}_{\mathrm{t}} \quad$ Stand transpiration (mm)
$78 \quad \mathrm{E}_{\mathrm{s}} \quad$ Evaporation from soil (mm)
$79 \quad \mathrm{E}_{\mathrm{r}} \quad$ Residual evapotranspiration (mm)
$80 \quad \mathrm{E}_{\mathrm{i}} \quad$ Interception or wet canopy evaporation (mm)
$81 \quad \mathrm{G}_{\mathrm{s}} \quad$ Canopy conductance ($\mathrm{mm} \mathrm{s}-1$)
82Ω Decoupling coefficient
$83 \gamma \quad$ Psychrometric constant $\left(\mathrm{kPa} \mathrm{K}^{-1}\right)$

84	Δ	Slope of the saturated vapor pressure curve ($\mathrm{kPa} \mathrm{K}^{-1}$)
85	ε	Ratio of Δ to γ
86	g_{a}	Aerodynamic conductance ($\mathrm{m} \mathrm{s}^{-1}$)
87	z_{h}	Mean canopy height (m)
88	Z_{r}	Reference height (m)
89	z_{0}	Vegetation surface roughness length (m)
90	d	Zero-plane displacement of vegetated surfaces (m)
91	k	von Kármán's constant (dimensionless)
92	m	Slope or stomatal sensitivity to D
93	$\mathrm{G}_{\text {sref }}$	Reference canopy conductance at $\mathrm{D}=1 \mathrm{kPa}$,
94	$\lambda \mathrm{ET}$	Latent heat flux from the complete canopy ($\mathrm{W} \mathrm{m}^{-2}$)
95	$\lambda \mathrm{E}_{\mathrm{t}}$	Latent heat flux from foliage ($\mathrm{W} \mathrm{m}^{-2}$)
96	$\lambda \mathrm{E}_{\text {s }}$	Latent heat flux from substrate ($\mathrm{W} \mathrm{m}^{-2}$)
97	A_{f}	Available energy at the foliage ($\mathrm{W} \mathrm{m}^{-2}$)
98	$\mathrm{A}_{\text {s }}$	Available energy at the substrate ($\mathrm{W} \mathrm{m}^{-2}$)
99	c_{p}	Specific heat of air at constant pressure ($\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$)
100	D_{m}	Vapor pressure deficit at canopy source height (kPa)
101	ρ	Air density ($\mathrm{kg} \mathrm{m}^{-3}$)
102	n	Parameter with value of 2 for hypostomatous leaves
103	$\mathrm{r}_{\text {a }}$	Aerodynamic resistance above the canopy ($\mathrm{s} \mathrm{m}^{-1}$)
104	$\mathrm{r}_{\mathrm{a}, \mathrm{f}, \mathrm{h}}$	Bulk boundary-layer resistance of the foliage for sensible heat ($\mathrm{s} \mathrm{m}^{-1}$)
105	$\mathrm{r}_{\mathrm{a}, 1}$	Leaf boundary-layer resistance for sensible heat and water vapour (m^{-1})
106	$\mathrm{r}_{\mathrm{a}, \mathrm{s}}$	Aerodynamic resistance between the substrate ($\mathrm{s} \mathrm{m}^{-1}$)
107	$\mathrm{r}_{\mathrm{s}, \mathrm{f}}$	Bulk stomatal resistance of the foliage ($\mathrm{s} \mathrm{m}^{-1}$)
108	$\mathrm{r}_{\mathrm{s}, \mathrm{s}}$	Substrate (soil and mulch) resistance to evaporation ($\mathrm{s} \mathrm{m}^{-1}$)
109	$\mathrm{r}_{\text {s }}$	Soil layer surface resistance ($\mathrm{s} \mathrm{m}^{-1}$)
110	r_{m}	Extraneous mulch resistance ($\mathrm{s} \mathrm{m}^{-1}$)
111	r_{d}	Diffusive component of the vapor transport resistance ($\mathrm{s} \mathrm{m}^{-1}$)
112	h_{m}	Thickness of the mulch (m)
113	$\mathrm{D}_{\text {eff }}$	Effective diffusivity of water vapor in the porous medium ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)

1. Introduction

Mediterranean forests, a particular case of semi-arid forests, suffer from a combination of stressors that trigger tree mortality (Allen et al., 2010; García de la Serrana, 2015; Doblas-Miranda et al., 2017) and require urgently proactive-adaptive silviculture (Lindner et al., 2014). Holm oak (Quercus ilex L.) is one of the most important forest species in the western Mediterranean basin, covering about 5.4 Mha, more than half of which are in Spain (Terradas, 1999; Ruiz de la Torre, 2006). While at the northern edge of its distribution range, the species is colonizing new areas (Delzon et al., 2013), in Mediterranean Spain holm oak forests have shown climate-related mortality and growth
decline since the last century (Barbeta and Peñuelas, 2016; Camarero et al., 2016; Peñuelas et al., 2017; Gentilesca et al., 2017). In fact, observed trends in climate may push marginal populations of holm oak close to their distributional limit (Terradas and Savè, 1992; Martinez-Vilalta et al., 2003; Peñuelas et al., 2017). Following a decreasing precipitation gradient, holm oak forests become scarcer towards south-eastern Spain where they can be found growing on highlands and mountains with less xeric conditions (Terradas and Savè, 1992; Ruiz de la Torre, 2006). These scattered forests can be considered as the rear edge of the species' distribution (Hampe and Petit, 2005) and may have a comparably different ecophysiological response to drought stress (Gratani et al., 2003; Valero-Galván et al., 2011). In this sense, these remnant populations are of critical importance in a global change context, not only from a conservation and management perspective, but also for the deployment of climate-adjusted or admixture provenancing strategies elsewhere in assisted migration programs (Prober et al., 2015). The management implications of either ongoing-declining or prone-to-decline oak stands have received attention from the research community, seeking appropriate measures for improving the resilience and resistance of forests (Mayor and Rodà, 1993; Gracia et al., 1999; López et al., 2003; Moreno and Cubera, 2008; Limousin et al., 2008, 2009; Cotillas et al., 2009; Gea-Izquierdo et al., 2009; Gentilesca et al., 2017; Cabon et al., 2018). In these studies, selective thinning was studied as an adaptive measure to compensate for rainfall reduction and, in corroboration of studies of other species and forest-types (Bréda et al., 1995), they report enhanced tree growth and climate-growth relationships, increased soil water content, higher tree-water use and reduced stand transpiration after thinning.

However, the structural characteristics of the oak stands found across the distribution range of the species as well as their site conditions are very different, just as their
potential responses to extreme droughts are (Barbeta and Peñuelas, 2016), so that the specific targets/effects of thinning may vary. Some researchers (Moreno and Cubera, 2008; Cotillas et al., 2009; Gea-Izquierdo et al., 2009) have studied open holm oak woodlands (silvopastoral systems), where tree density and competition are low (usually fewer than 200 trees ha^{-1}) and tree structure is relatively homogeneous (tall trees with large basal areas). On the other hand, most studies of thinning (carried out in northeastern Spain and southern France) have examined dense multi-stemmed coppices of Quercus ilex subsp. ilex (LAI $\sim 2.0-4.0 \mathrm{~m}^{2} \mathrm{~m}^{-2}$) that result from historical harvesting for charcoal (López et al., 2003), with contrasting responses appearing between trees of different crown classes (Galiano et al., 2012; Olivar et al., 2014). Structurally, thinning reduces stand density, decreases competition and increases the availability of resources (light, water, nutrients) for the remaining trees (Bréda et al., 1995), thus promoting functional changes as long as the increased availability remains significant (Limousin et al., 2009; Cabon et al., 2018). The sequence of functional responses to drought in holm oak on different timescales has been extensively studied and was recently compiled by Barbeta and Peñuelas (2016). Responses related to carbon and water cycles, phenology and growth are the key traits in this regard. A focus on maintaining and/or enhancing these ecological processes and functional characteristics, rather than specific structures and species composition, must guide forest treatments designed to enhance resilience (Seidl et al., 2016). This function-to-structure approach can identify those structure assemblages that are less prone to drought-induced decline and that could benefit more from management practices, thus optimizing the limited budgets and practical decisionmaking. Targeting functional traits must be related to a species' drought tolerance and resource use strategy and must respond positively to stand density reduction, such as growth, leaf traits (specific leaf area, SLA) (Cotillas et al., 2009; Gea-Izquierdo et al.,

2009; Stahl et al., 2014), canopy conductance (G_{s}) and its variations with both soil moisture (θ) and atmospheric demand for water (D) (Novick et al., 2016; Grossiord et al., 2017), tree transpiration and evapotranspiration (ET) components at the stand scale, etc. (Grant et al., 2013; Klein et al., 2013; del Campo et al., 2014).

Unfortunately, adaptive management in low-biomass shrublands has received much less attention, as most studies have been conducted in core or central habitats of the species, where dry years are more the exception than the rule. Following the approach explained above, the aim of this study is to evaluate the effects of selective thinning and shrub clearance in a marginal low-biomass forest of Holm oak by examining the response to selected functional traits related to carbon and water cycles over an inter-annual span (Barbeta and Peñuelas, 2016). The specific objectives are to study the effect of the treatment i) on growth and leaf traits in the years following thinning, ii) on sap flow and the response of transpiration to environmental variables, iii) on G_{s} as a proxy for the trade-offs between carbon and water fluxes at the stand scale and iv) on the stand ET and its components (transpiration and soil evaporation).

We hypothesize that thinning will increase water availability for the remaining trees, triggering eco-physiological responses that will improve drought resistance at the tree level whilst decreasing stand water-use. We expect these effects to last during the four years studied (short-term effect).

2. Materials and Methods

2.1. Study site and experimental trial

The study was carried out in a marginal oak forest located in the southwest region of Valencia province in Spain ($39^{\circ} 04^{\prime}-\mathrm{N}, 1^{\circ} 14^{\prime}-\mathrm{W}$ elevation $1,080-1,100 \mathrm{~m}$ a.s.l.). The average annual rainfall in a meteorological station located nearby at 900 m a.s.l. is 466 mm . This rainfall typically shows high intra- and inter-annual variability with seasonal
and annual coefficients of variation of 52 and 28%, respectively (Perez-Cueva, 1994). Mean annual temperature is $12.8^{\circ} \mathrm{C}$, and the mean annual potential evapotranspiration is 749 mm (Thornthwaite, 1948). The soil is relatively shallow (10-40 cm), sandy-siltyloam textured (44% sand; 33% silt; 23% clay, on the top 10 cm ; below that depth, sand: 52%; silt: 28 ; clay: 20%) and basic $\mathrm{pH}(8.0 \pm 0.1)$. Additional properties of soils are described in di Prima et al. (2017). Parent rock is a karstified limestone that gives rise to rocky soils with volumetric content of stones and rocks that ranges between 48 and 69%, depending on depth. Boreholes in the plots (up to 4 meters deep) revealed a high degree of rock fissuring that provides reservoirs of deep water.

The dominant species at the study site is Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) and accompanying species are Q.faginea Lam., Pinus halepensis Mill., Juniperus phoenicea L. and J. oxycedrus L. This coppice oak forest is the result of traditional fuelwood harvesting that fell into disuse in the 1970's, has high stem densities (Table 1) and, accordingly, high intraspecific competition that might be responsible for the dieback observed after severe dry years. The forest has low biomass, with aboveground values of $49.7 \mathrm{Mg} / \mathrm{ha}$ ($23.1 \mathrm{Mg} \mathrm{C/ha}$) calculated from site/speciesspecific allometric equations developed at the time of thinning (see below): Biomass $(\mathrm{kg})=1.08 * \mathrm{D}_{\mathrm{BH}}{ }^{2}(\mathrm{~cm})-16.4 * \mathrm{D}_{\mathrm{BH}}(\mathrm{cm})+68.67$, with $\left.\mathrm{D}_{\mathrm{BH}}>7 \mathrm{~cm}, \mathrm{r}^{2}=0.95\right)$. There has been no forest management, as this is marginal and protective forest. Site conditions are harsh (soil and recurrent droughts (Fernandes et al., 2016)) and symptoms of decay, such as top-tree death, foliage loss, death of interspersed Q. faginea trees and increasing frequency of pine saplings, can be observed inside the experimental plots. This study is part of a broader study where water and nutrient cycles and soil properties are monitored for an integrated assessment of the ecohydrology of the ecosystem. In May 2012, experimental thinning (and shrub clearance) took place in a rectangular plot
(T), slope 31%, NW aspect, of about $1,800 \mathrm{~m}^{2}$, split into three replicates or blocks of similar size, leaving about one third of the initial standing trees (about 315 trees $/ \mathrm{ha}$) (Table 1). A run-off collecting trench at the lower boundary of the slope forced us to site the three blocks consecutively from upslope to downslope (no randomized layout). Adjoining the thinned area, a control plot (C) of similar size was established and also split into three blocks. The thinning/clearance removed most of the shrubs, the trees with smaller diameters and multi-stemmed trees (leaving only the bigger stem). The thinning aimed to achieve relatively homogeneous tree distribution, based on forest cover. Thinning was conducted and supervised by the Forest Service of Valencia; timber and coarse woody debris were removed outside the plots, whereas fine woody debris was piled and grinded into mulch on the plots. Climate, parent material (soil origin), topography and biota were considered as the constant in both plots, whereas forest management (thinning treatment) was taken as the factor.

