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Abstract

Since the appearance of the first distributed databases until the current modern
replication systems, the research community has proposed multiple protocols to
manage data distribution and replication, along with concurrency control algo-
rithms to handle transactions running at every system node. Many protocols are
thus available, each one with different features and performance, and guarantee-
ing different consistency levels. To know which replication protocol is the most
appropriate, two aspects must be considered: the required level of consistency
and isolation (i.e., the correctness criterion), and the properties of the system
(i.e., the scenario), which will determine the achievable performance.

Regarding correctness criteria, one-copy serializability is broadly accepted as the
highest level of correctness. However, its definition allows different interpre-
tations regarding replica consistency. In this thesis, we establish a correspon-
dence between memory consistency models, as defined in the scope of distributed
shared memory, and possible levels of replica consistency, thus defining new cor-
rectness criteria that correspond to the identified interpretations of one-copy seri-
alizability.

Once selected the correctness criterion, the achievable performance of a system
heavily depends on the scenario, i.e., the sum of both the system environment and
the applications running on it. In order for the administrator to select a proper
replication protocol, the available protocols must be fully and deeply known.
A good description of each candidate is fundamental, but a common ground is
mandatory to compare the different options and to estimate their performance in
the given scenario. This thesis proposes a precise characterization model that al-
lows us to decompose algorithms into individual interactions between significant
system elements, as well as to define some underlying properties, and to associate
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each interaction with a specific policy that governs it. We later use this model as
basis for a historical study of the evolution of database replication techniques,
thus providing an exhaustive survey of the principal existing systems.

Although a specific replication protocol may be the best option for certain sce-
nario, as systems are dynamic and heterogeneous, it is difficult for a single proto-
col to continuously be the proper choice, as it may degrade or be unable to meet
all requirements. In this thesis we propose a metaprotocol that supports several
replication protocols which follow different replication techniques and may pro-
vide different isolation levels. With this metaprotocol, replication protocols can
either work concurrently with the same data or be sequenced for adapting to dy-
namic environments.

Finally we consider integrity constraints, which are extensively used in databases
to define semantic properties of data but are often forgotten in replicated data-
bases. We analyze the potential problems this may involve and provide simple
guidelines to extend a protocol so that it notices and properly manages abortions
due to integrity violations.



Resumen

Desde la aparición de las primeras bases de datos distribuidas hasta los actuales
sistemas de replicación modernos, la comunidad de investigación ha propuesto
múltiples protocolos para administrar la distribución y replicación de datos, junto
con algoritmos de control de concurrencia para manejar las transacciones en eje-
cución en todos los nodos del sistema. Muchos protocolos están disponibles, por
tanto, cada uno con diferentes características y rendimiento, y garantizando dife-
rentes niveles de coherencia. Para saber qué protocolo de replicación es el más
adecuado, dos aspectos deben ser considerados: el nivel necesario de coherencia
y aislamiento (es decir, el criterio de corrección), y las propiedades del sistema
(es decir, el escenario), que determinará el rendimiento alcanzable.

Con relación a los criterios de corrección, la serialización de una copia es amplia-
mente aceptada como el más alto nivel de corrección. Sin embargo, su definición
permite diferentes interpretaciones en cuanto a la coherencia de réplicas. En esta
tesis se establece una correspondencia entre los modelos de coherencia de me-
moria, tal como se definen en el ámbito de la memoria compartida distribuida, y
los posibles niveles de coherencia de réplicas, definiendo así nuevos criterios de
corrección que corresponden a las diferentes interpretaciones identificadas sobre
la serialización de una copia.

Una vez seleccionado el criterio de corrección, el rendimiento alcanzable por un
sistema depende en gran medida del escenario, es decir, de la suma del entorno
del sistema y de las aplicaciones que se ejecutan en él. Para que el administrador
pueda seleccionar un protocolo de replicación apropiado, los protocolos dispo-
nibles deben conocerse plena y profundamente. Una buena descripción de cada
candidato es fundamental, pero un marco común es imperativo para comparar
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las diferentes opciones y estimar su rendimiento en un escenario dado. Esta te-
sis propone un modelo de caracterización precisa que nos permite descomponer
los algoritmos en interacciones individuales entre los elementos significativos del
sistema, así como en algunas propiedades subyacentes, y asociar cada interacción
con una política específica que la rige. Más tarde se utiliza este modelo como ba-
se para un repaso histórico de la evolución de las técnicas de replicación de bases
de datos, proporcionando así un estudio exhaustivo de los principales sistemas
existentes.

Aunque un cierto protocolo de replicación puede ser la mejor opción para un
escenario determinado, los sistemas son dinámicos y heterogéneos, y por tanto
es difícil que un único protocolo sea continuamente la elección correcta, ya que
puede degradarse o puede no llegar a satisfacer todas las necesidades. En esta
tesis se propone un metaprotocolo que soporta varios protocolos de replicación
que siguen diferentes técnicas y pueden proporcionar diferentes niveles de ais-
lamiento. Con este metaprotocolo, los protocolos de replicación puede trabajar
simultáneamente con los mismos datos o intercambiarse para adaptarse a entor-
nos dinámicos.

Por último se tienen en cuenta las restricciones de integridad, que son amplia-
mente utilizadas en bases de datos para definir las propiedades semánticas de los
datos, pero son a menudo olvidadas en bases de datos replicadas. Se analizan
los posibles problemas que esto puede implicar y se ofrecen pautas sencillas pa-
ra ampliar un protocolo de forma que identifique y gestione adecuadamente los
abortos causados por violaciones de integridad.



Résumé

Depuis l’apparition des premières bases de données distribuées jusqu’aux sys-
tèmes de réplication actuels, la communauté des chercheurs a proposé plusieurs
protocoles pour gérer la distribution des données et la réplication, ainsi que des
algorithmes de contrôle de concurrence pour traiter les opérations en cours d’exé-
cution dans chaque noeud du système. De nombreux protocoles sont donc dispo-
nibles, chacun avec différentes caractéristiques et performances, garantissant des
niveaux différents de cohérence. Pour savoir quel protocole de réplication est le
plus approprié, deux aspects doivent être considérés : le niveau requis de co-
hérence et isolement (c’est à dire, le critère de correction), et les propriétés du
système (le scénario), qui déterminera la performance atteignable.

En ce qui concerne aux critères de correction, la sérialisabilité d’une copie est
généralement considéré comme le plus haut niveau de correction. Toutefois, sa
définition permet des interprétations différentes quant à la cohérence de répli-
cas. Dans cette thèse, nous établissons une correspondance entre les modèles de
cohérence de mémoire, tels que définis dans le champ de la mémoire partagée
distribuée, et les niveaux possibles de cohérence de répliques, établissant ainsi de
nouveaux critères de correction qui correspondent aux interprétations identifiées
de sérialisabilité d’une copie.

Une fois choisi le critère de correction, le rendement possible d’un système dé-
pend en grande partie du scénario, à savoir, la somme de l’environnement du
système et des applications s’exécutant dessus. Afin que l’administrateur sélec-
tionne un protocole de réplication approprié, les protocoles disponibles doivent
être pleinement et profondément connus. Une bonne description de chaque can-
didat est fondamental, mais une base commune est impérative pour comparer
les différentes options et évaluer leurs rendements dans le scénario donné. Cette
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thèse propose un modèle de caractérisation précise qui nous permet de décom-
poser les algorithmes en les interactions individuelles entre les éléments majeurs
du système ainsi qu’en certaines propriétés sous-jacentes et d’associer chaque
interaction à une politique spécifique qui la régit. Nous avons ensuite utilisé ce
modèle comme base pour une révision historique de l’évolution des techniques
de réplication de bases de données, fournissant ainsi une étude exhaustive des
principaux systèmes existants.

Même si un protocole de réplication spécifique peut être la meilleure option pour
un certain scénario, comme les systèmes sont dynamiques et hétérogènes, il est
difficile pour un protocole unique d’être continuellement le bon choix, car il peut
se dégrader ou être incapable de satisfaire tous les besoins. Dans cette thèse nous
proposons un metaprotocole qui soutient plusieurs protocoles de réplication qui
suivent différentes techniques de réplication et peuvent fournir différents niveaux
d’isolement. Avec ce metaprotocole, les protocoles de réplication peuvent tra-
vailler simultanément avec les mêmes données ou être séquencés pour s’adapter
à des environnements dynamiques.

Enfin nous considérons les contraintes d’intégrité, qui sont largement utilisées
dans les bases de données pour définir les propriétés sémantiques des données
mais sont souvent oubliées dans les bases de données répliquées. Nous analysons
les problèmes potentiels de celà et fournisons des lignes directrices simples pour
étendre un protocole de sorte qu’il gère correctement les avortements en raison
de violations de l’intégrité.



Resumo

Desde o aparecimento das primeiras bases de dados distribuídas até aos actu-
ais sistemas de replicação modernos, a comunidade científica propôs múltiplos
protocolos para gerir a distribuição dos dados e a replicação, juntamente com al-
goritmos de controlo de concorrência para lidar com transações em execução em
cada nó do sistema. Muitos protocolos estão, portanto, disponíveis, cada um com
diferentes características e desempenho, e garantindo níveis de coerência dife-
rentes. Para saber qual o protocolo de replicação mais adequado, dois aspectos
devem ser considerados: o nível de coerência e isolamento (ou seja, o critério de
correção), e as propriedades do sistema (ou seja, o cenário), que irá determinar o
desempenho alcançável.

Quanto aos critérios de correção, a serializabilidade de uma cópia é amplamente
aceite como o mais alto nível de correção. No entanto, sua definição permite
diferentes interpretações quanto á coerência de réplicas. Nesta tese, nós estabele-
cemos uma correspondência entre os modelos de coerência de memória, tal como
definidos no âmbito da memória partilhada distribuída e os possíveis níveis de co-
erência de réplicas, definindo novos critérios de correção, que correspondem às
interpretações identificadas da serializabilidade de uma cópia.

Uma vez selecionado o critério de correção, o desempenho possível de um sis-
tema depende muito do cenário concreto, ou seja, a combinação do ambiente do
sistema com as aplicações que nele correm. Para que o administrador selecione
um protocolo de replicação adequado, os protocolos disponíveis devem ser plena
e profundamente conhecidos. Uma boa descrição de cada um dos candidatos é
fundamental, mas um terreno comum é imperativo para comparar as diferentes
opções e avaliar o seu desempenho no cenário concreto. Esta tese propõe um
modelo de caracterização precisa que nos permite decompor os algoritmos em
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interações individuais entre os elementos significativos do sistema, bem como
em algumas propriedades subjacentes, e associar cada interação com uma polí-
tica específica que a rege. Mais tarde, usamos este modelo como base para uma
revisão histórica da evolução das técnicas de replicação de bases de dados, pro-
porcionando assim um estudo exaustivo dos principais sistemas existentes.

Apesar de um protocolo de replicação específico poder ser a melhor opção para
um determinado cenário, como os sistemas são dinâmicos e heterogéneos, é di-
fícil que um único protocolo seja continuamente a escolha adequada, pois pode
degradar-se ou ser incapaz de cumprir todos os requisitos. Nesta tese propomos
um metaprotocolo que suporta vários protocolos que seguem diferentes técnicas
de replicação e podem proporcionar diferentes níveis de isolamento. Com este
metaprotocolo, os protocolos de replicação podem trabalhar simultaneamente
com os mesmos dados ou ser sequenciados para se adaptar a ambientes dinâ-
micos.

Finalmente, consideramos as restrições de integridade, que são amplamente uti-
lizadas em bases de dados para definir as propriedades semânticas dos dados,
mas muitas vezes são esquecidas em bases de dados replicadas. Analisamos os
problemas potenciais que isso pode envolver e fornecemos orientações simples
para estender um protocolo para que ele perceba e gere corretamente os abortos
devidos a violações de integridade.



Resum

Des de l’aparició de les primeres bases de dades distribuïdes fins als actuals sis-
temes de replicació moderns, la comunitat d’investigació ha proposat diversos
protocols per a administrar la distribució i replicació de dades, juntament amb
algorismes de control de concurrència per gestionar les transaccions en execució
en tots els nodes del sistema. Molts protocols estan disponibles per tant, cadascun
amb diferents característiques i rendiment, i garantint diferents nivells de cohe-
rència. Per saber quin protocol de replicació és el més adequat, dos aspectes han
de ser considerats: el nivell necessari de coherència i aïllament (és a dir, el criteri
de correcció), i les propietats del sistema (és a dir, l’escenari), que determinarà el
rendiment assolible.

Pel que fa als criteris de correcció, la serialització d’una còpia és àmpliament
acceptada com el més alt nivell de correcció. No obstant això, la seua defini-
ció permet interpretacions diferents pel que fa a la coherència de rèpliques. En
aquesta tesi, s’estableix una correspondència entre els models de coherència de
memòria, tal com es defineixen en l’àmbit de la memòria compartida distribuï-
da, i els possibles nivells de coherència de rèpliques, definint així nous criteris
de correcció que corresponen a les interpretacions identificades de serialització
d’una còpia.

Una vegada seleccionat el criteri de correcció, el rendiment que podria obtenir un
sistema depèn en gran mesura de l’escenari, és a dir, la suma de tots dos l’entorn
del sistema i les aplicacions que s’executen en ell. Perquè l’administrador puga
seleccionar un protocol de replicació apropiat, els protocols disponibles han de
ser plenament i profunda coneguts. Una bona descripció de cada candidat és
fonamental, però un marc en comú és imperatiu per a comparar les diferents
opcions i estimar el seu rendiment en l’escenari donat. Aquesta tesi proposa un

xiii



model de caracterització precisa que ens permet descompondre els algorismes
en les interaccions individuals entre els elements significatius dels sistemes, així
com en algunes propietats subjacents, i associar cada interacció amb una política
específica que ha de regir-la. Més tard, utilitzem aquest model com a base per a
un repàs històric de l’evolució de les tècniques de replicació de bases de dades,
proporcionant així un estudi exhaustiu dels principals sistemes existents.

Tot i que un protocol de replicació específic pot ser la millor opció per a un es-
cenari concret, com els sistemes són dinàmics i heterogenis, és difícil que un
protocol únic siga contínuament l’elecció correcta, ja que es pot degradar o pot
no satisfer totes les necessitats. En aquesta tesi es proposa un metaprotocol que
suporta diversos protocols de replicació que segueixen diferents tècniques de re-
plicació i poden proporcionar diferents nivells d’aïllament. Amb aquest metapro-
tocol, els protocols de replicació poden treballar simultàniament amb les mateixes
dades o ser seqüenciats per adaptar-se a entorns dinàmics.

Finalment es tenen en compte les restriccions d’integritat, que són àmpliament
utilitzades en bases de dades per definir les propietats semàntiques de les dades,
però són sovint oblidades en bases de dades replicades. S’analitzen els possibles
problemes que això pot implicar i s’ofereixen pautes senzilles per ampliar un
protocol perquè gestione adequadament els avortaments causats per violacions
d’integritat.
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Chapter 1

Introduction

Database systems have always been focus of special attention, as they constitute
an element of primordial interest at any organization, due to the necessity of both
ensuring data consistency and offering a good performance regarding availabil-
ity, as well as guaranteeing the correct running of the system even when some
component fails.

Replication is the common solution to achieve high availability and fault toler-
ance. To provide a database system with these properties, replicas –copies– of
the data are stored at different nodes. This way, distributed and replicated data-
bases appeared, as a replacement of the existing centralized, stand-alone systems
which had as main drawbacks their fragility (a single point of failure) and poor
performance.

In a replicated database, updates made to any of the copies of a data item must
be broadcast to the rest of replicas in order to maintain consistency. This process
is managed by a replication or consistency protocol. Since the appearance of
the first distributed databases until the current modern replication systems, the
research community has proposed multiple protocols to manage data distribution
and replication, along with concurrency control algorithms to handle transactions
running at every system node. Therefore, many protocols are available, each one
with different features and different performance, and guaranteeing a different
consistency level. The question that raises immediately is: which replication
protocol is the most appropriate? Two aspects must be considered to answer
such a question: on one hand, the required level of isolation and consistency; on
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the other hand, the properties of the system that will determine the achievable
performance.

The required consistency level depends on the needs of the application and the
nature of the data. Intuitively, a replicated system with n copies of the data,
an n-copy system, should behave as a non-replicated, one-copy system. This is
known as the one-copy equivalence (1CE) property. Besides replica consistency,
a certain isolation level must be enforced to meet the requirements of the applica-
tion. The combination of both aspects defines the correctness criterion that must
be guaranteed by the replication system. In early replicated distributed database
systems, correctness was usually defined as one-copy serializability: a database
spread over multiple sites must behave as a unique node, and the result of concur-
rently executing transactions must be equivalent to that of a serial execution of
the same set of transactions. In order to ensure such guarantees, concurrency was
managed by distributed locking, and atomic commit protocols controlled trans-
action termination. Such systems, however, suffered from low performance and
poor scalability due to the high cost of the protocols in use. Research focused
then on improving performance and scalability while maintaining the correct-
ness criterion of one-copy serializability. Atomic broadcast was proposed as a
better alternative to atomic commit protocols, and transactions were locally ex-
ecuted before being broadcast to the rest of replicas. Outstanding performance
improvements were achieved. However, enforced guarantees were subtly but sig-
nificantly modified. This thesis carefully analyzes both solutions and states the
different guarantees they provide by establishing a correspondence with memory
consistency models as defined in the scope of distributed shared memory. This
first contribution allows the proposal of new correctness criteria that will be used
throughout the thesis.

Once a certain correctness criterion is selected, the achievable performance of a
system heavily depends on the scenario, i.e., the sum of both the system envi-
ronment and the applications running on it. Many different characteristics should
be considered when selecting the replication protocol. Thus, regarding the envi-
ronment, two important factors are the network latency (fast or slow connections)
and the workload (low, high or with peaks of activity). When analyzing the appli-
cations, factors as the conflict rate (low, if most of the transactions are read-only,
or high, if most of the transactions are updates), the access pattern (hot spots in
the database, high locality of data) or the transaction length (short, long) should
be considered in order to decide the best protocol for each scenario.
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1. INTRODUCTION

For example, in a system with slow connections, the network may act as a bottle-
neck. This forces the administrator to select a replication protocol that minimizes
the number of messages sent. At least one message per transaction is needed (a
constant number of messages higher than 1 may be also bearable), leading to the
selection of a constant interaction protocol. On the other hand, if the network is
fast, there is no need to save messages and any (reasonable) number of them can
be sent, e.g., depending on the transaction length. In this case, a linear interac-
tion protocol can be more interesting. In general, depending on the characteristics
of the environment, the administrator can choose one replication protocol as the
most suitable.

Considering the applications running in the system, an important factor is the
transaction length. The probability of abortion of a transaction is proportional
to the probability of overlapping with other transactions in the system, which, in
turn, is proportional to the length of transactions. This way, an application with
long transactions will present a high probability of overlapping and, thus, of abor-
tions. To abort a long transaction implies that all the invested time was wasted and
all the performed work must be rolled back. For this reason, in long-transaction
applications it is preferable to use a pessimistic replication that avoids abortions at
the end of transactions by preventing concurrency between potentially conflicting
transactions. As a consequence of reducing concurrency, the throughput of the
system decreases. On the other hand, in a short-transaction application, the prob-
ability of overlapping is low and, even if transactions overlap and some conflicts
appear, aborting and retrying transactions is bearable due to their short duration.
In this case, an optimistic replication, which allows transactions to execute con-
currently and solves conflicts by aborting the necessary transactions at the end,
achieves lower response times and higher throughput. In general, depending on
the requirements of the client application, the administrator can choose one repli-
cation protocol as the most suitable.

However, in order for the administrator to make such election, the available pro-
tocols must be fully and deeply known. A good description of each candidate
is fundamental, but a common ground is mandatory to compare the different op-
tions and to estimate their performance in the given scenario. The second contri-
bution of this thesis is to provide such common ground in the form of a precise
characterization model for replication protocols. This model, based on policies
and strategies, allows us to decompose algorithms into individual interactions be-
tween significant system elements, as well as to define some underlying proper-
ties, and to associate each interaction with a specific policy that governs it. Thus,
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a replication system can be described as a combination of policies. This common
framework allows an easy understanding and comparison between protocols and
is later used as basis for a historical study of the evolution of database replication
techniques, thus providing, as third contribution, an exhaustive survey of the prin-
cipal existing systems, where more than 50 different systems are characterized in
detail following our model.

Even provided with a framework to compare replication techniques, the common
approach followed by the designers of database replication systems is to analyze
their general scenario once and accordingly elect a single replication protocol that
will permanently remain in their systems. Such combination of a single analysis
and a permanent decision over a unique protocol constitutes an approach that is
perfect if everything is static and homogeneous. But systems are dynamic: en-
vironments evolve changing their characteristics, which can drastically decrease
the performance of the elected protocol. This is the first target of an adaptable
system: as the environment changes, the replication system should adapt to the
new situation. But dynamism in the environment is not the only problem: ap-
plications are also dynamic and undergo updates which may modify or increase
the requirements of the application; and systems are heterogeneous and multi-
ple applications or procedures can concurrently access the same database. For
example, when a long- and a short-transaction applications execute concurrently
in the system, long and short transactions must be completed. If optimistically
managed, long transactions may always abort due to conflicts with faster short
ones. If pessimistically replicated, short transactions may last much longer. This
is the second target of an adaptable system: when facing changing and different
(even opposite) concurrent requirements, the replication system should adapt to
meet all of them as much as possible.

This way, the common static, single-protocol approach lacks flexibility for chang-
ing scenarios or when dealing with heterogeneous client application require-
ments. In those cases, the initially chosen protocol degrades or cannot meet all
requirements. The reason for this is that dynamic and heterogeneous scenarios
require a highly adaptable replication. The fourth contribution of this thesis is
the proposal of a metaprotocol that supports several replication protocols which
may follow different replication techniques or provide different isolation levels.
Within this metaprotocol, the replication protocols can either work concurrently
with the same data or be sequenced for adapting to dynamic environments. Ex-
perimental results demonstrate the low overhead of the metaprotocol and measure
the influence of protocol concurrency on system performance.
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1. INTRODUCTION

The last contribution of this thesis deals with integrity constraints, an important
aspect which is widely forgotten in replicated databases. Integrity constraints are
extensively used in databases to define semantic properties of data. If a transac-
tion violates any of such constraints, the database management system (DBMS)
unmercifully aborts it. In a replicated database, this abortion may happen after
the middleware replication protocol decided (and assumed) the commitment of
the transaction. While integrity is guaranteed by the DBMS, it is possible that
the protocol does not notice the unexpected abortion, which can lead protocols to
lose their liveness and make mistakes when processing subsequent transactions.
In this thesis, we argue that a replication protocol must recognize abortions due
to integrity violations, and react appropriately.

1.1 Contributions and Outline of this Thesis

Basic concepts and definitions are presented in chapter 2. Remaining chapters are
devoted to each of the contributions of this thesis, which are summarized here:

• New correctness criteria that explicitly state the enforced isolation level
and the guaranteed replica consistency (Chapter 3).

• A characterization model to describe in detail and compare database repli-
cation systems (Chapter 4).

• An exhaustive analysis of database replication systems proposed since the
origin of this research branch, with a complete description according to
the previous model and the specification of the exact correctness criteria
guaranteed (Chapter 5).

• A metaprotocol that provides database replication systems with the re-
quired adaptability by allowing the activation and deactivation, as well as
the concurrent execution, of different replication protocols, defined accord-
ingly to the previous model (Chapter 6).

• A methodology for supporting integrity constraints in middleware database
replication protocols (Chapter 7).
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1.1. CONTRIBUTIONS AND OUTLINE OF THIS THESIS

After the thesis conclusions in Chapter 8, Appendix A discusses about the cor-
rectness of the metaprotocol, whose complete pseudocode is included in Ap-
pendix B.
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Chapter 2

Concepts and Definitions

All necessary background concepts are defined in this chapter.

Server, clients and failures A distributed (and possibly replicated) database
is a distributed system composed of database servers, also called nodes or sites,
N1, N2, . . . , Nn, which store data, and clients or users1 that contact these servers
to access the data. Servers only communicate by message passing, as they do not
have shared memory. Consequently, they neither have a global clock. Depend-
ing on the failure model assumed, failures are considered at different degrees. In
the crash-stop model, when servers fail they permanently stop all their process-
ing. In this case, a site is correct if it never crashes, otherwise it is faulty. The
crash-recovery model allows failed servers to eventually recover after a crash.
A more complex failure model, Byzantine failures, assumes that sites and their
environment can behave in an arbitrary way.

Distribution and replication From the point of view of the client, a database

is a collection of logical data items. Each logical data item is physically stored
at the servers. If the set of database items is partitioned and distributed among
the sites, the system constitutes a purely distributed database. If some replication
is introduced, so that different physical copies of the same logical database item
are stored at different sites, the system is a replicated database. Replication is

1We employ the term user to specifically refer to a human agent.
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managed by a replication protocol. The number of physical copies of data item
x is the degree of replication of x. Depending on the degree of replication of the
data items and on the number of system nodes, a complete copy of the database
may be stored at each site. This is called full replication. When not all sites store
the complete set of data items, but only a subset, the replication is partial. Each
of the copies of a given data item is called a replica. In full replication, the term
replica is also used to refer to any server, as they contain a copy of all data items.
When the system is fully replicated, we also denote sites as R1, R2, . . . , Rn, to
highlight that they are replicas.

Advantages of replication Replication is a common solution to achieve avail-

ability: by storing multiple copies, clients can operate even if some sites have
failed. Moreover, and despite the drawback of having to update all copies of each
data item, replication can also improve performance, as clients are more likely
to access a copy close by. For these reasons, replication is mostly preferred over
pure distribution. Even initial systems, which were fundamentally distributed,
introduced replication at some degree.

Local databases and transactions A local Database Management System, or
DBMS for short, executes at each site and is responsible for the control of the
data. The DBMS allows clients to access the data for reading and writing, through
the use of transactions. Transactions are sequences of read and write operations
(e.g., sequences of SQL sentences) followed by a commit or an abort opera-
tion, and maintain the ACID properties [55]: atomicity, consistency, isolation
and durability. When a transaction commits, all its data changes are persistently
applied. If it aborts, however, all its changes are undone. A transaction is called
a query or a read-only transaction if it does not contain any write operation; oth-
erwise it is called an update transaction. The set of logical items a transaction
reads is called the readset. Similarly, the writeset is the set of logical items writ-
ten by a transaction, and usually it also includes the updated or inserted values.
The resultset is compound by the results that will be returned to the client.

Transactions may execute concurrently in a DBMS. In this case, the concurrency
control of the DBMS establishes which executions of concurrent transactions are
correct or legal.
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2. CONCEPTS AND DEFINITIONS

Workload, delegate and remote nodes The database workload is composed
of transactions, T1, T2, . . . Transactions from the same client session are submit-
ted sequentially, but may be addressed to different servers, either by the client
itself, by a load balancer, or by another component or server that redirects the
request to another server. If the request is finally addressed to only one server,
this server is called the delegate for that transaction and it is responsible for its
execution. The rest of the system nodes are called remote nodes for that trans-
action. When the database is purely distributed (partitions of the data stored at
different nodes) or partial replication is used, if the contacted server does not
store all the items the transaction needs to access, other servers can be requested
to execute different portions of the transaction, which is then called a distributed

transaction. In this case, the concepts of delegate and remote nodes are no longer
applicable: the client contacts to a server where a root transaction is started, and
accesses to data stored in other server involve the creation of a subtransaction
in that other node, which is also called cohort. This way, each operation may
involve a communication with another node in the system. If accessed items are
replicated, subtransactions must be executed in all copies. To coordinate the local
subtransactions executed at each participating site, all accesses are managed by a
distributed concurrency control. In order to commit these distributed transactions,
atomic commit protocols, explained below, are used, acting the root transaction
as coordinator.

Interactive execution vs. service request A transaction can be submitted for
execution either operation by operation, or in a single message. In the former
case, called interactive transaction, the client submits an operation and waits for
its results before sending the next operation. The latter case, called service re-

quest, is a call to a procedure stored in the database. When the transaction is
completed, the transaction outcome is sent to the client. In the case of interac-
tive transactions, this outcome is a commit or abort confirmation. For service
requests, the outcome also includes the results of the request.

Server interaction and writeset application In the presence of replication,
updates from a committed transaction must be propagated to other copies of the
affected data items. This is achieved through a mechanism of server interaction

that sends all write operations to the appropriate sites. This propagation can be
made on a per operation basis, distributing writes immediately to other nodes in a
linear interaction [138] approach; or deferring communication until transaction
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end, in a constant interaction approach. The former case requires more messages
(usually one per write operation) than the latter (one message per transaction).
The deferred update approach [130] is a constant interaction approach, where,
once a transaction finishes its operations, its writeset is sent to the appropriate
remote nodes, which will then apply the writeset, i.e. perform its updates, in
their local database copy. Depending on when this propagation and application
of updates is made, systems can be eager or lazy [52]. Eager replication ensures
that every node applies the updates inside the transaction boundaries, i.e., before
the results are sent back to the client, so that all replicas are updated before such
a response is sent. On the other hand, lazy replication algorithms asynchronously
propagate updates to other nodes after the transaction commits in its delegate
node. An hybrid approach ensures that all replicas have received the updates and
the delegate has committed them when the results are sent to the client. Remote
nodes will later apply such updates.

Update propagation: ROWA and ROWAA With either type of server inter-
action, writes are propagated and applied in remote copies of the affected data
items. A basic approach is Read One Write All [15], where write operations are
required to update all copies so that read operations only need to access one of
the replicas. In case of a site failure, it may be impossible to write all replicas
and thus the processing must stop. As this is not desirable, the common approach
is Read One Write All Available (ROWAA) [15]. According to ROWAA, each
write operation over data item x is applied at every available copy of x, i.e., repli-
cas stored at sites that have not failed. Failed sites are ignored until they recover

from their failure. Whenever a site recovers from a failure, all its copies must be
brought up-to-date before the node can serve read operations.

Update propagation: quorums Another approach for write propagation is the
use of quorums. A quorum is the minimum number of replicas that is required for
completing an operation. Each transaction operation must then be successfully
executed in a quorum of replicas for being considered successful: read operations
are required to access a read quorum of replicas before returning the read value
to the client, while write operations must update a write quorum of replicas. In
a system of size N, sizes for the read quorum, R, and the write quorum, W , are
defined in such a way that they guarantee any required property. For example,
with R = 1 and W = N, the previously presented ROWA approach is obtained.
A more common quorum configuration ensures that both W +W and R +W are
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2. CONCEPTS AND DEFINITIONS

greater than N, so that each write quorum has at least one replica in common
with every read quorum and every write quorum, thus ensuring access to the last
updated value and also detecting conflicting transactions. Including a majority of
the nodes into each quorum allows the system to avoid system partitioning and
consequent divergence.

Conflicts Two transactions conflict if they have conflicting operations. Two
operations conflict if they are issued by different transactions, access the same
data item and at least one of the operations is a write. Conflicts among trans-
actions should be treated somehow, ensuring that the conflicting operations are
executed at the same order at every replica. There are two main approaches for
treating conflicts. A system is pessimistic or conservative if it avoids conflicts
by establishing some locks, mutexes or other barriers over items accessed by a
transaction, so that they cannot be concurrently accessed by other transactions.
On the other hand, a system is optimistic if it lets transactions freely access items,
resolving possible conflicts only when they appear or at the end of the transaction,
during termination.

Replica consistency: atomic and sequential Applying the writesets and en-
suring the same order for conflicting operations are necessary actions for main-
taining the required level of replica consistency. Replica consistency measures
the synchronization among the copies of the same data item, i.e., the state of
replicas with regard to each other. Different levels of replica consistency may be
enforced, depending on the needs of the clients. Atomic replica consistency is
achieved when all the copies of a data item appear to change atomically during
transaction execution. From the user’s point of view, there is only one copy of
the data item, and it is updated as soon as the transaction commits. Atomicity is
the highest level of replica consistency. Sequential consistency relaxes the syn-
chronization level in order to achieve greater performance. With sequential con-
sistency, all the copies of a data item are updated following the same sequence of
values. Intuitively, in a sequentially consistent system updates take some time to
arrive to all the copies. A deeper discussion about replica consistency is provided
in Chapter 3.

Serializable isolation Transactions are executed under some isolation level,
which defines the visibility among operations of different concurrent transactions.
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The highest isolation level is the serializable level, which guarantees a completely
isolated execution of transactions, as if they were serially performed, one after the
other. Changes made by transaction T are only visible to other transactions after
the commitment of T . On the other hand, if T aborts, then its changes are never
seen by any other transaction.

Read committed isolation A more relaxed level is the read committed isola-
tion. Under this isolation, data read by a transaction T was written by an already
committed transaction, but it is not prevented from being modified again by other
concurrent transactions. Thus, these data may have already changed when T

commits. For a complete discussion about isolation levels, please refer to Beren-
son et al. [9].

Correctness criterion The combination of the replica consistency level and
the transaction isolation level guaranteed by a system is called the correctness

criterion of the database replication system. Chapter 3 proposes new correctness
criteria.