2.2. Forest structure and tree growth measurement

Forest structure within the plots was characterized in May 2012 and at the end of the study period in November 2016, recording the following variables: diameter at basal and breast heights $\left(\mathrm{D}_{\mathrm{B}}\right.$, and D_{BH} respectively, cm$)$, basal area $\left(\mathrm{BA}, \mathrm{m}^{2} \mathrm{ha}^{-1}\right)$ and density (De, trees ha ${ }^{-1}$). Measuring tree diameters and counting all trees in the plots calculated BA and De. Diameter distribution was classified into 4 classes: $\mathrm{D}_{\mathrm{BH}} \leq 7.5$ (DC1), $7.5<\mathrm{D}_{\mathrm{BH}} \leq 11(\mathrm{DC} 2), 11<\mathrm{D}_{\mathrm{BH}} \leq 15(\mathrm{DC} 3), \mathrm{D}_{\mathrm{BH}}>15$ (DC4) (figures in cm). Forest cover (FC, \%) was determined just once in October 2015, with a vertical densitometer (GRS, Arcata, CA, USA) with 50 readings per block taken above 1.7 m in a $3 \times 3 \mathrm{~m}$ grid, giving a value of 39.3 ± 3.4 and $62.7 \pm 1.9 \%$ for the treated and control plots, respectively (shrubs below that height make total ground cover higher). All measurements were made in areas at least 2 m away from the plot limits to avoid edge effects. Crown projected area
(Cpa, m^{2}) was calculated by averaging the measurements of 8-10 orthogonal crown diameter projections in 9-12 trees per treatment. Leaf Area Index (LAI, $\mathrm{m}^{2} \mathrm{~m}^{-2}$) was measured once per season in each block by a LAI-2000 sensor (LI-Cor, 1991, LI-Cor Inc., Lincoln, NE, USA) under direct solar radiation, as described in Molina and del Campo (2011) and Leblanc and Chen (2001). Average measured values were 0.61 ± 0.07 and $1.13 \pm 0.22 \mathrm{~m}^{2} \mathrm{~m}^{-2}$ for the treated and control plots, respectively. Inadequate atmospheric conditions led to defective readings and gaps that were corrected and filled with estimations from the level-4 MODIS global Leaf Area Index satellite product (NASA, LPDAAC) in order to complete the seasonal series. The product is composited every 8 days (monthly averages were performed) at 1 -kilometer resolution on a sinusoidal grid. For the coverage of the study site, the h17v05 tile is required, where h and v denote the horizontal and vertical tile number, respectively. The MODIS LAI dataset provided in Hierarchical Data Format (HDF) was imported to GeoTIFF format by MODIS Reprojection Tool (MRT) (NASA) and reprojected from the Integerized Sinusoidal (ISIN) projection to the UTM projection system.

Growth and leaf traits were measured at the end of each year in 16-21 trees per plot proportionally distributed across diameter classes and blocks, adapting the basic concepts and methodology for oaks from Girard et al. (2011). In each surveyed tree, six dominant branches were selected in the upper half of the crown, distributed on both north and south aspects. Then, the shoots of the last growing season were identified and counted for each branch. A sample of $10-15$ shoots of the annual growth per tree were measured in the following metrics: shoot length (cm), basal diameter of the shoot (mm), number of growth cycles (in case there was more than one), number of leaves of the shoot, total leaf area of the shoot (measuring maximum width and length of individual leaves and computing the area of the oval, cm^{2}), and specific leaf area (SLA, $\mathrm{cm}^{2} \mathrm{~g}^{-1}$). This assay
was also done for the epicormic shoots and resprouts in the treated plot in the last year's growth (2016), as this growth became very apparent from 2015 on. Finally, for a calculation of tree-based LAI, an independent set of LAI was measured in November 2016 under the crown in a subsample of 18 trees (9 per treatment, three per block) belonging to the four diametric classes. For each tree, a set of A-type (same clearing as in the measurements for the LAI plot) and B-type (front, right and left sides of the trunk at 1.0 m above ground) measurements were taken.

2.3. Environmental variables and field instrumentation

This study spans the period from October 1, 2012 to December 30, 2016. As the thinning treatment took place in May 2012, we considered it appropriate to provide values in the first year of the treatment even though that year was monitored only in its last quarter. Precipitation or gross rainfall (Pg) was continuously measured by means of a tipping-bucket rain gauge located in an open area apart from the experimental plots with $0.2-\mathrm{mm}$ resolution (7852, Davis Instruments Corp., Hayward, CA, USA), programmed to measure at $10-\mathrm{min}$ intervals and connected to a CR1000 data-logger (Campbell Sci., UT, USA). Gaps were filled in with records from a standard rain gauge station located 1.5 km away with a daily timescale (Ayora-La Hunde SAIH network). Air temperature ($\mathrm{T},{ }^{\circ} \mathrm{C}$) and relative humidity ($\mathrm{RH}, \%$) were measured inside the experimental plots (2 m above ground) and above the canopy (6.5 m above ground) in the buffer zone between both plots. The sensors (RH/T sensor, Decagon Devices, Pullman, WA, USA) were connected to EM50 (Decagon) dataloggers and programmed to measure at $10-\mathrm{min}$ intervals. Wind speed ($\mathrm{U}, \mathrm{m} \mathrm{s}^{-1}, 7911$ anemometer, Davis Instruments Corp.) and solar radiation $\left(\mathrm{R}_{\mathrm{s}, \mathrm{a}}, \mathrm{W} \mathrm{m}^{-2}\right.$, Campbell CS300 pyranometer, Campbell Sci., Logan, UT, USA) were measured above the canopy (6.5 m) on the same RH/T mast and recorded on the CR1000. Temperature and RH data were subsequently
used to obtain values for the vapor pressure deficit (D, kPa). In line with the two-layer approach for ET calculation (see below), net radiation $\left(\mathrm{R}_{\mathrm{n}, \mathrm{t}}\right)$ was estimated as in Domingo et al. (2000):
$R_{n, t}=f R_{n, f}+(1-f) R_{n, s}=R_{s, a}(1-\alpha)+R_{l, a, d}-f R_{l, f, u}-(1-f) R_{l, s, u}$
where $R_{n, f}$ and $R_{n, s}$ are the net radiation terms ($\mathrm{W} \mathrm{m}^{-2}$) over the vegetated area (foliage) and over the bare soil (substrate), respectively. The term f is the fractional vegetation cover (total cover, not just trees; C: 0.769; T: 0.393 until summer 2014, and exponentially growing up to 0.569 in summer 2016). The term α is the surface albedo, calculated for C and T plots by using Landsat 8 OLI/TIRS Data (30x30 m resolution) and following the Surface Energy Balance Algorithm for Land (SEBAL; Bastiaanssen et al., 1998). The term $R_{l, a, d}$, is the downwards long-wave atmospheric radiation and $R_{l, f, u}$ and $R_{l, s, u}$ are the long-wave upwelling radiation from vegetation and bare soil, respectively. These were calculated as:
$R_{l, a, d}=\sigma \varepsilon_{a} T_{a}^{4}$
$R_{l, f, u}=\sigma \varepsilon_{f} T_{f}^{4}$
$R_{l, s, u}=\sigma \varepsilon_{s} T_{s}^{4}$
With σ the Stefan-Boltzmann constant $\left(5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right), \varepsilon_{a}, \varepsilon_{f}$ and ε_{s} are the air, vegetation and bare soil emissivity, respectively, and T_{a}, T_{f} and T_{s} are the air, vegetation and bare soil temperatures (K), respectively. Soil temperature at 1 cm depth was linearly inferred from readings at 5 and 15 cm depth (see below); ε_{f} and ε_{s} were set to 0.985 and 0.986 , respectively (Rubio et al., 1997); and ε_{a} was calculated as proposed by Idso (1981).

Soil water content (SWC, $\theta, \mathrm{m}^{3} \mathrm{~m}^{-3}$) was continuously measured for the whole period every 10 minutes by means of FDR probes (5TE and EC-5, Decagon Devices Inc., Pullman, WA, USA) connected to the CR1000 data-logger. Sensors were installed by
digging three pits per block (9 per plot and 18 total) along contour lines. In the central pit of each block, three sensors (5TE, which also provide soil temperature) were inserted horizontally at depths of 5,15 and 30 cm into the unaltered upslope pit face, whereas in the other two pits in the block, only one sensor (EC-5) was inserted at 15 cm depth. Total sample size per plot (treated/control) was 15 sensors in the 9 spots. After installation, the pits were backfilled with the excavated soils and slightly compacted up to similar bulk density to that of unaltered soil. Thus, sensor readings include the effect of stoniness in the pit (as rocks do not hold moisture). Calibrations were discarded as the observed increase in θ after calibrating was offset when taking into account the stoniness effect in field conditions (which we did not want to obviate), and because of the temporal drifts observed in several cases. Thus, we used default calibration (for mineral soils) in all cases after observing that the use of relative variables rather than absolute θ would minimize the impact of any changes from the calibration curve on the patterns of θ fluctuations (Detty and McGuire, 2010). The relative θ (or relative extractable water, REW) was computed for the $10-\mathrm{min} \theta$ values as:
$\theta_{r e l}=\frac{\theta-\theta_{m n}}{\theta_{m x}-\theta_{m n}}$
where θ_{mx} and θ_{mn} are the saturated (maximum) and minimum soil water content of the probe. The range of θ for each probe was computed as the extreme values that the sensor recorded during the entire monitoring period. Field capacity for each probe was calculated from the steady values of θ following gentle rainfall events with at least 20 $\mathrm{mm}\left(\theta_{\mathrm{fc}}\right)$. Averaged soil water content at field capacity was 0.19 and $0.20 \mathrm{~m}^{3} \mathrm{~m}^{-3}$ for C and T, respectively; θ_{mx} and θ_{mn} averaged, respectively, 0.33 and $0.02 \mathrm{~m}^{3} \mathrm{~m}^{-3}$ in both plots.

2.4 Sap flow and Transpiration

Sap flow velocity $\left(\mathrm{v}_{\mathrm{s}}, \mathrm{cm} \mathrm{h}^{-1}\right)$ was measured hourly through the Heat Ratio Method, HRM (Burgess et al., 2001) by 14 sap flow sensors powered by a 12 V battery connected to a solar panel and a data-logger (Smart Logger, ICT International, Armidale, NSW, Australia). Sensors were installed on the upslope side of the trunk at a variable height depending on the trunk's shape (at between 0.3 and 1.0 m height). Each sensor has a heater between two needles containing two thermocouples each, located 27.5 mm and 12.5 mm from their bases. The sensors were distributed in both plots proportionally to the different diameter classes. This sample size falls within the range normally considered in tree water-relations studies (Granier, 1987; Klein et al., 2013; Martínez-Vilalta et al., 2003). Sapwood area $\left(\mathrm{Sa}, \mathrm{cm}^{2}\right)$ was at first calculated by subtracting heartwood area from the inner-bark area in a sample of cores and slices obtained when applying the treatments. However, we discarded this method due to its high subjectivity and lack of direct sapwood data from the sampled trees. Instead, we opted for a linear fit of v_{s} from both thermocouples at both depths to obtain the depth at which v_{s} equals 0 (del Campo et al., 2014). This linear approach is expected to slightly underestimate the innermost Sa , which usually has very low sap flux values (Berdanier et al., 2016). Sa was divided into three different sections to assign different v_{s} values and consequently to calculate hourly and daily values of sap flow ($\mathrm{S}_{\mathrm{f}}, 1$ tree ${ }^{-1}$ hour ${ }^{-1}$) (Hatton et al., 1990; Delzon et al., 2004) as follows: 1) the v_{s} from the outer thermocouple was assigned to the Sa from the cambium to the mid-point between the outer and inner thermocouples (i.e. 20 mm depth); (2) the v_{s} from the inner thermocouple was assigned to the Sa from 20 mm to the depth of the probe (35 mm depth from the cambium); and (3) $0.5 \mathrm{v}_{\mathrm{s}}$ from the inner thermocouple was assigned to the remaining area from 35 mm deep to the beginning of the heartwood or to the pith (if heartwood was not present). Up-scaling $\mathrm{S}_{\mathrm{f}}\left(1\right.$ tree $\left.{ }^{-1}\right)$ to
stand transpiration per plot $\left(\mathrm{E}_{\mathrm{t}}, \mathrm{mm}, 1 \mathrm{~m}^{-2}\right)$ used the number of trees $\left(\mathrm{De}\right.$, tree $\left.\mathrm{m}^{-2}\right)$ as scalar. We obtained a correction factor (cf) by regressing S_{f} on $\mathrm{Sa}\left(\mathrm{r}^{2}>91 \%\right)$ so that the S_{f} corresponding to the mean sampled tree was corrected to the mean plot tree. Accordingly, E_{t} per plot was calculated as:
$E_{t}=S_{f} \operatorname{Decf}$
Data were quality-controlled for any possible spikes and gaps. In some cases, v_{s} flow data were lost for more than 15-day spells, because of datalogger/sensor malfunction, battery failure and/or rodents' activity. In these cases, an Artificial Neural Network model was used to estimate E_{t}, as described in Fernandes et al. (2015).