Concurrency control: locks Local isolation at a DBMS is enforced by the use
of a local concurrency control mechanism. Concurrency control manages the
operations that run in a database at the same time. There are two main options
for concurrency control: locks and multiversion systems. In a lock-based system,
each data item has a lock that regulates the accesses to the item. Operations over
that item must previously obtain the corresponding lock. There are shared and
exclusive locks. Shared locks are commonly used for read operations. Several
transactions can obtain shared read locks and read the same item at the same
time. Write operations require an exclusive lock. No other operation, shared or
exclusive, is allowed over an item protected with an exclusive lock.

Concurrency control: multiversion In multiversion systems, on the other
hand, simultaneous accesses to the same data item are resolved by using mul-
tiple versions of the item. Versions can be created and deleted but the value
they represent is immutable: updates to a data item create a new version of the
item. Although there are several versions for each item, only one is the latest:
the value written by the last committed transaction that updated the item. More
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recent versions correspond to transactions which are still on execution and thus
these versions are not visible to other transactions. Versions generated by aborted
transactions are never visible to other transactions. When a transaction starts, a
timestamp or a transaction ID is assigned to it. Versions written by a transaction
T are marked with the ID of T . With this timestamp information, the multiversion
system can determine, for each transaction, which state or snapshot (i.e., which
version of each data item) of the database it must read. Thus, a transaction that
started at a particular instant t0 has access, for each data item, to the version of
that item which was the latest at time t0, i.e., which was written by the commit-
ted transaction with the highest ID which is smaller than the ID of the reading
transaction. As versions are immutable, there is no need to manage locks for read
operations. This way, multiversion concurrency control lead to the appearance of
a new transaction isolation level called snapshot isolation.2 Some mechanism is
usually needed to delete obsolete versions.

Snapshot isolation In snapshot isolation [9], transactions get a start timestamp
and a snapshot of the database when they start. Transactions are never blocked
attempting a read. Write operations are also reflected in the snapshot of the trans-
action, so that it can access the updated versions afterwards. On the other hand,
updates by other transactions active after the transaction start are invisible to the
transaction. When the transaction is ready to commit, a commit timestamp is as-
signed to it. A transaction T1 successfully commits only if no other transaction T2

with a commit timestamp in the interval between the start and the commit times-
tamps of T1 wrote data that T1 also wrote. Otherwise, T1 will abort. This feature
is called the first-committer-wins rule.

Two phase locking Serializability can be achieved by a basic two-phase lock-

ing (2PL) [15] protocol, where each transaction may be divided into two phases: a
growing phase during which it obtains locks, and a shrinking phase during which
it releases locks. Once a lock is released, no new locks can be obtained. 2PL
forces all pairs of conflicting operations of two transactions to be executed in the
same order and so it achieves serializability. However, using 2PL a deadlock may
appear. This situation arises when two transactions wait for each other to release
a lock. Deadlocks must be detected and one of the transactions aborted in order
to remove the deadlock.

2Read committed isolation is also possible with a multiversion concurrency control.
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Strong strict 2PL In order to avoid deadlocks and to provide other desirable
properties,3 a variant of 2PL is commonly used: the strong strict 2PL (presented
by Bernstein et al. [15] as strict 2PL but refined later). In strong strict 2PL, all the
locks obtained by a transaction are only released after transaction termination.

Atomic commit protocol: 2PC To ensure consistent termination of distributed
transactions, database systems have traditionally resorted to an atomic commit
protocol, where each transaction participant starts by voting yes or no and each
site reaches the same decision about the outcome of the current transaction: com-
mit or abort. A widely used atomic commit protocol is the two-phase commit
protocol (2PC) [50, 77], which involves two rounds of messages for reaching a
consensus on the termination of each transaction. 2PC can be centralized or de-
centralized. In the centralized approach, the coordinator first sends a message
to the rest of nodes, with information about the ending transaction. Each server
must then reply to the coordinator whether it agrees or not to commit the transac-
tion. If all replies are positive, the coordinator sends a commit message and waits
for acknowledgments from all the nodes. If any of the replies was negative, an
abort message is sent in the second phase. The decentralized version is similar
but with any server starting the process and with responses to every other server.
2PC is a blocking protocol when failures occur.

Atomic commit protocol: 3PC To support failures, a non-blocking atomic
commit protocol (NB-AC) [15, 120] must be used. In these protocols, each par-
ticipant reaches a decision despite the failure of other participants. A NB-AC
protocol fulfills the following properties. (a) Agreement: no two participants
decide different outcomes. (b) Termination: every correct participant eventu-
ally decides. (c) Validity: if a participant decides commit, then all participants
have voted yes. (d) Non triviality: if all participants vote yes, and no participant
fails, then every correct participant eventually decides commit. The three-phase
commit protocol (3PC) [120] adds an intermediate phase to 2PC to become a
non-blocking process. This new (second) phase involves sending a precommit

message when all nodes have agreed to commit the transaction. After all servers
sent their acknowledgments to this precommit message, the final commit mes-
sage is sent. Note that when a transaction needs to abort, such a fact is identified
at the end of the first phase. On the other hand, agreement on the commitment

3Recoverability, cascade abort avoidance and strictness [15], and also commit ordering [109].
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is reached at the second phase and the commit is completed in the third phase.
Thus, failures in the first phase lead to transaction abortion whilst failures in the
second or third ones do not block the protocol nor prevent transaction commit-
ment. The drawback of 3PC is its higher cost due to the extra round of messages.
To solve this, Jiménez-Peris et al. proposed another NB-AC protocol that exhibits
the same latency as 2PC [61].

Atomic commit protocol: Paxos Commit The Paxos Commit algorithm [51]
runs a Paxos consensus algorithm on the commit/abort decision of each partici-
pant to obtain an atomic commit protocol. The result is a complete, decentralized
and non-blocking algorithm which is proven to satisfy a clearly stated correctness
condition (that of the Paxos algorithm [38, 74, 76, 78]).

Group communication systems and atomic broadcast The communication
among system components is based on message passing. A Group Communi-

cation System [28], or GCS for short, is commonly used to accomplish commu-
nication tasks among servers, by choosing the communication primitive (point
to point messages, multicasts, broadcasts) with the appropriate guarantees (e.g.,
uniform guarantees will be commonly necessary when failures must be toler-
ated). Atomic broadcast (abcast for short) is a group communication abstraction
defined by the primitives broadcast(m) and deliver(m). Abcast satisfies the fol-
lowing properties [54]. (a) Validity: if a correct site broadcasts a message m, then
it eventually delivers m. (b) Agreement: if a correct site delivers a message m,
then every correct site eventually delivers m. (c) Integrity: for every message m,
every site delivers m at most once, and only if m was previously broadcast. (d)
Total Order: if two correct sites deliver two messages m and m′, then they do so
in the same order. Due to this last property, atomic broadcast is also known as
total order broadcast.

Optimistic abcast Two optimistic variants of abcast are the optimistic atomic

broadcast [103] and the more aggressive atomic broadcast with optimistic de-

livery [70], which allow processes to deliver messages faster, in certain cases.
They exploit the spontaneous total order message reception: with high probabil-
ity, messages broadcast in a local area network are received totally ordered. An
atomic broadcast with optimistic delivery is defined by three primitives. First,
TO-broadcast(m) broadcasts the message m to all nodes in the system. Then,
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opt-deliver(m) delivers a message m optimistically to the application once it is
received from the network, in a tentative order. Finally, TO-deliver(m) delivers
m to the application in the definitive order, which is a total order. The following
properties are satisfied. (a) Termination: if a site TO-broadcasts m, then every site
eventually opt-delivers m and TO-delivers m. (b) Global agreement: if a site opt-
delivers m (TO-delivers m) then every site eventually opt-delivers m (TO-delivers
m). (c) Local agreement: if a site opt-delivers m then it eventually TO-delivers
m. (d) Global order: if two sites Ni and N j TO-deliver two messages m and m′,
then Ni TO-delivers m before it TO-delivers m′ if and only if N j TO-delivers m

before it TO-delivers m′. (e) Local order: a site first opt-delivers m and then
TO-delivers m. With such an optimistic delivery, the coordination phase of the
atomic broadcast algorithm is overlapped with the processing of messages. This
optimistic processing of messages must be only undone when the definitive total
order mismatches the tentative one.

Active and passive replication In a system with active replication, the same
request is processed by every node. As opposed to this, each request in passive

replication is processed by only one node, which later transfers the updates to the
rest of servers. Depending on the node that can process a request, the next two
server architectures can be distinguished.

Server architecture: primary-backup The server architecture defines where
transactions are executed in the first place. Common server architectures are
primary-backup and update-everywhere. In a primary-backup system, a specific
node –called primary copy or master copy– is associated to each data item. Any
update to that item must be first sent to the primary copy, i.e., the primary copy
is the delegate server for any update transaction over that item. The rest of the
servers are called backups and serve only queries over that item. One possible
setting is to select a single server as the primary copy for all database items,
although this can cause a bottleneck.

Server architecture: update-everywhere In an update-everywhere system,
every node is able to serve client requests for updating any data item, so that
it is possible that two concurrent updates arrive at different copies of the same
data item. In order to avoid inconsistencies, usually some mechanism is used to
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decide which update will be successful, aborting one of the transactions. This
mechanism is the transaction termination protocol.

Transaction termination: voting, weak voting and non-voting termination
Whenever a transaction ends, the transaction termination protocol is run to de-
cide the outcome of the transaction (validation) and, in case of deciding to com-
mit, take the necessary actions to guarantee transaction durability. Two main
approaches can be distinguished: voting and non-voting termination. In a voting

termination, an extra round of messages is required to coordinate the different
sites, as in 2PC. Weak voting is a special case of voting termination, where only
one node decides the outcome of the transaction and sends its decision to the rest
of nodes. In a non-voting termination, all sites are able to autonomously and de-
terministically decide whether to commit or to abort the transaction. In this case,
this symmetrical validation process is also called certification.4

Validation and, thus, certification are usually based on conflicts. The ending
transaction T is checked for conflicts with concurrent and already validated (re-
spectively, certified) transactions. If conflicts are found, validation (certification)
fails and T is said to be negatively validated (negatively certified) and it is aborted.
Otherwise, validation (certification) succeeds and T is said to be validated (certi-
fied), successfully validated (successfully certified) or positively validated (posi-
tively certified), and it has to be committed in all affected nodes. When validation
or certification are not based on conflicts, the validation (certification) succeeds or
is positive if the decision taken over T is to commit it. Otherwise, the validation
(certification) fails or is negative.

System model Aspects such as server architecture, server interaction and trans-
action termination are part of the system model, which defines the way in which
a system operates.

Server layers Inside a server, different layers can be identified: the network or
communication layer, at the bottom of the stack; the data layer; the replication

4We will use the term validation to generically refer to the process of deciding the outcome
of a transaction. We will use the term certification to specifically refer to the validation process
performed by each node in an independent, deterministic and symmetrical manner. Other authors,
however, consider both terms as synonyms.
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layer; and the application layer, on the top. These general layers may appear
merged together at different systems. E.g., in a system that manages replica-
tion by embedding the necessary code into the DBMS internals, the data and the
replication layer are merged. On the other hand, we say a replication system is
based on middleware [11] when it gathers all replication mechanisms in a repli-
cation layer, i.e., a software layer placed between the instance of the database
management system and the applications accessing the data. This provides an
independence among system components which leads to a high portability (e.g.,
to migrate the middleware into an environment based on a different DBMS).
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Chapter 3

Correctness Criteria for
One-Copy Serializable Database
Replication Systems

In this chapter, we provide a formal analysis of one-copy serializability, by com-
paring two types of database replication systems that guarantee such a correct-
ness criterion. This analysis shows that different replica consistency levels are
accepted by the criterion, therefore rendering its original definition incomplete
regarding consistency. We then propose new correctness criteria where the exact
level of accepted replica consistency is defined.

3.1 Introduction

Distributed and replicated database systems appeared in order to provide a higher
level of availability and fault tolerance than existing stand-alone (centralized, i.e.,
non-replicated) databases, while still ensuring a correct management of data.
Traiger et al. [130] suggested the concepts of one-copy equivalence and loca-
tion, replica, concurrency, and failure transparencies, as desirable features for
distributed systems. Bernstein et al. later defined one-copy serializability (1SR)
[15] as a correctness criterion. According to it, the interleaved execution of users’
transactions must be equivalent to a serial execution of those transactions on a
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3.1. INTRODUCTION

stand-alone database. 1SR turned immediately to be the accepted correctness cri-
terion for database replication protocols. In order to ensure such guarantees, a
conservative approach inherited from stand-alone database systems was followed
[14]. Thus, write operations over any data item had to acquire write locks in all
its copies prior to updating the local copy. This concurrency control based on
distributed locking strongly affected performance, as each write operation must
be preceded by a round of messages requesting the corresponding lock in every
replica. Moreover, in order to guarantee transaction atomicity, an atomic commit
protocol was run for transaction termination. In such protocols, several rounds
of messages are required in order to reach a consensus among all participating
sites for each transaction commitment, which further penalized performance and
scalability.

Several optimizations were added later to database replication systems, trying to
provide correct, i.e., 1SR, replication at a reasonable cost. According to the de-
ferred update replication model [119, 130], transactions were processed locally
at one server and, at commit time, were forwarded to the rest of system nodes for
validation. This optimization saved communication costs as synchronization with
other nodes was only done at transaction termination during the atomic commit
protocol. Another important optimization consisted in substituting the atomic
commit protocol for an atomic (total order) broadcast [2, 123], whose delivery
order was then used as a serialization order for achieving 1SR. Wiesmann and
Schiper [136] provide a performance comparison of database replication tech-
niques and conclude, among other insightful remarks, that techniques based on
total order broadcast significantly outperform traditional database replication pro-
tocols like distributed locking, and that this performance difference is larger if the
network is slow and subject to contention. This is due to the fact that distributed
locking requires many messages, while techniques based on total order broadcast
demand less networking resources, typically by restricting interactions to a single
broadcast, which makes these techniques very efficient with a slow network.

According to the definition of 1SR [15], replication protocols based on atomic
commit and those based on atomic broadcast ensure the same correctness crite-
rion. However, carefully analyzing the behavior of both systems, some differ-
ences can be observed. In a traditional stand-alone system, a user could transfer
certain amount of money from one account A to another B, commit the trans-
action, and read the increased balance in B in the following transaction. The
same is ensured in replicated systems based on distributed locking and atomic
commit, precisely due to these inherited techniques. As both systems behave

20



3. CORRECTNESS CRITERIA FOR 1SR DATABASE REPLICATION SYSTEMS

identically, the user will then not be able to distinguish between the stand-alone
and the replicated one. Moreover, the user will consider this behavior correct, as
it perfectly matches their expectations. However, the deferred update propagation
and the atomic broadcast of an optimized replicated system may cause that the
same operation ends in a worried user when, after committing the bank transfer,
they temporarily read the old balance in B, as if the money had disappeared (we
show later in the chapter why this may happen). Clearly, the user might consider
this behavior incorrect until, after some time, the increased balance can be finally
read. This situation would never have occurred in a traditional stand-alone data-
base. Does this mean that the system based on atomic broadcast is not behaving
as one copy as it claims to do? Are then one-copy equivalent database replication
systems actually behaving as one copy?

In this chapter, we demonstrate that some consistency-related features signif-
icantly changed when atomic commit protocols were replaced by termination
protocols based on atomic broadcast. These visible differences in consistency,
admitted in 1SR, might originate some confusion among users. To show this,
we made a historical review through different 1SR systems and chose two rep-
resentative database replication system models, which are analyzed through a
case study to reveal the differences between them. As a solution, and inspired
in the memory consistency models used in distributed shared memory (DSM),
we propose a new set of correctness criteria for distinguishing among different
types of 1SR database replication. We believe that our proposal will remove any
ambiguity from current correctness criteria.

Moreover, as we are not only interested in consistency but also in performance,
we further distinguish between different server implementations that offer the
same consistency as perceived by users but could present important performance
differences. This way, establishing correspondences between DSM levels and
replica consistency enforced by database replication protocols, we provide a com-
plete formalization of the different levels of replica consistency and our proposed
correctness criteria.

The rest of the chapter is structured as follows. Section 3.2 details the assumed
system model and provides basic definitions. Section 3.3 states the looseness
of the term one-copy equivalence, by showing important differences in consis-
tency between two systems providing 1SR. Section 3.4 presents and compares
memory consistency models used in the scope of DSM, for later establishing, in
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Section 3.5, a complete formalization of our proposed criteria and the correspon-
dence between DSM models and replica consistency levels ensured in database
replication systems. Section 3.6 briefly discusses about the consistency provided
in current cloud systems. Section 3.7 gives a final discussion.

3.2 System Model and Definitions

The replication systems analyzed in this chapter consider a partially synchronous
distributed system composed of database servers, also called sites, nodes or repli-
cas, R1, R2, . . . , Rn, and clients or users that access these replicas. Communica-
tion between components is based on message passing, as they do not have shared
memory. Consequently, they neither have a global clock. Servers can also com-
municate through atomic broadcast.

Replicas fail independently by crashing (Byzantine failures are not considered).
Sites may eventually recover after a crash, i.e., we assume the crash-recovery
failure model. Regarding partition failures, we assume the primary component

membership [28], under which only a majority group is allowed to progress in
case of network partition. Such behavior is necessary if we want to provide both
consistency and availability, as stated by the CAP theorem [48].

Each server stores a full copy of the database.1 Queries only need to access one
replica, while update transactions are required to modify all replicas. This cor-
responds to the Read One Write All Available (ROWAA) [15] approach, which
was shown [64] to be the best choice for data replication, over quorum-based
solutions.2 Database users are provided with the concept of session, in order to
logically group a set of transactions from the same user. Transactions from dif-
ferent users belong to different sessions. However, it can be left to the user the
decision of using one or multiple sessions to group their transactions. Transac-
tions of the same client session are submitted sequentially, but may be addressed
to different replicas. Each client request is only processed by its delegate, which

1Initial systems, such as the one described by Bernstein and Goodman [14], did not require full
replication, as they were distributed databases with some degree of replication.

2Indeed, the use of atomic broadcast for data replication considerably reduced the interest in
quorum-based solutions. During the last decade, database replication systems have scarcely fol-
lowed approaches other than ROWAA.
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later transfers the updates to the remote nodes. In other words, a passive, update-
everywhere replication is performed.

Transactions may execute concurrently in a DBMS, raising conflicts. The local
concurrency control of the DBMS establishes which executions of concurrent
transactions are correct or legal regarding certain isolation level. In this chapter
we assume that each local DBMS provides the serializable isolation level [9],
which can be achieved, e.g., by the strict two-phase locking (2PL) [15]. Conflicts
among transactions executing at remote nodes must also be treated. In optimistic
systems, these conflicts are usually resolved during transaction termination with
the application of certain validation rules. All the systems considered in this
chapter guarantee the correctness criterion of 1SR.

3.3 One-Copy Serializability: a Loose Term

In many cases, implemented systems are quite more restrictive than the correct-
ness models they follow. Situations that would be allowed by the model are
rejected in the real system, or they are simply not possible due to implementation
issues. This mismatching is usually due to pragmatic considerations, as an exact
model reflection would increment the system complexity. Although correctness
is never impaired, other aspects such as performance, concurrency or scalability
are negatively affected.

This is the case of the distributed concurrency control protocol described by Bern-
stein and Goodman [14]. It is based on distributed locking and an atomic commit
protocol, two-phase commit (2PC), and follows the one-copy serializability cri-
terion. We will refer to this general model as a 2PC-based system. The 2PC
protocol used for transaction termination ensured that all replicas agreed on the
set of committed transactions and a serializable history was guaranteed. How-
ever, due to distributed locking and atomic commit, replicas did not only commit
the same set of transactions but did it in such a way that any new issued trans-
action was able to see all the changes performed by previous transactions, with
independence of the replica where this new transaction was executed. That is, the
system nodes were behaving as a traditional one-copy database in that any copy
of a written data item was updated before any subsequent access to that copy was
allowed: a transaction T always got the most recent vision of the database, as
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a. 2PC-based systems b. Abcast-based systems

Figure 3.1: Diagrams for Executions 3.1 and 3.2. Two replicas are visualized:
R1 and R2. Vertical broken lines represent real time at each replica, increasing

downwards. Horizontal dotted lines represent commit operations in each
replica. A transaction T0 is assumed to create the initial database state. In

2PC-based systems, T3 does not start until T1 finishes. In abcast-based
systems, however, transactions may swap. (Note that T2 is not executed at R2,

and neither does T3 at R1, as they are read-only transactions.)

created by the last transaction executed in the system immediately before T . Let
us consider a simple database execution to illustrate this feature.

Execution 3.1 (2PC-based systems, Figure 3.1a). A user starts transaction T1 at
replica R1. The database contains data item x with an initial value x0. T1 requests
write access to x, which requires that a write lock is acquired at each replica, as
stated by the distributed locking concurrency control. After getting all the locks,
T1 modifies the value of x and finishes. During the atomic commit protocol all
replicas agree on the commitment, so T1 can commit, the new value x1 can be
assigned to x, and the write lock on x can be released. After the commitment
of T1, the same user, who wants to be sure about the success of their updates,
starts a query, T2, for reading x. T2 is also started in replica R1, where value x1

is already available. T2 reads x1, as expected, and finishes. Suppose that replica
R2 is slower and it did not yet apply the new value to data item x, so it still has
value x0. Now the user starts a second query T3 for reading x again and, due
to some load balancing, T3 is run at replica R2. When T3 tries to read x, a read
lock is requested. As the item is not yet updated, the write lock granted to T1

still holds, and T3 must wait. Once R2 applies the update of T1, the write lock
is released and T3 is able to read value x1, as expected, and commit. Note that
R2 was not updated when T3 was launched, but distributed locks prevented T3

from accessing an outdated value. Both T2 and T3 were able to access the value
updated by T1, which is the expected behavior (traditional stand-alone databases
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provide this same effect). The equivalent serial order of this execution is T1,T2,T3

or T1,T3,T2.

The observed behavior, i.e., transactions getting the last value of all database
items, is not required by the 1SR correctness criterion. Indeed, serializability
(and thus 1SR) states that the effect of transactions must be equivalent to that of
any serial order. No restriction is imposed over this serial order. In particular,
no real-time consideration is taken into account, such as respecting the order
on which transactions were started by the client. In a traditional stand-alone
database providing serializability, however, if a transaction T2 started after the
termination of conflicting transaction T1, the equivalent serial order necessarily
respected this precedence (there is only one node executing all transactions). Just
like traditional stand-alone systems, 2PC-based systems are more restrictive than
the correctness model they follow. The stricter observed behavior of stand-alone
systems was due to the physical laws of time, while that of 2PC-based systems
is a consequence of the techniques used in their implementation. However, these
same techniques made those earlier systems slow and barely scalable.

More modern systems [2, 123] proposed the substitution of the atomic commit
protocol by a termination protocol based on atomic broadcast that performs the
deferred update propagation.3 In these systems, transactions are locally executed
at their delegate replica. When a transaction ends, its readset and writeset are
broadcast to the rest of replicas in total order, using the atomic broadcast. Af-
ter delivery, if no conflict is found in the certification, the transaction commits
at every replica. These abcast-based systems performed significantly better than
previous 2PC-based ones [136]. These improvements were possible thanks to
the adoption of the full replication model,4 where all replicas store a complete
copy of the database, instead of the more general model of distribution with par-
tial replication, which forced to use costly distributed transactions. This new
approach allowed replication systems to boost performance and scalability while
the correctness criterion was claimed to be one-copy serializability as tradition-
ally defined. However, a significant difference with regard to 2PC-based systems
was introduced. Let us analyze the new behavior with the same client requests.

Execution 3.2 (Abcast-based systems, Figure 3.1b). The client starts transaction
T1 in replica R1, where it updates the local copy of data item x, after acquiring the

3Deferred update propagation was already used in the distributed certification scheme of Sinha
et al. [119] or in the distributed optimistic two-phase locking, O2PL, of Carey and Livny [23].

4Partial replication is also possible in abcast-based systems.
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local write lock. At transaction termination, the deferred update propagation is
done and thus the writeset, i.e., data item x and the updated value x1, is broadcast
to all replicas. A deterministic certification process is run independently at each
replica before writeset application. If certification is successful, replica R1 com-
mits T1 and the same user immediately starts a query T2 for reading the updated
item. T2 is directed to replica R1 and so it reads the updated value and finishes.
But again, the user starts a second query T3 that is addressed to replica R2 by the
load balancer. Similarly to the 2PC-based case, R2 agrees on committing T1 but
has not yet started to apply the writeset of T1. The key difference is that now data
item x is not locked (assume there are no other transactions running) and T3 is
able to access x without waiting.5 The accessed version x0 corresponds to the last
locally committed transaction that updated that item, and not to the last globally
certified transaction in the system. So T3 gets an unexpected value and the user,
who was previously able to read the updated item with T2, is now not able to see
it with the following transaction T3. Nevertheless, 1SR is guaranteed: the effect
of transactions is equivalent to that of the serial order T3, T1, T2. The fact that
T1 precedes T3 in real time is not considered in 1SR. However, the user reads an
outdated value, which clearly is not what they expected.

Now, the stricter behavior of both traditional stand-alone and 2PC-based systems
is no longer enforced. In abcast-based systems, 1SR is guaranteed to the letter,
but not further. The difference between 2PC-based and abcast-based systems
lies in the distinct replica consistency maintained.6 While in 2PC-based systems
distributed locks prevent transactions from accessing outdated values, in abcast-
based systems different values for the same data item are accessible at the same
time at different replicas. If both system models ensure 1SR, it is because replica
consistency was not considered in correctness criteria for database replication.
Indeed, the definition of 1SR does not deal with the level of synchronization
between replicas, leaving this aspect open to the system designer. The fact of
not enforcing any replica consistency level renders the definition loose enough
to allow several interpretations. Although this can now lead to ambiguity, that

5There are indeed two possibilities for this situation in a locking-based system: either the cer-
tification involves getting the necessary locks and R2 has not yet run the certification for T1, or
the certification is based on history logs and required locks are only set on writeset application.
Although the sample execution depicts the second case, both possibilities have the same result: T3
will read the old value of x and T1 will finally commit in R2.

6Note that these executions show a unique user performing all accesses. This is only for the
sake of a clearer perception of the problem, represented as a user getting different values from an
item that they updated in an immediately previous transaction. But the consistency problem is the
same if transactions are from different users.
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was not the case back when 1SR was defined, as existing techniques allowed
only one possibility. However, although different techniques appeared later, no
specification regarding replica consistency was added to the definition. This fact
is interesting, as a similar concept was already defined and studied in the scope
of distributed shared memory, surveyed in multiple papers [1, 29, 91, 124].

3.4 Consistency Models in Distributed Shared Memory

Memory consistency models represent the way on which memories from dif-
ferent sites are synchronized in order to conform a distributed shared memory.
The higher the level of consistency, the higher the synchronization and the fewer
the divergences on values. According to Mosberger [91], the strictest level of
consistency, atomic consistency [73] (a.k.a. linearizability [56]) considers that
operations take effect inside an operation interval. Operation intervals are non-
overlapping, consecutive time slots. Several operations can be executed in the
same slot; read operations take effect at read-begin time while write operations
take effect at write-end time. Thus, read operations see the effects of all write
operations of the previous slot but not those of the same slot.

Despite the simplicity of the idea and the easiness of design for applications that
use atomic memory, this consistency level is often discarded due to its high as-
sociated cost [124, 126]. Consequently, a more relaxed model is used in practice
as the common level: sequential consistency [75]. In a sequentially consistent
system, all processors agree on the order of observed effects [91]. According to
Lamport [75], the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its program.

The key difference between these two consistency models is the old-new inver-

sion between read operations [7]. This issue is precluded in the atomic model but
it may arise in the sequential one. It consists in the following: once a process p

writes a value vn onto a variable x whose previous value was vo, another process
r1 is able to read vn while later a second reader r2 reads vo. Note that this is se-
quentially consistent since r2 is still able to read afterwards value vn, according to
the total order associated with sequential consistency. However, such a scenario
violates atomic consistency since r2 reads x once the slot given to value vn was
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already started and all reads in that slot should return value vn (instead of vo).
This old-new inversion is exactly the situation arisen in previous Execution 3.2.

More relaxed DSM consistency models are the cache consistency model [49], the
PRAM consistency model [81] and the processor consistency model [49].

3.5 Formalization of the Correspondence Between DSM
Memory Consistency Models and Database Replica
Consistency

According to several authors [8, 53], in general distributed executions (i.e., not
necessarily related to DBMSs), one-copy equivalence can be guaranteed when
all processes see all memory-related events in the same order. This implies that
the DSM consistency models able to achieve one-copy equivalence are both the
sequential and the atomic ones. Following this trend, Mosberger [91] states that
the one-copy serializability concept as defined by Bernstein et al. [15] is equiv-
alent to sequential consistency. On the other hand, Fekete and Ramamritham
[45] distinguish between strong consistency (which is explicitly associated with
the atomic DSM model and mentioned as a synonym of one-copy equivalence)
and weak consistency (where sequential consistency is included). As it can be
seen, no agreement on the exact level of replica consistency needed to achieve
one-copy equivalence exists nowadays.

Although memory consistency models consider individual operations (write or
read a variable in memory), a correspondence to a transactional environment can
be established. Indeed, the concept of transaction matches very well the con-
cept of operation interval. As explained by Fekete and Ramamritham [45], a
transaction T can be considered as a macro-operation from the DSM point of
view, where all read operations can be logically moved to the starting point of
T (as read versions correspond to those available when the transaction started),7

and all write operations logically moved to the termination point of T (when the
transaction commits and its updates are visible to other transactions). Thus, we

7We can safely assume that a transaction will never read a data item after writing it or that the
application is able to cache written versions and serve those read operations without accessing the
database.
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can consider the interval of time where all transaction operations are done as a
transaction interval.

The fact that a transaction is a macro-operation also reduces the high costs that led
to dismiss atomic consistency in DSM. Although it is true that maintaining strong
consistency levels for individual operations is costly, the fact of using transactions
that group arbitrarily large sets of operations into one unit of execution allows a
reduction in the costs, thus making atomic consistency bearable in a transactional
context. With transactions, synchronization between sites must be done only
once for the full set of write operations included in a transaction. This writeset is
thus regarded as a macro write operation, as opposite to multiple individual write
operations.

Although transactions have been widely used in distributed systems, very few
works have considered the DSM consistency model resulting from database repli-
cation protocols, being that of Fekete and Ramamritham [45] one of such few ex-
ceptions. We consider that this is an interesting line of action, as transferring the
concept of transaction into traditional memory consistency models makes it pos-
sible to provide the strongest level of consistency in database replication systems
at a reasonable cost.

3.5.1 Correctness Criteria

Inspired in the idea of a transaction as a macro-operation, and adapting Mos-
berger’s concept of operation interval [91] to its use with transactions, we now
present a complete formalization in order to define a new set of correctness cri-
teria and to precisely establish the correspondence between memory consistency
models and database replica consistency. Our aim is to refine 1SR correctness
criterion by distinguishing among the possible replica consistency levels. In the
same manner as old-new inversions allow us to distinguish between the atomic
and the sequential memory consistency levels, we will distinguish among our
new correctness criteria by means of the presence or absence of similar phenom-
ena in the executions of the system. For this we consider database replication
systems that, as stated in Section 3.2, provide full replication and a serializable
concurrency control, and guarantee 1SR, as originally defined by Bernstein et al.
[15], by following a ROWAA approach.
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We first provide the foundations of our reasoning model, based on the concept of
intervals. Then we recall the conditions required by 1SR, translated to a system
expressed in our model. Finally, we will define additional constraints, also ac-
cording with the model, that will establish new correctness criteria. Those new
criteria divide the original 1SR into disjoint subcriteria.

Definition 3.1. Correct site. A site is correct if it never crashes.

Definition 3.2. Faulty and permanently faulty sites. A site is faulty if it crashes
but eventually recovers. A site is permanently faulty if it crashes and never re-
covers.

Definition 3.3. Database execution. We call database execution to the process
of executing some set of transactions in a replicated database. A database execu-
tion finishes when all replicas which are not permanently faulty have applied all
necessary updates from committed transactions.

Definition 3.4. Replica time slotting. Real time at every replica Ri of a repli-
cated database can be partitioned into consecutive and non-overlapping slots, de-
limited by the occurrence of transaction commit operations, which are executed
at Ri in certain order. The time slot of Ri ended by the commitment of Tj is
referred to as TSi(Tj).

Definition 3.5. Real-time interval. Let Ri be a node of a replicated database,
and Tj a transaction committed in Ri. We define the real-time interval of Tj in Ri,
RTIi(Tj) as the interval of real time during which Tj was executed in Ri.

Definition 3.6. (Logical) interval. Let Ri be a node of a replicated database, and
Tj a transaction committed in Ri. We define the logical interval of Tj in Ri, or
simply the interval of Tj in Ri, Ii(Tj), as the portion of RTIi(Tj) which overlaps
with TSi(Tj).

Note that aborted transactions do not present intervals at any replica.

Theorem 3.7. Based on the serializable isolation guaranteed in the nodes, the

execution at replica Ri of any committed transaction Tj can be safely considered

to have taken place completely inside Ii(Tj).