2.5. Canopy conductance $\left(G_{s}\right)$

$\mathrm{G}_{\mathrm{s}}\left(\mathrm{mm} \mathrm{s}^{-1}\right)$ is an essential parameter that represents the physiological control of transpiration by environmental variations, and thus regulates tree-water use and carbon uptake (Novick et al., 2016; Grossiord et al., 2017). G_{s} is usually calculated from sap flow measurements by means of the reverse form of the Penman-Monteith equation (Granier and Breda, 1996). Due to the sparseness of the trees, G_{s} was calculated in a similar way, but including the sparse canopy and using the Shuttleworth and Wallace (1985) physical model as detailed in Lhomme et al. (2012). Thus, G_{s} derived in this way reflects contributions only from stomatal conductance and not from the whole surface. Climate data above the canopy (6.5 m) were used in the model (see point 2.6 ET partitioning). Periods when $\mathrm{R}_{\mathrm{s}, \mathrm{a}}$ was lower than $400 \mathrm{~W} \mathrm{~m}^{-2}$ and sap flow (v_{s}) was close to zero were eliminated in order to decrease relative inaccuracy in G_{s} calculation (Granier et al., 2000). A threshold of D was taken as 0.6 kPa to remove the wettest air conditions when errors in G_{s} estimates are higher than 10% (Ewers and Oren, 2000). We assumed negligible stem capacitance and no time lag between transpiration and soil water uptake for this subspecies (Trifilò et al., 2015). The threshold for $\mathrm{R}_{\mathrm{s}, \mathrm{a}}$ adopted
here minimizes a possible capacitance effect of the trees, as previously observed (Lhomme et al. 2001). In any case, the condition of high aerodynamic coupling between the air inside the canopy and the air from the bulk atmosphere was tested by calculating the decoupling coefficient Ω (Jarvis and McNaughton, 1986) that ranges between 0 and 1 , with 0 representing full stomatal control of E_{t} (highly coupled):
$\Omega=\frac{(\varepsilon+1)}{\left(\varepsilon+1+\frac{g_{a}}{G_{s}}\right)}$
where ε is the ratio of the slope of the relationship between saturation vapor pressure and temperature (Δ) to the psychrometric constant (γ); ga is the aerodynamic conductance ($\mathrm{m} \mathrm{s}^{-1}$) above the canopy calculated for neutral conditions as:
$\mathrm{g}_{a}=\frac{k^{2} U}{\ln ^{2}\left[\frac{\left(Z_{r}-d\right)}{z_{0}}\right]}$
expressed as a function of wind speed; z_{0} is vegetation surface roughness length and d is the zero-plane displacement of vegetated surfaces, both calculated according to Shaw and Pereira (1982) as functions of mean canopy height (dominant and co-dominant trees, $\mathrm{z}_{\mathrm{h}}=5.20$ and 5.78 m for C and T , respectively) and LAI (mean LAI $=1.13$ and 0.61 for C and T$) ; \mathrm{d}_{-} \mathrm{c}=3.32 ; \mathrm{d}_{-} \mathrm{T}=3.29 ; \mathrm{z}_{0} \mathrm{C}=0.624 ; \mathrm{z}_{0-} \mathrm{T}=0.642$. The term k is the von Kármán constant (0.41) and $U\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ is the wind speed at reference height $\mathrm{z}_{\mathrm{r}}(6.5 \mathrm{~m})$. G_{s} is affected by θ and D : decreasing θ limits the movement of water to evaporating stomata and reduces G_{s}; and increasing D causes stomata closure, thus affecting G_{s} in an independent fashion (Novick et al., 2016). Disentangling the impact of these two drivers is important as θ and D are decoupled at short temporal scales and the effects of thinning on the magnitude of carbon and water fluxes may become less effective (Novick et al., 2016). To calculate G_{s} sensitivity to D, we used (Granier et al., 1996): $G_{s}=-m \ln (D)+G_{\text {sref }}$
where G_{s} is an estimate of average stomatal conductance over the canopy $\left(\mathrm{mm} \mathrm{s}^{-1}\right),-\mathrm{m}$ is the slope or stomatal sensitivity to $\mathrm{D}\left(-\mathrm{dG}_{\mathrm{s}} / \mathrm{dln}(\mathrm{D})\right)$ and $\mathrm{G}_{\text {sref }}$ is the reference canopy conductance at $\mathrm{D}=1 \mathrm{kPa}$ and can be used as surrogate for $\mathrm{G}_{\text {smax }}$ (Chen et al., 2014). The analysis sorted the G_{s} data set into 4 categories of $\theta_{\text {rel }}\left(\theta_{\text {rel }} \leq 0.2 ; 0.2<\theta_{\text {rel }} \leq 0.4\right.$;
$0.4<\theta_{\text {rel }} \leq 0.6 ; \theta_{\text {rel }}>0.6$). A boundary line analysis on G_{s} versus D within each category was carried out (Erwens et al., 2005; Chen et al., 2014). The term G_{s} is also sensitive to variations in $\mathrm{R}_{\mathrm{s}, \mathrm{a}}$ and T . However, we filtered for $\mathrm{R}_{\mathrm{s}, \mathrm{a}}>400 \mathrm{~W} \mathrm{~m}^{-2}$. Variations in diurnal G_{s} can often be explained mostly by D , which correlates directly with $\mathrm{R}_{\mathrm{s}, \mathrm{a}}$ and T , so that neglect of these dependencies does not bias the analysis (Novick et al., 2016). In each category of $\theta_{\text {rel }}, G_{s}$ was further partitioned into 0.2 kPa D intervals and the mean and standard deviation of G_{s} within each interval were calculated. The outliers were removed ($\mathrm{p}<0.05$, Dixon's test) and the data above the mean and one standard deviation of G_{s} were selected (Ewers et al., 2005). The parameters of equation 9 can then be related to the categorizing variables (D and θ). This boundary analysis provides the best estimate of physiological response because the boundary line occurs during conditions that lead to the highest G_{s} at any given D (Ewers et al., 2005). $\mathrm{G}_{\text {sref }}$ accounts for the effects of soil water on G_{s} whereas $-m$ describes the effects of D on G_{s}. The ratio of $-m$ to $\mathrm{G}_{\text {sref }}$ is 0.6 across a wide range of species and environments (Oren et al., 1999), with lower values than 0.6 when trees show less strict regulation of the leaf water potential (allowing the minimum leaf water potential to drop with increasing D) or the range of D broadens so that the slope decreases; and higher than 0.6 when the ratio of boundary layer conductance to stomatal conductance is low (Oren et al., 1999).

2.6. ET partitioning

The low values of both LAI and FC at our experimental site indicate that this cannot be considered as dense vegetated canopy, especially in the treated plot. This, together with
the need to distinguish between soil evaporation and transpiration, made it advisable to use the Shuttleworth and Wallace (1985) two-layer model to calculate soil evaporation separately. The Shuttleworth-Wallace (S-W) model assumes that the evaporation from a stand of sparse vegetation consists of fluxes from the upper canopy (main foliage) and the substrate (which may be bare soil or grass). Although the Penman-Monteith onelayer model (Monteith and Unsworth, 1990) has been widely used and tested, it may be inappropriate for sparsely vegetated canopies (Zhang et al., 2008). In the two-layer S-W model, the latent heat flux from the complete canopy ($\lambda \mathrm{ET}$) is expressed as the simple sum of two components: $\lambda \mathrm{E}_{\mathrm{t}}$ (latent heat flux from foliage) and $\lambda \mathrm{E}_{\mathrm{s}}$ (latent heat flux from substrate; substrate is defined here as the non-vegetated area) (Lhomme et al., 2012):
$\lambda E_{t}=\left(\frac{\Delta A_{f}+\rho c_{p} \frac{D_{m}}{r_{a, f, h}}}{\Delta+\gamma\left(n+\frac{r_{s, f}}{r_{a, f, h}}\right)}\right)$
$\lambda E_{S}=\left(\frac{\Delta A_{s}+\rho c_{p} \frac{D m}{r_{a, s}}}{\Delta+\gamma\left(1+\frac{r_{s, s}}{r_{a, s}}\right)}\right)$
where A_{f} and A_{s}, are the available energy at the foliage and substrate, respectively (W m^{-2}), calculated according to eq. (1) as in Domingo et al. (2000); c_{p}, the specific heat of air at constant pressure $\left(\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\right) ; \gamma$, the psychrometric constant $\left(\mathrm{kPa} \mathrm{K}^{-1}\right) ; \Delta$, the slope of the saturated vapor pressure curve $\left(\mathrm{kPa} \mathrm{K}^{-1}\right) ; \mathrm{D}_{\mathrm{m}}$, vapor pressure deficit at canopy source height (kPa), assumed to be located at the apparent sink for momentum $\left(\mathrm{d}+\mathrm{z}_{0}\right.$, sensors were located at $\mathrm{z}=2 \mathrm{~m}$ in our plots); ρ, air density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$; and $\mathrm{n}=2$ for hypostomatous leaves (stomata present only on the lower surface of the leaf). The resistance terms are: $\mathrm{r}_{\mathrm{a}}\left(\mathrm{s} \mathrm{m}^{-1}\right)$, aerodynamic resistance above the canopy (between source and reference heights), calculated according to Lhomme et al. (2012) for neutral conditions as $1 / \mathrm{g}_{\mathrm{a}}$ (see Eq. 8); $\mathrm{r}_{\mathrm{a}, \mathrm{f}, \mathrm{h}}\left(\mathrm{s} \mathrm{m}^{-1}\right)$, bulk boundary-layer resistance of the foliage
for sensible heat, calculated as $r_{a, l} / 2 L A I$, with $\mathrm{r}_{\mathrm{a}, \mathrm{l}}$ the leaf boundary-layer resistance for sensible heat and water vapor $\left(\mathrm{s} \mathrm{m}^{-1}\right)$, expressed as a function of the wind speed at canopy height $\mathrm{U}\left(\mathrm{z}_{\mathrm{h}}\right)$ (Lhomme et al., 2012); $\mathrm{r}_{\mathrm{a}, \mathrm{s}}\left(\mathrm{s} \mathrm{m}^{-1}\right)$, aerodynamic resistance between the substrate (roughness length $\mathrm{z}_{0}=0.01 \mathrm{~m}$) and the canopy source height ($\mathrm{d}+\mathrm{z}_{0}$ different in each plot, see 2.5) (Lhomme et al., 2012; Lhomme and Montes, 2014); $\mathrm{r}_{\mathrm{s}, \mathrm{f}}\left(\mathrm{s} \mathrm{m}^{-1}\right)$, bulk stomatal resistance of the foliage, isolated in Eq. 10 using E_{t} calculated with sap flow data; and $1 / r_{\mathrm{s}, \mathrm{f}}$, the estimated stomatal conductance of the foliage $\left(\mathrm{G}_{\mathrm{s}}\right)$. $\mathrm{r}_{\mathrm{s}, \mathrm{s}}$ is the substrate (soil and mulch) resistance to evaporation $\left(\mathrm{s} \mathrm{m}^{-1}\right.$), or the resistance to water vapor movement from the interior to the surface of the soil. It is strongly dependent on the water content of the upper soil surface layer. Soil layer surface resistance r_{s} was calculated as (Anadranistakis et al., 2000):
$r_{s}=r_{s \text { min }} f\left(\theta_{s}\right)$
$f\left(\theta_{s}\right)=2.5\left(\frac{\theta_{f c}}{\theta_{s}}\right)-1.5$
where $r_{\text {s min }}$ is the minimum soil surface resistance, which corresponds to soil moisture at field capacity $\left(\theta_{\mathrm{fc}}\right)$ and its value is assumed equal to $100 \mathrm{~s} \mathrm{~m}^{-1}$ (Thompson et al., 1981, cit. in Zhang et al., 2008); and θ_{s} is the water content of an upper soil surface layer $\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\right)$, calculated by linear interpolation of our soil moisture readings (at 5, 15 and 30 cm) to 1 cm .

When an extraneous mulch is on top of a dry layer of soil $r_{s, s}=r_{s}+r_{m}$, with r_{m} transport resistance of extraneous mulch $\left(\mathrm{s} \mathrm{m}^{-1}\right)$, resistance of mulch was calculated following Fuchs and Hadas (2011):
$r_{m}=r_{d}-r_{x}\left[1-\exp \left(-\frac{h_{m}}{h_{x}}\right)\right]$
$r_{d}=\frac{h_{m}}{D_{\text {eff }}}$
where r_{d} is the diffusive component of the vapor transport resistance defined as the ratio of the thickness of the mulch (h_{m}, average 0.0461 m for both plots) over the effective diffusivity of water vapor in the porous medium $\left(\mathrm{D}_{\text {eff }}=1.05^{*} 10^{-5} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right.$ according to Flurry et al., 2009). r_{x} and h_{x} are fitting parameters (Fuchs and Hadas, 2011) that depend on the wind speed at 0.125 m (estimated according to Wang, 2014).

Finally, to obtain $\mathrm{r}_{\mathrm{s}, \mathrm{s}}$ for the area of the plots, resistances for the different surface covers (r_{s} and r_{m}) were weighted according to the proportion of bare soil (21.5 and 22.6\% for C and T , respectively), the proportion covered by mulch and litter (53.0 and 48.5% for C and T) and the proportion of surface covered by rock fragments/outcrops (25.5 and 28.8% for C and T). The resistance of the latter was fixed to the highest value of resistances found in our data set $\left(21,500 \mathrm{~s} \mathrm{~m}^{-1}\right)$, assuming that its evaporation will be close to zero.

In S-W's original study, $\lambda \mathrm{ET}=\lambda \mathrm{E}_{\mathrm{t}}+\lambda \mathrm{E}_{\mathrm{s}}$, but here we followed the modified expression from Lhomme et al. (2012):
$\lambda E=\left(\frac{\Delta+\gamma}{\gamma}\right) \frac{\left(R_{f}^{\prime}+R_{s}^{\prime}\right) r_{a}}{R_{f}^{\prime} R_{s}^{\prime}+R_{a}^{\prime}\left(R_{f}^{\prime}+R_{s}^{\prime}\right)}\left(\frac{\Delta A+\rho c_{p} \frac{D_{a}}{r_{a}}}{\Delta+\gamma}\right)+\frac{\Delta}{\gamma}\left(\frac{R_{s}^{\prime} A_{f} r_{a, f, h}+R_{f}^{\prime} A_{s} r_{a, s}}{R_{f}^{\prime} R_{s}^{\prime}+R_{a}^{\prime}\left(R_{f}^{\prime}+R_{s}^{\prime}\right)}\right)$
where R' are the modified resistances terms (aerodynamic, foliage and substrate) (Lhomme et al., 2012) from the original R terms in the S-W model:
$R_{f}^{\prime}=\frac{R_{f}}{\gamma}=r_{s, f}+\left(n+\frac{\Delta}{\gamma}\right) r_{a, f, h}$
$R_{s}^{\prime}=\frac{R_{s}}{\gamma}=r_{s, s}+\left(1+\frac{\Delta}{\gamma}\right) r_{a, s}$
$R_{a}^{\prime}=\frac{R_{a}}{\gamma}=r_{a}+\left(1+\frac{\Delta}{\gamma}\right)$
$R_{f}=(\Delta+n \gamma) r_{a, f, h}+\gamma r_{s, f}$
$R_{s}=(\Delta+\gamma) r_{a, s}+\gamma r_{s, s}$
$R_{a}=(\Delta+\gamma) r_{a}$

The difference between $\mathrm{E}(\mathrm{ET})$ in Eq. 16 and the sum of E_{t} (sap flow data) and E_{s} (Eqs. 10 and 11) was considered as a miscellaneous residual term $\left(\mathrm{E}_{\mathrm{r}}\right)$ including shrub evapotranspiration, damp litter evaporation and errors from calculations.

2.7. Data analysis

Differences between control and treated plots were analyzed with ANOVA (treatment and block as fixed factors) or, alternatively, a non-parametric Kruskal-Wallis test was used when data did not fulfill the assumption of homoscedasticity (this was the case for sap flow variables, sorted by diameter classes). We studied the relative contribution of the treatment, atmospheric variables and tree structure metrics on tree transpiration. To this end, relationships were investigated through Pearson correlations and multiple linear regression models. The regression models are not intended for predictive purposes but for quantifying the relative importance of the different independent variables (treatment, atmospheric variables and tree metrics) in explaining the variance of v_{s} and S_{f} (dependent variables). The relative importance of any independent variable was computed from its individual contribution to the sum of squares in the regression model. We performed stepwise multiple linear regression (MLR) for fitting the regression models in order to account only for independent variables that explained additional variance (criterion to select a variable: F probability for including $<0.05 ; F$ probability for excluding >0.10). The residuals were examined for normality, independence and homoscedasticity (Q-Q plots), linearity between dependent and independent variables was assessed (Pearson coefficient) and autocorrelation and multicollinearity in independent variables were checked through the Durbin-Watson coefficient and tolerance, respectively. Statistical proofs took into account only measured data, i.e. data calculated to fill in gaps were excluded and were used only for year-round balances. The cumulative effect of the treatment on E_{t} and E_{s} was evaluated
in terms of a shift in the daily ratio of treated/control following the intervention: ln (T/C) (Perry and Jones, 2016). Because of the complete block design layout, we assumed baseline (in the pre-operational period) to be zero. A significance level of $\mathrm{p}<0.05$ was used for all analyses. Data were handled and analyzed with Excel, SPSS 20.0 and R studio software (RStudio Team, 2015).

3. Results

3.1 Meteorological data

Annual precipitation during the study period was usually below the area average of 466 mm , with 405 mm (2013), 354 mm (2014), 320 mm (2015) and 499 mm (2016), i.e. only the most recent year was wetter than the average (Figure 1). However, by water years, the figures changed notably, with 534, 271, 426 and 297 mm for water years 2012-2013 to 2015-2016, respectively, where 2014 came out as very dry (Pg between Jan $1^{\text {st }}$ to Sep $20^{\text {th }}$ accumulated only 139 mm) and 2013 as very wet, with marked influence on the soil moisture pattern (Figure 1). Temporal trends of temperature were closely coupled with seasonal variation: the coldest period was recorded between late January and early February 2015 (daily average $-2.3^{\circ} \mathrm{C}$, minimum $-10.4^{\circ} \mathrm{C}$), and the hottest days occurred in the summer of the same year (daily average and daily maximum T were above 26 and $37^{\circ} \mathrm{C}$, respectively, for most of the days between late June and early August that year). Mean value of T in $2013,11.1^{\circ} \mathrm{C}$, contrasts with those of the following years: $12.2,12.0$ and $12.5^{\circ} \mathrm{C}$ in 2014,2015 and 2016. Temporal trends of D and $R_{s, a}$ were also coupled with seasonal variation (Figure 1), with high interannual variability too: mean D in $2013(0.52 \mathrm{kPa})$ contrasts with that of the following years ($0.59,0.63$ and 0.59 kPa for 2014 to 2016).

3.2 Tree growth traits and stand structure

Growth traits were affected after the clearing treatment in different ways. Shoot length and diameter were not affected by the treatment, whereas the number of leaves, leaf area and SLA were all significantly affected (Table 2). In the crown, the number of shoots per branch increased significantly in the cleared plot from 35 to about 49 shoots, and the tree-based LAI was also higher there (0.93 and $0.81 \mathrm{~m}^{2} \mathrm{~m}^{-2}$ for T and C , respectively), though not significantly. In addition, sorting the data by diameter class and year changed several of these results (Figure 2). The presence of epicormic shoots and stump sprouts in T that came out in 2014, but became much more apparent in 2015, is also worth mentioning. These shoots generally had two growth cycles (spring and autumn) and morphological features that were far above the values of the shoots in the crown (Table 2).

Ground-based LAI followed a seasonal variation pattern in both plots, with the lowest values reached in summer, matching the period of foliage throughfall (Figure 3). Except for the re-sprouts and epicormic shoots, the leaf carriage period was found to spread from spring to summer of the following year (about 15 months) in both plots. That made summer LAI fluctuate sharply, dropping to 0.58 and $0.35 \mathrm{~m}^{2} \mathrm{~m}^{-2}$ for C and T , respectively, in the driest period in summer 2014. LAI was higher in C than in T until spring 2016, when a decreasing trend in C made the series of the thinned plot catch up with that of the untreated trees. In fact, by the end of the study, summer LAI in T reached values close to those measured before thinning in May 2012.

3.3 Sap flow, tree-water use and soil moisture

Sapwood depth varied between 3.18 and 7.55 cm into the xylem, which accounted for between 62 and 100% of the BA of the sampled trees. Sapwood area (Sa) was strongly related either to D_{BH} or to tree $\mathrm{BA}\left(\mathrm{Sa}=1.453 \mathrm{D}_{\mathrm{BH}}{ }^{1.6794}, \mathrm{r}=0.964 ; \mathrm{Sa}=0.652 \mathrm{BA}+17.425\right.$,
$\mathrm{r}=0.982$, units either in cm or cm^{2}). In C and T plots, mean Sa values in the sampled trees were 139 ± 110 and $218 \pm 228 \mathrm{~cm}^{2}$, respectively.

Both mean sap flow velocity $\left(\mathrm{v}_{\mathrm{s}}\right)$ and mean sap flow $\left(\mathrm{S}_{\mathrm{f}}\right)$ per tree had a wide range of values throughout the study period (Figure 4). Even so, the effect of the treatment was highly significant ($\mathrm{p} \leq 0.001$) in all diameter classes (DC). In the control, v_{s} and S_{f} averages, either for the entire period or the growing season period (Mar-Oct), were just 48 and 35% respectively of the treatment averages in the lower DC, or 66 and 40% (for v_{s} and Sf respectively) in the dominant/co-dominant DC's. Thus, the effect of thinning on tree transpiration was proportionally higher in the smaller trees. On average, a dominant or co-dominant tree in the treatment consumed 22.41 day $^{-1}$ during the growing season (or 18.51 day $^{-1}$ when averaging over the entire period), whereas a tree in the control took up only $9.01 \mathrm{day}^{-1}$ (or $7.51 \mathrm{day}^{-1}$ in the entire period). However, these values are biased by the different means in tree Sa between treatments; on normalizing by this metric, the above values correspond to $0.0891 \mathrm{day}^{-1} \mathrm{~cm}^{-2}$ and 0.0471 day cm^{-2} for T and C in the growing season, or $0.0731 \mathrm{day}^{-1} \mathrm{~cm}^{-2}$ and $0.0391 \mathrm{day}^{-1} \mathrm{~cm}^{-2}$ for T and C in the whole period. v_{s} showed higher values in T trees in the lower DC1-2 than in C trees in the higher DC3-4 (Figure 4).

As well as thinning treatment and tree size, other variables relating to atmospheric conditions, soil moisture and date were also linearly related to the transpiration variables v_{s} and S_{f} at different temporal scales (Table 3). Among them, the linear correlations with date, $\mathrm{T}, \mathrm{R}_{\mathrm{s}, \mathrm{a}}$ and D stand out, although they are from moderate to low $(\mathrm{r}<0.5)$ depending on both the period under consideration (growing season vs. entire period) and the time scale. The significant correlations in the date-related variables indicate that, in the span of our study, transpiration showed an increasing trend, in parallel with the observed trend in D and T. Soil moisture (θ) and transpiration showed
opposite temporal patterns (negative relationship) that persisted regardless of the temporal scale when looking at the entire period, although that correlation weakened or even became insignificant when considering only the growing season. Figure 1 shows that θ had a general seasonal trend responding to Pg , but with slight differences between T and C throughout the temporal span 2012-2016. During the first year (2012), θ was higher in $\mathrm{T}\left(47 \%\right.$ and 56% of $\theta_{\text {rel }}$ at 15 cm for C and T, respectively), and this difference increased with the depth of the soil (absolute θ at 5,15 and 30 cm was $15.1,18.4$ and 21.2% respectively for C and $16.3,21.9$ and 25.6% for T). On the contrary, during the rainy year 2013, the differences were absent $\left(\theta_{\text {rel }} 46 \%\right.$ and 44% on average in C and T , respectively), but appeared again in the following dry year 2014 ($\theta_{\text {rel }} 28 \%$ and 39% for C and T). In the final two years, both plots showed similar values again (about 36\% $\theta_{\text {rel }}$).

The MLR models fitted to study the relative importance of the independent variables in the explained variance of transpiration (filtered by growing season and daylight hours) were significant in all cases, although some of them showed autocorrelation and multicollinearity, together with limited explanation of variation (Table 4). However, beyond their predictive ability, they showed that the treatment and the structure of the tree (which is also directly affected by the treatment) were the most important variables in explaining both v_{s} and S_{f} at the different temporal scales considered. The treatment accounted for about a quarter of daily transpiration; and the size of the trees, for an additional half. As the treatment affects the frequency distribution of the diameter classes, it can be assumed that the size of the mean tree in the thinned plot is affected by the treatment. Weighted by r^{2}, the treatment explained about 20% of total variance in daily S_{f}.
3.4. Response of G_{s} to environmental (θ and D) constraints
G_{s} was studied to better address the effect of the treatment on how θ and D constrained carbon and water fluxes. The relationship between G_{s} and D showed a clear logarithmic response, which was markedly affected by limitation from θ (Figures 5, 6), with low G_{s} and $\mathrm{G}_{\text {sref }}$ and low sensitivity to $\mathrm{D}(-\mathrm{m})$ when the soil was dry $\left(\theta_{\text {rel }}<0.2\right)$ regardless of the treatment. In spite of the similar sensitivity to D in both treatments under dry soil, G_{s} and $\mathrm{G}_{\text {sref }}$ remained higher in the T plot. However, under wetter soil conditions $\left(\theta_{\text {rel }}>0.4\right)$, both G_{s} and $\mathrm{G}_{\text {sref }}$ were higher and more responsive to D (Figures 5, 6), showing higher stomatal sensitivity, especially in the control plot (-m was 0.71 and 0.43 in C and T , respectively). Above severe soil water deficit $\left(\theta_{\text {rel }}>0.2\right), \mathrm{G}_{\text {sref }}$ remained constant in T but still increased in C between $0.2<\theta_{\text {rel }}<0.4$ and $\theta_{\text {rel }}>0.4$, indicating more θ limitations on G_{s} in the latter. Likewise, lower values absolute values of m in T indicated less stomatal responsiveness to increasing D , and hence the carbon and water fluxes were less affected by air dryness. The slope of -m to $\mathrm{G}_{\text {sref }}$ was found to be in most cases less than 0.6 : between 0.30 and 0.65 in C and between 0.22 and 0.50 in T (Figure 6a).

3.5. Stand transpiration $\left(E_{t}\right)$ and dry canopy evapotranspiration partitioning

For the distribution of diameters in both plots as well as tree density (Table 1), the previous S_{f} values corresponded to 0.253 ± 0.153 and $0.248 \pm 0.162 \mathrm{~mm}$ transpired per day in the entire period for C and T , respectively, and 0.317 ± 0.152 and 0.306 ± 0.156 mm transpired per day in C and T in the growing season (Mar-Oct) (Figure 7). These values of E_{t} were variable between years, with 2013 having the lowest daily mean in both plots (0.211 ± 0.117 and $0.159 \pm 0.096 \mathrm{~mm} \mathrm{day}^{-1}$ for C and T , respectively) and the years 2014 and 2015 showing the highest daily means for $\mathrm{C}\left(0.297 \pm 0.183 \mathrm{~mm} \mathrm{day}^{-1}\right.$ in 2014) and $\mathrm{T}\left(0.332 \pm 0.178 \mathrm{~mm} \mathrm{day}^{-1}\right.$ in 2015) (Figure 7). Non-parametric tests indicated no significant differences between C and T in E_{t}. Annually, the canopy of holm oaks in

C transpired between 77 mm in 2013 and 108 mm in 2014 (Table 5), whereas in T these values ranged between 58 mm (2013) and 121 mm (2015) (Table 5).

The physically-based model of S-W allowed a further partitioning of total dry canopy ET into its different components (Table 5 and Figures 7, 8). The greater contribution of soil evaporation $\left(\mathrm{E}_{\mathrm{s}}\right)$ to total ET in the treated plot $(\sim 40 \%$ of ET) than in the control plot ($\sim 28 \%$ of ET) stands out. On a daily basis, T always showed higher E_{s} than C did (0.212 ± 0.216 and $0.124 \pm 0.123 \mathrm{~mm}^{\text {day }}{ }^{-1}$ for T and C , respectively), with significant differences ($p<0.001$). Also, inter-annual variability in E_{s} was lower than in $E_{t}\left(\right.$ or $\left.E_{r}\right)$, with mean annual values (2013-2016) ranging between 0.122 and $0.139 \mathrm{~mm} \mathrm{day}^{-1}$ in the control and 0.180-0.245 mm day ${ }^{-1}$ in the treatment. The residual term, E_{r}, including the unaccounted understory transpiration, litter evaporation and noise, was slightly higher in C $\left(0.067 \pm 0.109 \mathrm{~mm} \mathrm{day}^{-1}, 15 \%\right.$ of ET $)$ than in $\mathrm{T}\left(0.063 \pm 0.105 \mathrm{~mm} \mathrm{day}^{-1}, 12 \%\right.$ of ET $)$ and ranged between 0.033 and $0.041 \mathrm{~mm}^{\text {day }}{ }^{-1}$ for C (2014) and T (2013), respectively, and between 0.127 and $0.120 \mathrm{~mm}^{\text {day }}{ }^{-1}$ for C and T in 2015.

The components of ET showed a typical seasonal pattern in both plots, with most of the evaporation occurring during summer and spring. It is clear that, in the span of this study, E_{t} in the treatment (T) surpassed that of the control (C) during the main dry spells, from mid-July onwards (Figure 8 and Figure 9, $\ln \left[\mathrm{E}_{\mathrm{t}_{-}} \mathrm{T} / \mathrm{E}_{\mathrm{t}_{-}} \mathrm{C}\right]$), indicating that the cleared oaks are using a water reservoir that is not available to the control trees during summer months. In fact, annual balances (Table 5) show that the difference C minus T for annual E_{t} ranged from +19 mm (2013) to -16 mm (2015).