Proof. For any transaction Tj committed at replica Ri, TSi(Tj), RTIi(Tj) and
Ii(Tj) end in the same real-time instant. However, starting instants do not need to
coincide. Thus, depending on the database load, the real-time interval RTIi(Tj)
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may start at any point before the commit operation of Tj, even out of the bounds
of time slot TSi(Tj). If Tj starts inside the bounds of TSi(Tj), then RTIi(Tj) and
Ii(Tj) are equal (and TSi(Tj) contains both of them), and the theorem is trivially
proven. If the execution of a transaction Tj starts before the end of the previ-
ous time slot, out of the bounds of TSi(Tj) (in this case, Ii(Tj) and TSi(Tj) are
equal), then concurrency control and the serializable transaction isolation allow
us to consider all the operations of Tj as to execute after the immediate previ-
ous commitment in the local database. Indeed, all read operations of Tj, if any,
are able to access the values written by previous committed transactions, up to
the last one; and all write operations of Tj, if any, can be logically moved to the
point immediately before the commitment of Tj. If any of these premises does
not hold, local concurrency control will abort Tj. Otherwise, if Tj is committed,
we can safely consider transaction execution as starting just at the same point that
its corresponding time slot TSi(Tj) at the executing replica Ri, and, thus, inside
Ii(Tj).

Theorem 3.8. Inside each replica time slot, there is one and only one interval,

corresponding to the transaction whose commit ends that slot.

Proof. Each time slot in replica Ri is delimited by a transaction commitment, i.e.,
each committed transaction Tj defines a different time slot TSi(Tj). Tj is executed
inside its Ii(Tj), which is contained by definition inside TSi(Tj), so there is one
and only one interval at each time slot.

Theorem 3.9. To follow the ROWAA approach, (a) Ii(Tu) exists for each commit-

ted update transaction Tu and for each replica Ri; and (b) Ix(Tr) exists for each

committed read-only transaction Tr and a single replica Rx.

Proof. The ROWAA approach requires to apply transaction updates at every node
in the system. To apply at Ri the updates of a transaction Tu, Tu must be committed
at Ri. This generates an interval Ii(Tu). If all replicas must be updated, there exists
a corresponding interval for Tu at each replica. On the other hand, in the ROWAA
approach read-only transactions only need to be executed at their delegate node.
If the delegate replica of read-only transaction Tr is R j, there exists I j(Tr).

Definition 3.10. Conflicting transactions. Two transactions conflict if they have
conflicting operations. Two operations conflict if they belong to different trans-
actions, they access the same data item and at least one of the operations is a
write.
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Definition 3.11. Independent transactions. Two transactions that do not con-
flict are called independent transactions. Multiple transactions compose a set of
independent transactions if they are independent two by two.

Definition 3.12. Local precedence. We define a total order among all transac-
tions committed in replica Ri, called local precedence of Ri, <li , in the following
way: a transaction Tj precedes transaction Tk in the local order of Ri, Tj <li Tk, if
and only if Ii(Tj) takes place before Ii(Tk).

Definition 3.13. Local history. For each replica Ri, the (already chronologi-
cally ordered) sequence of intervals composes the local history of all committed
transactions of Ri, Hi.

Theorem 3.14. The local history at replica Ri is consistent with the local prece-

dence of all the transactions committed in Ri.

Proof. Let Tj and Tk be two committed transactions at Ri, and let Tj precede Tk

in the local order, Tj <li Tk. Suppose that in the local history, Hi, Ii(Tk) appears
before Ii(Tj). This means that the interval of Tk took place before that of Tj, which
contradicts the assumed local precedence.

Corollary 3.15. Any local history is a serial history, where the local precedence

is the serial order.

Definition 3.16. Complete history. A local history Hi is complete for a data-
base execution of a set T of transactions if it contains an interval Ii(Tu) for each
committed update transaction Tu of T.

With the ROWAA approach, update transactions could commit even if some site
is unavailable. When crashed replicas recover, a recovery protocol is run in order
to bring those replicas up-to-date, applying the updates of the transactions that
committed during the failure. In the absence of permanent failures, even if some
transient failures occur, correct replication and recovery protocols should be able
to make all local histories complete. However, permanent site failures prevent
local histories from being complete.

Definition 3.17. Global history. A global history of a given database execution
is a history which contains all intervals from all local histories of that execution,
and those intervals appear at the global history respecting their respective local
precedence.
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Definition 3.18. One-copy history. A centralized, non-replicated database sys-
tem can be thought of as a replicated system composed of only one replica R1C.
As there are no more nodes, both read-only and update transactions present only
one interval in the single replica of the system. Thus, intervals do not need to be
qualified with the replica identifier, and local histories of R1C are called one-copy
histories. As local histories, one-copy histories are serial, where the local prece-
dence is the serial order. Moreover, as the system has a single available node,
one-copy histories are trivially complete histories for all database executions that
could take place in that system.

As stated by Bernstein et al. [15], a global history HG from a replicated database
is 1SR if it is view equivalent to a serial one-copy history H1C. HG is view
equivalent to H1C if: (a) HG and H1C have the same reads-from relationships,
i.e., Tk reads from Tj in HG if and only if the same holds in H1C; and (b) for each
final write in H1C, there is a final write in HG for some copy of the same data
item. We thus require these conditions to our basic system and now define new
constraints in order to subdivide 1SR into more specific correctness criteria.

Independent transactions may execute at any order: as they do not conflict, the
results of the transactions and the final state of the database will be the same at
any possible execution order. However, when transactions conflict, the order in
which they are executed is important, as the results of the transactions and the
final state of the database depend on this execution order. One of all possible
serial orders of a set of conflicting transactions must be chosen. 1SR admits any
of them, but from the point of view of the user, the natural and intuitive order is
the order in which transactions have been started in real time.

Definition 3.19. First start. We say that a transaction Tj first-starts when it
accesses any item of the replicated database for the first time through any system
replica Ri (the delegate replica). This real-time instant corresponds to the start
point of RTIi(Tj).

Real time must be considered in order to capture the point of view of users. How-
ever, this does not impose any real-time constraints on the system, nor it requires
any notion of global clock among replicas.

Note also that in a locking-based concurrency control all operations over database
items must be preceded by the acquisition of the necessary locks. A transaction
whose initial operation is held in the database while waiting for the required
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locks is not considered as first-started until those locks are granted and the first
data item is effectively accessed.

After executing all its operations, if no abortion occurs, a transaction asks for
commitment. Each committed transaction Tj must apply its updates at every
replica, which can be considered as multiple commit operations for the same
transaction. One of the replicas, Ri, will be the first to complete the commit
operation and make the updates of Tj visible to local transactions starting at Ri.
This instant is when Tj first-commits.

Definition 3.20. First commit. We say that a transaction Tj first-commits when
it commits in the replicated database for the first time, through any system replica
Ri. This real-time instant corresponds to the end point of RTIi(Tj).

Definition 3.21. Real-time precedence (RT precedence). We define a partial,
transitive order of real-time precedence, <rt, in the following way: a transaction
Tj precedes transaction Tk in real time, Tj <rt Tk, if and only if Tj first-commits
before Tk first-starts.

Definition 3.22. Concurrent transactions. Two transactions Tj and Tk are con-
current if both Tj <rt Tk and Tk <rt Tj are false, i.e., there is no real-time prece-
dence between them.

Definition 3.23. Alteration. Let Tj and Tk be two committed transactions at
replica Ri. Let Tj precede Tk in real time, Tj <rt Tk. We say that an alteration
occurs in Ri if Tk precedes Tj in the local order of Ri, Tk <li Tj, i.e., the local order
of Ri is inconsistent with the real-time precedence of the transactions. Tk is called
the altered transaction, while Tj is the overtaken transaction.

Definition 3.24. Real-time & conflict precedence (RTC precedence). We de-
fine a partial order called RTC precedence, <rtc, in the following way: a transac-
tion Tj precedes transaction Tk in RTC order, Tj <rtc Tk, if and only if (a) Tj <rt Tk,
and (b) Tj and Tk are conflicting transactions.

Intuitively, RTC is a decrement of the real-time precedence, where independent
transactions are not ordered and, thus, transitivity is lost.

Definition 3.25. Inversion. Let Tj and Tk be two conflicting transactions, com-
mitted at replica Ri. Let Tj precede Tk in RTC order, Tj <rtc Tk. We say that an
inversion occurs in Ri if Tk precedes Tj in the local order of Ri, Tk <li Tj, i.e.,
the local order of Ri is inconsistent with the RTC precedence of the transactions.
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Tk is called the inverted transaction, while Tj is the overtaken transaction. More
simply, an inversion is an alteration between two conflicting transactions.

The phenomenon of old-new inversion presented in Section 3.4 corresponds to
an inversion of a transaction that overtakes the update transaction from which it
was supposed to read a value.

The absence of transitivity in the RTC precedence minimizes the ordering guar-
antees that replicas must enforce in order to avoid inversions. Let Ta, Tb, and Tc

be three transactions such that Ta only writes item x, Tb only reads items x and y,
and Tc only writes item y. This way, Ta is conflicting with Tb and Tb is conflicting
with Tc, but Ta and Tc are independent transactions. Let Rd be the delegate replica
of read-only transaction Tb (Rd is the only node that will execute Tb, following the
ROWAA approach). If Ta <rt Tb <rt Tc, then Ta <rtc Tb and Tb <rtc Tc both hold
and Rd must respect such precedence relationships in order to avoid inversions.
However, as Ta and Tc are not related in the RTC precedence, replicas other than
Rd may execute Ta and Tc at any order without causing an inversion.

Definition 3.26. α-history. An α-history is a local history which respects the
RTC precedence.

Theorem 3.27. If no inversions, i.e., alterations between conflicting transactions,

occur during a database execution, then each local history is an α-history.

Proof. If no alterations between conflicting transactions occur, then the intervals
of conflicting transactions respect the real-time precedence at each node and,
therefore, local precedence at each replica is consistent with the real-time prece-
dence of conflicting transactions, i.e., the RTC precedence. As a local history
respects the local precedence, each local history respects the RTC precedence
and is, therefore, an α-history.

Definition 3.28. 1ASR correctness criterion. We call 1ASR the correctness
criterion that, based on a serializable concurrency control, ensures 1SR and guar-
antees that each local history of a database execution is an α-history.

The ‘A’ in the name stands for “atomic” as, from the point of view of the users,
the results of a database execution are equivalent to those that one could obtain
by ensuring that a transaction is committed at every replica before starting the
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Figure 3.2: Sample execution for a 2PC-based (1ASR) system. Two replicas
are visualized: R1 and R2. Vertical dotted lines represent real time at each

replica, increasing downwards.

next transaction. This way, users perceive an atomic nature in the system consis-
tency. 8 Informally, 1ASR restricts the set of all possible equivalent serial orders
of a database execution that would comply with 1SR, so that orders violating
RTC are not considered. This is the case of the 2PC-based systems described in
Section 3.3.

Execution 3.3. Now we illustrate with an example the construction of the global
and one-copy histories of a 1ASR database execution, thus providing some guide-
lines to extract an equivalent serial order for such an execution. Consider a system
of two replicas that execute a set of six transactions with the following character-
istics: (a) T1 and T2 are concurrent and both precede T3 in real time; (b) T4 and
T5 are concurrent, both are preceded by T3 in real time and both precede T6 in
real time; (c) all transactions are update transactions except for T6, which is read-
only; (d) T3 and T4 conflict, and T5 and T6 conflict, but the rest of transactions are
independent. With such a set of transactions, RTC precedence defines only two
relationships: T3 <rtc T4 and T5 <rtc T6. The database execution depicted in Fig-
ure 3.2 corresponds to a 2PC-based system and it is 1ASR, as these precedences
are respected at both nodes. Local histories are:

H1 : I1(T1), I1(T2), I1(T3), I1(T4), I1(T5)

H2 : I2(T2), I2(T3), I2(T1), I2(T5), I2(T6), I2(T4)

To construct a global history HG such that it is view equivalent [15] to a one-copy
history H1C, we divide transactions in three types and add their intervals to HG

8We will later qualify the correspondence between possible ways of implementing this correct-
ness criterion and the actual level of atomic memory consistency. However note that 1ASR is less
strict than the atomic DSM level as it maintains only the property of the absence of inversions.
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in three steps. (1) Pairs of update transactions ordered in RTC precedence. We
scan the partial order defined by RTC precedence. For each pair of ordered trans-
actions, e.g., Tj <rtc Tk, if both Tj and Tk are update transactions, their intervals
appear at all complete histories and they appear respecting their RTC precedence
(incomplete histories also respect RTC precedence but lack some intervals). Iter-
ating over the pairs of this type, for each pair we insert into HG all intervals (i.e.,
intervals from all local histories) corresponding to Tj and Tk, in such a way that
the local precedence between intervals from the same replica is always respected
at HG (as it is at local histories). In order to do so, we must respect not only the
local precedence between the transactions of the current pair, but also between
transactions of the current pair and other update transactions already inserted in
HG. These insertions respect RTC precedence, as each local history already re-
spects RTC. (2) The rest of update transactions. Once the intervals of all pairs
of update transactions ordered in RTC have been appended to HG, the second
step inserts the intervals of the rest of update transactions. The insertion of an
interval Ii(Tj) is made respecting the local precedence of Ri between Ii(Tj) and
other intervals of Ri already present at HG. (3) Queries. Finally, the intervals of
read-only transactions are inserted at HG, respecting the local precedence of their
delegate (e.g., interval Ii(Tk), which was preceded by interval Ii(Tj) in the local
sequence of Ri, i.e., Tj <li Tk, can be added into HG immediately after the interval
Ii(Tj)). This completes the construction of the global history, which now contains
all intervals from all local histories, respecting their local precedence. Following
the provided construction rules for our example, we first add all intervals corre-
sponding to pairs of update transactions ordered in RTC:

I1(T3), I2(T3), I1(T4), I2(T4)

Then we add the intervals of the rest of update transactions, respecting local
precedence:

I1(T1), I1(T2), I2(T2), I1(T3), I2(T3), I2(T1), I2(T5), I1(T4), I2(T4), I1(T5)

Finally, there is a single read-only transaction, T6, which is added respecting the
local precedence of delegate node R2. This finishes the construction of HG:

HG : I1(T1), I1(T2), I2(T2), I1(T3), I2(T3), I2(T1), I2(T5), I2(T6), I1(T4), I2(T4), I1(T5)

A one-copy history H1C can be constructed from any complete local history Hi,
deleting subindexes from the intervals and properly adding the intervals of read-
only transactions whose delegate replica is different from Ri. Each one of those
intervals can either be ordered in RTC precedence or correspond to an indepen-
dent transaction. In the first case, the interval (without its subindex) is appended
to H1C respecting the local precedence of the delegate but only with regard to
conflicting transactions, i.e., respecting the RTC precedence. In the second case
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(independent queries), the interval (without its subindex) can be inserted at any
place, e.g., at the end. In our example, we take H1 and add an interval for T6,
whose delegate node is R2. As T6 is ordered in RTC precedence, it must be in-
serted respecting the local precedence of R2 regarding conflicting transaction T5:

H1C : I(T1), I(T2), I(T3), I(T4), I(T5), I(T6)

Both reads-from relationships and the same-final-writes condition of view equiv-
alence are affected by conflicting transactions. HG is view equivalent to H1C as
the only pairs of conflicting transactions are T3 and T4, on one hand, and T5 and
T6, on the other hand, and intervals of these pairs appear at the same order in both
histories,9 maintaining the reads-from relationships (write-read conflicts) and a
part of the same-final-writes condition (write-write conflicts), which is completed
by the existence in HG of intervals of all committed update transactions present in
H1C. The order followed by H1C is an equivalent serial order (required by 1SR)
for the distributed execution and this order respects RTC precedence (required by
1ASR).

Theorem 3.29. In a 1ASR database execution there is no inversion.

Proof. Assume an alteration occurs in a 1ASR execution between conflicting
transactions Tj and Tk, resulting in an inversion. Let Tj precede Tk in real time,
Tj <rt Tk. As transactions conflict, the precedence is maintained in RTC order:
Tj <rtc Tk. The inversion requires that for some replica Ri, Tk precedes Tj in
the local precedence of Ri, Tk <li Tj. Local history Hi respects local precedence
and, thus, it violates RTC precedence. As 1ASR executions guarantee that all
local histories are α-histories, and α-histories respect RTC precedence, this is a
contradiction.

Corollary 3.30. From theorems 3.27 and 3.29, and definition 3.28, it is deduced

that 1ASR is guaranteed in a database execution if and only if no inversions occur

during such an execution.

Informally, we can say that a database replication system provides the correctness
criterion of 1ASR if the user cannot differentiate it from a traditional stand-alone
system even when spreading their accesses all over the set of replicas.

9In HG, this order is respected between intervals of the same replica node.
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1ASR is suitable for applications that require a strict level of consistency and
cannot tolerate any inversion. However, avoiding all inversions may affect per-
formance. We can relax the imposed conditions by only requiring that individual
users do not suffer inversions. This way, even if some inversions are allowed,
individual users perceive an atomic image, as if the system were 1ASR.

Definition 3.31. Projection of a history for a set of transactions. We define
the projection of a history for a set of transactions T as the result of deleting from
the history all intervals corresponding to transactions not belonging to T.

Definition 3.32. Session. Database users are provided with the concept of ses-
sion, in order to logically group a set of transactions from the same user. Transac-
tions from different users belong to different sessions. However, it can be left to
the user the decision of using one or multiple sessions to group their transactions.

Definition 3.33. Session projection. For each session Si, composed by a set of
transactions TSi

, the projection of a history for the set TSi
is called the session

projection of that history for Si.

Definition 3.34. σ -history for a session. Given a session Si, a σ -history for Si

is a history whose session projection for Si respects the RTC precedence.

Definition 3.35. 1SR+ correctness criterion. We call 1SR+ the correctness cri-
terion that, based on a serializable concurrency control, ensures 1SR and guaran-
tees that each local history of a database execution is a σ -history for each existing
session.

The extra requirement of 1SR+ (inversion preclusion in sessions) further prevents
the occurrence of undesirable conditions over the ensured 1SR foundation: the
equivalent serial order must respect RTC precedence over the transactions of the
same client session. From the point of view of an individual user grouping all
their transactions within the same session, the system cannot be distinguished
from a system guaranteeing 1ASR.

Finally, it is obvious that not all applications have the same requirements. Those
not sensitive to real-time precedence do not need to care about such an issue.

Definition 3.36. 1SR′ correctness criterion. We define 1SR′ as the correctness
criterion that, based on a serializable concurrency control, ensures 1SR. No guar-
antees regarding inversions are provided.
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Figure 3.3: Sample execution for an abcast-based (1SR′) system. Two replicas
are visualized: R1 and R2. Vertical dotted lines represent real time at each

replica, increasing downwards.

As no additional constraints are required, this is merely a renaming of 1SR in
order to distinguish between the original criterion, which encompasses 1ASR,
1SR+, and 1SR′, and the least restrictive interpretation, which corresponds to
1SR′.

1SR′, as original 1SR, only requires that a given distributed database execution
has the same results as a serial execution of the same transactions over a one-copy
database. This is the case of the abcast-based systems described in Section 3.3.

Execution 3.4. Figure 3.3 represents the execution in an abcast-based system of
the same set of transactions used to show the construction of global and one-copy
histories in a 1ASR system (in page 36). In this case, to construct a global history
HG such that it is view equivalent to a one-copy history H1C, we must deal with
two types of intervals: (a) intervals of update transactions, and (b) intervals of
read-only transactions. The first type of intervals respect the order of their de-
livery in all replicas, and therefore such an order is also maintained in all local
histories. As the order of an abcast is a total order, intervals of update transactions
appear following the same sequence at all complete histories (incomplete histo-
ries contain only a prefix of that sequence). This ensures the sequential nature of
the replica consistency perceived by users. Following the order of that sequence,
and for each transaction on the sequence and each local history containing an
interval for that transaction, such an interval is appended to the global history.
Finally, intervals of read-only transactions are inserted into the global history re-
specting the local precedence of their delegate (e.g., interval Ii(Tk), which was
preceded by interval Ii(Tj) in the local order of Ri, i.e., Tj <li Tk, can be placed
into HG immediately after interval Ii(Tj)). This completes the construction of
the global history HG, which now contains all intervals from all local histories,
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respecting their local precedence. In our sample database execution, node R2
presents the inversion of T6, which overtakes transaction T5. Local histories are:

H1 : I1(T2), I1(T1), I1(T3), I1(T4), I1(T5)

H2 : I2(T2), I2(T1), I2(T3), I2(T4), I2(T6), I2(T5)

To construct the global history, we first append intervals of update transactions
and then insert the interval of read-only transaction T6 respecting the local prece-
dence of node R2:

HG : I1(T2), I2(T2), I1(T1), I2(T1), I1(T3), I2(T3), I1(T4), I2(T4), I2(T6), I1(T5), I2(T5)

A one-copy history H1C can be constructed from any complete local history Hi,
deleting subindexes from the intervals and properly adding the intervals of read-
only transactions whose delegate replica is different from Ri. These intervals
(without their subindex) are inserted into H1C respecting the local precedence of
their delegate, as during the construction of HG. In our example, we directly use
H2 as it already contains intervals for all committed transactions:

H1C : I(T2), I(T1), I(T3), I(T4), I(T6), I(T5)

HG is view equivalent to the serial H1C as the reads-from relationships are the
same and the same-final-write condition holds. Indeed, the total order followed to
apply writesets at all replicas greatly simplifies the reasoning. If all transactions
are update transactions, all replicas would execute all transactions in the same
order, resulting in a HG and a H1C that would also respect that order. Both reads-
from relationships and the same-final-writes condition are trivially maintained in
that situation. On the other hand, read-only transactions do not affect the same-
final-writes condition nor write values that could be read by other transactions,
but they read values written by other transactions. As they are included in both
HG and H1C respecting their local precedence,10 the reads-from relationships are
also maintained. Finally, as no guarantees regarding inversions are given, the
execution is 1SR′.

We have defined three correctness criteria that subdivide the original 1SR into
different possible interpretations. Authors of other works [17, 35, 139], already
started to qualify 1SR, although no formalization stated the different approaches,
and the underlying reason of the looseness of 1SR was neither clarified. This

10Let Tq be a read-only transaction with delegate node Ri. Let Tu be the transaction from which
Tq reads in Ri. As replicas run under serializable concurrency control, the updates of Tu are visible
only after the commitment of Tu and, thus, Tu will precede Tq in the local order of Ri, i.e., Tu <li Tq.
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way, there are different names in the literature that correspond to the correctness
criteria defined here: 1ASR would be equivalent to strong 1SR, 1SR+ would
match strong session 1SR, and 1SR′ would correspond to (plain) 1SR.

3.5.2 Synchronization Models

We have expressed 1SR′, 1SR+ and 1ASR correctness criteria with regard to the
inversions that are allowed to occur in each of them. As inversions are fully per-
ceived by users, such descriptions of the different levels of consistency match the
point of view of users, i.e., they describe the user-centric [129] view of consis-
tency.

Definition 3.37. User-centric view of consistency. The user-centric view of con-
sistency is the perception that users, individually or collectively, have about the
consistency of the database replication system in use. This perceived consistency
is the user-centric consistency of the system.

Correctness criteria 1ASR, 1SR+ and 1SR′ therefore define three different levels
of user-centric consistency: absence of inversions, absence of inversions within
sessions, and presence of inversions, respectively.

The user-centric view of consistency depends on the transactions launched by
users and is, therefore, intrinsically limited: users view consistency through their
transactions. There is a second way of analyzing consistency: from the point of
view of the servers, i.e., how consistency is internally provided.

Definition 3.38. Server-centric view of consistency. The server-centric view
describes consistency as internally enforced at the replicas of the system. This
enforced consistency is the server-centric consistency of the system.

The server-centric view of consistency is a more accurate, more complete descrip-
tion of consistency, as it matches the perception that would have an omniscient
observer of the system, not biased by the concrete combination of executing trans-
actions, but with a system-wide knowledge.

The distinction between server-centric and user-centric consistency is very im-
portant as strong performance implications are at stake. The stricter the server-
centric consistency, the lower the performance. However, a high user-centric con-
sistency may be provided by adding some restrictions to transaction processing
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over a system with a relaxed server-centric consistency, i.e., it is possible to relax
consistency among servers while still providing users with an image of a high
level of consistency, by, e.g., aborting transactions that would reveal to users the
occurrence of an inversion. Therefore, distinguishing between user-centric and
server-centric consistency allows us to trade consistency for performance while
still ensuring a high enough user-centric consistency.

Moreover, there is a tendency in modern applications to use several isolation
levels in order to execute different types of transactions. In this case, in a sys-
tem with a relaxed server-centric consistency, even if it provides users with an
atomic –inversions-free– view of consistency through their serializable transac-
tions, other transactions using more relaxed levels of isolation could be able to
perceive some inversions.

For these reasons, it is interesting to analyze how consistency is really imple-
mented among servers.

Definition 3.39. Synchronization model for a correctness criterion. In order
to enforce a given correctness criterion, servers need to be synchronized. Each
possible approach to do so is a synchronization model for such a correctness
criterion. Synchronization among servers is performed through different mech-
anisms: (a) global concurrency control, which establishes when transactions are
allowed to proceed, in collaboration with the local concurrency control that en-
sures certain level of isolation among transactions executed inside the local node;
(b) propagation and application of updates, which defines when and how updates
are broadcast to other replicas and applied there; and (c) validation rules, which
complement the distributed concurrency control by aborting broadcast transac-
tions as needed.

Synchronization models will allow us to distinguish when or by means of which

type of mechanisms the system is able to preclude those inversions it must avoid
in order to ensure certain correctness criterion. This distinction is useful in order
to estimate the possible differences in performance between the implementations
of different synchronization models.

We call native those levels of server-centric consistency that can be achieved
by using only the mechanisms that control the propagation and application of
updates. We consider two native levels of server-centric consistency: natively
atomic and natively sequential replica consistency.
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Definition 3.40. Natively atomic replica consistency (#A replica consistency).
We say that a database replication system providing serializable concurrency con-
trol presents the server-centric level of natively atomic replica consistency when,
thanks to the mechanisms used for the propagation and application of updates,
the occurrence of alterations is absolutely avoided and, thus, no inversions ap-
pear. Indeed, with this consistency, no operation is ever able to read the old value
of a data item after such an item has been updated by any transaction commit-
ted at any replica of the system. More formally, #A replica consistency ensures:
(a) for real-time ordered transactions, that no alteration is ever produced (even
between independent transactions); and (b) for concurrent transactions, that they
present their intervals in the same order at all replicas.

Natively atomic replica consistency is the database version of the atomic DSM
memory consistency.

Definition 3.41. 1ASR/#A synchronization model. We define 1ASR/#A as the
synchronization model for 1ASR which guarantees natively atomic replica con-
sistency.

As natively atomic replica consistency intrinsically avoids alterations, no addi-
tional restriction or mechanism is required for providing 1ASR.

An example of system that follows the 1ASR/#A model would be one in which
each transaction is totally ordered before starting execution, and transactions are
sequentially executed following that order, in such a way that a transaction must
have committed at all available and necessary replicas before the next transaction
is started. Such a total order can be determined by a sequencer, by requiring trans-
actions to acquire locks at each replica they must access, or by assigning start-
ing timestamps to transactions, as suggested for the strongly serializable DBMSs
[17]. In practice, few systems implement 1ASR/#A.

Theorem 3.42. 1ASR/#A guarantees 1ASR.

Proof. 1ASR/#A achieves the same serial order at each replica and it moreover
ensures that no alteration is ever produced, so it trivially guarantees that no alter-
ation between conflicting transactions is ever produced.

Definition 3.43. Natively sequential replica consistency (#S replica consis-
tency). A database replication system presents the server-centric level of natively
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sequential replica consistency when the mechanisms used for the propagation and
application of updates ensure that those updates are committed at each node fol-
lowing the same order.

In natively sequential systems, the sequence of database states (observed or not) is
guaranteed to be the same at all replicas. Natively sequential replica consistency
is the database version of the sequential DSM memory consistency.

This native level of server-centric consistency is based in a total order process-
ing of writesets: while read-only transactions are executed and committed in
their delegate replica, writesets are broadcast in total order 11 and, if successfully
validated, are later applied and committed at all replicas following that order.
Intrinsically, if an update transaction Tk starts after the commitment of another
update transaction Tj and it is not aborted, its writeset will be placed inside
the total order of the delivery after the writeset of Tj. In other words, with #S
replica consistency, there exists a FIFO total order among the commitment of up-
date transactions. This order subsumes the real-time precedence between update
transactions and establishes an arbitrary order for concurrent transactions (not
ordered in real-time). Read-only transactions are not required to be broadcast in
this server-centric level of consistency.

Theorem 3.44. In #S replica consistency under serializable isolation, inversions

of read-only transactions are allowed, inversions of update transactions are not.

Proof. There are, a priori, four possible situations of alterations between trans-
actions: (1) an update transaction overtakes another update transaction, (2) an
update transaction overtakes a read-only transaction, (3) a read-only transaction
overtakes another read-only transaction, and (4) a read-only transaction overtakes
an update transaction. Inversions are defined between conflicting transactions and
two read-only transactions never present conflicts, so type (3) is not a possible
type of inversion. #S guarantees a FIFO total order in the commitment of update
transactions. This order intrinsically subsumes RT precedence, so no alteration is
possible between update transactions, precluding type (1). Moreover, read-only
transactions are only executed and committed at one replica, their delegate Ri. By
the time a query commits, no transaction started afterwards is able to overtake it,
rendering inversions of type (2) impossible. The only case left is (4), where a

11Atomic broadcast can be substituted with a FIFO broadcast if only one node sends messages,
like in primary copy replication. In any case, the result is a totally ordered delivery of messages.

45



3.5. CORRESPONDENCE BETWEEN DSM MODELS AND REPLICA CONSISTENCY

read-only transaction Tq, with delegate Ri, overtakes a conflicting update transac-
tion Tu. This occurs when transaction Tu first-commits in a node different from Ri

before Tq starts in Ri. If no mechanism prevents the execution of Tq from taking
place before the updates of Tu are applied at node Ri, then an inversion is pro-
duced and the query reads outdated values. #S respects RT precedence for update
transactions, but nothing is ensured with regard to read-only transactions, so the
inversion of a read-only transaction which overtakes a remote update transaction
is possible in #S under serializable isolation.

Definition 3.45. 1ASR/#S synchronization model. We call 1ASR/#S the syn-
chronization model for 1ASR which guarantees natively sequential replica con-
sistency and enhances it with inversion preclusion.

As natively sequential replica consistency allows alterations of read-only trans-
actions, other mechanisms are required for the avoidance of inversions required
in 1ASR. 1ASR/#S systems generally avoid alterations of the real-time prece-
dence only for conflicting transactions by means of their validation rules, thus
trying to minimize the performance impact of reduced concurrency. A system
that follows the 1ASR/#S synchronization model is BaseCON for strong 1SR
[139]. In this system, a total order is established among transactions before their
start. Update transactions are executed at every node and committed following
the order of their delivery. Read-only transactions are scheduled to replicas that
have already committed all previous update transactions from any client. An-
other possible algorithm is to broadcast in total order each read-only transaction
when it is launched by users, start its execution optimistically at the delegate and
abort it whenever a conflicting update transaction that precedes it in the total or-
der commits at that node. An aborted read-only transaction is restarted when its
delivered message is processed.

Theorem 3.46. 1ASR/#S guarantees 1ASR.

Proof. 1ASR/#S easily obtains an equivalent serial order based on the delivery
order and moreover it precludes inversions, guaranteeing that they are not per-
ceived by the user.

Apart from the native levels of server-centric replica consistency, other levels
must be considered. The periodically atomic and the periodically sequential
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replica consistency levels can be achieved with the combination of the mech-
anisms for global concurrency control and for propagation and application of
updates.

The periodically atomic replica consistency maintains the intrinsic preclusion of
inversions from the natively atomic level with an increased concurrency. Indeed,
precluding alterations for every transaction reduces concurrency and performance
and a trade-off immediately appears. Let T1 and T2 be two transactions executed
in a 1ASR/#A system. If T1 <rt T2, then the interval of T1 will not appear after
the interval of T2 at any node. In order to ensure 1ASR/#A, all replicas must wait
for T1 to commit before allowing T2 to start. When T1 and T2 are independent,
the database state after committing both transactions will be the same either with
a serial order T1,T2 or T2,T1. The system could execute both transactions con-
currently to increase performance without implications on perceived consistency.
However, if the local precedence at any replica presents alterations with regard to
the real-time precedence, natively atomic replica consistency is lost. In that case,
the distributed serializable concurrency control of the system still guarantees that
all updates in each database item, which are made by conflicting transactions,
will follow the same sequence in every replica (as needed by the cache consis-
tency model [49]). Moreover, most of the traditional distributed database systems
maintain a synchronous client-server interaction: the client blocks after sending
the request message and resumes its activity once the server sends back the re-
ply. This synchronous interaction allows the program order in each of the client
processes to be maintained in their updates (as needed by the PRAM consistency
model [81]). As a result, the ensured server-centric consistency when different
replicas follow different local orders for non-conflicting transactions drops down
to processor consistency [49], i.e., cache+PRAM [3]. This was considered by
Traiger et al. [130] as concurrency transparency, a characteristic of their one-copy
equivalence definition.

Definition 3.47. Periodically atomic replica consistency (*A replica consis-
tency). A database replication system providing serializable concurrency control
presents the server-centric level of periodically atomic replica consistency when
the mechanisms used for global concurrency control and for propagation and
application of updates ensure that no alteration is produced between conflicting
transactions, i.e., that inversions do not occur. This way, in periods when each
transaction conflicts with any other transaction, this server-centric consistency as-
similates to a natively atomic consistency in that no operation is ever able to read
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Figure 3.4: A relaxed period (P) in a periodically atomic system

the old value of a data item after such an item has been updated by any transac-
tion committed at any replica of the system. On the other hand, in periods when
there exists at least a pair of executing transactions that are independent between
them, this replica consistency guarantees only the relaxed level of processor con-
sistency.

The consistency during the relaxed periods of the periodically atomic replica con-
sistency is the database version of the processor DSM memory consistency. In
the rest of periods, however, it corresponds with the atomic DSM memory con-
sistency.

Definition 3.48. 1ASR/*A synchronization model. We call 1ASR/*A the syn-
chronization model for 1ASR which guarantees periodically atomic replica con-
sistency.

Algorithms that follow the 1ASR/*A synchronization model are the one de-
scribed by Bernstein and Goodman [14] and the distributed two-phase locking,
wound-wait and basic timestamp ordering algorithms surveyed by Carey and
Livny, along with the distributed optimistic two-phase locking algorithm they
propose [23]. In these systems, based on two-phase commit, the distributed con-
currency control (e.g., to get a write lock at each copy of the data item a trans-
action wants to update) serializes conflicting transactions but allows independent
transactions to run concurrently. In general, we can define 2PC-based systems de-
scribed in Section 3.3 as 1ASR/*A, with periods of processor consistency when
some concurrently executing transactions do not present read-write, write-read
nor write-write conflicts. This characteristic alternation between atomic (A) and
processor (P) periods is depicted in Figure 3.4. Imagine two non-conflicting
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transactions starting at different delegate nodes: Ta writing item x and Tb writ-
ing item y. Ta starts at replica R1 while Tb starts at replica R2.12 As transactions
do not conflict, write locks are granted and the atomic commit protocol is run
concurrently for both transactions. As messages exchanged during 2PC are not
ordered, intervals for Ta and Tb may appear at different orders in different replicas.
Despite this consistency loss, no observer is able to detect the relaxation within
a serializable concurrency control. Suppose an observer (a user) that starts two
read-only transactions, Tc and Td , simultaneously at two replicas that differ in the
interval order of Ta and Tb. Both read-only transactions intend to read items x and
y. Even if those queries are able to start at their corresponding delegate replica in
the precise moment where the first transaction has committed and the second one
is still in execution, no inconsistencies could be observed. Suppose that replica R1

follows local order Ta,Tb and Tc starts between both commit operations. Replica
R2 follows local order Tb,Ta, starting Td between both commitments. Tc is able
to access x but item y is write-locked by Tb. Similarly, Td can access y but not x.
Distributed locks are thus preventing Tc and Td from perceiving inconsistent (dif-
ferent from each other) database states. Only when both Ta and Tb are committed
in both replicas, will Tc and Td be able to complete their accesses, which will
throw the same results in both nodes: the sequence of observed database states
is the same in all replicas. The consistency-relaxed period spans over the slots
containing the intervals of Ta and Tb at each replica. Previous and subsequent
periods will present atomic, inversions-free consistency as long as each pair of
transactions accesses to, at least, one common item.

Theorem 3.49. 1ASR/*A guarantees 1ASR.

Proof. 1ASR/*A achieves the same serial order at each replica for all conflicting
transactions, and the results of independent concurrent transactions are equivalent
to any serialization of those transactions. Moreover, 1ASR/*A ensures that no
alteration between conflicting transactions is ever produced, so it guarantees that
no inversions are produced.

This way, 1ASR/*A trades server-centric consistency for performance (in the way
of increased concurrency), while still offering a 1ASR image to users.

12For the purpose of depicting the alternation of periods, it does not matter if these transactions
have a real-time precedence or if they are concurrent. In Figure 3.4, however, Ta and Tb are depicted
as concurrent transactions.
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The periodically sequential replica consistency maintains the exploitation of the
total order delivery of writesets to serialize conflicting update transactions, while
increasing concurrency. Indeed, applying all writesets in a sequential manner re-
duces concurrency. An optimization is possible: to apply in a sequential manner
only those writesets that are conflicting, while letting independent transactions
to commit at different orders as long as no other running transactions are able to
perceive such relaxation of consistency. Similarly to the periodically atomic case,
the consistency during the periods when there are pairs of update transactions that
are independent to each other is the relaxed level of processor consistency.

Definition 3.50. Periodically sequential replica consistency (*S replica con-
sistency). A database replication system presents the server-centric level of pe-
riodically sequential replica consistency when the mechanisms used for global
concurrency control and for propagation and application of updates ensure that
those updates are committed at each node following the same order as long as
they correspond to conflicting transactions. This way, this server-centric con-
sistency assimilates to a natively sequential consistency in that commitments of
conflicting update transactions follow the same sequence at every replica. On
the other hand, in periods when there is at least one update transaction that is
independent to another one, this replica consistency guarantees only the relaxed
level of processor consistency, by allowing the concurrent application of indepen-
dent writesets and letting their commitments to occur at different orders. Global
concurrency control mechanisms prevent other running (not committing) trans-
actions from perceiving the loss in consistency caused by such different commit
orders.

The consistency during the relaxed periods of the periodically sequential replica
consistency is the database version of the processor DSM memory consistency.
In the rest of periods, however, it corresponds with the sequential DSM memory
consistency.

Definition 3.51. 1ASR/*S synchronization model. We call 1ASR/*S the syn-
chronization model for 1ASR which guarantees periodically sequential replica
consistency and enhances it with inversion preclusion.

Periodically sequential replica consistency, similarly to the natively sequential
level, allows alterations only of read-only transactions. Indeed, the only differ-
ence between both levels involves independent transactions, which, by definition,
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cannot originate inversions (alterations of conflicting transactions). Some mech-
anisms are needed for the avoidance of inversions required in 1ASR. 1ASR/*S
systems generally avoid alterations of the real-time precedence only for conflict-
ing transactions by means of their validation rules, thus trying to minimize the
performance impact of reduced concurrency. Moreover, the relaxation in consis-
tency must be concealed from other running transactions by, e.g., getting all nec-
essary locks during validation, before letting independent transactions to freely
commit.

Algorithms that follow the 1ASR/*S synchronization model are DBSM-RO-opt
and DBSM-RO-cons [96]. Both protocols extend the database state machine
replication [101], from which they inherit the optimization over writeset applica-
tion consisting in allowing independent transactions to concurrently apply their
writesets and commit at different orders. This relaxation in consistency is not
perceived by other transactions, as writesets get all their write locks as soon as
they are certified upon delivery, before they are allowed to proceed. DBSM-RO-
opt broadcasts in total order and certifies also read-only transactions, aborting
them whenever a potential inversion is detected. In this case, the execution is
optimistic but validation rules preclude inversions. DBSM-RO-cons follows a
conservative approach, broadcasting in total order read-only transactions when
they are launched by users and waiting in the delegate node for all update trans-
actions which appear before in the total order to be committed, before starting
the execution of the read-only transaction. In this case, the inversion preclusion
is guaranteed by the concurrency control.

Theorem 3.52. 1ASR/*S guarantees 1ASR.

Proof. 1ASR/*S easily obtains an equivalent serial order for conflicting update
transactions based on their delivery order and the results of independent concur-
rent update transactions are guaranteed to be equivalent to any serialization of
those transactions. Moreover, 1ASR/*S precludes inversions, guaranteeing that
they are not perceived by the user.

We have identified four different synchronization models for the 1ASR correct-
ness criterion. These models allow system designers to trade consistency for per-
formance while ensuring that this loss in consistency is not perceived by users,
which always obtain a 1ASR image thanks to additional mechanisms that impose
certain restrictions over transaction execution. As a brief summary, 1ASR/#A
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precludes inversions (in general, any alteration) with the mechanisms used for
propagation and application of updates; 1ASR/#S eliminates potential inversions
with the validation rules; 1ASR/*A avoids inversions thanks to the global concur-
rency control; and 1ASR/*S uses validation rules to eliminate potential inversions
while ensuring with global concurrency control mechanisms that the periods of
relaxed consistency are not perceived. We could say that 1ASR/#A and 1ASR/*A
follow a pessimistic approach regarding inversions, while 1ASR/#S and 1ASR/*S
use an optimistic approach. This way, both in 1ASR/#A and 1ASR/*A, no opera-
tion is able to read the old value of a data item after such an item has been updated
by a committed transaction (e.g., all copies were updated on commitment or dis-
tributed locks prevent such accesses), while this is indeed possible in 1ASR/#S
and 1ASR/*S, where the transaction issuing that operation is ultimately aborted
to avoid the appearance of an inversion.

Regarding the 1SR+ correctness criterion, Terry et al. [129] initially proposed
session consistency as a solution that provides the advantages of precluded inver-
sions while avoiding the costs of atomic consistency. However, the relaxation of
their model prevented it from providing one-copy equivalence, as different clients
could observe different serial orders for the same set of transactions. Indeed, their
guarantees do not attempt to provide atomicity or serializability, as these are con-
sidered by the authors as orthogonal issues. More recent papers [35, 36] also
propose systems with session semantics, but they build it upon sequential consis-
tency. We follow that trend here.

Definition 3.53. 1SR+/#S synchronization model. We call 1SR+/#S the syn-
chronization model for 1SR+ that guarantees natively sequential replica consis-
tency and enhances it with inversion preclusion on a per-session basis.

The Block and Forward algorithms [35] are examples of systems that follow the
1SR+/#S synchronization model. In both algorithms, a primary site is used to
perform all update transactions and lazily send such updates to secondary sites,
which apply them sequentially. In the Block algorithm, read-only transactions
must wait in their delegate for the required sequence number, i.e., for the pre-
vious updates of transactions of the same session to be committed in that node.
This way, concurrency control is responsible for precluding inversions within a
session. In the Forward algorithm, read-only transactions are forwarded to the
primary whenever their delegate is not up-to-date, i.e., it has not yet applied all
updates from previous transactions of the same session.

Theorem 3.54. 1SR+/#S ensures 1SR+.
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Proof. 1SR+/#S easily obtains an equivalent serial order based on the delivery
order and moreover it precludes inversions in sessions, guaranteeing that individ-
ual users do not perceive inversions in their sessions.

Definition 3.55. 1SR+/*S synchronization model. We call 1SR+/*S the syn-
chronization model for 1SR+ that guarantees periodically sequential replica con-
sistency and enhances it with inversion preclusion on a per-session basis.

Taking previous Block and Forward algorithms as a basis, we could design an
algorithm for the 1SR+/*S model by making refresh transactions in the secondary
sites to acquire locks sequentially but then allowing them to apply updates and
to commit in different order. The maintenance of the sequence number of the
database should also be adapted for this optimization.

Theorem 3.56. 1SR+/*S ensures 1SR+.

Proof. 1SR+/*S easily obtains an equivalent serial order for conflicting update
transactions based on their delivery order and the results of independent concur-
rent update transactions are guaranteed to be equivalent to any serialization of
those transactions. Moreover, 1SR+/*S precludes inversions in sessions, guaran-
teeing that individual users do not perceive inversions in their sessions.

Finally, with regard to the 1SR′ correctness criterion, we also take sequential
consistency as a basis.

Definition 3.57. 1SR′/#S synchronization model. We call 1SR′/#S the synchro-
nization model for 1SR′ that guarantees natively sequential replica consistency.

The BaseCON for 1SR [139] is an example of system that follows the 1SR′/#S
synchronization model. These systems achieve natively sequential consistency
by relying in a total order broadcast of update transactions, which establishes the
order replicas follow to apply such updates. Indeed, given that many database
replication systems apply the set of update transactions in FIFO total order in all
replicas, they can be immediately tagged as natively sequential consistent systems
that follow 1SR′/#S. In general, we can define abcast-based systems described in
Section 3.3 as 1SR′/#S systems, where replica consistency is relaxed and no steps
are taken to avoid inversions.

Theorem 3.58. 1SR′/#S ensures 1SR′.
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Proof. 1SR′/#S easily obtains an equivalent serial order based on the delivery
order, which is enough for 1SR′.

Definition 3.59. 1SR′/*S synchronization model. We call 1SR′/*S the syn-
chronization model for 1SR′ that guarantees periodically sequential replica con-
sistency.

Many systems follow the 1SR′/*S synchronization model. For example, DBSM
[101] and the SER algorithm [69]. In these systems, non-conflicting writesets are
allowed to commit at different orders, while conflicting writesets are enforced
to commit in their delivery order. Write locks acquired right after certification
prevent other transactions to perceive the relaxation in consistency.

Theorem 3.60. 1SR′/*S ensures 1SR′.

Proof. 1SR′/*S easily obtains an equivalent serial order for conflicting update
transactions based on their delivery order and the results of independent concur-
rent update transactions are guaranteed to be equivalent to any serialization of
those transactions. The achieved serialization guarantees 1SR′.

3.5.3 Performance Implications

In order to analyze the performance implications that the selection of a synchro-
nization model may have, we define some relations.

Definition 3.61. Relation stricter-than. A correctness criterion CC1 is stricter
than another criterion CC2 if it prevents more anomalous situations than CC2

does. This relation is transitive.

Clearly, as 1ASR avoids all inversions, it is stricter than 1SR+, which avoids
inversions only in sessions, and than 1SR′, which allows all inversions. Similarly,
1SR+ is stricter than 1SR′.

Definition 3.62. Relation higher-than. A server-centric consistency level CL1

is higher than another level CL2 if it corresponds to a higher (according to the
hierarchy defined by Mosberger [91]) level of DSM memory consistency. This
relation is transitive.
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From this definition, we can state that: (a) #A is higher than *A (as natively
atomic consistency always provides the atomic level, while periodically atomic
consistency alternates between the atomic and the processor levels); (b) #A is
higher than #S (as natively atomic consistency provides the atomic level and na-
tively sequential consistency provides the sequential level); (c) #A is higher than
*S (as natively atomic consistency provides the atomic level and periodically se-
quential consistency alternates between the sequential and the processor levels);
(d) *A is not comparable with #S (due to the alternation of levels in periodically
atomic consistency, as the atomic level is higher than the sequential level, but
the sequential level is higher than the processor level); (e) *A is not comparable
with *S (although both provide the processor level in their relaxed periods, the
alternation with the atomic and the sequential level, respectively, renders these
server-centric levels non-comparable, as the atomic level is higher than the se-
quential level, but the sequential level is higher than the processor level); (f) #S is
higher than *S (as natively sequential consistency always provides the sequential
level, while periodically sequential consistency alternates between the sequential
and the processor levels).

Definition 3.63. Relation harder-than. Let SM1 and SM2 be two synchroniza-
tion models for the same or different correctness criteria. We say that SM1 is
harder than SM2, SM1 >h SM2, if: (a) both models guarantee the same correctness
criterion but SM1 maintains a higher level of server-centric consistency than SM2

does; or (b) both models maintain the same level of server-centric consistency
but SM1 guarantees a stricter correctness criterion than SM2 does; or (c) there
exists a synchronization model SM3 such that SM1 >h SM3 and SM3 >h SM2.
This relation is transitive and establishes a partial ordering among synchroniza-
tion models.

Condition (a) represents the performance penalty of maintaining a tighter syn-
chronization in servers, while condition (b) depicts the cost of the additional
mechanisms (or of their application to more situations) that SM1 requires in order
to ensure its more restrictive correctness criterion. Condition (c) establishes the
transitivity of the relation.

The fact of using a relaxed server-centric consistency level achieves important
performance improvements that increase system scalability. Indeed, performance
increases as server-centric consistency relaxes, and the less the needed additional
mechanisms, the better. In other words, the harder the synchronization model, the
higher the penalty on performance. This relation allows us to estimate beforehand
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the differences in performance between two models. The following relationships
can be stated:13

• 1ASR/#A is harder than 1ASR/*A. They both provide the same correctness
criterion and 1ASR/#A guarantees natively atomic consistency, which is
higher than the periodically atomic consistency of 1ASR/*A.

• 1ASR/#A is harder than 1ASR/#S. They both provide the same correctness
criterion and 1ASR/#A guarantees natively atomic consistency, which is
higher than the natively sequential consistency of 1ASR/#S.

• 1ASR/#S is harder than 1ASR/*S. They both provide the same correctness
criterion and 1ASR/#S guarantees natively sequential consistency, which
is higher than the periodically sequential consistency of 1ASR/*S.

• 1ASR/#S is harder than 1SR+/#S. They both provide natively sequential
consistency and the correctness criterion ensured by 1ASR/#S is stricter
than that of 1SR+/#S, and thus it requires mechanisms that preclude all
inversions, while 1SR+/#S applies such mechanisms only in the context of
a single session.

• 1SR+/#S is harder than 1SR+/*S. They both provide the same correctness
criterion and 1SR+/#S guarantees natively sequential consistency, which is
higher than the periodically sequential consistency of 1SR+/*S.

• 1ASR/*S is harder than 1SR+/*S. They both provide periodically sequen-
tial consistency and 1ASR/*S ensures a stricter correctness criterion than
1SR+/*S (1ASR/*S requires mechanisms that preclude all inversions while
1SR+/*S applies such mechanisms only in the context of a single session).

• 1SR+/#S is harder than 1SR′/#S. They both provide natively sequential
consistency and 1SR+/#S, to ensure a stricter criterion, requires mecha-
nisms that preclude inversions within sessions, while 1SR′/#S does not.

• 1SR′/#S is harder than 1SR′/*S. They both ensure the same correctness
criterion and 1SR′/#S maintains natively sequential consistency, which is
higher than the periodically sequential consistency of 1SR′/*S.

13As the relation is transitive, we enumerate only direct relationships.
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Figure 3.5: Hardness hierarchy in synchronization models for the proposed
correctness criteria

• 1SR+/*S is harder than 1SR′/*S. They both provide periodically sequential
consistency and 1SR+/*S ensures a correctness criterion that is stricter than
the criterion of 1SR′/*S.

• 1ASR/*A is not comparable with 1ASR/#S or 1ASR/*S. They provide the
same correctness criteria but their server-centric consistency levels are not
comparable.

• 1ASR/*A is not comparable with synchronization models of other correct-
ness criteria, as its server-centric consistency level is not shared with any
other model.

Although performance is a property of particular implementations and none of
the correctness definitions necessarily leads to poorer performance than others,
the harder-than relation allows us to make some estimations and predict that
1ASR/#A systems will likely present the poorest performance, as they ensure the
highest server-centric consistency level and guarantee the strictest correctness
criterion. For 1ASR systems, those following 1ASR/*S will probably present
high performance, while 1ASR/*A systems will depend on their alternation (the
more and larger the periods of relaxed consistency, the higher the performance).
Some of these estimations are confirmed by comparative studies of performance
[35, 96]. Figure 3.5 summarizes the proposed correctness criteria for serializable
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database replication, also showing the hardness hierarchy defined by the partial
ordering of the harder-than relation among the different synchronization models.

3.6 Consistency in Highly-Scalable Data Systems

In this section, we briefly comment about the consistency provided in current
highly scalable systems of cloud environments. The model followed in these sys-
tems is substantially different from the system model considered in this chapter:
cloud systems generally follow a quorum-based approach, instead of the ROWAA
approach; isolation and concurrency control inside each server is usually relaxed;
and, moreover, the relational schema is often substituted by a key-value schema,
devoid of SQL features.14

Almost all cloud systems rely on the partitioning of persistent data [125] among
a potentially high number of servers: the whole set of data is partitioned and each
partition is stored at a different server. Of course, replication is often used, e.g.,
storing a given partition in more than one server. This partitioning is made in
such a way that users’ queries and updates access a minimum number of parti-
tions (ideally, only one), in order to minimize as much as possible the required
synchronization among servers (otherwise, the introduced delays would be intol-
erable for these systems). Other solutions [39] use a mechanism that fragments
requests, sends each fragment to the corresponding partition and later unifies all
responses in a single reply to the client. In any case, the key to achieve scala-
bility lies in a minimum coordination among servers,15 and thus consistency is
sacrificed for performance. Updates to a data item are lazily propagated and no
distributed concurrency control is in use. Thus, server-centric consistency is nei-
ther natively nor periodically atomic. During execution, each copy of a data item
may present different values and even go through different sequences of values:
server-centric consistency is neither natively nor periodically sequential nor even
processor. Indeed, the usual consistency level ensured in these systems is the

14There are, however, some exceptions to this general tendency. Some systems, e.g., the one
described by Kallman et al. [67], maintain the relational model, by moving the DBMS storage
to main memory and removing concurrency control and multi-thread management (thus forcing
a sequential execution), and even are able to achieve better performance than that of key-value
schemas for some applications [100]. Other illustrative examples are Microsoft SQL Azure [22, 87]
and Relational Cloud [33].

15Nevertheless, coordination is still required in scalable systems for different needs and several
services can be used to achieve it, such as Boxwood [84], Chubby [19] or ZooKeeper [66].

58



3. CORRECTNESS CRITERIA FOR 1SR DATABASE REPLICATION SYSTEMS

eventual consistency [133]: if no more updates are scheduled, all copies of a data
item will eventually present the same value, thanks to reconciliation mechanisms
that allow diverged copies to agree on a value. Eventual consistency seems the
price to pay for an extreme scalability. With such a relaxed consistency, one-copy
equivalence is beyond the current possibilities of most cloud systems.

3.7 Discussion and Conclusions

Serializability is the highest level of transaction isolation. Under it, the effect of
concurrently executing transactions must be the same as that of any serial execu-
tion of those transactions. Traditional stand-alone databases providing serializ-
ability were actually more restrictive than required by the model: the equivalent
serial execution never presented alterations with regard to real-time precedence.
Database users became accustomed to this stricter behavior, which ensured that a
transaction executed after another is able to see the effects of that previous trans-
action. This became a fundamental principle of stand-alone systems from the
users’ point of view, while never required by any correctness criterion.

When databases were distributed and replicated for increased performance, one-
copy equivalence was added to serializability to define one-copy serializability
(1SR) [15], under which the interleaved execution of transactions must be equiv-
alent to a serial execution of the same set of transactions on a one-copy (non-
replicated) database. Early database replication systems based on distributed
locking and atomic commit (2PC-based systems), designed to provide 1SR, were
again more restrictive than required, due to the employed techniques. Users did
not complain: distributed systems behaved as traditional stand-alone ones.

Later, performance-improved systems appeared, where old techniques were sub-
stituted with deferred update propagation and atomic broadcast (abcast-based
systems). One-copy serializability was guaranteed but nothing enforced the more
restrictive behavior to which users were accustomed: a transaction executed after
another might not be able to see the effects of that previous transaction, due to
what we call an inversion.
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The difference between 2PC-based and abcast-based systems is a different con-
sistency level among replicas. This aspect was never considered in database cor-
rectness criteria, thus allowing replication systems to freely relax replica consis-
tency, depriving users of the stricter behavior they were familiarized with, while
still being as correct as other systems maintaining that behavior. Both system
models were equally acceptable under one-copy serializability. This correctness
criterion became then a loose term but, up to our knowledge, such a fact has not
been stated nor justified yet. However, the consistency level provided by recent
systems has been branded as weak, strong, strict, etc., in an attempt to better
characterize it with regard to other 1SR systems.

We consider that the ambiguity stemming from the fact of not considering replica
consistency in correctness criteria for database replication systems is not triv-
ial, as it may lead to user confusion and unfairness when comparing different
replication systems. Our group [95] already raised this topic before. We think
that an explicit distinction must be made. Memory consistency models can be
borrowed from the distributed shared memory scope in order to clearly state the
features of each system. Starting from these models, we propose three different
correctness criteria that ensure the original 1SR criterion: 1SR′, 1SR+ and 1ASR.
These criteria differ in the inversions that users may perceive and therefore define
three levels of user-centric consistency: in 1ASR no inversions are perceived, in
1SR+ no inversions within user sessions are perceived, in 1SR′ inversions are
perceived. A complete formalization is also provided. Moreover, we have further
distinguished among 1SR database replication systems, according to the exact
consistency level actually ensured in the set of replicas (the server-centric con-
sistency). This distinction is important, as the actual DSM consistency model
implemented by a replication protocol partially explains its complexity and per-
formance. Indeed, significant performance boosts can be achieved with minor
DSM consistency relaxations. Regarding systems that guarantee 1ASR, the high-
est level of consistency from the point of view of users, while 1ASR/#A systems
ensure a strict consistency level in their servers, 1ASR/*A systems offer a relaxed
consistency in some periods. Two other groups, 1ASR/#S and 1ASR/*S systems,
achieve greater performance by relying on a continuously relaxed server-centric
consistency but adding some restrictions to transaction processing and validation.
However, it is important to notice that such server-centric consistency differences
could be seen by users should their applications not only use a serializable isola-
tion level but also execute part of their transactions under a very relaxed isolation
level, an increasingly common practice in modern systems.
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We have identified 2PC-based systems (those using distributed locking and the
two-phase commit protocol) as 1ASR/*A systems, where the periodically atomic
server-centric consistency jumps from the atomic to the processor level but user-
centric consistency is always 1ASR, thanks to the concurrency control mecha-
nisms. On the other hand, general abcast-based systems (those locally executing
transactions and finally broadcasting them in total order) follow 1SR′/#S (with
natively sequential replica consistency) and ensure the correctness criterion of
1SR′, where inversions may arise.

To conclude, there are two answers for the question that started this chapter:
“Are one-copy equivalent database replication systems actually behaving as one
copy?”. According to the theory on isolation levels and consistency models, one-
copy equivalent systems do behave as one copy. According to the users’ expe-
rience, probably accustomed to the behavior of traditional stand-alone databases
(more restrictive than the correctness model they enforced), only systems ensur-
ing 1ASR (1ASR/#A, 1ASR/*A, 1ASR/#S and 1ASR/*S) behave as one copy.
The transparency required to all distributed systems [127] would not be guaran-
teed in relaxed, replicated databases providing 1SR+16 or 1SR′.

16Although each individual user of a 1SR+ database is provided with a one-copy image of the
system, multiple users (or an individual user working with multiple user sessions) may collectively
perceive the relaxation in replica consistency.
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Chapter 4

A Characterization Model for
Database Replication Systems

In this chapter we present a policy-based characterization model that allows us to
decompose database replication algorithms into individual interactions between
significant system elements, as well as to define some underlying properties, and
to associate each interaction with a specific policy that governs it. With this
characterization model, a replication system can be described as a combination of
policies. This common framework allows an easy understanding and comparison
between protocols.

4.1 Introduction

Since traditional stand-alone database systems started to become distributed and
replicated in the mid seventies, many different algorithms for concurrency and
replica control have appeared thanks to the contributions of many authors. These
proposals came from different communities, each one based on different assump-
tions and focused on the achievement of different goals. Each new distributed or
replicated system defined its own methods, followed its own naming conventions
and presented its algorithms in different ways: from descriptions in plain textual
form to more or less detailed specifications in its own pseudocode language. In
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the midst of this abundance and disparity, it was difficult to find an appropri-
ate solution for a given problem or to compare two apparently similar options to
choose the best one for a given scenario.

Some authors from the distributed systems community performed different sur-
veys and classifications [52, 136, 138]. Gray et al. [52] made the first step to study
the existing systems for database replication, distinguishing between eager and
lazy propagation strategies, and group and master ownership strategies, which
combine between them to produce four types of replication systems. Wiesmann
et al. [138] proposed a classification based on three parameters, where replica-
tion techniques are characterized with regard to their server architecture (either
primary backup or update everywhere), their server interaction (either constant or
linear) and their transaction termination (either voting or non-voting). Both con-
tributions aimed to classify a broad set of non-related systems, according to some
criteria, generally coarse-grained in order to reduce the complexity and the num-
ber of equivalence classes. Each one of these criteria thus agglutinated several
individual pieces of behavior that were observed together in the studied systems.
Another approach was focusing on one set of similar systems, e.g., those mainly
based on a given general technique, and characterize and classify them into dis-
joint subsets, according to other used techniques. This is the case of a work by
Wiesmann and Schiper [136], which is focused on replication systems based on
total order broadcast –namely, the three most relevant: active, certification-based
and weak voting replication– and provides a performance comparison between
them and two other widely used techniques –primary copy and lazy replication–
that do not rely on group communication.

However, more and more systems appeared and those coarse-grained criteria
turned to be insufficient when proposals became hybrid or explored new method-
ologies not yet categorized. A finer grain is thus necessary to better characterize
replication systems and to provide a common ground to compare them all. More
than a set of disjoint equivalence classes, what is needed is a common and general
framework where different replication systems could be examined and compared.
This approach was followed by Bernstein and Goodman in 1981 [13], when they
surveyed almost all concurrency control algorithms for distributed databases pub-
lished until then. In order to do so, they first proposed a framework consisting of
a common terminology and a problem decomposition. By unifying concepts and
splitting a complex process into several subproblems, a rich characterization and
comparison among systems is possible.
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Important advances have emerged in the last 30 years since the work of Bernstein
and Goodman [13] was published, such as the development of group commu-
nication systems with more complex communication primitives, leading to the
appearance of new techniques. A new framework for comparing replication tech-
niques was then proposed by Wiesmann et al. [137]. In this framework, five
generic phases are identified within a replication protocol: request, server coor-
dination, execution, agreement coordination, and response. According to this, au-
thors then describe different techniques, analyzing how they perform each phase.

Following a similar approach and trying to help researchers and practitioners to
make their way through the assorted plethora of database replication systems, this
chapter proposes a new characterization model that provides even more detailed
descriptions than the framework by Wiesmann et al. [137], by splitting a replica-
tion system into a group of policies. This model allows us to describe in detail the
nature of the interaction between significative system elements: the underlying
local database, the clients and their transactions, and the group of system servers
or components. Every time these elements interact, a specific policy regulates
the way on which this interaction is performed. Thanks to the fine grain achieved
by this model, almost all existing systems can be fully characterized. The result-
ing detailed descriptions allow an easier comparison between different database
replication systems.

The extensive historical survey of Chapter 5, based on the model presented in this
chapter, provides not only an empirical proof of the usefulness of our proposal
but also a study of the evolution of database replication systems and a reference
manual for readers interested in this field, regardless of their background.

The rest of the chapter is structured as follows. Section 4.2 presents the proposed
characterization model, and, next, Section 4.3 enumerates the different correct-
ness criteria considered by the surveyed replication systems.

4.2 Interactions, Properties, Strategies and Policies: A
Characterization Model

A database replication system can be defined by means of describing the inter-

actions among its main components –namely clients, local databases, servers or
other system components, and transactions being executed– as well as some basic
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behavioral properties. Each one of these interactions may be performed in dif-
ferent ways. Similarly, each property may take different values. All these options
are called strategies. A replication system must choose, for each interaction and
property, one of the available strategies. The selected strategy is the policy that
such a system follows for such an interaction or behavior. Each system will pro-
vide the necessary mechanisms for implementing the selected strategy. The set of
policies a system follows can be divided into four policy families, which gather
related policies together: the client policy family, the database policy family, the
group policy family, and the transaction policy family.

The client policies regulate the interaction between the client and the rest of the
database replication system, i.e., the communication from/to the user. The re-

quest policy specifies which servers in the system must receive the client request,
and the response policy establishes the number of replies that will arrive to the
client with the transaction results.

The interaction between the system and the local underlying database manage-
ment system is defined by internal properties of the DBMS and regulated by the
database policies. These policies determine two aspects: the isolation level used
whenever the transaction operates in the database, and the level of replication of
the database, i.e., whether it is fully or partially replicated.

The interaction among the servers or other system components is regulated by the
group policies. In order to globally coordinate the execution of transactions, the
participation of more than one server is required. Communication is established
among the instances of the replication protocol running in different nodes of the
system group. These policies control any procedure involving available replicas
used to coordinate them with regard to each transaction, i.e., any synchronization
(real or logical) between the system nodes required for achieving replica con-
sistency. We distinguish four intervals in the transaction lifetime when different
group policies may be applied: start (at the start of transaction, before the first
access), life (during the lifetime of the transaction, e.g., per-operation communi-
cations), end (at the end of transaction, before the commit operation), and after

(after termination, i.e., after returning the results to the client).

The interaction between the system and the user transactions is regulated by the
transaction policies. The service policy ensures that the necessary conditions
(apart from the obvious resource requirements) hold for the system to serve an
incoming request, accepting a transaction for processing. Transaction execution
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can be split into two phases: the local phase, in which they are only executed in
the delegate server (either interactively or not); and the remote phase, in which
their execution spans to the rest of replicas, after some kind of coordination be-
tween the system nodes. Right before starting the remote execution, the decision

policy determines the procedure followed to decide which transactions will com-
mit and which ones must be aborted. If the system decides to commit the trans-
action, the remote policy controls the way the transaction is sent to the database
to be applied.

Some glue procedures will be usually needed to chain the previous policies in
a way that guarantees a correct behavior and the isolation level promised by the
replication system.