4. Discussion

The results showed that the silvicultural treatment affected the variables studied at different spatial (tree and stand) and temporal scales.
4.1 Growth and leaf traits

The forest treatment enhanced growth as compared to the control plot, as expected. Increased height and diameter growth in holm oak after thinning have been previously reported under similar conditions (Mayor and Rodà, 1993; López et al., 2003; Cotillas et al., 2009; Gea-Izquierdo et al., 2009; Cabon et al., 2018). Annual shoot growth results from equilibrium between endogenous growth processes and exogenous constraints exerted by the environment (Barthélémy and Caraglio, 2007), which were experimentally altered in our study. However, the length of the growing season's shoots (a surrogate for height growth) was only marginally affected (only in 2013). Rather, it was the leaf traits (leaves per shoot and number of shoots per dominant branch in a tree) that were most enhanced by the treatment, which corroborates similar results previously reported in the species (López et al., 2003). The treated trees had higher SLA and lower leaf mass area (LMA $=1 /$ SLA) than the trees in C. LMA is a key trait that reflects the drymass cost of making new leaf area, whilst leaf lifespan represents the duration over which photosynthetic revenue is returned (Wright et al., 2004). As we found no difference in lifespans between C and T (about 15 months), the cost of deploying new leaves was higher in C, which meant that its resource-use strategy was more conservative (Stahl et al., 2014). In evergreen shrubs and trees growing in harsh climate, high LMA correlates negatively with rainfall (Wright et al., 2004), and net rainfall was indeed lower in the control plot (del Campo et al., 2018). Our tree-based LAI was also higher in the treatment, although not significantly, reinforcing the idea that leaf traits were particularly affected by the treatment. Growth was very variable inter-annually, with some years (2013 and 2015) showing less growth than others (2014 and 2016), which is especially true for the trees in the control (Figure 2). 2013 was the coolest and rainiest year, with a mean T of $8.4^{\circ} \mathrm{C}$ in the Jan-Jun period, $1.6^{\circ} \mathrm{C}$ lower than the corresponding T of the following year. This probably had an impact on most growth traits in both C and T ,
which had minima that year. However, it had a positive impact on the following year's growth in both plots, even though 2014 was the driest year: available resources were first used to build new shoots and leaves. This meant that growth was positively enhanced by the previous year's precipitation, as reported earlier for holm oak (Gea-Izquierdo et al., 2009) and for pine trees at a nearby site (Fernandes et al., 2016). 2015, following the previous year's pronounced drought, with moderate Pg in late spring-early summer and high summer temperatures, had a negative impact on growth in C trees, but almost no effect on the dominant-codominant trees of T. The combined effects of the treatment and climate-growth relationships can be better observed in E_{t} in 2015 (Table 5): with total ET increasing, E_{t} decreased in C, whilst T showed the highest tree-water use and E_{t} values of the series. The impact of thinning on growth also depended on the size of the trees (Figure 2), so that growth was higher in larger trees than in smaller ones, as previously reported (Mayor and Rodà, 1993). Quercus ilex may show several growth units annually or polycyclism (Barthélémy and Caraglio, 2007; Barbeta and Peñuelas, 2016), which is related to the meteorological conditions in the current and previous years (Girard et al., 2011). In our plots, we only observed one annual shoot growth unit (monocyclism) on the trees in either C or T , with the exception of re-sprouts and epicormic shoots, which had two cycles. The importance of the re-sprouting growth from 2015 onwards cannot be overlooked, as both epicormic shoots (in pruned trees) and stump sprouts were notably enhanced with the treatment. This undesirable feature is typical of the species, as it is likely to cause rapid decline in the positive effects of clearing in the first three years after the treatment (Cotillas et al., 2009). In our case, vigorous re-sprouting shoots, although shorter than in Cotillas et al.'s study ($\sim 25 \mathrm{~cm}$ in the reference vs. 13 cm in this study), are probably related to the relative increase of the E_{r} term in the treatment in 2015.

4.2 Tree and stand-water use

Transpiration notably increased with thinning both on a tree basis and at stand scale, especially during the summer months of the second half of the study period. Daily treewater use in the dominant and co-dominant trees in T (22.41 tree ${ }^{-1}$ in the growing season) was very close to the values reported in Reyes-Acosta and Lubczynski (2013) for the same species at low density and with similar-sized trees $\left(D_{\mathrm{BH}}: 22-31 \mathrm{~cm}, \sim 211\right.$ tree ${ }^{-1}$). These authors also reported stand transpiration between $0.26-0.48 \mathrm{~mm} \mathrm{day}^{-1}$ for areas with tree densities between 181-280 trees ha^{-1}, which again confirms our growing season transpiration in the treated trees $\left(0.31 \mathrm{~mm} \mathrm{day}^{-1}\right.$ for a density of 299 trees ha $\left.{ }^{-1}\right)$. However, other studies with sparse stand (Infante et al., 2003) have reported both higher tree-water use (between 241 tree $^{-1}$ day $^{-1}$-autumn/winter- and 801 tree $^{-1}$ day $^{-1}-$ spring/summer) in trees of a similar size to our dominant oaks in the thinned plot, and higher stand transpiration (169-205 mm year ${ }^{-1}$). In spite of the similarity in canopy cover between that study (34\%) and our treatment plot, the higher LAI $\left(1.9 \mathrm{~m}^{2} \mathrm{~m}^{-2}\right)$ at that site may explain the differences. Moreno and Cubera (2008) provided an empirical fit between stand E_{t} and cover in a warmer site on deep soil that, when used with our data, gives stand E_{t} between $0.55-0.86$ and $0.43-0.57 \mathrm{~mm}^{\text {day }}{ }^{-1}$ for C and T , respectively. Our plots, especially the control, remain out of that range. Other studies dealing with holm oak transpiration in wetter climates and higher LAI (Limousin et al., 2009) also reported higher values of stand $E_{t}\left(243-430 \mathrm{~mm}_{\mathrm{t}}\right.$ year ${ }^{-1} \mathrm{Pg}>680 \mathrm{~mm}$; LAI: $1.5-1.9 \mathrm{~m}^{2} \mathrm{~m}^{-2}$). Thus, sap flow values in this study are the lowest among those found in the literature, which confirms the marginality of this population and the appropriateness of adaptive management. The values reported in a nearby experiment in thinned Aleppo pine were lower (5.2 and 17.81 tree $^{-1}$ day $^{-1}$ for similar covers to C and T , respectively) (del Campo et al., 2014), which might be due to the different water use strategies of the two species (Martínez-Ferri et al., 2000).

Apart from the treatment and the size of the trees, tree transpiration was mostly explained by variation in D and other atmospheric driving variables, with no or negative influence of θ (negative relationship in short time scales and no relation at the growing season scale). The increase of transpiration with time along the span considered in this study coincides with an observed parallel increase in D (Figure S1. Supplementary Material). Other studies (Infante et al., 2003; Reyes-Acosta and Lubczynski, 2013) also reported no effect of θ or drought on the transpiration of holm oaks, arguing either strong stomatal regulation or the access of tapping roots to the water-table that satisfied the need of water whenever demanded, which is a well-known response in this species (Barbeta and Peñuelas, 2016). Large trees have large root diameters that exert greater force and have greater ability to penetrate shallow and stony soils (López et al., 1998). This adaptation to stoniness makes large trees very resilient as they are able to prevent water stress and maintain a favorable leaf water balance by tapping water from deep soil layers. As θ was affected after clearing, especially in the first 2-3 years of the study, deep water reservoirs must be affected too (in the wet year 2013, there was evidence of deep water recharge in both plots); during the driest year 2014, the differences were especially important. However, this variable had a transient effect, and by 2015 the differences between both plots had almost disappeared. This is consistent with previous results reported by Cotillas et al. (2009), who found significant differences in soil moisture associated with thinning only in the first year after the treatment.

The unexpected finding in our study is that E_{t} in the T plot slightly decreased with respect to C during the first half of the studied span, and caught up with it in the second half, with no significant differences over the whole period. The decrease in stand E_{t} following a reduction in density and/or cover is a common response that has been widely reported (Moreno and Cubera, 2008; Limousin et al., 2009; Ungar et al., 2013;
del Campo et al., 2014; Ilstedt et al., 2016). The explanation for this is grounded in the very different frequency of age classes after the treatment, together with the very low water consumption observed in the lower DC in the control (0.0621 tree $^{-1} \mathrm{~h}^{-1}$). This implied $49 \mathrm{lh}^{-1}$ for a total of 808 trees ha^{-1}, whereas in the treatment that amount decreased by only one half $\left(24 \mathrm{~h}^{-1}\right)$ for about 18% of the trees (total of 134 trees ha^{-1} in DC1-2). In the higher DC's, these figures rose to 102 and $1411 \mathrm{~h}^{-1}$ in C and T , respectively, for a total of 325 and 183 trees ha^{-1}. The number of trees in the highest DC remained essentially the same in the treatment (127 and 109 trees ha ${ }^{-1}$ in C and T , respectively), while its water use was more than twice that of the control. Smaller tree size and heavy competition might worsen the effect of extreme droughts on tree vigor (Barbeta and Peñuelas, 2016; Gentilesca et al., 2017). Moreover, the reported lag of the response to thinning for fine root growth is about 1.5 years (López et al., 2003), a span that in our case would explain why during the first months/year after clearing E_{t} was slightly higher in C , whilst in the second half of our study period T figures began to depart from C in this water flux. The increase in fine root biomass after thinning has been reported for similar conditions (López et al., 2003) and is probably the response to higher net precipitation, soil temperature and soil nutrient content. The slash from thinning was left on the soil and had a significant effect on the mineralization of organic matter and a subsequent fertilization effect (unpublished data).
4.3 Environmental controls on G_{s}

Low water availability in the soil $\left(\theta_{\text {rel }}<0.2\right)$ reduced $\mathrm{G}_{\text {sref }}$ and stomata responsiveness to $D(-m)$ in both plots, with the advantage of smaller absolute change in G_{s} with increasing D. Under water stress, Q. ilex shows great stomatal control to avoid low leaf water potentials and minimize the risk of xylem cavitation (Martinez-Vilalta et al., 2003; Barbeta and Peñuelas, 2016). Therefore, G_{s} remained at low values regardless of
D. However, the treated oaks showed slightly higher $\mathrm{G}_{\text {sref }}$ and hence less θ limitation on G_{s}, which was supported by the high tree-water use observed in this plot during the dry spells (Figure 9). This implied that, in spite of the dry conditions that prevailed during most of our study span, these trees maintained water and carbon dynamics at higher rates than the control. This higher $\mathrm{G}_{\text {sref }}$ under θ limitation can be considered as an active acclimation in the thinned trees, which may be due to the development of deeper roots (Grossiord et al., 2017). With plenty of soil moisture $\left(\theta_{\text {rel }}>0.4\right), \mathrm{G}_{\text {sref }}$ and -m increased markedly, especially in the C trees, in which the greater sensitivity of G_{s} to D is indicative of higher stomata responsiveness to air dryness, i.e. they are more reactive to stimuli that may provoke their closure. Higher sensitivity (-m) has the disadvantage of having greater absolute reduction in G_{s} with increasing D in spite of soil water availability. This might be due to quicker water depletion in the overstocked control plot and the subsequent risk of loss of hydraulic conductivity at high D (Oren et al., 1999). Hydraulic conductivity is a key trait to be maintained in holm oak trees, as embolism recovery is much more limited than in other co-occurring species (Trifilò et al., 2015). It is also important to highlight the different response in $\mathrm{G}_{\text {sref }}$ between classes $0.2<\theta_{\text {rel }}<0.4$ and $\theta_{\text {rel }}>0.4$ in both treatments: in $\mathrm{T}, \mathrm{G}_{\text {sref }}$ remained essentially constant between the two classes, thus reflecting no θ limitation and stomatal acclimation (size, density and/or osmotic adjustment) so that trees are less responsive to air dryness (Grossiord et al., 2017). On the other hand, $\mathrm{G}_{\text {sref }}$ increased in C , indicating that θ limitations still persisted in the class $0.2<\theta_{\text {rel }}<0.4$ (absolute θ between 10 and 16%), as compared to class $\theta_{\text {rel }}>0.4$ (absolute $\theta>16 \%$).

Whenever the stomata are regulating leaf water potential near a constant value, a slope close to 0.6 is expected (Oren et al., 1999). In our case, the wider range of D in the $\theta_{\text {rel }}<0.4$ classes and the very low influence of boundary layer conductance (mean values
of the decoupling coefficient Ω were below 0.1 , indicating high coupling to D , Figure S2. Supplementary Material) may explain why in most cases our data are below the 0.6 slope (Oren et al., 1999).

4.4 ET partitioning

The significant increase in soil evaporation $\left(\mathrm{E}_{\mathrm{s}}\right)$ after clearing was the main impact of the treatment on ET partitioning. The value of E_{s} calculated in our plots was in the range of values previously reported in the literature and validate the S-W approach of this study. For instance, in a similar climate with the same species, Balugani et al. (2011) reported daily bare soil evaporation in the dry season of $0.55 \mathrm{~mm} \mathrm{day}^{-1}$, with $0.28 \mathrm{~mm} \mathrm{day}^{-1}$ of this corresponding to the unsaturated zone evaporation and the remainder to the saturated water zone. In our plots, spots of saturated water are assumed to exist locally in deep fractured rock; during the March-October period the daily mean was 0.17 and $0.29 \mathrm{~mm} \mathrm{day}^{-1}$ for C and T , respectively. Other studies on the Mediterranean (Raz-Yaseef et al., 2010a) have reported higher ranges of E_{s} (0.24 to 3.6 mm day $^{-1}$) and higher $\mathrm{E}_{\mathrm{s}} / \operatorname{Pg}$ ratio (30-53\%) at a warmer and drier site. The important result in our study is that this component made total ET higher in the treated plot on average, as E_{t} did not differ substantially between treatments. However, closer examination of the temporal trends (Figure 9 bottom) reveals that, during wet spells, ET remained lower in the treated plot whereas in dry spells the pattern was reversed. In this regard, it appears that the dominance of dry years during our study period biased the overall average. Also, in the treated plot, the contribution of E_{s} to total ET decreased from about 50% in 2013 to around 35% in the following years, close to the range reported for the Yatir forest (36-38\%) in Israel (Raz-Yaseef et al., 2010b). Wet canopy evaporation (interception, E_{i}) is not shown here, although it was monitored simultaneously (del Campo et al., 2018). Figure 9 (up) shows total accumulated dry and
wet canopy evaporation $\left(\mathrm{ET}+\mathrm{E}_{\mathrm{i}}\right)$ and similar conclusions: in the drier spells in 2014 and 2015 the control plot used slightly less water than the treatment, whereas in the first wetter half of the study period, the control plot used significantly more water. The main point is that the ET differences between treatment and control took place in dry spells, from mid-summer to early autumn, so that the increased net precipitation in the T plot was used later on for E_{t}, mainly in the bigger oaks. G_{s} was in fact higher in the dry spells in T, as already mentioned. In addition to the wet and dry spells' turnover, Figure 9 also confirms the lagged effect after thinning of about 1.5 years, supporting that root growth might have enhanced the stand E_{t} (López et al., 1998, 2003). Also, stump regrowth was marked after 2014. This means that E_{s} and E_{t} tend to offset mutually, as seen in the final year (Table 5). These results contrast with previous values obtained nearby in a 70 year-old Aleppo pine plantation (del Campo et al., 2014). Apart from the important difference in Pg in that study ($1,545 \mathrm{~mm}$ in 25 months), these authors found no greater increase in stand E_{t} or ET in the thinned trees than in the control, which could be because, during rainy periods without soil moisture restriction, the control is able to take up much more water because of the number of trees. However, in drier years, soil water limits G_{s} in the control and fewer well-watered trees in the treatment can surpass the E_{t} of the control. The finding that the main differences between the two treatments occurred during the dry spells supports this assertion. In this context, the difference Pg minus total ET in C ranged between 44 mm (2015) and 285 mm (2016) and between 19 and 281 mm for T in the same years. The net mean difference between both plots across the years is of 65 mm of extra blue water (runoff and deep percolation; 15 mm per year) in T. Thus, the overall results given here show that the treatment mostly had a watering effect on a thirsty declining forest (Grant et al., 2013).