According to our proposal, the lifetime of a transaction is thus controlled by dif-
ferent policies depending on its current execution step (see Figure 4.1). First,
when the client sends its request to the system (identified as interaction 1), the
client-request policy determines to which servers this request must be addressed.
Once in the appropriate server (or servers), the processing of the transaction is
accepted as determined by the transaction-service policy (interaction 2). Once
the transaction is accepted for processing, the group-start policy defines if some
coordination must be done with the rest of replicas prior to transaction start (in-
teraction 3, e.g., broadcast the start of transaction to the rest of nodes in order to
get a global common starting point). After this starting coordination (if it exists),
the transaction enters the database for the first time, beginning its local execution
phase. Database properties affect the transaction execution since this moment on.
The database-replication policy will define if there is a copy of the data in the cur-
rent server or whether the transaction must be distributed among several nodes.
At each local DBMS, accesses to the database are controlled by the database-
isolation policy. During the local execution phase, a group-life policy may apply,
defining a linear coordination among servers (interaction 4). After all operations
have been completed, the client asks for the commitment of the transaction.1

Then, a new communication can be established, following the group-end policy
(interaction 5). Prior to transaction termination, a decision process controlled by
the transaction-decision policy inspects the transaction and decides if it can be
committed or not (interaction 6). If the decision is positive, the transaction enters
its remote phase in all nodes. The transaction-remote policy determines when

1It is also possible that the client issues an abort operation. In that case, following steps aim to
rollback all executed operations instead of committing them.
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a. Start of transaction b. Life of transaction c. End of transaction

Figure 4.1: Policies applied during the lifetime of a transaction. Interactions
are numbered following the sequence of their first execution.

the transaction can access the local database (interaction 7), where it will be ap-
plied according to the database-isolation policy. After transaction completion,
the client-response policy regulates the sending of transaction results to the user
(interaction 8). Finally, a group-after policy may apply (interaction 9), as in lazy
systems.

The sequence of interactions presented above may be adapted to different ways of
transaction execution, by selecting the proper strategy to execute each interaction
or by denoting that certain interaction will not take place.

Table 4.1 presents the entire classification of the strategies we have found in ex-
isting systems for each policy. Identifiers are given to each strategy. This way,
we can easily say that a given replication system follows, e.g., the group start
policy Gs0, to represent that no communication is established among the group
of servers before transaction start. Note that a greater digit in the identifier means
a greater effort or a stricter criterion. Now we offer a detailed description for each
policy, following the order on which they regulate the transaction lifetime.

Client-request policy Firstly, the client should address its request to the sys-
tem, directly communicating with one or more elements. Depending on the char-
acteristics of the system, this request may be forwarded to other elements or redi-
rected to a special component by means of another component acting as a proxy
(such as a load balancer or scheduler). This policy thus defines the set of servers
that finally receive the original user request for processing. When any server is
capable of processing a user request (Cq1), it is commonly the client itself who
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Table 4.1: Available strategies for each policy

Policy family Policy Id Strategy

Client policies (C)

Request (q)

Cq1 any server

Cq2 special server

Cq3 quorum of servers

Cq4a all servers

Response (r)
Cr1 one answer

Cr2 multiple answers

Database policies (D)

Replication (r)
Dr1 partial replication

Dr2 full replication

Isolation (i)

Di0 undefined

Di1 read committed

Di2 snapshot

Di3 serializable

Di4 customized

Group policies (G)

Start (s), Gx0 no communication

life (l), Gx1b one server [0..1]

end (e), Gx2b several servers [0..n]

after (a) Gx3b all servers

Transaction policies (T)

Service (s)
Ts0c immediate service

Ts1c deferred service

Ts2 no local service

Decision (d)

Td0 no decision

Td1d one server

Td2d each server

Td3d quorum-based

Td4d agreement-based

Remote (r)
Tr0 no remote execution

Tr1e concurrent

Tr2 non-overlapping

a An appended t indicates a broadcast in total order.
b n, no order requirements; f , FIFO order; t, total order.

For Gs and Gl: a, asynchronous; s, synchronous.
c n, no interactivity.
d r, readset required; w, writeset required.
e p, controlled by the protocol; d, controlled by the database.
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selects the closest site and sends its request directly. If only one server can pro-
cess a given user request (Cq2) due, e.g., to some ownership criteria (the primary
copy in the system or the server that controls the portion of the data that the user
needs to access) or to the decision of a non-trivial scheduler that selects one spe-
cific node (not just the least loaded one but one satisfying certain condition), then
the user request must be forwarded to this special server. If no kind of request
redirection is performed by the system, then the client itself must know how to
select the specific node. It is also possible that the user request must arrive to
several servers in the system: either a quorum of nodes (Cq3) or the entire group
(Cq4). In this last case, some ordering guarantees may be necessary (as in the
group policies, as explained below). Thus, a letter ‘t’ appended to the strategy
identifier indicates that the multicast must follow total order, which is a usual
option for the processing of active transactions. In any case, each system will
provide the required mechanisms for implementing this policy.

Transaction-service policy Once the transaction arrives to a node specified by
the client-request policy, it enters some sort of queueing system, where it waits
for the protocol running in that node to start serving it. This policy reflects the ex-
istence of any necessary, non-obvious condition for the node to continue process-
ing incoming requests in general, or this specific request in particular. Waiting
for the necessary computational resources (idle threads, available connections to
the database, etc.) is considered trivial and included in the default bottom policy
(Ts0, immediate service). When the necessary resources are available but any
other conditions temporarily prevent the system from processing a transaction,
the service is deferred (Ts1). This condition must be locally evaluable, with-
out the participation of other nodes (when a cooperation with the rest of nodes
is required to start a transaction, this is reflected in the group-start policy). For
example, there may be situations where the node must postpone all incoming re-
quests, e.g., after detecting some inconsistency on the data and until it undergoes
reconciliation; or postpone the processing of a query until all pending remote
transactions are applied in the node. In a more complex situation, the data could
be divided into conflict classes and incoming requests appended to several con-
flict queues, depending on the data they needed to access. In this scenario, only
when the transaction were at the first position in all its queues, it would fulfill the
condition to be processed by the system.

These two cases, the immediate and the deferred service, apply to all transac-
tions that have a local execution in their delegate prior to their remote execution
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phase: either interactive transactions (where the user sends each transaction op-
eration separately to the database, getting intermediate results as operations are
completed), and service requests (calls to stored procedures). In the case of inter-
activity, it is possible that also intermediate operations of a transaction (not only
the first one) are subjected to wait. We extend the concept of deferred service to
model also those cases. In order to highlight the non-interactive cases, a letter ‘n’
will be appended to the strategy identifier.

In distributed (partitioned) and partially replicated databases, the transaction-
service policy controls the creation of local subtransactions in each of the par-
ticipating nodes or cohorts.

Finally, there are also situations where a transaction is not locally –individually–
processed by any node, but rather has an active execution in all sites at the same
time (generally, this precludes interactivity and is mostly used for service re-
quests). We therefore consider that an active transaction has only remote phase
because, since its starting point, its execution spans all available servers, i.e.,
there is no previous phase where it is locally executed by one delegate. However,
this could be also considered the other way around: as the remote execution of
transactions is usually based on the application of logs or writesets (previously
created by a delegate node which carried out all the transaction operations), we
could say that active transactions are locally executed by all nodes and thus have
no remote phase. However, we select the first approach –only remote phase–
and consider that, in these cases, a policy of no local execution (Ts2) applies.
Note that the digit of this last identifier is greater than the previous ones, as an
active processing of transactions, where all nodes must perform all operations,
is generally more costly than having a local execution phase and a later writeset
propagation.

The two last details, i.e., subtransactions of distributed transactions and active
execution, are denoted in Figure 4.2. In this diagram, which provides a visual
representation of the applied policies during transaction lifetime, the horizontal
line is time and it increases rightward.

Group-start policy Before starting a transaction, some coordination among
nodes may be necessary. This communication will commonly include some
global identifier for the transaction, in order to establish a synchronization point
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Figure 4.2: Interactions defining the local and remote portions of a
transaction. Non-distributed transactions do not initiate subtransactions in

multiple nodes (a). Active transactions do not present local phase (b).

before any operation is executed by the transaction. Client-request and group-
start policies may seem identical but they present a crucial difference: servers
that receive the client request, as expressed in the client-request policy, generally
process that request in the same way, i.e. they usually have all the same role re-
garding to that transaction; while servers contacted at transaction start, as defined
in the group-start policy, generally play a different role from that of the first set.

To perform this first coordination, the communication among nodes may or may
not need to be synchronous, halting or not the processing of the transaction un-
til some condition holds (e.g., the message is delivered or all replicas reply to
the sender).2 Network communication involves some cost, particularly when
some safety or ordering guarantees are required. Thus, an asynchronous com-
munication allows the overlap of the communication cost with the transaction
processing, while synchronous communication does not. To distinguish between
both situations, an ‘a’ appended to the policy identifier will denote asynchronous
communication, while a ‘s’ will mean the need for synchrony.

All policies of the group family share a common set of strategies, which define the
number of servers or other system components the local node must contact with.
In the trivial case, no coordination is done (Gx0, where ‘x’ is ‘s’ for group-start
strategies, ‘l’ for group-life ones, ‘e’ for group-end options, and ‘a’ for group-
after strategies), e.g., in active replication, the synchronization point is at the
beginning of the transaction, so no further synchronization is needed at the end.
Non-trivial strategies require the participation of at most other server (Gx1), of a
subset of the entire group (Gx2), or the participation of all system nodes (Gx3). In
order to implement group coordination, different communication primitives are
used. A simple option is the use of node-to-node messages, e.g., some gossip,

2Note that although such wait is only necessary in the sender node, it is also part of the required
initial coordination, and thus, of the group-start policy.
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flooding or cascade mechanisms can be implemented this way. This option was
commonly used in initial systems, when GCSs were not yet used for database
distribution or replication. More complex primitives include reliable multicasts
and broadcasts, with or without order requirements. Multicasts to a quorum are
used in quorum-based systems. Reliable broadcast is enough when only one
node acts as a sender or when other mechanisms already provide all the order
requirements of the system. FIFO or total order3 broadcasts may be necessary.
When a specific ordering guarantee must be provided, an ‘f’, for FIFO, or a ‘t’,
for total, is appended to the strategy identifier. An ‘n’ will denote that no ordering
guarantees are needed.

Database-replication policy Apart from purely distributed systems with no
replication at all, not considered in this thesis, replicated databases may enforce
replication at different degrees. When each node stores a complete copy of the
database, the system features full replication (Dr2). Otherwise, a partial replica-
tion is maintained (Dr1).

Database-isolation policy Whenever a transaction is executing in a node (local
interactive phase, local non-interactive execution, remote execution and writeset
application, and final commit phase), a certain isolation level is enforced in the
local database: read committed (Di1), snapshot isolation (Di2), serializable (Di3)
or a customized level (Di4), achieved out of the DBMS by directly controlling the
locks or making any other management. An additional undefined strategy (Di0)
represents that the isolation level was not specified in the system description.
Upon the isolation provided in the local database, the replication system is able
to enforce certain global isolation level for all transactions running in the system.

Group-life policy During the lifetime of a transaction, while it submits oper-
ations to the database, some coordination among nodes may be required. When
such a coordination exists, it is usually done before or after each single operation
(e.g., each SQL statement), sending information about it for, e.g., acquiring locks
in remote replicas. Similarly to the group-start case, the execution flow of the
transaction may or may not be suspended until this coordination is completed.
An appended ‘a’ (‘s’) will denote asynchronous (synchronous) communication.

3Virtually all GCSs include FIFO guarantees in their total order primitives, so in practice it is
assumed that abcast messages respect FIFO ordering.
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Group-end policy When the transaction finishes submitting operations, and
upon request of commitment, a global coordination is usually needed. During this
communication, transaction information, like the readset, writeset and updated
values, is commonly spread among system nodes. Sometimes, several rounds are
required for appropriate coordination. This is the case of the two-phase or the
three-phase commit protocols.

Transaction-decision policy After the transaction has completed its operations
and the group-end coordination has been made, a validation process may be run
to decide the final outcome of a transaction, i.e., its abortion or commitment, de-
pending on certain conditions. This policy determines which server or servers, if
any, are responsible for taking this decision, i.e., for running the decision process.
When the rest of the policies is enough –and especially for read-only transactions,
which are usually immediately committed in relaxed correctness criteria–, no de-
cision process is executed (Td0). Otherwise, the process may be executed by only
one server (Td1), commonly the delegate, which later sends the decision to the
rest of nodes; or be performed by each server (Td2) in a symmetric, independent
and deterministic way (certification). The process can involve also the collabora-
tion of multiple nodes. This is the case of decisions based on a consensus among
a quorum of nodes (Td3), where each server of the quorum informs whether it
agrees or not to commit the current transaction; and decisions based on an agree-
ment among all the (available participating) sites (Td4). This latter policy is used
when performing a two- or a three-phase commit, where each server says if it
agrees to commit the current transaction.

The decision about the final outcome of transactions is usually based on conflicts
although it can be also based on some other information (e.g., temporal criteria).
When based on conflict checking, an ‘r’ (respectively, a ‘w’) after the policy
identifier will indicate the use of readsets (writesets) during the decision process.
It is important to note the possible different uses of readsets and writesets, which
affect performance at different degrees. Thus, decision may be based on conflicts
but delegated to the local DBMS (low cost); or it may be necessary to collect
those sets and inspect them at middleware level (medium cost); or even to forward
them to other servers (high cost).

A final consideration must be done about the decision process. Although nor-
mally it is run upon writeset delivery in order to decide the outcome of such a
writeset based on the conflicts with previously delivered transactions, in some
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systems it is the delivered writeset which, during the decision process run upon
its delivery, may cause the abortion of other (local) transactions that, although al-
ready broadcast, will be delivered afterwards. Thus, a decision process is run but
not for deciding the outcome of the current writeset, but that of future writesets,
in a sort of early decision.

Transaction-remote policy After completing the local execution phase and
getting a positive decision, transactions start their remote execution. For this,
transaction information must be somehow provided to every system node. As
this is usually done through a GCS, we refer to this information as a delivered
transaction, a delivered writeset or, simply, a writeset. At a given node Ni, when
the delivered transaction is local, i.e., Ni is its delegate node, only the commit
operation is pending. Otherwise, the writeset is remote and its updates must be
applied in the local database of Ni prior to final commitment.4 The access to the
local database is controlled by the transaction-remote policy. Two main strategies
are considered: either multiple transactions are sent concurrently to the database
(Tr1), thus improving performance, or they are sequentially sent, one at a time,
following a non-overlapping policy (Tr2) where each delivered transaction must
wait for the completion of the previous one. In the first case, conflicting oper-
ations must be controlled in order to maintain replica consistency. This control
may be performed by the protocol (e.g., the protocol checks for conflicts between
writesets before sending multiple, non-conflicting transactions to the database) or
by the concurrency control of the database management system (e.g., transactions
set write locks in an appropriate sequence before accessing the database). A letter
after the identifier specifies if the control is made by the protocol (‘p’) or by the
database (‘d’).

A third strategy represents the cases where no remote execution is performed
(Tr0), namely for read-only transactions that are executed only in their delegate
server.

Another aspect that should be mentioned here is the need to abort local transac-
tions, in their local execution phase, holding locks or otherwise preventing remote
transactions from being applied in the local database. Such a process is required
for protocol liveness but details about its implementation are rarely given in pub-
lications. This clearing process differs from the early decision commented above

4In the case of partially replicated databases, only the updates corresponding to items stored in
the node must be applied when processing the delivered writeset.
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in that the clearing process aborts transactions that were completely local to the
running node (i.e., other nodes had no knowledge of its existence), while an early
decision may abort transactions that, although local to the running node, were
already broadcast to other nodes. Therefore, in an early negative decision, it will
be necessary to broadcast this outcome to remote nodes.

Client-response policy After transaction completion, the client must receive
the results of its request. Either one or multiple replies can be sent to the client.
Commonly, only the delegate server (or some special node or component in the
system) replies, so the client receives only one answer (Cr1). In other cases,
multiple replies arrive to the client (Cr2). This distinction is important as, in
the latter case, the client has to perform some kind of procedure to select the final
answer (the first received, a combination of multiple replies, the most voted, etc.).

Group-after policy After sending the response to the client, once the transac-
tion has committed in one or several nodes, a last coordination may be needed,
e.g., for updating remote nodes in lazy systems.

4.3 Correctness Criteria for Replicated Databases

Correctness in replicated databases comprises two characteristics: (a) the isola-
tion level, responsible for the isolation among all concurrent transactions being
executed in the system; and (b) the replica consistency, or the degree of admis-
sible divergence among the states of all replicas [95]. The first characteristic is
provided by means of a local DBMS in each server and by using certain vali-
dation rules at replication protocol level. The second aspect is enforced by the
replication protocol and involves synchronization among replicas, which can be
made easy by means of a group communication tool. Based on the concepts and
conclusions of Chapter 3, we consider the correctness criteria of Table 4.2 for
one-copy equivalent systems. The user-centric consistency (i.e., the replica con-
sistency as perceived by users, Definition 3.37, as opposed to the server-centric
consistency, Definition 3.38) level where inversions may arise is considered the
standard level, while precluding inversions requires a higher effort. For criteria
based on isolation levels other than serializability, we choose similar names to
those of Chapter 3: e.g., in the case of snapshot isolation, 1ASI corresponds to
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systems that preclude inversions, 1SI+ executions ensure the absence of inver-
sions within sessions, and 1SI allows the appearance of inversions. Note that in
the context of snapshot isolation, an inversion may occur if a transaction (either
a query or an update transaction) is provided with a snapshot which does not
correspond to the latest available snapshot in the system, as created by the last
committed transaction. If not precluded, either conservatively or optimistically
(similarly to the # and * synchronization models of Chapter 3), inversions may
appear and a committed transaction T may have read an old value of a data item
that was updated by a transaction that committed before the start of T .

Table 4.2: Correctness criteria for one-copy equivalent replicated databases

Criterion Isolation Consistency Short description

1ASR serializable no inversions

The effects of transactions are equivalent to a
serial execution in only one node. At each sin-
gle moment, the committed information in ev-
ery server is exactly the same from the point of
view of clients: a user can execute a transaction
in one node and change immediately to another
server where they will see the updates made
by their previous transaction. From the point
of view of the servers, 1ASR may be achieved
with #A, *A, #S or *S replica consistency lev-
els, as explained in Chapter 3. Strong serializ-
ability [17, 35, 139] is another name used in the
literature to refer to this correctness criterion.

1SR+ serializable no inversions
on sessions

Replica consistency is more relaxed than in
the previous case, but inversions are precluded
within client sessions, so a user with a sin-
gle session perceives an atomic, inversions-free
view of the database. Strong session serializ-
ability [35, 139] is also used in the literature to
refer to this criterion.

1SR′ serializable inversions

The effects of transactions are equivalent to
those of a serial execution in one node. But
at a given moment, effects of some transactions
may be pending to commit in a server and, thus,
a user moving between servers may get incon-
sistent results.

Continued on next page
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Table4.2 – continued from previous page

Criterion Isolation Consistency Short description

1ASI snapshot no inversions

Transactions are isolated following the snap-
shot level. Each transaction T gets the latest
snapshot of the entire system (conservative ap-
proach) or, at least, the latest snapshot as cre-
ated by previous transactions that updated data
items that T reads (this allows an optimistic
approach were transactions are restarted if a
conflict is detected). This level is also named
conventional snapshot isolation (CSI) [40] or
strong SI [36].

1SI+ snapshot no inversions
on sessions

Transactions are isolated under the snapshot
level. The snapshot provided to a transaction
T corresponds to the latest snapshot created by
transactions on the same client session (conser-
vative approach) or, at least, by transactions on
the same client session that write data items that
T reads (which allows an optimistic approach).
This level is also named strong session SI [36].

1SI snapshot inversions

Transactions are isolated following the snap-
shot level. But the snapshot provided to a trans-
action may be arbitrarily old, due to some trans-
actions pending to commit in its delegate node
(i.e., inversions occur). This level is also named
generalized snapshot isolation (GSI) [40]. Usu-
ally, transactions get the latest snapshot of their
delegate server, which is also known as prefix-
consistent snapshot isolation (PCSI) [40].

1ARC read committed no inversions

The database replication system behaves as
only one copy providing read committed iso-
lation. Transactions starting at different nodes
at the same time see the same database state.

1RC read committed inversions
A read committed isolation level is guaranteed.
Inversions may arise.

1CS cursor stability inversions

Cursor-stability is enforced in the nodes. This
isolation level reduces the abortion of read op-
erations by using short read locks. Inversions
may arise.
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4.4 Conclusions

In this chapter we have presented a characterization model that provides a com-
mon framework to describe and compare different database replication systems.
This model is the result of a careful analysis of different community proposals,
made since the beginning of this research field. During this study, we identified
the relevant steps that are common to all replication protocols, and the different
approaches that protocols follow in such steps. A policy was associated with each
step, and the different approaches or options were called strategies. Policies were
later grouped into families, according to the relation among the interactions they
regulated. With this model, we can detail the strategy that each protocol follows
for each of its main steps.

This model is used in Chapter 5 in order to characterize more than 50 replication
systems, in an extensive survey that reviews the chronological evolution of this
research field.
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Chapter 5

A Comprehensive Survey of
Database Replication Systems

In this chapter we present the research evolution and survey the state of the art
of database replication techniques. Our analysis is based on the policy-based
characterization model presented in Chapter 4. Over 50 different systems are
fully characterized following this model.

5.1 Introduction

As motivated in Chapter 4, a chronological survey of database replication sys-
tems based on a common description framework is highly valuable in order to
compare and understand different proposals. The survey contained in this chap-
ter describes each proposal by detailing, for each policy, the followed strategy,
as well as the enforced correctness criterion. This survey will allow beginners
to obtain a global and precise idea of the state of the art of the database repli-
cation research field and will also provide a historical vision of the evolution of
these systems, allowing us to detect which strategies are the most used and which
combinations guarantee each correctness criterion. Moreover, this study makes
it easier to identify combinations of strategies that are seldom used but might
make sense if new goals are set for replication protocols, such as the support of
either more relaxed or stricter consistency models, or the increase of the system
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scalability. Furthermore, this survey may enable us to identify which advances at
which fields (in database management systems, in group communication systems,
in isolation levels and correctness criteria specifications, in replication protocols,
etc.) allowed the appearance of each described proposal, as well as to foresee
which other advances could have a relevant effect on this evolution.

The rest of the chapter is structured as follows. Section 5.2 presents the com-
prehensive and chronological survey of database replication systems. Section 5.3
comments about the scope of the characterization model, as observed during the
preparation of this survey. Finally, Section 5.4 discusses about the insight the
survey offers.

5.2 Replication Systems as Combination of Strategies: A
Survey

Any replication system can be defined as a particular combination of strategies,
i.e., a set of specific policies. Obviously, not all combinations will create correct
or useful replication systems. Some systems proposed in the literature of da-
tabase replication are chronologically listed in Table 5.1, detailing the followed
strategies, which are identified as shown in Table 4.1. The correctness criterion
is also specified (see Table 4.2). For simplicity, when detailing communication
processes involving several rounds, only the most demanding is showed in the ta-
ble (and thus, e.g., a total order requirement signaled in the strategy may be only
needed in one of the rounds). In Table 5.1, when a system (row) follows different
strategies for a specific interaction (column) for different types of transactions,
these strategies appear at different lines within that cell of the table (column-
row). Those types of transactions denote usually the difference between read-
only and update transactions, or among the several correctness criteria supported
by a given system.1 Whenever multiple lines are present in a row, columns with
only one value mean that such a strategy is shared by all transaction types.

1When possible, the strategies at the same line represent the same type of transaction, showing,
e.g., the policies for read-only transactions in the first line and those for updates in the second
one. However, for more complex cases (e.g., systems distinguishing not only between queries and
updates but also among different correctness criteria), Table 5.1 still depicts all followed strategies
but such one-line-one-type clarification is not made. Please refer to the textual description and the
visual representation of Figure 5.1 of those complex systems for a detailed distinction among their
transaction types.
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A visual representation for each surveyed system is provided in Figure 5.1, also
in chronological order. Each radius of a graph corresponds to a policy, labeled
with its initial letters. Concentric circles (hendecagons, to be accurate), mark the
scale from 0 (the most inner circle), to 4 (the most external one). The digit asso-
ciated with the strategy followed by the depicted system for each interaction of
each different transaction type is then represented in that scale. Whenever several
options are possible for a specific policy (e.g., when users can choose between
read committed or snapshot isolation), the least costly option is the one that is
represented in the graph (read committed in such a case), thus showing the min-
imum requirements of the system. Those points are finally connected by lines
in order to create a figure for each transaction type of the system.2 Remember
also that the more demanding the strategy, the greater the digit of its identifier
(e.g., a group-start policy Gs0 denotes the absence of communication at transac-
tion start, while Gs3 requires a synchronization with all servers). This way, the
bigger the resulting figure, the more costly the execution of that transaction type.
These representations allow us to visually compare different systems as well as
to get an idea of their cost. For example, regarding communication costs, all
policies involving communication (Cq, Gs, Gl, Ge and Ga) are grouped together
in the eastern/northeastern zone of the graph (from 12 until 4:30 in a clock). A
figure widening out in that zone depicts a system which relies on communication
and thus its performance will depend on the GCS and the network. On the other
hand, regarding database requirements, the radius of Di (database-isolation pol-
icy) allows a quick comparison between the strictness in the local isolation level
required for the correct functioning of different systems.

Next we offer thorough descriptions for all the protocols and systems surveyed.
Letters in brackets reference superindexes in the corresponding row of Table 5.1.

Alsberg and Day [4] proposed a protocol following the single primary, multiple
backup model, where backups are linearly ordered. The client can address its
request to any replica in the system, which will then forward it to the primary [a].
The proposed system aims at offering a resilient sharing of distributed resources
but it is not specially tailored to any service. In particular, it is not tailored for
database replication. Thus, some database-related points are not detailed in the
paper, such as the database-isolation [b] or the transaction-remote policy [e] (for
which a conservative, non-overlapping option is assumed in our survey). Authors

2Those types are labeled ‘q’ for queries, and ‘u’ for update transactions. When different cor-
rectness criteria are provided, a distinction is made in parentheses.
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Table 5.1: Database replication systems expressed as combinations of strategies
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Alsberg-Day [4] Cq2a Ts0 Gs0 Dr2 Di0b Gl0 Ge1-nc Td0d Tr2e Cr1 f Ga1-ng 1A-h

2PL & 2PC [50] Cq1 Ts0 Gs0 Dr1 Di3a Gl1-n-sb

Gl2-n-sc

Ge2-nd Td4-rwe Tr0
Tr1-d f

Cr1 Ga0 1ASRg

BTO & 2PC [12] Cq1 Ts0 Gs0 Dr1 Di4a Gl1-n-s
Gl2-n-s

Ge2-n Td4-rw Tr0
Tr1-d

Cr1 Ga0 1ASR

Bernstein-
Goodman [14]

Cq1 Ts0 Gs0 Dr1 Di3 Gl1-n-sa

Gl2-n-sb

Ge2-n Td4-rw Tr0
Tr1-d

Cr1 Ga0 1ASR

OPT & 2PC [119] Cq1 Ts0 Gs0 Dr1 Di4a Gl1-n-s Ge2-nb Td4-rwc Tr0
Tr1-dd

Cr1 Ga0 1ASR

O2PL & 2PC [23] Cq1 Ts0 Gs0 Dr1 Di3 Gl1-n-s Ge2-na Td4-rw Tr0
Tr1-d

Cr1 Ga0 1ASR

Bcast all [2] Cq1 Ts0 Gs0 Dr2 Di3 Gl3-t-s Ge3-t Td0 Tr1-da Cr1 Ga0 1ASR

Bcast writes [2] Cq1 Ts0 Gs0 Dr2 Di3 Gl0a

Gl3-t-s
Ge3-t Td1-rw Tr0b

Tr1-d
Cr1 Ga0 1ASR

Continued on next page
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Delayed
bcast wrts [2]

Cq1 Ts0 Gs0 Dr2 Di3 Gl0 Ge3-t Td1-rw Tr0
Tr1-d

Cr1 Ga0 1ASR

Single bcast
txns [2]

Cq1 Ts0 Gs0 Dr2 Di3 Gl0 Ge0
Ge3-t

Td1-rwa

Td2-rw
Tr0
Tr1-d

Cr1 Ga0 1SR′

Lazy Txn
Reordering [104]

Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge3-t Td2-rw Tr2 Cr1 Ga0 1SR′

OTP-99 [70] Cq1a

Cq4-tb
Ts0-nc

Ts2d

Gs0 Dr2 Di0e Gl0 Ge0 Td0 Tr0 f

Tr1-pg

Cr1 Ga0 1SR′

Fast Refresh
Df-Im [97]

Cq1a

Cq2b

Ts0 Gs0 Dr1 Di3c Gl0 Ge0 Td0d Tr0e

Tr1-d f

Cr1 Ga0g

Ga2-fh

1SR′

Fast Refresh
Im-Im [97]

Cq1
Cq2

Ts0 Gs0 Dr1 Di3 Gl0i

Gl2-f-a j

Ge0k

Ge2-fl

Td0 Tr0
Tr1-d

Cr1 Ga0 1SR′

DBSM [101] Cq1 Ts0 Gs0 Dr2 Di3 Gl0 Ge0a

Ge3-tb
Td0c

Td2-rwd

Tr0
Tr1-de

Cr1 Ga0 1SR′

SER [69] Cq1 Ts0 Gs0 Dr2 Di4a Gl0 Ge0b

Ge3-tc
Td0d

Td1-rwe

Tr0
Tr1-d f

Cr1 Ga0 1SR′

Continued on next page85
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CS [69] Cq1 Ts0 Gs0 Dr2 Di4a Gl0 Ge0
Ge3-t

Td0
Td1-rw

Tr0
Tr1-d

Cr1 Ga0 1CS

SI [69] Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge0a

Ge3-tb
Td0c

Td2-wd

Tr0
Tr1-de

Cr1 Ga0 1SI

Hybrid [69] Cq1 Ts0 Gs0 Dr2 Di2a

Di4b

Gl0 Ge0c

Ge3-td
Td0e

Td1-rw f

Tr0
Tr1-dg

Cr1 Ga0 1SR′

NODO [98] Cq1a

Cq4-tb
Ts1c Gs0 Dr2 Di2 Gl0 Ge0d

Ge3-ne

Td0 f Tr0g

Tr1-ph

Cr1 Ga0 1SR′

REORDERING [98] Cq1
Cq4-t

Ts1 Gs0 Dr2 Di2 Gl0 Ge0
Ge3-fi

Td0 Tr0
Tr1-p

Cr1 Ga0 1SR′

Pronto [102] Cq2a Ts0 Gs0 Dr2 Di3 Gl0 Ge3-tb Td2c Tr2 Cr2d Ga0 1ASR

DBSM-RAC [121] Cq2a Ts0 Gs0 Dr1 Di3 Gl0 Ge0b

Ge3-tc
Td0d

Td4-rwe

Tr0 f

Tr1-dg

Cr1 Ga0 1SR′

Epidemic
restricted [58]

Cq1 Ts0 Gs0 Dr1 Di3 Gl0 Ge0a

Ge2-nb

Td0c

Td2-rwd

Tr0e

Tr2 f

Cr1 Ga0 1SR′

Continued on next page
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Epidemic
unrestrict. [58]

Cq1 Ts0 Gs0 Dr1 Di3 Gl2-n-sg Ge0
Ge2-n

Td0
Td2-rw

Tr0
Tr2

Cr1 Ga0 1SR′

OTP [71] Cq4-ta Ts2b Gs0 Dr2 Di0c Gl0 Ge0 Td0 Tr1-pd Cr1 Ga0 1ASR

OTP-Q [71] Cq1e

Cq4-t
Ts1 f

Ts2
Gs0 Dr2 Di0 Gl0 Ge0 Td0 Tr0g

Tr1-p
Cr1 Ga0 1SR′

OTP-DQ [71] Cq1
Cq4-t

Ts1
Ts2

Gs0 Dr2 Di0 Gl0 Ge0 Td1-rwh

Td0
Tr0
Tr1-p

Cr1 Ga0 1SR′

OTP-SQ [71] Cq1
Cq4-t

Ts0i

Ts2
Gs0 Dr2 Di0 Gl0 Ge0 Td0 Tr0

Tr1-p
Cr1 Ga0 1SR′

RJDBC [44] Cq1a Ts0 Gs0 Dr2 Di0b Gl3-t-sc Ge3-td Td0e Tr2 f Cr1 Ga0 1-g

RSI-PC [107] Cq1
Cq2a

Ts1b

Ts0c

Gs0 Dr2 Di2d

Di1e

Gl0 Ge0 Td0 f Tr0
Tr2g

Cr1h Ga0i

Ga2-f j

1ASI
1SI
1ARC
1RC

SRCA [79] Cq1a Ts0 Gs0 Dr2 Di2 Gl0 Ge0b

Ge3-tc
Td0d

Td1-we

Tr0
Tr2

Cr1 Ga0 1SI

Continued on next page87
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SRCA-Rep [79] Cq1 Ts1a Gs0 Dr2 Di2 Gl0 Ge0b

Ge3-tc
Td0d

Td2-we

Tr0
Tr1-p

Cr1 Ga0 1SI

DBSM* [141] Cq1a

Cq2b

Ts0 Gs0 Dr2 Di3 Gl0 Ge0
Ge3-t

Td0
Td2-w

Tr0
Tr1-d

Cr1 Ga0 1SR′

PCSI
Distr. Cert. [40]

Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge0a

Ge3-tb
Td0c

Td2-wd

Tr0
Tr2

Cr1 Ga0 1SI

Tashkent-MW [41] Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge0a

Ge1-nb

Td0c

Td1-wd

Tr0e

Tr2 f

Cr1 Ga0g 1SI

Tashkent-API [41] Cq1 Ts0 Gs0 Dr2 Di2 Gl0 Ge0
Ge1-n

Td0
Td1-w

Tr0
Tr1-dh

Cr1 Ga0 1SI

DBSM-RO-opt [96] Cq1 Ts0 Gs0 Dr2 Di3 Gl0 Ge3-ta Td1-rw
Td2-rwb

Tr0
Tr1-d

Cr1 Ga0 1ASRc

DBSM-RO-cons [96] Cq1 Ts0 Gs3-t-sa

Gs0b

Dr2 Di3 Gl0 Ge0c

Ge3-td
Td0e

Td2-rw f

Tr0
Tr1-d

Cr1 Ga0 1ASR

Alg-Weak-SI [36] Cq1
Cq2a

Ts0 Gs0 Dr2 Di2 Gl0 Ge0b Td0c Tr0
Tr1-pd

Cr1 Ga0e

Ga3-f f

1SIg
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Alg-Str.-SI /
Alg-Str.Ses.-SI [36]

Cq1
Cq2

Ts1a

Ts0b

Gs0 Dr2 Di2 Gl0 Ge0 Td0 Tr0
Tr1-p

Cr1 Ga0
Ga3-f

1ASI
1SI+c

One-at-a-time /
Many-at-a-time [116]

Cq2a Ts0 Gs0 Dr1 Di3b Gl0 Ge0c

Ge3-td
Td0e

Td3-rw f

Tr0g

Tr2h

Cr1 Ga0 1SR′

k-bound GSI [6] Cq1 Ts0 Gs3-t-aa Dr2 Di2 Gl0 Ge0b

Ge3-tc
Td0d

Td2-we

Td1-rw f

Tr0
Tr2

Cr1 Ga0 1SR′

1ASI
1SI

Tashkent+ [42] Cq2a Ts0 Gs0 Dr2b Di2 Gl0 Ge0
Ge1-n

Td0
Td1-w

Tr0
Tr2

Cr1 Ga0 1SIc

Mid-Rep [65] Cq1 Ts0a

Ts1b

Gs0
Gs3-t-sc

Dr2 Di2 Gl0 Ge0
Ge3-t

Td0
Td1-rw

Tr0
Tr2d

Cr1 Ga0 1SR′

1ASI
1SI

SIRC [114] Cq1 Ts0 Gs0 Dr2 Di1
Di2a

Gl0 Ge0b

Ge3-tc
Td0d

Td2-we

Tr0
Tr2

Cr1 Ga0 1SI
1RC

Serrano et al. [118] Cq2a Ts1b Gs0 Dr1 Di2 Gl1-n-sc Ge2-nd

Ge3-te
Td0 f

Td2-wg

Tr0h

Tr2i

Cr1 Ga0 1SI

Continued on next page89



5.2.R
E

P
L

IC
A

T
IO

N
S

Y
S

T
E

M
S

A
S

C
O

M
B

IN
A

T
IO

N
O

F
S

T
R

A
T

E
G

IE
S:

A
S

U
R

V
E

Y
Table5.1 – continued from previous page

C
lie

nt
re

qu
es

t

T
ra

ns
ac

ti
on

se
rv

ic
e

G
ro

up
st

ar
t

D
at

ab
as

e
re

pl
ic

at
io

n

D
at

ab
as

e
is

ol
at

io
n

G
ro

up
li

fe G
ro

up
en

d

T
ra

ns
ac

ti
on

de
ci

si
on

T
ra

ns
ac

ti
on

re
m

ot
e

T
ra

ns
ac

ti
on

C
lie

nt
re

sp
on

se

G
ro

up
af

te
r

C
or

re
ct

ne
ss

cr
it

er
io

n

MPF/MCF [140] Cq1a

Cq2b

Ts0 Gs0 Dr2 Di3 Gl0 Ge0
Ge3-t

Td0
Td2-rw

Tr0
Tr1-d

Cr1 Ga0 1SR′

WCRQ [110] Cq1 Ts0 Gs0 Dr2 Di4a Gl0 Ge2-nb

Ge3-tc
Td3-rwd Tr0

Tr2e

Cr1 f Ga0 1ASR

AKARA [32] Cq1 Ts0-n
Ts2a

Gs3-t-sb Dr2 Di2 Gl0 Ge3-nc

Ge0d

Td0 Tr2 Cr1 Ga0 1SI

BaseCON for
1SR [139]

Cq1a

Cq4-tb
Ts0c

Ts2d

Gs0 Dr2 Di3e Gl0 Ge0 Td0 f Tr0
Tr1-pg

Cr1h Ga0 1SR′

BaseCON for
SC [139]

Cq2a

Cq4-tb
Ts0c

Ts2d

Gs0 Dr2 Di3e Gl0 Ge0 Td0 f Tr0
Tr1-pg

Cr1h Ga0 1SR+

BaseCON for
strong 1SR [139]

Cq4-ta Ts0
Ts2

Gs0 Dr2 Di3 Gl0 Ge0 Td0 Tr0
Tr1-p

Cr1 Ga0 1ASR

gB-SIRC [115] Cq1 Ts0 Gs3-t-aa Dr2 Di1
Di2b

Gl0 Ge0c

Ge3-td
Td0e

Td2-w f

Td1-rwg

Tr0
Tr2

Cr1 Ga0 1ASI
1SI
1RC
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5. A COMPREHENSIVE SURVEY OF DATABASE REPLICATION SYSTEMS

focus on requests that change the state of the replicas, which can be regarded
as update transactions. Processing is slightly different depending on whether the
client directly addresses to the primary or not. In any case, a two-host resiliency is
always ensured. The first backup receives the updates at the end of the transaction
[c], before a unique reply is sent to the client [f ]. After this, the rest of backups
are updated in a cascade mode [g]: whenever a backup commits its new state, it
forwards the updates to the following backup. As all transactions are executed
in the primary (the rest of nodes only act as backups), the concurrency control
of the primary server is enough and no decision process is necessary [d]. The
resulting correctness criterion includes one-copy equivalence and the guarantee
of no inversions (from the user point of view, there is only one centralized server
that runs all requests). Server-centric consistency is natively sequential (#S). The
exact correctness criterion directly depends on the local isolation of the primary
replica [h]. If, for example, the isolation in the primary node is serializable, the
correctness criterion will be 1ASR.

2PL & 2PC (Distributed Two-Phase Locking with Two-Phase Commit) was orig-
inally described by Gray [50]. 2PL is an algorithm for distributed concurrency
control, intended for distributed databases where some degree of replication is
also probable. This involves the use of distributed transactions. The underlying
database provides a serializable level of isolation, with long read and write locks
[a]. Once in the appropriate cohort [b], read operations set a read lock on the local
copy of the item and read the data, but updates must be approved at all replicas
before the transaction proceeds [c]. Thus, write locks are required on all copies
in a pessimistic way. All locks are held until the transaction has committed or
aborted. Deadlocks can appear and are solved by aborting the youngest transac-
tion. A snoop process periodically requests waits-for information from all sites,
detecting and resolving deadlocks. This process rotates among the servers in a
round-robin fashion. A two-phase commit [d] is executed for each transaction
that requests commitment. The initiating server (coordinator) sends a prepare

message to all nodes. Each server then replies with a positive or negative mes-
sage. If all messages are positive, then the coordinator sends a commit message.
Every server confirms with another message the success of the commitment. If
any of the replies in the first phase is negative, the coordinator sends an abort mes-
sage and all servers report back to the coordinator once the abortion is complete.
Decision is, thus, agreement-based [e]: aborts are possible due to deadlocks, node
or disk failures, problems in the log, etc., so the first phase of 2PC achieves an
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agreement among the servers about the decision for the current transaction. In
nodes holding copies of replicated items, subtransactions are initiated as in co-
horts, but only for update transactions. Locks ensure that conflicting operations
are not concurrently made [f ]. The correctness criterion is 1ASR [g], based in a
periodically atomic (*A) server-centric consistency.

A similar protocol is Wound-Wait (WW), which was proposed by Rosenkrantz et
al. [111]. The only difference with regard to distributed 2PL is the way in which
deadlocks are handled. In WW, deadlocks are prevented by the use of timestamps.
When a transaction requests a lock which is held by a younger transaction (with a
more recent initial start-up time), the youngest transaction is immediately aborted
unless it is already in the second phase of its 2PC.

BTO & 2PC (Basic Timestamp Ordering with Two-Phase Locking) was origi-
nally proposed by Bernstein and Goodman [12]. BTO is identical to distributed
2PL except for the fact that local isolation is based on start-up timestamps [a].
Each data item has a read timestamp corresponding to the most recent reader,
and a write timestamp corresponding to the most recent writer. When a transac-
tion requests a read operation, it is permitted if the timestamp of the requester
exceeds the write timestamp of the object. A write request is permitted if the
timestamp of the requester exceeds the read timestamp of the item. In this case,
if the write timestamp of the item is greater than the timestamp of the requester,
the update is simply ignored. Write locks must be granted in all remote copies
before proceeding with update operations, which are kept in private workspaces
until commit time so that other writers are not blocked. On the other hand, ap-
proved read operations must wait until the precedent writes are applied in order
during the commit operation of previous transactions. The used mechanisms en-
force a periodically atomic server-centric consistency (*A) guaranteeing 1ASR.

Bernstein and Goodman later proposed a concurrency control algorithm [14]
for achieving 1ASR in replicated distributed databases. This algorithm, which
also employs 2PL and 2PC (and so the strategies of both algorithms match), is
specially enforced to tolerate failures and recover nodes. Each data item x has one
or more copies (xa, xb, ...). Each copy is stored at a site. Site failures are clean:
when a site fails, it simply stops running (Byzantine failures are not considered);
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when it recovers, it knows that it failed and starts a recovery phase. Other sites
in the system can detect when a site is down. Neither network partitions nor
network failures are considered.

Each data item x has an associated directory d(x), which can be replicated. Each
copy of a directory contains two kinds of information: a list of the available
copies of x, and a list of the available copies of d(x). Special status transactions
change the contents of the directories to reflect site failures. User transactions
perform read and write operations over data items. Both types of transactions
require an available copy of d(x) for each access over x. Access to data items and
directories are both protected by locking. Read and write locks over data items
conflict in the usual way. New locks are created for accessing directories: din-
locks, in-locks, ex-locks and user-locks. The three first are all conflicting among
them. The last one, user-lock, is set by user transactions and it conflicts only with
in-locks, being compatible with the rest of directory locks. Two-phase locking
(2PL) is used for concurrency control.

There are three types of status transactions: directory-include, include and ex-
clude. A directory-include transaction, DIRECTORY-INCLUDE(dt), makes di-
rectory copy dt available. It initializes dt to the “current value” of d(x) and adds
dt to the directory list of every available copy of d(x) (din-locks are required in
the original copy of the directory, in the new one and in all the updated copies).
An include transaction, INCLUDE(xa), makes data item copy xa available. It first
initializes xa to the current value of x and then it adds xa to the data-item list of
every available copy of d(x) (in-locks are requested in the local available copy
and in all the updated copies of d(x); also, a read-lock is set on the original data
item copy of x and a write-lock protects the access to the new copy xa). Finally,
an exclude transaction, EXCLUDE(xa), makes data item copy xa unavailable (ex-
locks are required in the original and in all the updated copies of d(x)). When
executing any of these status transactions, if it is detected that some directory
copy du has become unavailable, the transaction also removes du from the direc-
tory list of every available copy of d(x). The distributed database system invokes
exclude transactions when a site fails, and include and directory-include transac-
tions when a site recovers. There is no directory-exclude transaction; dt becomes
unavailable the instant its site fails.

User transactions access data items in read and write operations. When a read
operation is requested, the corresponding directory is accessed to find an avail-
able copy of x to read, which is then protected with a read-lock [a]. For a write
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operation, a user-lock is set on dt , the local available copy of d(x) (step 1). For
each available data-item copy xa, a write-lock is set [b] (step 2). Finally, all still
available copies which were locked in the previous step are written (step 3). As
sites may fail at any point in time, exclude transactions can be applied concur-
rently with user transactions. Copies that could be locked in step 2 but become
unavailable before step 3 are ignored. Finally, when the user transaction reaches
its locked point (when it owns all of its locks), the following procedure is exe-
cuted: (1) for each read item xa, if xa is not in the data-items list of local directory
copy dt , or if EXCLUDE(xa) has an ex-lock on dt , then the transaction is aborted.
(2) In parallel, all user-locks and read-locks are released, and the step 3 of the
write procedure is finished and all write-locks are also released.

A two-phase commit (2PC) procedure is used to commit transactions. The first
phase of 2PC can run before the transaction reaches its locked point. However,
phase 2 must wait until the end of the step 1 of the locked-point procedure. Phase
2 of 2PC and step 2 of the locked-point procedure can use the same messages.
Due to the use of 2PL and 2PC, the server-centric consistency is periodically
atomic (*A) and 1ASR is guaranteed.

OPT & 2PC (Distributed Certification with Two-Phase Commit) corresponds to
the first of the two distributed concurrency control protocols proposed by Sinha
et al. [119]. As in BTO, all data items have a read and a write timestamp cor-
responding to the most recent reader and writer, respectively [a]. However, in
OPT, transactions are allowed to proceed freely, storing any updates in private
workspaces. For each read operation, the transaction must remember the write
timestamp of the read item. Before starting the two-phase commit [b], a unique
timestamp is assigned to the transaction. A certification is then performed for
each transaction in each cohort. If there is some replication, remote updaters
(which store copies of the written objects) receive the writeset in the prepare

message of 2PC and take also part in the certification process. A read request
is certified if the version that was read is still the current version and no write
with a newer timestamp has been already certified. A write request is certified if
no later reads have been locally certified or committed. The term later refers to
the timestamp assigned at the start of the 2PC. A transaction is certified globally
if local certification succeeds for all its cohorts and all its remote updaters [c].
This certification process is run inside the local DBMS, which allows a concur-
rent execution of writesets in remote updaters while ensuring a right concurrency
control [d]. The optimism of this algorithm, which lets read operations proceed
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Figure 5.1: Visual representations of the surveyed systems

without getting any locks, allows the appearance of potential inversions during
the execution of transactions. These potential inversions are later detected and
aborted during certification, thus providing 1ASR with a periodically sequen-
tial (*S) server-centric consistency based on the total order of the timestamps
assigned to the transactions.
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Figure 5.1: Visual representations of the surveyed systems (cont.)

O2PL & 2PC (Distributed Optimistic Two-Phase Locking with Two-Phase Com-
mit) was proposed by Carey and Livny [23] as an optimistic version of distributed
2PL. Both algorithms are identical in the absence of replication. However, O2PL
handles replicated data as OPT does: when a cohort updates a replicated data
item, a write lock is requested on the local copy of the item, but the request of
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Figure 5.1: Visual representations of the surveyed systems (cont.)

write locks in remote copies is delayed until commit time. During 2PC [a], re-
mote nodes must acquire the write locks required by the transaction (this info
is in the prepare message of the 2PC) before answering to the coordinator. As
read operations are required to first get a read lock and certified transactions get
all write locks at all replicas before committing, the resulting server-centric con-
sistency is periodically atomic (*A), ensuring the correctness criterion of 1ASR.
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Figure 5.1: Visual representations of the surveyed systems (cont.)

Agrawal et al. [2] propose the use of atomic broadcast to simplify the design of
replication protocols, thus eliminating the need for acknowledgments, global syn-
chronization or two-phase commitment protocols. Four protocols are proposed.
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Figure 5.1: Visual representations of the surveyed systems (cont.)

Broadcast all is a naive solution that follows the state machine approach [117]
broadcasting each operation, read or write, in total order to all replicas and wait-
ing until its delivery to execute it. A final commit operation is also broadcast and
applied in the nodes [a]. Thus, every site delivers all operations in the same order
and a 1ASR correctness criterion is enforced by means of a 1ASR/*S synchro-
nization model, where independent transactions may commit at different orders
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Figure 5.1: Visual representations of the surveyed systems (cont.)

while conflicting operations are ensured to be executed at their delivery order.
Broadcast writes, optimizes previous algorithm by sparing the broadcast of read
operations [a]. A delegate node sends a commit or abort message for its trans-
action T , as it is the only node where the read operations of T were performed.
Read-only transactions are committed only in their delegate [b], while update
transactions are committed at every replica. 1ASR is guaranteed by means of
a 1ASR/*S synchronization model. Delayed broadcast writes, packs all write
operations in a single broadcast at the end of transaction T . When this message
is delivered, nodes request write locks and execute writes. When T commits in
its delegate node, a commit operation is broadcast to all sites. Assuming that
read-only transactions are also broadcast at the end and a validation is performed
for them, 1ASR is again guaranteed by means of a 1ASR/*S synchronization
model. Finally, single broadcast transactions, reduces all communication down
to a single broadcast at the end of the transaction, only for update transactions
(the decision to commit a read-only transaction is done locally [a] and, as a re-
sult, inversions may occur). Readset and writeset information is contained in this

100



5. A COMPREHENSIVE SURVEY OF DATABASE REPLICATION SYSTEMS

message, for each node to be able to independently certify transactions and grant
all write locks. The resulting correctness criterion is 1SR′, based on a periodically
sequential (*S) consistency level.

These four protocols are referenced to as protocols A1, A2, A3 and A4 and their
performance is evaluated by Holliday et al. [57], who claim that the usage of
atomic broadcast in database replication protocols simplifies message passing
and conflict resolution, thus making replication efficient, even when providing
full replication and update-everywhere capability.

The Lazy Transaction Reordering protocol was proposed by Pedone et al. [104]
as a replication protocol able to reduce the abort rate of existing lazy approaches3

by reordering transactions during certification when possible. Traditional Kung-
Robinson’s certification, where a delivered transaction T is aborted if its readset
intersects with the union of the writesets of concurrent and previously delivered
committed transactions, is thus changed for a new one where serial order does
not necessarily have to match up with that of the atomic broadcast used to send
the certification message. The reordering protocol tries to find a position in the
serial order where T can be inserted without violating serializability. If no posi-
tion can be found, T is aborted. Natively sequential (#S) server-centric consis-
tency is ensured, but inversions may be increased by the reordering nature of the
protocol. As local write operations are tentative and are only confirmed in a non-
overlapping manner after certification, a serial execution is achieved despite not
using local serializable isolation. As a result, the correctness criterion is 1SR′.

OTP algorithm, Optimistic Transaction Processing, was proposed by Kemme et
al. [70] and later refined [71]. In order to distinguish between both versions,
we denote the initial one with the year of publication OTP-99. In OTP-99, all
accesses to the database are assumed to be done through the use of stored pro-
cedures. Each stored procedure accesses only one of a set of disjoint conflict

3In such a paper [104], an approach is identified as lazy if it locally executes transactions
and sends certification information to the rest of the system at commit time, as opposed to eager
approaches, which are identified in the paper as those that synchronize each data access by com-
municating with other nodes during transaction execution. Note that these definitions do not match
those of Chapter 2, where eager approaches broadcast the writeset and apply it at all nodes before
replying to the client, as opposed to lazy approaches that send and apply writesets at remote nodes
after committing in the delegate.
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classes into which the database is divided. Each node maintains a queue per con-
flict class, in order to serialize conflicting transactions at middleware level, and
has a mechanism that maintains different versions of the data of each conflict
class [e]. Read-only transactions can execute at any replica [a], using the corre-
sponding snapshot [c] and committing locally without further processing [f ]. To
provide consistent snapshots for queries, the different maintained versions of the
data are labeled with the index (the position inside the definitive total order) of
the transaction that created the version. If Ti was the last processed TO-delivered
transaction at the time a query Q starts, then the index for Q is i.5 (a decimal

index). When Q wants to access some data, it is provided with the data corre-
sponding to the maximum version which is lower than the index of the query.

Update transactions are broadcast in total order to all the sites [b], where they
will be executed in an active way [d]. An optimistic atomic broadcast is used,
so first transactions are opt-delivered in a tentative order to be later TO-delivered
in the definitive total order. When a transaction is opt-delivered, it is inserted
in the corresponding queue. All transactions at the heads of the queues can be
executed concurrently [g], as they do not conflict. When a transaction T is finally
TO-delivered, any conflicting transaction T ′ tentatively ordered before T and not
yet TO-delivered must be reordered (as the definitive total order is used as the
serialization order for conflicting transactions). If T ′ already started execution,
it must be aborted and later reexecuted. T is then rescheduled before all non-
TO-delivered transactions in its corresponding queue. On the other hand, when
the definitive order matches the tentative one, T can be committed as soon as it is
fully executed. After commitment, T is removed from its queue and the following
transaction can be submitted to execution.

Regarding the server-centric consistency, if we consider each conflict class, i.e.,
each division of the database, as a logically different database, transactions run-
ning in any of those divisions are guaranteed a 1SR′ correctness criterion, as the
snapshots used by queries allow inversions but updates are sequentially applied
(#S consistency level).

Pacitti et al. [97] propose Fast Refresh Deferred-Immediate and Fast Refresh
Immediate-Immediate, two refreshment algorithms for a lazy master replication
system. In those systems, each data item has a primary copy stored in a master
node, and updates to that data item are only allowed in that node [b], while read
operations are allowed in any replica [a] (inversions may arise). A transaction
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can commit after updating one copy. The rest of replicas are updated in separate
refresh transactions. Partial replication is used in this work, but all transactions
are assumed to access only local data (there are no distributed transactions). Sec-
ondary copies are stored in other servers. Write operations are propagated to the
secondary copies, which are updated in separate refresh transactions. Two types
of propagation are considered: deferred (all the update operations of a transaction
T are multicast within a single message after the commitment of T ) [h], and im-
mediate (each write operation is immediately multicast inside an asynchronous
message, without waiting for the commitment of T ) [j, l]. Read operations are
not propagated [e, g, i, k]. Refresh transactions can be triggered in the secon-
daries in three different ways: deferred, immediate and wait. The combination
of a propagation parameter and a triggering mode defines a specific update prop-
agation strategy. In the deferred-immediate algorithm, a refresh transaction is
started as soon as the corresponding message is received by the node; while in
the immediate-immediate one, a refresh transaction is started as soon as the first
message corresponding to the first operation is received, thus achieving higher
replica freshness. Finally, the ordering parameter defines the commit order of
refresh transactions. Depending on the system topology, this ordering must be
refined in order to maintain replica consistency (secondary copies are updated
and no inconsistent state is observable in the meantime). A FIFO reliable multi-
cast with a known upper bound is used. This upper bound, timestamps and drift-
bounded clocks in nodes allow the protocol to achieve a total ordering among
messages, when necessary, letting refresh transactions to execute concurrently [f ]
but forcing them to wait before their final commit operation, in order to perfectly
correspond with the commitment order in the master nodes and thus achieve #S
server-centric consistency. A serializable isolation level in local databases [c]
allows the system to ensure 1SR′. No decision phase is required, as local concur-
rency control in master nodes is enough [d].

DBSM (Database State Machine Replication) [101] applies the state machine
model to the termination protocol of a database replication system. Read-only
transactions are directly committed when the user requests to, i.e., no communi-
cation is established with other nodes and no decision process is performed [a, c].
Update transactions atomically broadcast [b] their information (readset, writeset,
updates) to the rest of nodes, where a certification [d] is performed, checking
for write-read conflicts. Successfully certified transactions request all their write
locks and, once they are granted, the updates are performed [e]. To make sure that
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each database site will reach the same state, write-conflicting transactions must
request their locks (and be applied to the database) in the same order they were
delivered. On the other hand, transactions that do not conflict are commutable:
they do not need to be applied to the database in the same order they were de-
livered. Although different sites may follow different sequences of states (de-
pending on such commutable transactions), write locks –held from certification
to final commitment–, prevent users from perceiving such inconsistency. This
corresponds to the periodically sequential (*S) server-centric replica consistency.
On the other hand, as read-only transactions are not certified (they are locally
and immediately committed upon request), inversions are possible. The ensured
correctness criterion is 1SR′.

During remote writeset application, conflicting local transactions are aborted. Es-
tablishing a trade-off between consistency and performance, Correia et al. [30]
relax the consistency criteria of the DBSM with Epsilon Serializability. Read-
only transactions can define a limit in the inconsistency they import, i.e., the
aggregated amount of staleness of read data. Update transactions define a limit in
the inconsistency they export to concurrent transactions. This way, during lock
acquisition before writeset application, a local mechanism verifies if the incon-
sistencies introduced by the committing writeset do not force a local query to
exceed its limits, or the remote update to exceed its limits. If both limits are not
exceeded, the local query can continue and the remote writeset can be applied.
Otherwise, the local query is aborted.

SER [69] is a protocol for serializable databases, where long local read locks
are requested for read operations, while write operations are delayed until the
end of the reading phase [a]. When a read-only transaction finishes its operations
and requests commitment, it is immediately committed, without any communica-
tion with the rest of the system [b, d]. On the other hand, update transactions are
broadcast in total order [c]. When delivered, a validation mechanism is performed
[e] but not for deciding about this transaction but about local ones not yet deliv-
ered. This validation is based on locks. All write locks for the delivered writeset
are atomically requested. If there is no lock on the object, the lock is granted. If
there is a write lock or all the read locks are from transactions already delivered,
then the request is enqueued. If there is a read lock from a transaction Tj not yet
delivered, Tj is aborted and the write lock is granted. If Tj was already broadcast,
an abort message is sent. After this lock phase, if the delivered transaction was
local, a commit message is sent. Thus, a second message, only reliable, is sent
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for every broadcast transaction with its final outcome, following a weak voting
approach (the commit vote for a transaction Tc is sent after the delivery of the
writeset of Tc; the abort vote for a transaction Ta is sent before the delivery of the
writeset of Ta). Whenever a write lock is granted, the corresponding operation is
performed. The queues of requested locks ensure that conflicting operations are
serially performed [f ]. Updates of non-conflicting transactions can be committed
at different orders, but the write locks prevent users from perceiving the lack of
sequentiality. Nevertheless, inversions may arise. The exact correctness crite-
rion is 1SR′, based on periodically sequential (*S) server-centric consistency. A
PostgreSQL implementation of the SER protocol, Postgres-R, was published and
further discussed by Kemme and Alonso [68].

CS [69] is a version of SER for databases where read locks are released after the
read operation if the transaction will not update the object later on [a]. The algo-
rithm is identical to that of SER, except for the decision phase, where transactions
holding short read locks are not aborted when the delivered transaction requests
a write lock in the same object. Instead, the delivered transaction waits for the
short locks to be released. This way, read operations are less affected by writes,
but inversions may increase and the resulting execution may be non-serializable.
Regarding server-centric consistency, the update application mechanism, as in
SER, allows independent transactions to commit in a different order to that of
their delivery, although this is concealed to users by holding write locks from de-
cision time. Therefore, a periodically sequential (*S) replica consistency is used
as basis to ensure the correctness criterion of 1CS.

SI [69] is deployed upon a local lock-based database providing snapshot isola-
tion. On request, read-only transactions are immediately committed without any
communication with the rest of the system [a, c], while update transactions must
be atomically broadcast [b]. The sequence number of their writesets is used as
end-of-transaction (EOT) timestamp. The begin-of-transaction (BOT) timestamp
of Tj is set to the highest sequence number EOTi such that Ti and all transactions
with lower sequence numbers have terminated in the replica at the starting time
of Tj. Certification [d] is made by checking the EOT timestamp of the last trans-
action currently holding or waiting to acquire a write lock on an object X with the
BOT timestamp of the delivered transaction wanting to write X . If both transac-
tions are concurrent (EOT > BOT), the delivered transaction is aborted. If there
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is no write lock on object X , the comparison is made with the EOT of the trans-
action that wrote its current version. Non-aborted transactions request their write
locks in delivery order. As soon as a lock is granted, the corresponding operation
is performed [e]. Again, write locks prevent users from perceiving the lack of
sequentiality when non-conflicting transactions are applied at different orders in
different replicas. This periodically sequential (*S) consistency level gives the
1SI correctness criterion, as inversions are not precluded.

Hybrid [69] is a combination of previous protocols SER and SI. Read-only trans-
actions are executed in snapshot isolation mode [a]: they get a version of the
database corresponding to their start time (inversions may arise). Update transac-
tions are executed like in SER [b]. Read-only transactions commit immediately
without any communication with the rest of the nodes [c, e], whereas update
transactions are broadcast in total order [d]. A validation phase based on locks is
performed whenever a transaction is delivered [f ]. Only the owner of the trans-
action is able to decide the final outcome, which is reliably broadcast at the end
of the lock phase. As in SER, only local transactions not yet delivered can be
aborted. Thus, the decision is not for the delivered transaction, but for transac-
tions that would be subsequent in the total order. Whenever the delivered trans-
action gets a write lock, the corresponding operation is performed [g], which can
produce the reordering of independent transactions. The server-centric consis-
tency is thus periodically sequential (*S), and the correctness criterion is 1SR′.

NODO (NOn-Disjoint conflict classes and Optimistic multicast) was proposed by
Patiño-Martínez et al. [98] as a middleware-based replication protocol that aims
to enhance scalability of existing systems reducing the communication overhead.
Data is partitioned into disjoint basic conflict classes, which are then grouped
into distinct compound conflict classes. Each compound conflict class has a mas-
ter or primary site, which allows the protocol to rely on the local concurrency
control for deciding the outcome of transactions [f ]. A transaction accesses any
compound conflict class, which is known in advance. Read-only transactions
can be executed in any node [a], as a complete copy of the database is stored at
each node. Update transactions, however, are broadcast in total order to all sites
[b]. An optimistic delivery allows the overlap of the time needed to determine
the total order with the time needed to execute the transaction. For concurrency
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purposes, each site has a queue associated to each basic conflict class. When a
transaction T is optimistically delivered (opt-delivered), all sites queue it in all
the basic conflict classes it accesses. At the master site of T , whenever T is the
first transaction in any of its queues, the corresponding operation is executed [c].
When T is delivered in total order (TO-delivered), if the tentative order was cor-
rect, T can commit as soon as it finishes execution. Then, its writeset is reliably
broadcast in a commit message to all sites [e], where updates are applied after T is
TO-delivered and as soon as it reaches the head of each corresponding queue [h].
When all updates are applied, T commits. Committed transactions are removed
from the queues. If messages get out of order, any conflicting transaction T ′ opt-
delivered before T and not yet TO-delivered is incorrectly ordered before T in
all the queues they have in common. T must be reordered before the transactions
that are opt-delivered but not yet TO-delivered. If T ′ already started its execu-
tion, it must be aborted at the master site. Read-only transactions are queued
at their delegate node after transactions that have been TO-delivered and before
transactions that have not yet been TO-delivered [c]. Once a read-only transac-
tion executes, it is locally committed with no further communication [d, g]. A
performance evaluation of an implementation of this protocol was conducted by
Jiménez-Peris et al. [63].

A drawback of NODO is that a mismatch between the tentative and the defini-
tive orders may lead to an abortion. Taking advantage of the master copy nature
of this protocol, a new version was also proposed in that paper [98]: the RE-
ORDERING algorithm, where a local site can unilaterally decide to change the
serialization order of two local transactions following the tentative order instead
of the definitive one in order to avoid such aborts. Remote nodes must be in-
formed about the new execution order (this information is added to the commit
message). Restrictions apply, as reordering is only possible if the conflict class
of the reordered transaction, the first one in the local tentative order, is a subset
of the conflict class of the so-called serializer transaction, the one that comes first
in the definitive total order. The commit message of REORDERING contains
the identifier of the serializer transaction and follows a FIFO [i] order (several
transactions can be reordered with respect to the same serializer transaction, and
their commit order in all sites must be the same). When a transaction Ti is TO-
delivered at its master site, any non-TO-delivered local transaction Tj whose con-
flict class is a subset of that of Ti is now committable (it will be committed when
it finishes execution, as if it were TO-delivered in the NODO algorithm). Lo-
cal non-TO-delivered conflicting transactions that cannot be reordered and have
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started execution must be aborted. At remote sites, reordered transactions are
only committed when its serializer transaction is TO-delivered at that site.

Both NODO and REORDERING allow inversions and ensure, with a periodically
sequential (*S) server-centric consistency, the correctness criterion of 1SR′.

Pronto [102] follows the primary-backups approach, so transactions must be ad-
dressed to the primary [a]. Clients do not need to know which node is the primary
at any moment, as the first part of their algorithm is devoted to find the current
primary by consecutively asking all the replicas. After transaction execution in
the primary, Pronto sends to the backups the ordered sequence of all its SQL sen-
tences [b]. This allows heterogeneity in the underlying DBMS as long as they
follow the same SQL interface. Possible non determinism is said to be solved by
introducing ordering information that allows the backups to make the same non-
deterministic choices as the primary. As all replicas completely execute each
transaction, Pronto assimilates to an active approach. But unlike active replica-
tion, backups process transactions after the primary, allowing the primary to make
non-deterministic choices and export them to the backups. The certification pro-
cess [c] does not consider the conflicts between transactions. Instead, a simple
integer comparison is performed to check if the transaction was executed in the
same epoch where it is trying to commit. A change in the epoch, which results in
another server being the primary, occurs when any backup suspects the primary
to have failed and broadcasts (also in the total order used for broadcasting trans-
actions) a new epoch message. As these suspicions may be false, the primary may
be still running and so it aborts all transactions in execution upon the delivery of
the new epoch message. Moreover, due to the time it takes for the message to be
delivered, it is possible that multiple primaries process transactions at the same
time. To prevent possible inconsistencies, delivered transactions are committed
in backups only if they were executed in the current epoch (by the current pri-
mary). After termination, all replicas (primary and backups) send the transaction
results to the client [d]. Server-centric consistency is natively sequential, but in-
versions are precluded by serving all transactions in the primary, thus following a
1ASR/#S synchronization model that achieves the correctness criterion of 1ASR.