5. Conclusions

Key functional responses related to drought were triggered by thinning in a marginal forest that enhanced growth, carbon and water cycles. This performance was driven by leaf and growth traits that promoted a more efficient (and less conservative) use of resources, by improved stomatal behavior with regard to air dryness and declining soil moisture, and by increased deep-water access. The development of deep roots that enable access to deep-water reservoirs during dry spells is one of the key traits in the drought resistance of holm oaks (Barbeta and Peñuelas, 2016) and of other semi-arid species (Grossiord et al., 2017). From a water-balance point of view, the overall results reveal an increase in ET with the treatment, especially in E_{s}. Thinning from below resulted in little change in the frequency of oaks in the upper diameter classes (with significant water-use), which, together with decreased competition and increased net rainfall, fueled tree and stand-water use in the treatment, especially during the frequent dry spells recorded in our study. By the end of the study period, E_{s} and E_{t} in the treatment appeared to offset each other mutually due to higher soil coverage from stumps' regrowth. Thus, the net result in the 4-year span is a significant increase in ET and very limited decrease in total ET when adding wet canopy evaporation $\left(\mathrm{E}_{\mathrm{i}}\right)$. Additional monitoring is needed in order to assess the observed trends of both climate and vegetation. Data presented here demonstrate that this oak stand is experiencing a clear decline that has been counterbalanced by the effectiveness of forest management, with a profound effect on the carbon and water fluxes at tree and stand scales. This study may provide some generalizations or guidelines for eco-hydrology-oriented silviculture in stands experiencing tree encroachment and transformation into shrublands, that are more prone to global change-induced disturbances (droughts, blue/green water impairment, fire hazard, etc.). In this regard, rather than just defining a particular forest structure, silviculture must be thought to improve responses in i) key
growth and leaf traits such as SLA or LAI, with particular attention to its temporal dynamics; ii) G_{s} and its behavior with regard to declining soil moisture and increasing air dryness; and iii) tree-water use and deep water access. Also, under below-average rainfall conditions like those recorded here, improvement in blue water flows (run-off and groundwater) seems unlikely and such a potential side-effect cannot be used to argue in favor of adaptive management. Fewer trees led to higher θ, but also to higher E_{s}, with little change in the stand E_{t}. Thus, simplifying, we could say that the observed responses are not because of more water but because of fewer trees using a similar amount of water to that in the untreated stand.

Acknowledgements

This study is a component of the research projects HYDЯOSIL (CGL2011-28776-C0202), SILWAMED (CGL2014-58127-C3-2) and CEHYRFO-MED (CGL2017-86839-C3-2-R), funded by the Spanish Ministry of Science and Innovation and FEDER funds. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) and ACCIONA for their support in allowing the use of the experimental forest La Hunde and for their assistance in the fieldwork.

References

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S. W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660-684.

Anadranistakis, M., Liakatas, A., Kerkides, P., Rizos, S., Gavanosis, J., Poulovassilis, A., 2000. Crop water requirements model tested for crops grown in Greece. Agric. Water Manage. 45, 297-316.

Barbeta, A., Peñuelas, J., 2016. Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests. Plant Ecol. Diver. 9(4), 321338.

Balugani, E., Reyes-Acosta, J.L., van der Tol, C., Francs, A.P., Lubczynski, M.W., 2011. Partitioning and sourcing of dry season evapotranspiration fluxes at the foot-print of the eddy covariance tower in Sardón semi-arid location in Spain. Estudios en la Zona no Saturada del Suelo, X: 297-302.

Barthélémy, D., Caraglio, Y., 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99(3), 375407. http://doi.org/10.1093/aob/mcl260

Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holtslag, A.A.M, 1998. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 212-213, 198-212.

Berdanier, A.B., Miniat, C.F., Clark, J.S., 2016. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. Tree Physiol. 36(8): 929-931, doi:10.1093/treephys/tpw027

Bréda, N., Granier, A., Aussenac, G., 1995. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 15 (5), 295-306.

Burgess, S.S.O., Adams, M.A., Turner, N.C., Beverly, C.R., Ong, C.K., Khan, A.A.H., Bleby, T.M., 2001. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 21, 589-598.

Cabon, A., Mouillot, F., Lempereur, M., Ourcival, J.M., Simioni, G., Limousin, J.M., 2018. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manage. 409, 333-342.

Camarero, J.J., Sanguesa-Barreda, G., Vergarechea, M., 2016. Prior height, growth, and wood anatomy differently predispose to drought induced dieback in two Mediterranean oak species. Ann. For. Sci. 73, 341-351.

Chen, L., Zhang, Z., Zeppel, M., Liu, C., Guo, J., Zhu, J., Zhang, X., Zhang, J., Zha, T., 2014. Response of transpiration to rain pulses for two tree species in a semiarid plantation. Int. J. Biometeorol. 58, 1569-1581. doi: 10.1007/s00484-013-0761-9

Cotillas, M. Sabaté, S., Gracia, C., Espelta, J.M., 2009. Growth response of mixed mediterranean oak coppices to rainfall reduction. Could selective thinning have any influence on it? For. Ecol. Manage. 258, 1677-1683. doi:10.1016/j.foreco.2009.07.033 del Campo, A.D., Fernandes, T.J.G., Molina, A.J., 2014. Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? Eur. J. Forest. Res., 133(5), 879-894.
del Campo, A.D., González-Sanchis, M., Lidón, A., Ceacero, C.J., García-Prats, A., 2018. Rainfall partitioning after thinning in two low-biomass semiarid forests: impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. Journal of Hydrology. Accepted.

Delzon, S., Sartore, M., Granier, A., Loustau, D., 2004. Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiol. 24, 1285-1293.

Delzon, S., Urli, M., Samalens, J.C., Lamy, J.B., Lischke, H., Sin, F., Zimmermann, N.E., Porté, A.J., 2013. Field evidence of colonisation by Holm Oak, at the northern
margin of its distribution range, during the anthropocene period. PLoS ONE 8(11), e80443. doi: 10.1371/journal.pone. 0080443

Detty, J. M., McGuire, K. J., 2010. Topographical controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment. Hydrol. Process. 24, 2222-2236. doi:10.1002/hyp. 7656.
di Prima, S., Bagarello, V., Angulo-Jaramillo, R., Bautista, I., Cerdà, A., del Campo, A., González-Sanchis, M., Iovino, M., Lassabatere, L., Maetzke, F. 2017. Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. J. Hydrol. Hydromech., 65, 3, 276-286.

Doblas-Miranda, E., Alonso, R., Arnan, X., Bermejo, V., Brotons, L., de las Heras, J., Estiarte, M., Hódar, J.A., Llorens, P., Lloret, F., López-Serrano, F.R., Martínez-Vilalta, J., Moya, D., Peñuelas, J., Pino, J., Rodrigo, A., Roura-Pascual, N., Valladares, F., Vilà, M., Zamora, R., Retana, J., 2017. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects. Glob. Planet. Change 148, 42-54.

Domingo, F., Villagarcía, L., Brenner, A. J., Puigdefábregas, J., 2000. Measuring and modelling the radiation balance of a heterogeneous shrubland. Plant Cell Environ. 23, 27-38. doi:10.1046/j.1365-3040.2000.00532.x

Ewers, B.E., Gower, S.T., Bond-Lamberty, B., Wang, C.K., 2005. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant Cell Environ. 28, 660-678.

Ewers, B.E., Oren R., 2000. Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol. 20(9), 579-589.

Fernandes, T.J.G., del Campo, A.D., García-Bartual, R., González-Sanchis, M., 2015. Coupling daily transpiration modelling with forest management in a semiarid pine plantation. iForest 9, 38-48. doi: 10.3832/ifor 1290-008

Fernandes, T. J., del Campo, A. D., Herrera, R., Molina, A. J., 2016. Simultaneous assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not in WUEi. For. Ecol. Manag. 361, 298-308.

Flury M., Mathison J.B., Wu J.Q., Schillinger W.F., Stöckle C.O., 2009. Water vapor diffusion through wheat straw residue. Soil Sci. Soc. Am. J. 73, 37-45.

Fuchs, M., Hadas, A., 2011. Mulch resistance to water vapor transport. Agric. Water Manage. 98 (6), 990-998

Galiano, L., Martínez-Vilalta, J., Sabaté, S., Lloret, F. 2012. Determinants of drought effects on crown condition and their relationship with depletion of carbon reserves in a Mediterranean holm oak forest. Tree Physiol. 32 (4), 478-489 doi:10.1093/treephys/tps025.

García de la Serrana, R., Vilagrosa, A., Alloza, J. A., 2015. Pine mortality in southeast Spain after an extreme dry and warm year: interactions among drought stress, carbohydrates and bark beetle attack. Trees 29, 1791-1804.

Gea-Izquierdo, G., Martín-Benito, D., Cherubini, P., Cañellas, I., 2009. Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann. For. Sci. 66, 802. doi: 10.1051/forest/2009080

Gentilesca, T., Camarero, J.J., Colangelo, M., Nolè, A., Ripullone, F., 2017. Drought-
induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest 10 (5), 796-806. doi: 10.3832/ifor2317-010

Girard, F., Vennetier, M., Ourmim, S., Caraglio, Y., Misson, L., 2011. Polycyclism, a fundamental tree growth process, decline with recent climate change: the example of Pinus halepensis Mill. in Mediterranean France. Trees 25, 311-322.

Gracia, C.A., Sabaté, S., Martínez, J.M., Albeza, E., 1999. Functional responses to thinning, in: Rodà, F., Retana, J., Gracia, C.A., Bellot, J. (Eds.), Ecological Studies, 137. Ecology of Mediterranean Evergreen Oak Forests. Springer, Berlin, pp. 329-338. Granier, A., 1987. Sap flow measurements in Douglas fir tree trunks by means of a new thermal method. Ann. For. Sci. 44(1), 1-14.

Granier, A., Biron, P., Köstner, B., Gay, L.W., Najjar, G., 1996. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine. Theor. Appl. Climat. 53, 115-122.

Granier, A., Biron, P., Lemoine, D., 2000. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol. 100, 291-308.

Granier, A., Breda, N., 1996. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Ann. For. Sci. 53(2-3), 537-546.

Grant, G.E., Tague, C.L., Allen, C.D., 2013. Watering the forest for the trees: an emerging priority for managing water in forest landscapes. Front. Ecol. Environ. 11(6), 314-321. doi:10.1890/120209

Gratani, L., Meneghini, M., Pesoli, P., Crescente, M.F., 2003. Structural and functional
plasticity of Quercus ilex seedlings of different provenances in Italy. Trees 17, 515-52.

Grossiord, C., Sevanto, S., Borrego, I., Chan, A. M., Collins, A. D., Dickman, L. T., Hudson, P. J., McBranch, N., Michaletz, S. T., Pockman, W. T., Ryan, M., Vilagrosa, A., McDowell, N. G., 2017. Tree water dynamics in a drying and warming world. Plant Cell Environ. 40, 1861-1873. doi: 10.1111/pce. 12991.

Hampe, A., Petit, R.J., 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461-67.

Hatton, T.J., Catchpole, E.A., Vertessy, R.A., 1990. Integration of sapflow velocity to estimate plant water use. Tree Physiol. 6, 201-209.

Idso, S. B., 1981. A set of equations for full spectrum and 8 - to $14-\mu \mathrm{m}$ and 10.5 - to $12.5-\mu \mathrm{m}$ thermal radiation from cloudless skies. Water Resour. Res. 17(2), 295-304. doi:10.1029/WR017i002p00295.

Ilstedt, U., Bargués Tobella, A., Bazié, H.R., Bayala, J., Verbeeten, E., Nyberg, G., Sanou, J., Benegas, L., Murdiyarso, D., Laudon, H., Sheil, D., Malmer, A., 2016. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 6, 21930, 1-12. doi:10.1038/srep21930

Infante, J., Domingo, F., Fernández-Alés, R., Joffre, R., Rambal, S., 2003. Quercus ilex transpiration as affected by a prolonged drought period. Biol. Plantarum, 46(1), 4955. https://doi.org/10.1023/A:1022353915578

Jarvis, P.G., McNaughton, K.G., 1986. Stomatal control of transpiration: Scaling up from leaf to region. Adv. Ecol. Res. 15, 1-49.

Klein, T., Shpringer, I., Fikler, B., Elbaz, G., Cohen, S., Yakir, Y., 2013. Relationships
between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species. For. Ecol. Manag. 302, 34-42.

Leblanc, S.G., Chen, J. M., 2001. A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric. Forest Meterol. 110, 125-139.

Lhomme, J. P., Montes, C., 2014. Generalized combination equations for canopy evaporation under dry and wet conditions. Hydrol. Earth Syst. Sci. 18, 1137-1149. https://doi.org/10.5194/hess-18-1137-2014, 2014.

Lhomme, J. P., Montes, C., Jacob, F., Prévot, L., 2012. Evaporation from heterogeneous and sparse canopies: on the formulations related to multi-source representations. Boundary Layer Meteorol. 144, 243-262. https://doi.org/10.1007/s10546-012-9713-x

Lhomme J.P., Rocheteau, A., Ourcival, J.M., Rambal, S., 2001. Nonsteady-state modelling of water transfer in a Mediterranean evergreen canopy. Agric. Forest Meterol. 108, 67-83.

Limousin, J.M., Rambal, S., Ourcival, J.M., Joffre, R., 2008. Modelling rainfall interception in a mediterranean Quercus ilex ecosystem: Lesson from a throughfall exclusion experiment. J. Hydrol. 357, 57-66.

Limousin, J.M., Rambal, S., Ourcival, J.M., Rocheteau, A., Joffre, R., RodriguezCortinta, R., 2009. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob. Change Biol. 15, 2163-2175. Lindner, M., Fitzgerald, J. B., Zimmermann, N., Reyer, C., Delzon, S., van der Maaten, E., Schelhaas, M. J., Lasch, P., Eggers, J., van der Maaten-Theunissen, M., Suckow, F. Psomas, A., Poulter, B., Hanewinkel, M., 2014. Climate change and European forests:
what do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manage. 146, 69-83.

López, B.C., Sabaté, S., Gracia, C.A., 1998. Fine roots dynamics in a Mediterranean forest: effects of drought and stem density. Tree Physiol. 18, 601-606.

López, B.C., Sabaté, S., Gracia, C.A., 2003. Thinning effects on carbon allocation to fine roots in a Quercus ilex forest. Tree Physiol. 23, 1217-1224.

Martínez-Ferri, E., Balaguer, L., Valladares, F., Chico, J.M., Manrique, E., 2000. Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiol. 20, 131-138.

Martínez-Vilalta, J., Mangirón, M., Ogaya, R., Sauret, M., Serrano, L., Peñuelas, J., Piñol, J., 2003. Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree Physiol. 23, 747-758.

Mayor, X., Rodà, F., 1993. Growth response of holm oak (Quercus ilex L) to commercial thinning in the Montseny mountains (NE Spain). Ann. For. Sci. 50, 247256.

Monteith, J.L., Unsworth, M., 1990. Principles of environmental physics. ButterworthHeinemann, 2nd edition. Burlington-MA, 304 pages.

Molina, A., del Campo, A.D., 2012. The effects of experimental thinning on throughfall and stemflow: a contribution towards hydrology-oriented silviculture in Aleppopine plantations. For. Ecol. Manage. 269, 206-213.

Moreno, G., Cubera, E., 2008. Impact of stand density on water status and leaf gas exchange in Quercus ilex. For. Ecol. Manage. 254, 74-84.
doi:10.1016/j.foreco.2007.07.029

Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Blanken, P.D., Noormets, A., Sulman, B.N., Scott, R.L., Wang, L., Phillips, R.P., 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6(11), 1023-1027. doi:
10.1038/nclimate3114

Olivar, J., Bogino, S., Rathgeber, C., Bonnesoeur, V., Bravo, F., 2014. Thinning has a positive effect on growth dynamics and growth-climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes. Ann. For. Sci. 71, 395-404. doi: $10.1007 / \mathrm{s} 13595-013-0348-\mathrm{y}$

Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer, K.V.R., 1999. Intra- and interspecific responses of canopy stomatal conductance to vapour pressure deficit. Plant Cell Environ. 22, 1515-1526.

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., NadalSala, D., Sabaté, S., Gracia, C., Terradas, J., 2017. Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot., https://doi.org/10.1016/j.envexpbot.2017.05.012

Pérez- Cueva, A.J., 1994. Atlas climático de la Comunidad Valenciana. COPUT,

Generalitat Valenciana.

Perry, T. D., Jones, J. A., 2016. Summer streamflow deficits from regenerating Douglas-fir forest in the Pacific Northwest, USA. Ecohydrology, https://doi.org/10.1002/eco. 1790 Prober, S.M., Byrne, M., McLean, E.H., Steane, D.A., Potts, B.M., Vaillancourt, R.E., Stock, W.D., 2015. Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front. Ecol. Evol. 3, 65, 1-8. doi: 10.3389/fevo.2015.00065

RStudio Team, 2015. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.

Raz Yaseef, N., Rotenberg, E., Yakir, D., 2010a. Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest. Agric. For. Meteorol. 150, 454-462.

Raz Yaseef, N., Yakir, D., Rotenberg, E., Schiller, G., Cohen, S., 2010b. Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology 3, 143-154.

Reyes-Acosta, L. J., Lubczynski, M. W., 2013. Mapping dry-season tree transpiration of an oak woodland at the catchment scale, using object-attributes derived from satellite imagery and sap flow measurements. Agric. For. Meteorol. 174-175, 184-201.

Rubio, E., Caselles, V., Badenas, C., 1997. Emissivity measurements of several soils and vegetation types in the $8-14 \mathrm{~mm}$ waveband: analysis of two field methods. Remote Sens. Environ. 59, 490-521.

Ruiz de la Torre J., 2006. Flora Mayor. Organismo Autónomo Parques Nacionales.

Dirección General para la Biodiversidad, Madrid. pp. 1293-1295.

Seidl, R., Spies, T. A., Peterson, D. L., Stephens, S. L., Hicke, J. A., 2016. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 53, 120-129.

Shaw, R. H., Pereira, A. R., 1982. Aerodynamic roughness of a plant canopy: a numerical experiment. Agric. Meteorol. 26, 51-65.

Shuttleworth, W.J., Wallace, J.S., 1985. Evaporation from sparse crops-an energy combination theory. Q J R Meteorol. Soc. 111, 839-855.

Stahl, U., Reu, B., Wirth, C., 2014. Predicting species' range limits from functional traits for the tree flora of North America. PNAS 111 (38), 13739-13744. doi:10.1073/pnas. 1300673111

Terradas, J., 1999. Holm oak and Holm oak forests: an introduction. In: Rodá, F., Retana, J., Gracia, C.A., Bellot, J. (Eds.), Ecological Studies, 137. Ecology of Mediterranean Evergreen Oak Forests. Springer, Berlin, pp. 1-14.

Terradas, J., Savè, R., 1992. The influence of summer and winter water relationships on the distribution of Quercus ilex L. Vegetatio, 99(100), 137-145.

Thornthwaite, C. W., 1948. An approach toward a rational classification of climate. Geographical Review, 38(1), 55-94.

Trifilò, P., Nardini, A., Lo Gullo, M.A., Barbera, P.M., Savi, T., Raimondo F., 2015. Diurnal changes in embolism rate in nine dry forest trees: relationships with speciesspecific xylem vulnerability, hydraulic strategy and wood traits. Tree Physiol. 35, 694705. doi:10.1093/treephys/tpv049

Ungar, E.D., Rotenberg, E., Raz-Yaseef, N., Cohen, S., Yakir, D., Schiller, G., 2013. Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. For. Ecol. Manag. 298, 39-51.

Valero-Galván, J., Valledor, L., Navarro-Cerrillo, R.M., Gil-Pelegrín, E., Jorrín-Novo, J.V., 2011. Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. J. Proteomics 74(8), 1244-55. doi: 10.1016/j.jprot.2011.05.003.

Wang, W., 2014. Analytically Modelling Mean Wind and Stress Profiles in Canopies Boundary-Layer Meteorol 151, 239-256 doi: 10.1007/s10546-013-9899-6

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. doi:10.1038/nature02403

Zhang, B., Kang, S., Li, F., Zhang, L., 2008. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China. Agricultural and Forest Meteorology 148, 1629 - 1640. doi: 10.1016/j.agrformet.2008.05.016

TABLE CAPTIONS

Table 1. Biometric and inventory variables of holm oaks in the control and treated plots. C: control; T: Treated; BA: basal area; D_{B} : basal diameter; D_{BH} : diameter at breast height; De: density. See text for intervals of diameter classes. The frequency of diameter classes between both inventories is assumed to be constant even though there
was a slight variation between the dates for the two. Only trees/stems higher than 1.5 m were inventoried; lower heights were considered as shrubs. All tree groups integrate interspersed trees of Pinus halepensis, Juniperus sp. and Quercus faginea.

Table 2. Mean annual values of the growth variables after the clearing treatment for both the control and the cleared plots. Bold font indicates significant ($\mathrm{p} \leq 0.05$) differences between control and treatment. The column on the right gives the values of the same variables for the epicormic shoots and stump sprouts observed in the thinned plot.

Table 3. Significant correlations ($\mathrm{p} \leq 0.01, \mathrm{p} \leq 0.05$ in italic font) between tree transpiration (sap flow velocity, vs, $\mathrm{cm} \mathrm{h}^{-1}$; and sap flow, Sf, L tree $\mathrm{e}^{-1} \mathrm{~h}^{-1}$) and the explanatory variables related to date, atmosphere, soil moisture, tree structure and cultural treatment at different temporal scales (hourly, daily and seasonal) either for the entire study period or in the growing season (Mar-Oct) within daylight hours (11 am - 4 pm , only at the hourly time step); blank cells: non-significant correlation. Shaded cells: not applicable. Year: 2012-2016, MJD: Modified Julian Date, D: vapor pressure deficit $(\mathrm{kPa}), \mathrm{U}$: wind speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$, Rs,a: Solar radiation $\left(\mathrm{W} \mathrm{m}^{-2}\right)$, T : Temperature $\left({ }^{\circ} \mathrm{C}\right), \theta_{\text {rel }}$: relative soil moisture content at $15 \mathrm{~cm}(\%)$, Treatment: Clearing treatment (C,T), DC: diameter class (1-2, 3-4), DBH: diameter breast height (cm), Sa: tree sapwood area $\left(\mathrm{cm}^{2}\right), \mathrm{Cpa:}$ tree crown projected area $\left(\mathrm{m}^{2}\right) . \mathrm{N}$ varied between 50 and 315,000 , depending on the scale.

Table 4. Importance of the independent variables (sorted by date, atmosphere, soil moisture, tree structure and culture treatment) in the variance explained by the MLR models fitted for tree transpiration (vs, cm h-1 and Sf, L tree-1 h-1). Importance, a relative term from 0 to 100 , was computed as the contribution of each specific variable to the sum of squares in the fitted models (totals for each sorted class are given). In all
cases, data were filtered by growing season (Mar-Oct) and by daylight hours (11 am - 4 pm) in the hourly step analyses. Full models are available in Supplementary Material. Table 5. Partitioning of annual dry-canopy evapotranspiration, ET (mm and $\%$ of Pg) in the control $\operatorname{plot}(\mathrm{C})$ and the cleared $\mathrm{plot}(\mathrm{T})$. Pg: gross rainfall; E_{t} : stand transpiration; E_{s} : evaporation from soil, E_{r} : residual term including transpiration from grass/shrub.

FIGURE CAPTIONS

Figure 1. Progression of environmental and climatic variables during the study period: cumulative precipitation (annual P, cm, gray staked area), daily precipitation (P, mm, bars), daily mean solar radiation (Rs,a, $\mathrm{W} \mathrm{m}^{-2}$), daily mean air temperature $\left(\mathrm{T},{ }^{\circ} \mathrm{C}\right)$, daily mean vapor pressure deficit (D, hPa). Daily mean relative soil water content at 15 cm in both plots (treatments) is also plotted.

Figure 2. Mean annual values of the growth variables in both the control (C) and the thinned (T) plots in the suppressed-intermediate trees (diameter classes 1 and 2) and the dominant-codominant trees (diameter classes 3 and 4). Asterisk indicates significant ($\mathrm{p} \leq 0.05$) differences between control and treatment regardless of the diameter class. Figure 3. Seasonal values of LAI in both the control (C) and the cleared (T) plots measured at 0.5 m above ground. From mid-2015 on, resprouting became more important in the cleared plot and prevented the summer drop in 2016, surpassing the value of the control plot by the end of the study. Linear trend lines are given in each series. Dashed line represents the series of the MODIS LAI product averaged by month. Figure 4. Box and whiskers plots for sap flow velocity and sap flow in control (C) and cleared (T) trees in both the suppressed-intermediate trees (diameter classes 1 and 2) and the dominant-codominant trees (diameter classes 3 and 4). Plots are given for either the entire study period (left) or the growing season period (right, March to October,
both included). Black dots and figures represent the mean value. Whiskers are for the 5th and 95th percentiles.

Figure 5. Influence of vapor pressure deficit (D) on simultaneous canopy conductance $\left(G_{s}\right)$ on an hourly basis after applying boundary line analysis in the control plot (black circles and lines) and the thinned plot (gray triangles and lines) under different relative soil water conditions $\left(\theta_{\text {rel }}\right)$. Both the absolute and the \ln values of D (with constant slope over the entire range of D) are shown.

Figure 6. Relationship between $m\left(G_{s}\right.$ sensitivity to $\left.D\right)$ and $G_{\text {sref }}$ under different relative soil moisture conditions $\left(\theta_{\text {rel }}\right)$ in the control plot (black circles) and the thinned plot (gray triangles). The two bottom plots represent the individual variation of either m or $\mathrm{G}_{\text {sref }}$ for the soil moisture classes defined. The gray line represents the theoretical proportionality of 0.6 described.

Figure 7. Mean daily values of the different components of dry-canopy
Evapotranspiration in both plots (C and T) sorted by year. Es: soil evaporation; Et: oak transpiration; Er: residual evaporation. Values are shown for both the entire year and the growing season (March to October, both included). Data in 2012 were from October $1^{\text {st }}$ onwards.

Figure 8. Progression of the different components of evapotranspiration (ET) in both plots (control: C and treatment: T) during the study period: Es: soil evaporation; Et: oak transpiration. In soil evaporation and canopy transpiration the relative soil water content $(0-1)$ at 5 and 30 cm is provided for C and T plots, respectively.

Figure 9. Seasonal progression of the daily ratio \ln (Treated/Control) of ET and its three components (below) and the concomitant values of annual cumulative Pg (shaded area) and total ET plus E_{i} (dry plus wet canopy) (above) (see text for details). Baseline of the logarithmic ratio before treatment is assumed to be zero. Daily precipitation (black bars)

Plot	Date	$\begin{aligned} & \mathrm{D}_{\mathrm{B}} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{BH}} \\ & \mathrm{~cm} \end{aligned}$	De trees ha ${ }^{-1}$ (oaks/all trees)	$\begin{aligned} & \text { BA } \\ & \mathrm{m}^{2} \mathrm{ha}^{-1} \end{aligned}$	Diameter class (DC)			
						1	2	3	4
						Basal area (m ${ }^{2} \mathrm{ha}^{-1}$)			
C,T	2012- Before Treatment	10.7	7.7	1059/1133	5.60	0.27	0.55	1.67	3.10
T	2012- After Treatment	16.0	12.3	289/317	2.82	0.07	0.24	0.50	2.01
C	2016	11.6	8.4	1059/1133	8.31	1.03	1.35	2.62	3.66
T	2016	17.1	13.3	289/317	5.14	0.06	0.50	0.91	3.67
						Frequency (0-1)			
C	2012-16					0.531	0.182	0.175	0.112
T	2012-16					0.154	0.269	0.231	0.346

Table 2.