DBSM-RAC, Database State Machine with Resilient Atomic Commit and Fast
Atomic Broadcast, was proposed by Sousa et al. [121] as an adaptation of DBSM
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for partial replication. In partial replication, nodes maintain only the transaction
information that refers to data items replicated in that node. Due to this, certi-
fication is no longer ensured to reach the same decision at all nodes. Instead, a
non-blocking (to tolerate failures) atomic commit protocol must be run, in order
to reach a consensus on transaction termination [e]. But atomic commit protocols
can abort transactions as soon as a participant is suspected to have failed. This
goes against the motivation for replication, as the more replicas an item has, the
higher the probability of a suspicion, and the lower the probability of a transac-
tion accessing that item to be finally committed. Resilient atomic commit solves
this problem by allowing participants to commit a transaction even if some of the
other servers are suspected to have failed, for which it requires a failure detector
oracle. The second abstraction presented is Fast Atomic Broadcast, a total order
broadcast which can tentatively deliver (FST-deliver) multiple times a message
before deciding on the final total order (FNL-deliver). This optimistic behav-
ior allows the overlap of the time needed to decide the total order with the time
needed to run the resilient atomic commit, thus overcoming the penalty of the
latter. A transaction T must start in a node that replicates all the items accessed
by T [a]. Read-only transactions are locally committed [b, d, f ]. Update transac-
tions spread their information using the fast atomic broadcast [c]. As soon as T is
first FST-delivered, all participating sites (those replicating any item accessed by
T ) certify T and send the certification result as their vote for the resilient atomic
commit protocol. When T is FNL-delivered, if the tentative order was correct,
the result of the resilient atomic commit is used to decide the final outcome of
T . If T can commit, its write locks are requested and its operations executed as
soon as they are granted [g]. Whenever the orders mismatch, the certification and
resilient atomic commit started for T are discarded and the process is repeated
for the final order. As in DBSM, write locks prevent users from perceiving the
lack of sequentiality caused by independent transactions committing in different
orders in different nodes. The server-centric consistency is periodically sequen-
tial (*S) and, as inversions are not precluded, the correctness criterion is 1SR′.

Holliday et al. [58] propose a pair of partial database replication protocols sup-
porting multi-operation transactional semantics and aimed to environments where
servers are connected by an unreliable network, subject to congestion and dy-
namic topology changes, where messages can arrive in any order, take an un-
bounded amount of time to arrive, or be completely lost (however, messages
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will not arrive corrupted). Each site maintains an event log of transaction opera-
tions, where the potential causality among events is preserved by vector clocks.
Records of this log are exchanged with the rest of servers in an epidemic way
with periodic point-to-point messages. This exchange ensures that eventually all
sites incorporate all the operations of the system. A node Ni also maintains a
table Ti that contains the most recent knowledge of Ni of the vector clocks at all
sites. This time-table, also included in the epidemic messages, ensures the time-
table property: if Ti[k, j] = v then Ni knows that Nk has received the records of
all events at N j up to time v (which is the value of the local clock of N j).

Transactions are executed locally. In the restricted access approach, Epidemic
restricted, a transaction T can access only those data items that are permanently
stored in the delegate node of the transaction. When T finishes, if it is read-
only it is immediately committed without further processing [a, c, e]. Otherwise,
its readset, writeset (with the updated values) and timestamp are stored in a pre-
commit record in the delegate node to be epidemically spread [b]. The timestamp
used is the ith row of the time-table of Ni, Ti[i,∗], with the ith component incre-
mented by one (the clock value at each node is incremented every time a new
record is inserted into the log). This timestamp allows the protocol to determine
concurrency between transactions in order to certify them. When Ni knows, by
the clock information from epidemic messages, that this record has reached all
sites, Ni must have received any concurrent transactions initiated in other nodes
and thus has all the required information to certify T [d]. As there is no order
guarantee, when a conflict is found between two concurrent transactions, both
transactions must be aborted. Not aborted transactions are applied and commit-
ted at each node [f ].

In the remote access approach, Epidemic unrestricted, remote objects can be
read and written by maintaining a local temporary database in memory. When a
local transaction wants to read a remote data item, the temporary database and
pre-commit records from other sites are inspected trying to get a valid version of
the item. If no valid version is available, a request record is added to the event
log and epidemically transmitted [g]. A site replicating that item would be able
to turn that record into a response one, storing it at its log and transmitting it later.
Write operations of remote data items do not require the current value of the item.

Both the restricted and the unrestricted versions of this algorithm allow inversions
of read-only transactions. The updates to the local database are applied following
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the causal order of the log, thus ensuring periodically sequential (*S) server-
centric consistency. As a result, 1SR′ is guaranteed.

OTP was proposed by Kemme et al. [71] (along with OTP-Q, OTP-DQ and OTP-
SQ) to achieve high performance by overlapping communication and transaction
processing in database replication systems providing full replication and one-
copy serializability. OTP is a more refined version of OTP-99 [70], where transac-
tions were restricted to access only one conflict class. OTP only considers update
transactions, issued by clients that invoke stored procedures. Whenever a client
sends a request to a node, this node forwards it to all sites in an atomic broadcast
with optimistic delivery [a]. This primitive allows the overlap of the time needed
to determine the total order with the processing of the message. To this end, a
message is optimistically delivered (opt-delivered) in an initial tentative order.
When the order is agreed, the message is delivered in total order (TO-delivered).
Tentative and total orders may differ. The processing of transactions is then done
in an active way: all sites execute all operations, i.e., there is no delegate node [b].
When the request is opt-delivered, all required locks are requested in an atomic
step. This consists in queueing a read or write lock entry in the queue correspond-
ing to the accessed data item. These queues are maintained by the protocol, so
concurrency control is done at middleware level [c], deferring the execution of
operations until the corresponding lock is granted [d]. This way, transactions are
executed optimistically, but the commit operation is not performed until the total
order is decided. If a transaction T is already executed when it is TO-delivered,
or is already TO-delivered when it finishes execution, this means that the tenta-
tive order was correct. T commits and releases all its locks. On the other hand,
if a transaction T is TO-delivered before it finishes execution, all its lock entries
are inspected. Any transaction T ′ not yet TO-delivered with a conflicting granted
lock is aborted: all its operations are undone, all its locks are released and its
execution will be restarted later, as the tentative order was not correct and T must
be executed before. Finally, all the locks of T are scheduled before the first lock
corresponding to a transaction not yet TO-delivered. As independent transactions
may commit at different orders, server-centric consistency is periodically sequen-
tial. Moreover, as OTP does not consider read-only transactions, inversions are
trivially avoided. 1ASR is guaranteed by a 1ASR/*S synchronization model.

OTP-Q, OTP-DQ and OTP-SQ complement OTP with the management of read-
only transactions. In all these protocols requests must be declared in advance as
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queries or update transactions. Queries are only locally executed with no com-
munication overhead [e, g]. A basic approach is taken in OTP-Q, a query Q is
treated as if it were an update transaction being TO-delivered: any transaction
not yet TO-delivered with conflicting granted locks is aborted and the locks of
Q are inserted before the first lock entry corresponding to a not yet TO-delivered
transaction. Operations are deferred until the corresponding lock is granted [f ].

Although simple, OTP-Q requires that queries know in advance all the data items
they want to access, which might not be feasible due to their usual ad hoc char-
acter. Moreover, queries may access many items and execute for a long time.
Locking all data at the beginning will thus lead to considerable delay for update
transactions. In order to overcome these disadvantages, authors propose OTP-
DQ, which treats queries dynamically, allowing queries to request their locks
whenever they want to access a new item. To avoid violations of the one-copy
serializability, data items are labeled with version numbers corresponding to the
position inside the total order of the last transaction that updated them. Each up-
date transaction is also identified with such a version number. Queries maintain
two timestamps corresponding to the version numbers of a pair of transactions
between which the query can be safely serialized. Each time an update transac-
tion requests a lock on an item read by a query, or whenever the query reads an
item, timestamps are adjusted in order to ensure that the query does not reverse
the serial order established by the total order. In case that it is detected that the
order has been reversed, the query is aborted [h].

Both OTP-Q and OTP-DQ place read-only transactions properly inside the serial
order but, as server-centric consistency is periodically sequential (*S) and queries
are not enforced to respect real-time precedence (their processing is local and the
validation rules merely aim for serializability), the correctness criterion is 1SR′.

Finally, OTP-SQ uses multiversioning for providing each read-only transaction
with appropriate versions of all data items it wants to access, i.e., with a snapshot.
This way, queries do not acquire locks, do not interfere with updates and can
be started immediately [i]. The server-centric consistency and the correctness
criterion are the same of OTP-Q and OTP-DQ.

RJDBC [44] is a simple and easy to install middleware that requires no modi-
fication in the client applications nor in the database internals. A client request
arrives to a system node [a], which, for each operation of the transaction, and
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depending on the underlying database concurrency control in use [b], decides
to broadcast the operation in total order to all replicas [c] or not (e.g., read op-
erations in a multi-version concurrency control providing snapshot isolation are
not required to be broadcast). If not broadcast, the operation is executed locally.
Otherwise, it is sequentially executed upon delivery (the same applies for the fi-
nal commit operation [d, f ]). As all nodes execute all significant operations in the
same order, no decision phase is necessary [e]. Server-centric replica consistency
is ensured to be natively sequential (#S). The guaranteed correctness criterion
depends on the underlying concurrency control and on the decision to broadcast
operations [g]. If serializability is used for local isolation but read operations are
not broadcast, then 1SR′ is provided. On the other hand, broadcasting also read
operations allows the system to achieve 1ASR. Similarly, if snapshot isolation is
provided, then 1SI can be achieved without broadcasting read operations, while
1ASI requires such a broadcast.

RSI-PC (Replicated Snapshot Isolation with Primary Copy) was proposed by
Plattner and Alonso [107] as a scheduling algorithm for their middleware-based
replication platform, Ganymed, where there is a master node and n slave nodes.
RSI-PC takes advantage of the non-blocking nature of read operations in snap-
shot isolation (read operations are never blocked by write operations nor cause
write operations to wait for readers) by treating read-only and update transac-
tions in different ways, thus providing scalability without reducing consistency.
All client requests are addressed to the scheduler, which forwards update transac-
tions to the master node and performs load balancing with read-only transactions
among the slaves [a]. Updates are started in the master without any delay [c] and
handled under snapshot (actually, under the serializable mode of the underlying
Oracle or PostgreSQL databases, which is a variant of snapshot isolation where
conflict detection is performed progressively by using row write locks, ensuring
that the transaction sees the same snapshot during its whole lifetime) or read com-
mitted isolation [e]. No decision phase is necessary [f ], as the local concurrency
control of the master replica is enough. After an update transaction commits in
the master, its writeset is sent to the scheduler, which has, for every slave, a FIFO
update queue and a thread that applies the contents of that queue to its assigned
replica [j]. Although this constitutes a lazy behavior (update propagation is done
out of the transaction boundaries), this algorithm is equivalent to an eager service
as strong consistency can be always guaranteed.
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Read-only transactions are processed in the slaves using snapshot isolation [d],
thus no conflicts appear between writeset application and query processing in the
slaves, as readers are never blocked by writers in snapshot isolation. However,
to ensure strong consistency for read-only transactions, they are delayed until all
pending writesets are applied in the selected slave [b], thus providing read-only
transactions with the latest global database snapshot. For read-only transactions
that cannot tolerate any delay there are two choices: to be executed in the master
replica (thus reducing the available capacity for updates), or to specify a staleness
threshold. No group communication is established by read-only transactions [i].

As transaction-remote and client-response strategies are not detailed in the paper,
we assume the most plausible choice [g, h]. While server-centric consistency is
thus natively sequential (#S), the ensured correctness criterion depends on the
isolation mode of update transactions and the staleness toleration of read-only
transactions: if queries do not tolerate staleness, they are provided with atomic,
inversions-free consistency.

SRCA [79] is a centralized protocol, where all transaction operations must be
addressed to the centralized middleware, which redirects the operations to any
replica [a]. Read-only transactions are locally committed without any global
communication [b, d]. For update transactions, the group end coordination [c]
is made after the decision [e] is taken by the centralized middleware. The se-
quential application of writesets ensures a natively sequential (#S) server-centric
consistency, which combined with snapshot isolation at database level and no
mechanisms for inversion preclusion4 results in the correctness criterion of 1SI.

SRCA-Rep was proposed by Lin et al. [79] as a middleware protocol that guaran-
tees one-copy sequential snapshot isolation in replicated databases. Each replica
in the system is locally managed by a DBMS providing snapshot isolation. The
database is fully replicated, so transactions can be executed in a delegate replica
until the commit operation is requested. Then, read-only transactions are locally
committed without any communication [b, d], whereas writesets from update
transactions are broadcast to the rest of replicas in uniform total order [c]. Each

4Remember that, in snapshot isolation, inversions are conservatively precluded if the snapshot
provided to transactions always corresponds to the latest available snapshot in the entire system.
Optimistically, transactions may get an older snapshot but be restarted (getting a new snapshot)
when the inversion is detected.
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replica performs a certification [e] for each writeset, following the delivery order.
Successfully certified writesets are then enqueued in the tocommit queue, to be
later applied and committed in the local copy of the database, and in the ws list,
which contains all the transactions applied in the system.

To reduce the overhead of the certification, it is performed in two steps. Each
successfully certified transaction receives a monotonically increasing identifier
called tid. When a transaction T requests commitment in its delegate node Rd , a
local validation is performed: its writeset is compared against those of the trans-
actions in the tocommit queue of Rd . If any conflict is found (non-empty intersec-
tion of writesets), T is aborted. Otherwise, the tid of the last certified transaction
in Rd is set as the cert value of T . When T is delivered at remote replica Rr, its
writeset is compared against those of the ws list whose tid is greater than the cert

of T . Any conflict leads to the abortion of T . Otherwise, T receives its tid and is
enqueued in both the tocommit queue and the ws list of each of the replicas.

To improve performance, a concurrent writeset application is allowed. When
some conditions are satisfied,5 several non-conflicting transactions from the to-

commit queue are sent to the database to be applied and committed. This can alter
the commit order, causing holes and breaking the sequentiality. Thus, new local
transactions must be prevented from starting [a] as long as there are holes in the
commit order. The server-centric consistency level is thus periodically sequential
(*S) and, as inversions are not precluded, the correctness criterion is 1SI.

DBSM* was proposed by Zuikevičiūtė and Pedone [141] as a readsets-free ver-
sion of DBSM. Local isolation is still managed with 2PL, but the certification test
enforces the first-committer-wins rule of snapshot isolation. In order to maintain
the original 1SR′, a conflict materialization technique is used. The database is
logically divided into disjoint sets, and each one is assigned to a different node,
which is responsible for processing update transactions that access that set [b].
Read-only transactions, on the other hand, are scheduled independently of data
items accessed [a]. An additional control table containing one dummy row for
each logical set allows the materialization of write-read conflicts, in order to be
detected in the certification. This way, a transaction that reads data from a remote

5The conditions that must hold to send a writeset T to the database of replica R are: (a) no
conflicting writeset is ordered before T in the tocommit queue; and (b) either T is local or there are
no local transactions waiting to start in R or T does not start a new hole.
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logical set is incremented with an update to the corresponding row in the con-
trol table. As in DBSM, server-centric consistency is periodically sequential (*S)
and, as inversions are not precluded, the resulting correctness criterion is 1SR′.

PCSI Distributed Certification [40] provides prefix consistent snapshot isola-
tion (PCSI), a form of generalized snapshot isolation (GSI), which is equivalent to
1SI. In this distributed certification protocol, read-only transactions directly com-
mit [c] without communicating with the rest of nodes [a] and update transactions
broadcast their writeset in total order [b] and are later certified [d] and applied at
each replica, ensuring a natively sequential (#S) server-centric consistency.

Tashkent-MW and Tashkent-API were proposed by Elnikety et al. [41] with
the goal of uniting both transaction ordering and durability, whose separation in
common database replication systems is claimed by these authors as being a ma-
jor bottleneck due to the high cost associated to sequential disk writes required to
ensure in the database the same commit order decided in the middleware. The
replication system proposed is compound of a set of database replicas and a
replicated certifier, responsible for validating transactions [d] and provide repli-
cas with remote writesets. A snapshot isolated database is used in each replica,
where read-only transactions are locally committed (no validation nor communi-
cation needed [a, c, e]). When an update transaction T finishes in its delegate, it
is sent to the certifier [b], which replies with the validation result, the writesets
generated in remote replicas and the commit order to be enforced in all nodes.
The delegate then applies remote writesets and commits or aborts T , depending
on the validation result and respecting the global order imposed by the certifier.

In Tashkent-MW, durability is moved to the middleware and, thus, commit oper-
ations are fast in-memory operations, which are done serially to ensure the same
global order at each replica. Writesets are also serially sent to the database [f ],
but synchronous writes to disk are disabled. On the contrary, in Tashkent-API,
commit ordering is moved to the underlying database management system, which
is modified to accept a commit order, so multiple non-conflicting writesets can
be sent concurrently to the database [h] while ensuring the correct commit order.
This way, the database can group the writes to disk for efficient disk IO. In both
protocols, the transmission of writesets to remote nodes is completely decoupled
from transaction execution, as it is done as part of the reply of the certifier to the
requests of other nodes [g].

116



5. A COMPREHENSIVE SURVEY OF DATABASE REPLICATION SYSTEMS

Both in Tashkent-MW and Tashkent-API, the commit order followed by replicas
is the same. However, the state of the underlying database replicas is updated by
grouping multiple commit operations into one single disk write. As this grouping
is not forced to be the same in all replicas, servers will not follow the same exact
sequence of states: some of them may omit some intermediate states that were
present at other servers.6 Nevertheless, this does not impair consistency and 1SI
(as inversions are not precluded) is guaranteed.

DBSM-RO-opt [96] aims to extend the DBSM replication in order to provide
atomic, inversions-free consistency [c] among the nodes. To do so, an optimistic
approach is followed: read-only transactions are locally executed in their delegate
replica but are also atomically broadcast when the user requests to commit [a], so
both read-only and update transactions are checked, looking for write-read con-
flicts: read-only transactions are inspected only by their delegate replica, while
update transactions are certified by each replica in the system [b]. This avoids
inversions, while the server-centric consistency is, as in DBSM, periodically se-
quential (*S). As a result, the correctness criterion is 1ASR, provided by means
of a 1ASR/*S synchronization model.

DBSM-RO-cons [96] also aims to extend the DBSM replication in order to pro-
vide inversions-free consistency but, in this case, a conservative (pessimistic)
approach is followed: read-only transactions are atomically broadcast when they
begin [a] and are executed only when all update transactions ordered before are

6Imagine a Tashkent system with an initial state, or version, v0. There are three nodes in the
system and each one starts the execution of a local update transaction: R1 executes T1, R2 executes
T2 and R3 executes T3. If all the transactions are independent, they will all positively pass their
validation at the certifier. Suppose T1 finishes the first. The certifier responds with the positive
decision but it does not have any pending writeset for R1, so this node commits T1, reaching (from
version v0) version v1 (corresponding to the updates of T1). Now R2 finishes the execution of T2 and
sends it to the certifier, which responds with the positive decision and with the writeset of T1. As
transactions are independent, R2 sends them together to the database, which writes their commits
in a single disk write, thus moving from version v0 directly to version v2 (corresponding to the
updates of T1 and T2). Finally, R3 finishes the local execution of T3 and sends it to the certifier,
which responds with the positive decision and with the writesets of T1 and T2. R3 applies the three
transactions in a single disk write, thus passing from version v0 to version v3 (corresponding to
the updates of the three transactions). This way, the three replicas end with the same final state
and no other possible transaction has been able to see any inconsistent state, but the sequences of
database states differ from replica to replica, thus discarding a (natively or periodically) sequential
server-centric consistency, as defined in Chapter 3.
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committed in the executing replica. This means that not only the group-start com-
munication is synchronous but the query must also wait for all pending writesets
to be applied (this extra waiting time could be considered as a late occurrence of
a deferred transaction-service, Ts1). Update transactions do not need to be broad-
cast at start time [b]. When finished in its delegate replica, a read-only transaction
does not need any further communication [c] nor any certification [e], but update
transactions must broadcast their information in total order [d] and undergo the
usual conflict checking process [f ]. The resulting server-centric consistency and
correctness criterion are the same than in DBSM-RO-opt.

Alg-Weak-SI [36], as well as Alg-Strong-Session-SI and Alg-Strong-SI, is used
in a system with a primary replica and several secondary nodes, where clients
send transactions to any replica. Read-only transactions can be executed in the
secondaries (without any further communication with the rest of nodes, [e]), but
update transactions are forwarded to the primary [a]. This protocol follows a lazy
propagation of updates, so no communication is established during the lifetime
of transactions [b]. Instead, local concurrency control in the primary replica is
the only responsible for deciding the outcome of update transactions [c], whose
start, updates and final operation (commit or abort) are registered in a log which
is later used to lazily propagate [f ] these operations in order (a FIFO order is
required, which provides a total order broadcast when there is only one sender)
to the secondary replicas. The sending process inspects each log entry: a start
operation is immediately propagated; update operations are inserted in the update
list of the transaction they belong to; a commit entry for transaction T causes
the broadcast of this operation along with the update list of T ; an abort entry
of transaction T is also propagated, discarding in this case the corresponding
update list. In the secondaries, delivered messages are buffered in the update

queue and processed in order. When the start message of Ti is processed –after
waiting for the pending queue to be completely empty–, a refresh transaction
T ′i is started. When the commit message of Ti (with the updates associated) is
processed, a new thread is created to apply the updates of Ti using transaction T ′i ,
and the commit operation of Ti is appended to the pending queue. This allows the
protocol to concurrently apply writesets while ensuring the same commit order of
transactions [d]. The server-centric consistency is natively sequential (#S) and,
as read-only transactions are executed in secondary replicas without inversion
preclusion, inversions may occur (queries may get an old snapshot). Thus, the
correctness criterion is 1SI [g].
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Alg-Strong-SI and Alg-Strong-Session-SI [36] guarantee natively sequential
(#S) server-centric consistency and ensure strong snapshot isolation (1ASI) and
strong session snapshot isolation (1SI+), respectively [c]. While 1ASI avoids all
inversions, 1SI+ prevents inversions within the same user session. In order to
provide 1SI+, a version number is assigned to each session, corresponding to the
version installed by the last update transaction in that session. When a read-only
transaction of the same session wants to start, all writesets with version numbers
inferior to the session version number must be applied in the secondary replica
prior to the start of the read-only transaction [a]. If, instead of having one session
per client, there is a single session for the system, then 1ASI is provided. Update
transactions can start immediately as they are all executed in the same primary
replica [b]. Apart from this, these protocols are identical to Alg-Weak-SI.

One-at-a-time and Many-at-a-time [116] are two termination protocols that ex-
tend DBSM to provide a quasi-genuine partial replication, where a node perma-
nently stores not more than the transaction identifier for those transactions that
do not access any item replicated in that node. To avoid consequent unnecessary
abortions, a non-trivial validation is performed, based on quorums. A transac-
tion T can only be executed on a site that replicates all items accessed by T [a].
Read and write operations are executed locally according to the strict two-phase
locking rule [b]. When a read-only transaction requests commitment, it is locally
committed [c, e, g]. In the case of an update transaction, the transaction (identi-
fier, delegate site, readset, writeset with updates, and the logical timestamp of the
transaction submission) is broadcast [d] in a weak ordering reliable broadcast,
an optimistic primitive that takes advantage of network hardware characteristics
to deliver messages in total order with high probability. A consensus procedure is
used to decide the total order of delivered transactions. The non-trivial validation
consists in a voting phase where each site sends the result of its validation test to
the rest of nodes. Each site can then safely decide the outcome of a transaction
T when it has received votes from a voting quorum of T [f ], i.e., a set of sites
such that for each data item read by T , there is at least one site that replicates this
item. Instead of first using consensus to determine the next transaction T and then
executing the voting phase for T , a different approach is taken, overlapping both
processes. In the one-at-a-time algorithm, each site votes for its next undecided
transaction T and proposes it for consensus. By the time the consensus decides
for transaction T , luckily every site will already have received the votes for T . If
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consensus decides a transaction different from that voted by a site, a vote message
is sent for the decided transaction. When a transaction is successfully validated,
it is applied in the site [h] and the global version counter used to timestamp trans-
actions is increased. This algorithm validates one transaction at a time, which
can be a bottleneck if many transactions are submitted. The many-at-a-time al-
gorithm, which does not rely on spontaneous total order, tries to solve this by
proposing sequences of transactions and changing the validation test accordingly.
As in original DBSM, periodically sequential (*S) server-centric consistency is
ensured but inversions are not precluded, so the correctness criterion is 1SR′.

k-bound GSI [6] is able to bound the degree of snapshot outdatedness from a re-
laxed GSI (1SI) to a strong SI (1ASI), while optimistically executing transactions;
and it also provides a serializable level for those transactions requiring higher iso-
lation (1SR′). As local DBMSs are only required to provide snapshot isolation,
serializable transactions are parsed in order to transform SELECT statements into
SELECT FOR UPDATE ones. This simplifies the detection of write-read conflicts,
which are then governed by the first-committer-wins rule.

As server-centric consistency is natively sequential (#S), two snapshots taken at
the same real time in different replicas may be different, as only states at the
same logical time are guaranteed to be consistent. To allow an optimistic ex-
ecution, before the first operation of each transaction T , an asynchronous T.ID

message is broadcast in total order [a], so that the logical starting time of T can be
established. Then, the optimistic execution of T overlaps with the time required
to complete such initial communication. Moreover, T specifies a value k as the
maximum distance between the snapshot it took (corresponding to the real time
of its start operation) and the snapshot created by the last transaction that com-
mitted in any system node before T started (corresponding to the logical time of
the start operation of T ). This distance is measured as the number of colliding
writesets that are applied in the delegate node of T from the real starting time
of T until its logical starting time (the delivery of T.ID). A colliding writeset
is a writeset that has a non-empty intersection with the intended readset of T ,
which has to be declared in advance. When the number of colliding writesets is
greater than k, T is aborted and will be restarted when T.ID is processed. Thus,
with k = 0, the transaction is executed under 1ASI; with k > 0, the achieved cor-
rectness criterion is 1SI (authors, to highlight the possibility of defining different
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staleness levels, refer to the different bound values for the GSI criterion, as op-
posed to the standard GSI, which occurs with an infinite value of k). Overloading
the meaning of k, a value of −1 indicates that T requires serializability.

When a read-only transaction finishes its operations, it is locally committed (after
receiving its own T.ID message and as long as it has not been aborted in the
meantime, for transactions with 0≤ k < ∞) without any communication with the
rest of nodes [b, d], whereas the writeset of an update transaction is broadcast in
total order to the rest of replicas [c]. A certification process [e] is performed in
every replica for each delivered writeset. In order to avoid sending readsets, the
decision for serializable transactions is taken in their delegate node [f ] and then
broadcast to the rest of nodes.

Tashkent+ [42] was proposed as an evolution of Tashkent-MW where a memory-
aware load balancing is performed in order to further minimize the disk IO re-
quirements. Changes to the previous system include the addition of a scheduler,
with different scheduling algorithms, and an optimization, called update filtering,
for reducing the update propagation load. Transaction types are predefined and
the scheduler is able to estimate the amount of memory, called working set, that
each type will need. With this information, authors use a bin packing heuristic
to group transaction types so that their combined working sets fit together into
the available memory, thus avoiding memory contention and subsequent disk IO.
Servers are assigned to transaction groups and this allocation can be dynamic
for changing workloads. Different proposed scheduling algorithms differ in the
way the working sets are estimated. This way, each transaction is dispatched to a
server assigned to its transaction group [a].

Update filtering consists in identifying unused tables in a replica (those not ac-
cessed by the transaction group to which the replica is assigned) and filtering
out the updates to those tables, thus reducing the overhead of update propaga-
tion. This optimization is only possible under stable workloads, i.e. when the
assignment of replicas to transactions groups is permanent. This way, Tashkent+
is essentially a fully replicated design but may, under some conditions, present
the advantages of partial replication [b].

Apart from the changes explained above, the rest of the system works as in
Tashkent-MW. Authors claim that the correctness criterion is 1SI+ (inversions
precluded within sessions), as a given connection can execute only one specific
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transaction type and will be, thus, always assigned to the same group of replicas.
But no details are provided about how all replicas in the same group are atomi-
cally updated or how they provide transactions with updated snapshots. Thus, the
correctness criterion is here considered to be 1SI [c].

Mid-Rep is a pessimistic weak voting protocol proposed by Juárez et al. [65]
that provides three different correctness criteria on top of a DBMS supporting
SI: 1SR′, 1ASI and 1SI. Transactions define the criterion they require. For 1SR′

transactions, all SELECT statements are turned into SELECT FOR UPDATE ones.
For 1ASI transactions, a start message is sent in total order [c] and the transac-
tion must wait to its delivery to proceed. When a read-only transaction finishes
its operations, it is immediately committed at its delegate replica and no further
processing is required. On the other hand, update transactions broadcast their
writeset in total order to all available replicas, which will apply them sequentially
[d] and terminate (commit or abort) each transaction according to the voting mes-
sage sent by the master site (the delegate) of the transaction, achieving a natively
sequential (#S) server-centric consistency. During writeset application, no other
potentially conflicting local operation is allowed to start: all write operations and
also read operations performed by 1SR′ transactions are thus disabled [b] (read
operations from 1ASI or 1SI transactions are not deferred [a]).

SIRC [114] concurrently supports snapshot and read committed isolation, as long
as both levels are provided by the local DBMS [a]. Read-only transactions are
locally committed without any communication with the rest of replicas [b, d],
while update transactions are broadcast in total order [c]. For SI transactions,
a certification based on write-write conflicts is performed [e]. RC transactions
do not need any decision phase [d]. Writeset application following the delivery
order guarantees natively sequential (#S) server-centric consistency.

Serrano et al. [118] propose a replication protocol aimed to increase scalabil-
ity of traditional solutions, commonly based on full replication and on a 1SR′

correctness criterion. These two characteristics are claimed to introduce an im-
portant overhead and to limit concurrency. Consequently, their proposal is to
use partial replication and a more relaxed correctness criterion, 1SI, working
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with snapshot-isolated underlying databases and a natively sequential (#S) server-
centric consistency where inversions are not precluded. The client connects to a
site [a] that at least stores the data accessed in the first operation of the transac-
tion T . This node acts as the coordinator, assigning a starting timestamp to T and
redirecting operations [c] to other nodes when necessary. In those other nodes, T

must use the same snapshot, the one corresponding to its starting timestamp. To
this end, each node starts dummy transactions each time that a transaction com-
mits. When the redirected operation is the first operation of T in the forwarded
node, the corresponding dummy transaction is associated to T (later operations
will use the same transaction). Prior to execute each redirected operation, the
changes previously produced by T are applied at the forwarded site (naturally,
only those affecting data stored at that node) [b] (remember that the transaction-
service policy applies at each participating node in the case of distributed transac-
tions). After execution, the forwarded site propagates the result of the operation
and all the new changes to the coordinator, which applies these changes before ex-
ecuting the next operation. When the client requests commitment of a read-only
transaction, the coordinator multicasts a commit message to all participating sites
[d] (there is no need for validation [f ] nor execution in remote nodes [h]). In the
case of an update transaction, the coordinator broadcasts its writeset in total order
[e]. All sites perform then a certification [g]. If certification succeeds, all nodes
apply the writeset (those nodes that have already performed some operations of T

apply only the missing updates) in a non-overlapping way [i] and T can commit.

Zuikevičiūtė and Pedone [140] proposed a scheduling algorithm for the DBSM
replication protocol. Aborts can be reduced if conflicting transactions are exe-
cuted in the same node, thus letting the local concurrency control appropriately
serialize them. On the other hand, parallelism improves performance, reducing
response times. Considering this trade-off, a hybrid load balancing technique is
proposed, which allows database administrators to give more or less significance
to minimizing conflicts or maximizing parallelism. Maximizing Parallelism First,
MPF, prioritizes parallelism and so it initially assigns transactions to nodes try-
ing to keep the load even. If more than one option exists, then it tries to minimize
conflicts. Minimizing Conflicts First, MCF, avoids assigning conflicting transac-
tions to different nodes. If there are no conflicts, it tries to balance the load among
the replicas. A compromise between the two opposite schemes can be achieved
by a factor f. This way, update transactions are analyzed and a specific replica is
chosen to be the delegate [b]. On the other hand, both techniques assign read-only
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transactions to the least loaded replica [a]. Apart from this novel scheduling, the
followed strategies are the same as in DBSM and, thus, the server-centric consis-
tency and the correctness criterion are also the same.