	Control (C)	Treated (T)	F, Chi	Treatment: epicormic and stump shoots
Shoot length (cm)	4.3 ± 2.3	4.4 ± 2.5	$(\mathrm{~ns})$	13.4 ± 4.0
Shoot diameter (mm)	1.69 ± 0.44	1.81 ± 0.71	$(\mathrm{~ns})$	2.74 ± 0.37
Shoot leaves $\left(\mathrm{n}^{\circ}\right)$	$\mathbf{6 . 4} \pm \mathbf{3 . 8}$	$\mathbf{7 . 3} \pm \mathbf{3 . 7}$	$\left(^{*}\right)$	18.8 ± 4
Shoot leaf area $\left(\mathrm{cm}^{2}\right)$	$\mathbf{3 2 . 3} \pm \mathbf{2 0 . 2}$	$\mathbf{2 8 . 8} \pm \mathbf{1 6 . 9}$	$\left(^{*}\right)$	79.5 ± 23.1
Shoot SLA $\left(\mathrm{cm}^{2} \mathrm{mg}^{-1}\right)$	$\mathbf{0 . 0 4 0} \pm .002$	$\mathbf{0 . 0 4 2} \pm .001$	$\left(^{*}\right)$	$0.045 \pm .009$
Shoots per branch $\left(\mathrm{n}^{0}\right)$	$\mathbf{3 4 . 9} \mathbf{1 3 . 3}$	$\mathbf{4 9 . 4} \pm \mathbf{3 0 . 5}$	$\left(^{*}\right)$	-
Tree-based LAI $\left(\mathrm{m}^{2} \mathrm{~m}^{-2}\right)$	0.81 ± 0.31	0.93 ± 0.22	$2.36(\mathrm{~ns})$	-

is also reproduced here. In 2012, ET in both C and T was arbitrarily assigned to begin at 115 mm . The E_{r} line represents 9 days running average.

Table 1.

Table 3.

		Date		Atmosphere					$\theta_{\text {rel }}$	Treat ment	Tree size			
		Year	MJD	Hour	D	U	$\mathrm{R}_{\mathrm{s}, \mathrm{a}}$	T			DC	$\mathrm{D}_{\text {BH }}$	Sa	Cpa
Hourly time step														
Entire period	v_{s}	0.08	0.07	0.09	0.26	0.04	0.19	0.28	-0.17	0.17	0.08	0.05	0.06	0.06
	S_{f}	0.10	0.10	0.10	0.21	0.05	0.16	0.23	-0.12	0.19	0.22	0.38	0.44	0.44
Growing season	v_{s}	0.39	0.38	0.09	0.18	0.18	0.07	0.16	-0.08	0.25	0.18	0.20	0.20	0.17
	S_{f}	0.24	0.23	0.06	0.12	0.11	0.05	0.11	-0.07	0.24	0.28	0.57	0.61	0.60
Daily time step														
Entire period	v_{s}	0.13	0.12		0.43	-0.16	0.48	0.40	-0.29	0.29	0.08	0.15	0.16	0.13
	S_{f}	0.12	0.12		0.27	-0.08	0.27	0.25	-0.18	0.28	0.33	0.66	0.71	0.69
Growing season	$\mathrm{v}_{\text {s }}$	0.10	0.08		0.30	-0.07	0.34	0.23	-0.16	0.35	0.09	0.18	0.18	0.15
	S_{f}	0.10	0.09		0.18	-0.02	0.18	0.15	-0.11	0.31	0.36	0.73	0.79	0.77
Vegetative period time step (Nov-Feb, Mar-Oct)														
Entire period	$\mathrm{v}_{\text {s }}$	0.29			0.28		0.26	0.25	-0.23					
	S_{f}				0.34	-0.21	0.32	0.31	-0.27	0.29	0.35	0.69	0.74	0.72
Growing season	v_{s}	0.31			0.47		0.39	0.49		0.43				
	S_{f}									0.33	0.39	0.78	0.84	0.82

Table 4.

		Importance (0-100)					
	Adj.r	Date	Atmosphere	$\theta_{\text {rel }}$	Treatment	Tree structure	
Dourly time step							
v_{s}	$0.283^{\text {s,\# }}$	2.0	12.0	10.0	27.0	49.0	
$\mathrm{~S}_{\mathrm{f}}$	$0.473^{\text {s,\# }}$	2.0	11.0	5.0	29.0	53.0	
Daily time step							
v_{s}	$0.343^{\#}$	9.9	9.6	0.8	25.6	53.9	
$\mathrm{~S}_{\mathrm{f}}$	$0.711^{\#}$	10.4	13.9	0.7	26.8	48.1	
	Growing season (Mar-Oct)						
v_{s}	0.392	-	57.0	-	43.0	-	

S_{f}	0.774	-	9.0	-	2.0	89.0

\$ showed autocorrelation; \# showed multi-collinearity.

Table 5.

Treatm ent	$\begin{aligned} & \mathrm{ET} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{E}_{\mathrm{s}} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \mathrm{E}_{\mathrm{t}} \\ \mathrm{~mm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{E}_{\mathrm{r}} \\ \mathrm{~mm} \end{array}$	$\begin{aligned} & \hline \mathrm{ET} \\ & \% \mathrm{Pg} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{E}_{\mathrm{s}} \\ & \% \mathrm{Pg} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{E}_{\mathrm{t}} \\ & \% \mathrm{Pg} \\ & \hline \end{aligned}$	E_{r} \% Pg
2012 (Oct-Dec) (Pg: 262 mm)								
C	19	3.5	11.5	4.0	7\%	1\%	4\%	2\%
T	18	7.0	8.0	3.1	7\%	3\%	3\%	1\%
2013 (Pg: 405 mm)								
C	138	45	77	16	34\%	11\%	19\%	4\%
T	154	81	58	15	38\%	20\%	14\%	4\%
2014 (Pg: 354 mm)								
C	171	51	108	12	48\%	14\%	31\%	3\%
T	208	89	101	18	59\%	25\%	29\%	5\%
2015 (Pg: 320 mm)								
C	201	49	105	46	63\%	15\%	33\%	14\%
T	251	86	121	44	78\%	27\%	38\%	14\%
2016 (Pg: 499 mm)								
C	156	43	87	25	31\%	9\%	17\%	5\%
T	176	64	94	18	35\%	13\%	19\%	4\%
Total 2013-2016 (Pg: 1578 mm)								
C	665	188	378	99	42\%	12\%	24\%	6\%
T	789	320	374	94	50\%	20\%	24\%	6\%

Supplemental material

SUPPLEMENTAL MATERIAL

Table S1. Hourly MLR full models for sap flow
S1.a) Dependent Variable: Sap flow velocity ($\mathrm{v}_{\mathrm{s}}, \mathrm{cm} \mathrm{h}^{-1}$)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.283	.283	2.624867001030	.383	$1336.680^{* * *}$

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics		Importance
	B	Std. Error	Beta			Tolerance	VIF	
(Constant)	-1989.132	23.486		-84.695	. 000			
year	. 983	. 012	. 381	84.392	. 000	. 798	1.253	2
Treat.	3.613	. 098	. 583	36.960	. 000	. 065	15.273	27
D	. 000	. 000	. 096	9.392	. 000	. 155	6.460	1
DC	. 072	. 003	. 239	25.703	. 000	. 189	5.293	13
$\theta_{\text {rel } 15}$	2.248	. 091	. 134	24.582	. 000	. 550	1.817	10
Sa	-. 007	. 001	-. 364	-7.318	. 000	. 007	152.019	1
U_av	. 469	. 033	. 062	14.009	. 000	. 825	1.212	5
T	. 036	. 004	. 092	8.563	. 000	. 141	7.114	2
BA	-. 088	. 003	-7.299	-25.177	. 000	. 000	5164.556	13
Cpa	1.065	. 042	5.877	25.082	. 000	. 000	3371.358	13
D_{BH}	. 703	. 032	1.774	22.181	. 000	. 003	392.938	10
$\mathrm{R}_{\mathrm{s}, \mathrm{a}}$. 001	. 000	. 051	9.780	. 000	. 598	1.673	2
Hour	. 088	. 010	. 048	8.985	. 000	. 562	1.780	2

S1.b) Dependent Variable: Sap flow (Sf, 1 tree ${ }^{-1}$ hour $^{-1}$)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.473	.473	.889392744849	.318	$3553.263^{* * *}$

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics		Importance
	B	Std. Error	Beta			Tolerance	VIF	
(Constant)	-470.179	7.164		-65.635	. 000			
Sa	. 004	. 000	. 513	14.444	. 000	. 008	123.142	6.5
year	. 233	. 004	. 230	65.412	. 000	. 828	1.207	1.8
$\mathrm{D}_{\text {BH }}$. 052	. 009	. 326	5.738	. 000	. 003	314.110	1
D	$5.469 \mathrm{E}-5$. 000	. 050	6.153	. 000	. 154	6.479	0.4
Treat.	. 746	. 025	. 304	30.384	. 000	. 102	9.799	28.7
$\theta_{\text {_rel } 15}$. 390	. 029	. 059	13.458	. 000	. 538	1.858	5.1
DC	. 020	. 001	. 178	25.587	. 000	. 212	4.717	20.4
Cpa	. 246	. 011	3.348	21.503	. 000	. 000	2365.037	14.4
BA	-. 018	. 001	-3.722	-18.665	. 000	. 000	3879.167	11
U_av	. 119	. 010	. 042	11.674	. 000	. 808	1.238	5
T	. 012	. 001	. 078	9.048	. 000	. 137	7.281	2.6
Hour	. 022	. 003	. 031	7.387	. 000	. 570	1.755	1.7
$\mathrm{R}_{\mathrm{s}, \mathrm{a}}$. 000	. 000	. 028	6.660	. 000	. 597	1.676	1.3

Table S2. Daily MLR full models for sap flow
S2.a) Dependent Variable: Sap flow velocity ($\mathrm{v}_{\mathrm{s}}, \mathrm{cm} \mathrm{h}^{-1}$)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.344	.343	1.3990840	1.687	$344.315^{* * *}$

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics		Importance
	B	Std. Error	Beta			Tolerance	VIF	
(Constant)	-3172.947	199.397		-15.913	. 000			
Treat.	3.582	. 116	1.037	30.802	. 000	. 074	13.604	25.6
$\mathrm{R}_{\mathrm{s}, \mathrm{a}}$. 004	. 000	. 184	14.905	. 000	. 549	1.822	5.5
D	. 000	. 000	. 150	11.046	. 000	. 451	2.218	0.8
$\mathrm{D}_{\text {BH }}$. 940	. 038	4.243	24.498	. 000	. 003	359.815	16.2
U_av	-. 879	. 070	-. 126	-12.473	. 000	. 819	1.221	3.3
year	1.696	. 107	1.169	15.796	. 000	. 015	65.712	5.3
MJD	-. 004	. 000	-1.113	-14.716	. 000	. 015	68.559	4.6
$\theta_{\text {rel } 15}$	-. 718	. 126	-. 077	-5.696	. 000	. 453	2.209	0.8
BA	-. 106	. 004	-15.782	-25.293	. 000	. 000	4670.135	17.3
Cpa	1.217	. 051	11.979	23.845	. 000	. 000	3027.480	15.4
DC	. 045	. 003	. 273	12.903	. 000	. 187	5.352	4.5
Sa	-. 005	. 001	-. 498	-4.488	. 000	. 007	147.481	0.5

S2.b) Dependent Variable: Sap flow (Sf, 1 tree ${ }^{-1}$ hour $^{-1}$)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.712	.711	.3575846	1.664	$1819.292^{* * *}$

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics		Importance
	B	Std. Error	Beta			Tolerance	VIF	
(Constant)	-534.540	47.559		-11.239	. 000			
Sa	. 003	. 000	. 748	11.813	. 000	. 008	123.081	9.0
D	. 000	. 000	. 106	12.415	. 000	. 449	2.227	2.9
D_{BH}	. 036	. 009	. 413	4.079	. 000	. 003	314.032	1.1
Treat.	. 485	. 024	. 364	20.371	. 000	. 102	9.803	26.7
$\mathrm{R}_{\mathrm{s}, \mathrm{a}}$. 001	. 000	. 095	12.361	. 000	. 555	1.800	8.7
year	. 283	. 026	. 514	11.065	. 000	. 015	66.075	6.2
DC	. 012	. 001	. 194	15.642	. 000	. 212	4.713	15.8
Cpa	. 154	. 011	3.853	13.879	. 000	. 000	2363.815	12.4
BA	-. 012	. 001	-4.391	-12.352	. 000	. 000	3877.536	9.8
MJD	-. 001	. 000	-. 431	-9.120	. 000	. 015	68.555	4.2
U_av	-. 125	. 017	-. 048	-7.559	. 000	. 812	1.231	2.3
$\theta_{\text {rel } 15}$	-. 108	. 030	-. 030	-3.552	. 000	. 453	2.206	0.7

Table S3. Seasonal MLR full models for sap flow
S3.a) Dependent Variable: Sap flow velocity ($\mathrm{v}_{\mathrm{s}}, \mathrm{cm} \mathrm{h}^{-1}$)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.418	.392	1.046155	2.293	$16.131^{* * *}$

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics		Importance
	B	Std. Error	Beta			Tolerance	VIF	
(Constant)	-4.919	1.528		-3.220	. 002			
T	. 426	. 100	. 486	4.271	. 000	1.000	1.000	57
Treat.	1.131	. 302	. 426	3.744	. 001	1.000	1.000	43

S3.b) Dependent Variable: Sap flow (Sf, 1 tree ${ }^{-1}$ hour $^{-1}$)

R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson	F
.788	.774	.266956	1.910	$56.877^{* * *}$

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics		Importance
	B	Std. Error	Beta			Tolerance	VIF	
(Constant)	-1.545	. 390		-3.962	. 000			
Treat.	. 148	. 078	. 133	1.895	. 064	. 941	1.063	2
T	. 093	. 025	. 248	3.650	. 001	1.000	1.000	9
Sa	. 003	. 000	. 810	11.566	. 000	. 941	1.063	89

Figure S1. Mean annual values of sap flow variables (Vs, Sf) and vapour pressure deficit (D, mean of daily maximums) in both the control (C) and the cleared (T) plots in the supressed-intermediate trees (diameter classes 1 and 2) and the dominantcodominant trees (diameter classes 3 and 4).

Figure S2. Seasonal mean values of the decoupling coefficient Ω in both the control (C) and the cleared (T) plots.

$$
\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) ; \mathrm{D}(\mathrm{hPa})
$$

Rs,a (W m ${ }^{-2}$)

Figure 3

Figure 6_{1}

Relative Soil moisture class

. . Kep wm
Mar-Oct

. Kep wim

Pg (mm)