WCRQ [110] is a bridge between consensus-based and quorum-based replica-
tion. Underlying databases provide serializability, using long read locks for read-
ing operations and deferring write operations until the end of the reading phase
[a]. When an update transaction T finishes in its delegate replica, a uniform total
order broadcast [c] is sent to the rest of replicas with the transaction writeset.
When it is delivered, each replica tries to get write locks for each item in the
writeset of T . If there was one or more read locks on an object, every transaction
holding them which is not yet serialized is aborted (by sending an abort message
in uniform total order if it was already broadcast), and the write lock is granted
to T . If there was a write lock in the object, or if some read locks are from
transactions serialized before T , T waits until those locks are released. When a
replica gets all the locks, it sends a point-to-point acknowledgment message to
the delegate. When the delegate gets all the write locks and receives acknowledg-
ment from a write-quorum of replicas, it sends a commit message in a uniform
reliable broadcast. When this message is delivered, every replica commits the
transaction. As these messages are not ordered, independent transactions may
commit at different orders in different nodes. When a transaction commits, all
other transactions waiting to get write locks in the updated objects are aborted
(their delegate sends an abort message in a uniform reliable broadcast). When
a read-only transaction finishes in its delegate replica, a message with the read-
set is sent to a read-quorum of replicas [b]. When this message is delivered,
replicas try to get read locks for the items on the readset. When the locks are
acquired, if the version is the same as the one read in the delegate, the replica
sends back a positive acknowledgment message. Otherwise, a negative acknowl-
edgment message is sent. In any case, read locks are released as soon as this
validation is done. When the delegate receives positive acknowledgments from a
read-quorum of replicas, it commits the transaction. Otherwise, if any negative
acknowledgment is received, the transaction is aborted. For both read-only and
update transactions, a quorum of replicas is required to get locks on the items and
check that the current versions are equal to the accessed versions in the delegate
[d]. As transaction-remote and client-response strategies are not detailed in the
paper, we assume the most plausible choice [e, f ]. The periodically sequential
(*S) server-centric consistency is used in a 1ASR/*S synchronization model that
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avoids inversions by ensuring that queries do not read old values. As a result, the
1ASR correctness criterion is guaranteed.

AKARA [32] allows transactions to be executed either in an active or in a passive
manner (in both cases, interactivity is precluded). Upon transaction submission,
the type (either active or passive) and the conflict classes of the transaction are
computed, and an initial total order broadcast is sent with transaction information.
After delivery, and once the transaction is the first in the processing queue, the
transaction is started [b] (this introduces an additional wait to the synchronous
message transmission, for both active and passive transactions). For passive
transactions, a local execution phase is performed and afterwards the writeset
is reliably sent to the rest of replicas [c] to be applied following the total order
established by the broadcast sent at transaction start. For active transactions, no
local phase exists [a]: transactions are initiated, executed and committed in all
nodes at the same logical time (that of their slot inside the total order). No extra
communication is needed for these transactions [d]. The server-centric consis-
tency is periodically sequential (*S) and isolation corresponds to the snapshot
level. As no mechanisms avoid inversions, the ensured correctness criteria is 1SI.

Zuikevičiūtė and Pedone [139] characterized different correctness criteria for
replicated databases and presented three variants of BaseCON, one for each of
the discussed correctness criteria. With BaseCON for 1SR transactions are se-
rialized but the causal order may not be preserved (this corresponds to our cor-
rectness criterion of 1SR′). In BaseCON for SC (session consistency), transac-
tions are serialized and the real-time order of those belonging to the same user
session is also preserved and, thus, clients can always read their own previous
updates (this corresponds to our correctness criterion of 1SR+). These two vari-
ants are identical except for the way the scheduler selects the executing replica
for read-only transactions [a]: in BaseCON for 1SR, all replicas are considered
and the transaction is forwarded to the least loaded one; in BaseCON for SC, the
scheduler considers only those replicas where previous update transactions of the
same session have been already applied. Once in the executing replica, read-only
transactions start as soon as they are received [c] and commit locally. On the
other hand, update transactions are broadcast in total order to every replica in the

125



5.2. REPLICATION SYSTEMS AS COMBINATION OF STRATEGIES: A SURVEY

system [b] and executed in active manner, so no local phase exists [d]. Strict two-
phase locking is used to achieve serializability [e]. No decision phase is required
[f ] as all transactions can commit, but update transactions must wait [g] for all
previously delivered conflicting update transactions to commit in this replica be-
fore starting. The commit order of all update transactions is required to be the
same as their delivery order, thus guaranteeing a natively sequential (#S) server-
centric consistency. Transaction results are sent from each executing replica to
the scheduler, which sends to the client only the first of the replies [h].

The third version of the protocol by Zuikevičiūtė and Pedone [139] is BaseCON
for strong 1SR, which always preserves the real-time (or causal) order of trans-
actions in their serialization. To this end, some changes are applied to previous
systems: read-only transactions are directed to the scheduler but also broadcast
in total order to all replicas, like update transactions [a].7 The scheduler then
determines, for the read-only transaction, the set of replicas where preceding up-
date transactions of any client have already been committed. From this set, the
scheduler selects the least loaded server, where the query immediately starts its
optimistic execution. When this transaction is delivered in the chosen replica by
the total order broadcast, a test is performed to check if the scheduler has changed
since this transaction was scheduled. In this case, the transaction is aborted and
restarted. This check allows the system to tolerate failures and cannot be consid-
ered as a decision, as the transaction always commits. Server-centrically, replica
consistency is natively sequential (#S). A 1ASR/#S synchronization model pre-
cludes inversions by scheduling read-only transactions to updated replicas, thus
achieving 1ASR correctness criterion.

gB-SIRC [115] is deployed upon a database offering both read committed and
snapshot isolation levels [b]. This protocol provides several correctness criteria:
one based on the read committed isolation (1RC) and another based on snap-
shot isolation, with a configurable level of staleness, defined by factor g, from
1ASI (or strong SI) with g = 0 to 1SI (or standard GSI) with an infinite value of
g. Intermediate values of factor g allow transactions to define the exact amount
of outdatedness they can tolerate (authors refer to this non-standard criterion as

7However, unlike update transactions and despite being the client request addressed to all repli-
cas in the system, only the node chosen by the scheduler will execute the transaction, thus serving
the client request.
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g-Bound). Similarly to k-bound GSI, all SI-based transactions (those provid-
ing a value for g) broadcast an asynchronous T.ID message in total order when
they start [a], which allows their optimistic execution while establishing a global
starting point that would be enforced when transactions abort due to a number of
conflicts greater than g. Read-only transactions can be locally committed without
any global communication [c, e]: RC queries commit as soon as they finish their
operations, while SI ones must wait to the processing of their T.ID message and,
if they have not been aborted during the meantime, they can be locally commit-
ted. Regarding update transactions, once they finish their operations, their write-
sets are broadcast in total order [d]. For 1RC update transactions, no decision
phase is implemented [e]. All other update transactions are certified in search
for write-write conflicts [f ]. Whenever a writeset is committed in a replica, local
SI-based transactions are validated in search for write-read conflicts with it [g],
which are tolerated up to g. As writesets are applied in a non-overlapping man-
ner, the server-centric consistency level is natively sequential (#S). Inversions are
precluded only for 1ASI transactions.

5.3 Scope of the Proposed Model

The policy-based characterization model proposed in Chapter 4 and used for this
survey is intended to be general enough to cover all possibilities in replication
systems, thus providing a tool able to represent their basic skeleton. The set of
strategies followed by a replication system constitutes its operational basis and
allows an adequate comparison between systems.

Obviously, many finest-grained details, like optimizations or concurrency control
rules, are not covered by this characterization, as intending otherwise would re-
sult in an extremely complex model. Thus, there is a trade-off between simplicity
and completeness.

Moreover, and despite our efforts, this model is not valid for all replication sys-
tems. This is the case of distributed versioning [5], a replication protocol tailored
to back-end databases of dynamic content web sites, characterized by present-
ing a low rate of update operations. This protocol aims to achieve scalability
while maintaining serializability. The cluster architecture for distributed version-
ing consists of an application server, a scheduler, a sequencer and a set of da-
tabase replicas. In order to achieve serializability, a separate version number is
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assigned to each table. Each transaction issued by the application server is sent to
the scheduler, specifying all the tables that are going to be accessed in the whole
transaction and whether these accesses are for reading or for writing. The sched-
uler forwards this information to the sequencer, which atomically assigns table
versions to be accessed by the operations in that transaction. This assignment
establishes the serial order to be enforced and allows transactions to concurrently
execute operations that do not conflict. All transactions can commit (Td0), those
conflicting will follow the serial order dictated by the sequencer. New versions
become available when a previous transaction commits or as a result of last-use
declarations (an optimization for reducing conflict duration). After the assign-
ment for transaction T is completed, the application server can start to submit the
operations of T . The conflict-aware scheduler is able to forward a read operation
to the updated least loaded replica. Write operations are broadcast to all replicas
and actively executed. This scheduling could be interpreted as a Cq2 for reads
and Cq4 for writes. However, in this case it is not the whole transaction which is
scheduled but each single operation inside the transaction. It could also be repre-
sented as Gl3 and Ge3 for write and commit operations, but the communication
initiative is not taken by a server executing the affected transaction. Indeed, no
communication is ever established among replicas. Instead, each operation sent
from the application server is forwarded by the scheduler to the corresponding
replica(s), which execute them independently. Thus, communication is done only
between the application server and the scheduler, and between the scheduler and
the replicas. Once in a replica, an operation must wait for all its version numbers
to be available, which could be represented as Ts1 or Tr1-p (although, again, it
is not the transaction start which is deferred but the start of each single operation
inside the transaction). Concurrency control is thus made at middleware level
(the database isolation level is not detailed in the paper). Once a replica executes
the operation, it returns its results to the scheduler. The first reply received by the
scheduler is sent back to the application server (Cr1). As read operations must
wait also for their version numbers to be available before starting, the correct-
ness criterion is 1ASR. In summary, the main problem for describing distributed
versioning with our model is that this system divides transactions into their indi-
vidual operations and, while the management of each of these operations can be
represented with our strategies, the handling of the whole transaction cannot be
depicted by our model.

A similar middleware-based system is presented by Cecchet et al. [26] for cluster-
ing back-end databases of large web or e-commerce sites. C-JDBC also features
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a scheduler that sends update operations to all involved servers while perform-
ing load balancing for read operations. But in this case, client requests contact a
server and each server contains a scheduler component. C-JDBC supports both
full and partial replication, while ensuring atomic, inversions-free consistency be-
tween replicas: at any single moment, only one updating operation (write, com-
mit or abort operation) is in progress in the virtual database, and responses are
returned to the client only once all servers have processed the request. The cor-
rectness criterion will then depend on the isolation level offered by the underlying
databases. As for the previous system, the processing of each single operation can
be depicted with our model, but that of the whole transaction would constitute a
loop of such a representation of single operations.

5.4 Discussion

Chronologically ordered characterizations of Table 5.1 summarize the evolu-
tion of database replication systems since their appearance. Earlier systems –
distributed databases with some degree of replication– were devoted to provide
the highest correctness criterion, 1ASR, using to this end the serializable iso-
lation level in local databases and rigid synchronization mechanisms, inherited
from standalone database management systems, such as distributed locking for
concurrency control (which involves a linear communication with other servers),
or an atomic commit protocol like 2PC (which requires several rounds), in or-
der to reach a consensus among participants about transaction termination and
thus ensure consistency. Examples of these earlier systems are 2PL & 2PC [50],
BTO & 2PC [12], Bernstein-Goodman [14], OPT & 2PC [119] and O2PL & 2PC
[23]. However, these mechanisms restricted concurrency, thus severely reducing
performance and scalability.

Research efforts focused then on improving these factors trying to reduce com-
munication and replication overhead with new concurrency control algorithms
and more efficient termination management, localizing the execution of opera-
tions in delegate or master sites, simplifying termination with the use of group
communication systems, using optimistic communication primitives, consider-
ing different topologies, relaxing isolation and consistency or introducing partial
replication schemas. One example of such relaxed isolation, which is still valid
for a wide range of applications, is the snapshot isolation level. An interesting
feature of snapshot isolation is that read operations are never blocked by write
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operations, nor cause write operations to wait for readers. SI became popular
and many database replication systems started to provide this isolation. Some
systems exploiting this level and offering correctness criteria based on snapshot
isolation are SI [69], RSI-PC [107], SRCA and SRCA-Rep [79], PCSI Distr. Cert.
[40], Tashkent-MW and Tashkent-API [41], Alg-Weak-SI, Alg-Str.-SI and Alg-
Str.Ses.-SI [36], k-bound GSI [6], Tashkent+ [42], Mid-Rep [65], SIRC [114],
Serrano et al. [118], AKARA [32] and gB-SIRC [115].

Other proposals aimed at adaptability, designing systems able to provide different
consistency guarantees that would fit better the requirements of modern applica-
tions, which usually include different types of transactions that require different
levels of isolation. This led to a new generation of protocols that support differ-
ent correctness criteria at the same time (such as RSI-PC [107], k-bound GSI [6],
Mid-Rep [65], SIRC [114] and gB-SIRC [115]), which improved performance
by executing each transaction at the minimum required level of isolation.

Considering each policy separately, it is clear that in some cases there is a ma-
jority strategy with very few exceptions, while in other policies there is no pro-
nounced trend towards any specific strategy. Some choices may have strong im-
plications in consistency or performance, and this may make systems favor ones
against others. Let us analyze each policy in detail.

The most used client-request (Cq) strategy is Cq1: any server can process a re-
quest. This policy allows an easy management of requests and load balancing,
although it requires a correct global concurrency control in order to avoid incon-
sistencies. On the other hand, systems that use primaries or master sites may
rely on the local concurrency control of such nodes but require client requests to
be addressed or forwarded to such servers (Cq2). This is the case of Alsberg-
Day [4], Fast Refresh Df-Im and Fast Refresh Im-Im [97], Pronto [102], RSI-PC
[107], DBSM* [141], Alg-Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-SI [36], and
Tashkent+ [42]. Cq2 is also used by systems that provide partial replication and
need to address client requests to a server containing the data required by the
operation (DBSM-RAC [121], One-at-a-time and Many-at-a-time [116], Serrano
et al. [118]). Other systems also use Cq2 because they require transactions to
be addressed to updated replicas, in order to provide stronger consistency, such
as BaseCON for SC [139]. Finally, scheduling algorithms MPF and MCF [140]
may also select a specific server in order to minimize abortions by executing con-
flicting transactions at the same node, thus relying on local concurrency control
to appropriately serialize transactions.
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Forwarding the client request to all system nodes (Cq4) in a total order broadcast
is a possible approach for establishing an early synchronization point. Systems
such as NODO and REORDERING [98], and the families of OTP [70, 71] and
BaseCON [139] implement such a client-request policy. Systems that require to-
tal order guarantees for synchronizing transaction execution must wait for such a
communication primitive to agree on the delivery order. NODO and REORDER-
ING move their synchronization point to the start of the transaction and use an
optimistic delivery which allows the system to overlap the time needed by the
GCS for the agreement with the time needed to execute the transaction. By the
time the delivery order is decided, the transaction has already progressed with
its operations in its delegate server. On the other hand, both OTP and BaseCON
families follow a Cq4 policy in order to execute update transactions in an active
manner, while queries are executed at only one server.

Surveyed systems mainly follow, in their transaction-service policies (Ts), the
strategy of immediate service (Ts0), under which transactions are started as soon
as the server has enough free resources. In some cases, it is necessary to block the
processing of transactions until some condition holds (Ts1). This is the case of
several systems: NODO, REORDERING [98], OTP-Q and OTP-DQ [71], where
concurrency control is done at middleware level and thus transactions must wait
for the end of previous conflicting operations in order to be started; RSI-PC [107],
Alg-Str.-SI and Alg-Str.Ses.-SI [36], where the service of transactions is deferred
to guarantee stronger consistency; SRCA-Rep [79], where local transactions must
be prevented from perceiving the lack of sequentiality; Mid-Rep [65], where po-
tentially conflicting local operations are disabled during writeset application; and
the algorithm by Serrano et al. [118], where cohorts of distributed transactions
must apply the updates of previous operations of the transaction (served by other
nodes) before executing the requested operation in their local database.

Systems that actively execute transactions (OTP-99 [70], OTP, OTP-Q, OTP-
DQ and OTP-SQ [71], AKARA [32], BaseCON for 1SR, BaseCON for SC and
BaseCON for strong 1SR [139]) are said to implement the strategy of no local
service (Ts2) for those active transactions.

Regarding group-start (Gs) strategies, only few systems require to make a com-
munication at transaction start, thus establishing a global starting point for trans-
actions. That is the case of DBSM-RO-cons [96], which totally orders queries
to provide 1ASR; k-bound GSI [6], Mid-Rep [65] and gB-SIRC [115], which
guarantee 1ASI by totally ordering transaction starts; and AKARA [32], which
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moves the required synchronization point to transaction start and allows active
and passive transaction processing.

With regard to the degree of replication (Dr), earlier systems (2PL & 2PC [50],
BTO & 2PC [12], Bernstein-Goodman [14], OPT & 2PC [119], O2PL & 2PC
[23]) were mostly distributed databases where replication was not widely used
(Dr1). After the generalization of full replication (Dr2), only few systems (Fast
Refresh Df-Im and Fast Refresh Im-Im [97], DBSM-RAC [121], Epidemic re-
stricted and Epidemic unrestricted [58], One-at-a-time and Many-at-a-time [116],
Serrano et al. [118]) feature partial replication (Dr1), mainly to minimize the cost
of update propagation and application, although other mechanisms or constraints
must be applied for the correct management of transaction execution.

To alleviate their complexity and allow replication protocols to focus on their
native purpose of ensuring replica consistency, systems usually delegate local
concurrency control to the DBMS with the appropriate isolation level (Di) for
which the protocol has been conceived. Depending on the correctness criterion,
systems require local DBMSs to provide different isolation levels. Thus, earlier
systems and those requiring a high level of isolation (2PL & 2PC [50], Bernstein-
Goodman [14], O2PL & 2PC [23], Bcast all, Bcast writes, Delayed bcast writes
and Single bcast transactions [2], Fast Refresh Df-Im and Fast Refresh Im-Im
[97], DBSM [101], Pronto [102], DBSM-RAC [121], Epidemic restricted and
Epidemic unrestricted [58], DBSM* [141], DBSM-RO-opt and DBSM-RO-cons
[96], One-at-a-time and Many-at-a-time [116], MPF and MCF [140], BaseCON
for 1SR, BaseCON for SC and BaseCON for strong 1SR [139]) rely on the se-
rializable isolation level (Di3) of their underlying databases, which adequately
serializes transactions executing at that server. Other systems relax their correct-
ness criteria or are able to increase the locally provided guarantees, and thus also
relax the isolation level of their local databases. Snapshot (Di2) isolation (Lazy
Txn Reordering [104], SI and Hybrid [69], NODO and REORDERING [98],
RSI-PC [107], SRCA and SRCA-Rep [79], PCSI Distr. Cert. [40], Tashkent-MW
and Tashkent-API [41], Alg-Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-SI [36], k-
bound GSI [6], Tashkent+ [42], Mid-Rep [65], SIRC [114], Serrano et al. [118],
AKARA [32], gB-SIRC [115]) or, more rarely, read committed (Di1) isolation
(RSI-PC [107], SIRC [114], gB-SIRC [115]) are requested by such systems.

Among those systems not specifying a concrete level of isolation (Di0), two of
them (Alsberg-Day [4] and RJDBC [44]) are based on the local concurrency con-
trol of their DBMSs and may function with different isolation levels at their local
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databases. The rest of the systems with a Di0 strategy perform concurrency con-
trol at the protocol layer and therefore they do not require any specific underlying
isolation. This is the case of OTP-99 [70], which uses a queue per conflict class
and allows transactions to proceed when they are at the head position of their
queue. OTP, OTP-Q, OTP-DQ and OTP-SQ protocols [71] follow a similar ap-
proach but, in this case, there is a queue per data item and so transactions are not
restricted to access only one conflict class.

Finally, there are few systems that require some customization (Di4) of their un-
derlying databases. Thus, BTO & 2PC [12] and OPT & 2PC [119] require the
maintenance of read and write timestamps for each data item; and SER, CS, Hy-
brid [69] and WCRQ [110] delay the acquisition of write locks until the remote
phase of transactions.

Regarding group-life (Gl) communications, as linear interaction is costly, only
few systems make such synchronization. While most of the systems follow a Gl0
strategy (no communication during local transaction execution), systems such as
2PL & 2PC [50], BTO & 2PC [12], Bernstein-Goodman [14], OPT & 2PC [119],
O2PL & 2PC [23], Epidemic unrestricted [58] or the protocol by Serrano et al.
[118] are obliged to use linear interaction due to their partial replication and the
consequent distributed nature of their transactions, which may potentially require
to access data items at other nodes. Bcast all, Bcast writes [2] and RJDBC [44]
execute their significant operations in an active mode, sending a message for each
of such operations to all servers (Gl3). Finally, Fast Refresh Im-Im [97] uses a
Gl2 strategy to immediately propagate updates to secondary copies in order to
increase their freshness.

Regarding the group-end (Ge) policy, as most of the systems do not apply read-
only transactions at remote nodes, they neither broadcast them to the group upon
commit request (Ge0). However, in some cases, read-only transactions require a
synchronization point. Two of the surveyed systems are able to identify read-only
transactions and manage them differently from update transactions while they
still require certain synchronization at group-end for queries. This is the case of
WCRQ [110], which sends queries to a read-quorum of replicas (Ge2) in order
to provide those queries with strong consistency. The algorithm by Serrano et al.
[118] also applies a Ge2 strategy for queries, in order to commit the distributed
transaction at all participating sites.

In order to ensure replica consistency, a synchronization is always needed for
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update transactions, either at the beginning, at the end or after the execution
of the transaction in its delegate node. OTP-99 [70], OTP, OTP-Q, OTP-DQ
and OTP-SQ [71], the active processing of AKARA [32], BaseCON for 1SR,
BaseCON for SC and BaseCON for strong 1SR [139] make the synchronization
point of update transactions at the beginning (either with the client-request or the
group-start policies), thus rendering unnecessary to synchronize with a group-
end strategy (Ge0). Systems such as Fast Refresh Df-Im [97], RSI-PC [107],
Alg-Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-SI [36] choose a lazy synchronization
after transaction commitment, and thus they also follow a Ge0 strategy.

Apart from the systems synchronizing update transactions at the beginning or
after the commitment in the delegate, the rest of the systems make such syn-
chronization at the end of the transaction in the delegate server, i.e., before the
final commit operation, with a non-null group-end strategy. Alsberg-Day [4],
which makes an update propagation in cascade mode, and the Tashkent family
(Tashkent-MW and Tashkent-API [41], Tashkent+ [42]), which sends the write-
set to a central certifier, follow the Ge1 strategy that requires the communication
with only one server or component in the system. Among the remaining surveyed
systems, some of them, based on partial replication, need to send transaction in-
formation only to a subset of system nodes (Ge2). This is the case of 2PL &
2PC [50], BTO & 2PC [12], Bernstein-Goodman [14], OPT & 2PC [119], O2PL
& 2PC [23], Fast Refresh Im-Im [97], Epidemic restricted and Epidemic unre-
stricted [58]. The rest of the systems follow a Ge3 strategy, where the transaction
information is broadcast to all nodes of the system.

In order to agree on the outcome of a broadcast transaction,8 systems run the
decision process. Weak voting, where a single node decides (Td1) and later com-
municates it decision to the rest of servers, as well as certification, where all nodes
deterministically reach the same decision (Td2) are the preferred strategies. Only
three of the surveyed systems base their decisions on the agreement of a quorum
(Td3): One-at-a-time and Many-at-a-time [116], and WCRQ [110]. In One-at-a-
time and Many-at-a-time, partial replication is used and nodes store information
only about transactions that access items replicated at that node. To perform the
decision process, nodes vote and then safely decide the outcome of a transaction
T once they have received the votes of a voting quorum of T . In WCRQ [110],
a read-quorum decides the outcome of a read-only transaction in order to ensure

8Those systems that locally commit queries without any communication with the rest of the
nodes usually employ the bottom strategy (Td0) for such read-only transactions: no decision pro-
cess is run for them.
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strong consistency, while write-quorums decide the commitment of update trans-
actions. Finally, there are systems that base their decisions on the agreement of
all servers (Td4): 2PL & 2PC [50], BTO & 2PC [12], Bernstein-Goodman [14],
OPT & 2PC [119] and O2PL & 2PC [23], which all use the 2PC protocol; and
DBSM-RAC [121], which employs a non-blocking atomic commit protocol.

The transaction-remote (Tr) policy defines the way transactions are applied at
remote nodes. Most of the systems identify read-only transactions and do not
apply them at remote servers (Tr0). The only exceptions are: Alsberg-Day [4],
which is not specially tailored for database replication and thus it does not iden-
tify queries; Bcast all [2], where all operations are broadcast and executed in
all the servers; Lazy Txn Reordering [104], where all transactions are broadcast
and possibly reordered to minimize abortions; Pronto [102], which assimilates
to an active approach by sending to the backups the SQL sentences instead of
the writeset; RJDBC [44], where all significant operations (including the commit
operation) are broadcast to all replicas; and AKARA [32], which broadcasts all
transactions at their starting point. In all these systems, no different treatment
is given to read-only transactions. On the other hand, the rest of the surveyed
systems do not execute queries at remote nodes, but only update transactions.
In order to increase performance, systems usually apply remote transactions in a
concurrent manner (Tr1), by controlling, either at the protocol level or inside the
database, that conflicting transactions are applied in the same order at all repli-
cas. However, to avoid the possible increase in complexity of such control, many
systems apply writesets in a sequential, non-overlapping manner (Tr2).

With regard to the client-response (Cr) policy, only one of the surveyed systems,
Pronto [102], returns multiple responses to the client (Cr2), whereas the rest of the
systems always opt for returning a single answer (Cr1). The Cr2 client-response
policy may require further processing in the client to select or compute a final
result if multiple different answers are sent.

Group-after (Ga) policies can seriously affect consistency, in that update propa-
gation outside the scope of transactions may lead to inconsistent states in different
replicas. Thus, when using lazy propagation special care must be taken to ensure
that consistency is maintained or that some reconciliation mechanisms are able
to restore the system to a consistent state. Only few of the surveyed systems fol-
low a non-null group-after strategy: Alsberg-Day [4], Fast Refresh Df-Im [97],
RSI-PC [107], Alg-Weak-SI, Alg-Str.-SI and Alg-Str.Ses.-SI [36]. All these sys-
tems consider a primary copy configuration, where updates are made at only one
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node (the primary copy of the system or the master site of the updated data) and
are later lazily propagated to the slaves or secondary nodes. As only one node
processes updates, no inconsistencies are introduced.

5.5 Conclusions

This chapter offers a historical survey of database replication systems. While
many different strategies have been followed in order to accomplish the required
system interactions, some of them seem to have been preferred over others, due
to several reasons, from performance issues, to easiness of protocol design and
implementation. In particular, snapshot isolation has been broadly used for lo-
cal concurrency control, and many protocols based the transaction termination
on atomic broadcast. On the other hand, it is also observable the necessity to
offer several modes of execution for user transactions, both by providing differ-
ent correctness criteria at the same time [6, 65, 107, 114, 115] and by allowing
the coexistence of passive and active processing [32]. In the next chapter, we
further explore this with the proposal of a metaprotocol for database replication
adaptability.
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Chapter 6

MeDRA, a Metaprotocol for
Database Replication
Adaptability

In this chapter we present MeDRA, a middleware metaprotocol developed for
providing high adaptability to database replication systems. It faces the problems
of dynamism and heterogeneity and features two levels of adaptability.

6.1 Introduction

Many replication protocols have been designed –being the survey in Chapter 5
a proof– and studied, proving that different protocols provide different features
(isolation, consistency guarantees, scalability, etc.) and obtain different perfor-
mance results depending on the environment characteristics (workloads, network
latencies, access patterns, etc.). Protocols performance was compared in studies
such as the one by Jiménez-Peris et al. [62], which presented the ROWAA ap-
proach as the most suitable for the general case, and the one by Wiesmann and
Schiper [136], based on total order broadcast. For a particular scenario, i.e., for
a particular combination of system environment and running applications with
certain workload, access pattern, and isolation and correctness requirements, a
specific protocol can be chosen as the most suitable.
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The common approach followed by designers of database replication systems is
to analyze once the general case of their scenario and accordingly elect a single

replication protocol that will permanently remain in their systems. Such com-
bination of a single analysis and a permanent decision over a unique protocol
constitutes an approach that is perfect if the scenario is static and homogeneous.

Unfortunately, systems and applications are dynamic and heterogeneous: envi-
ronments evolve changing its characteristics, which can drastically decrease the
performance of the elected protocol; applications undergo updates which may
modify or increase the requirements of the application; and multiple heteroge-
neous applications or procedures can concurrently access the same database. As
a result, the initially chosen protocol of the common approach remains in the
system while the environment evolves, degrading its performance or even be-
ing incapable of meeting new client requirements. This way, when dealing with
dynamic scenarios or when concurrent client applications have different require-
ments (e.g., they work with different isolation levels), a more flexible and adapt-
able solution is needed.

It is worth noting that we are not specifically addressing mobile systems when
talking about dynamic environments, but any replicated system that experiments
changes in its main characteristics (e.g., networks with sustained intervals of high
load due to massive client requests at some fixed times –like activities related to
signing in and out at start and end of the working day–, or periodical administra-
tive procedures that change the standard access patterns).

A sign that this adaptability is demanded by real applications is represented by
Microsoft SQL Server. It supports, since version 2005, two concurrency con-
trols simultaneously: one optimistic, based on row versioning [131]; and one
pessimistic, based on locks. Thus, it concurrently supports different isolation
levels –mainly, snapshot isolation and serializable, respectively. Heterogeneous
client applications that could benefit from this kind of system while working with
the same data would be, for example, a warehouse management application that
requires strong consistency in order to know the exact amount of stored items
–valuable or perishable goods–, working together with a small querying applica-
tion used from a shop to consult about the stock of an item without the need to
get the exact number.

However, no academic result had yet raised this support to middleware level for
database replication systems by enabling several replication protocols to work
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concurrently. To meet this adaptability requirement, we have designed MeDRA,
a middleware metaprotocol that supports the concurrency of a set of consistency
protocols that follow different replication techniques and may provide different
isolation levels. With our metaprotocol, replication protocols can work concur-
rently with the same data or be sequenced to adapt to dynamic environments.
As a result, each concurrent application can take advantage of the protocol that
better suits its needs: e.g., an application with long transactions will prefer pes-
simistic replication to ensure their commitment (as the longer the transaction, the
higher the probability of abortion in optimistic techniques due to conflicts with
concurrent transactions). Additionally, each protocol can be replaced if the appli-
cation access pattern is drastically modified or if the overall system performance
changes due to specific load variations or network or infrastructure migrations.

Therefore, MeDRA faces the identified problems of dynamism and heterogeneity
and features two levels of adaptability. On one hand, forward adaptability allows
the system to adapt when dynamic conditions are present in the environment
or in the clients themselves. MeDRA allows the exchange of protocols on-the-
fly, without halting the processing, in order to always use the protocol that best
behaves in the current environment or best fits current requirements. On the other
hand, to face heterogeneity and deal with different (even opposite) concurrent
requirements, MeDRA provides outward adaptability, which allows the system
to run concurrent protocols to meet all client requirements as much as possible.

On the contrary to common database replication systems, where a single pro-
tocol manages all transactions all the time, MeDRA hosts multiple replication
protocols that can be activated and deactivated in order to provide forward and
outward adaptability. Thus, a single or multiple protocols can be activated at the
same time, managing transactions as required (see Figure 6.1).

These activations and deactivations can be forced by an administrator following
theoretical and empirical studies or they can be automatically triggered according
to background performance analysis (response times, abort rates...) executed by
a monitoring system. Also it is possible that a given application knows for sure
which protocol is more suitable for its needs or that a given transaction access
pattern is best served with a certain protocol.

In this chapter we present the design of the metaprotocol, whose overall architec-
ture is depicted in Figure 6.2, and an implementation prototype, used to provide
an experimental evaluation. To measure its overhead, we analyze the differences
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a. Common system b. The MeDRA system

c. MeDRA: forward adaptability d. MeDRA: outward adaptability

Figure 6.1: Activated protocols in database replication systems. While
common systems feature a single replication protocol, MeDRA hosts multiple

protocols that can be activated and deactivated conveniently. When it is
detected that the current protocol is no longer the best, forward adaptability
allows the system to deactivate such a protocol and to activate another one.

Facing heterogeneity, outward adaptability enables the system to
simultaneously activate several protocols.

in performance when comparing the metaprotocol with stand-alone versions of
the supported protocols. As we will demonstrate later, our metaprotocol intro-
duces a very low overhead, thus providing a good performance, comparable with
that of the stand-alone versions. Another important aspect to measure is the
potential performance penalty of every possible combination of protocols when
working concurrently. Our tests prove that some combinations have an excellent
performance while others clearly degrade as load or system size increases. This
will be easily explained considering the behavior of the targeted protocols.

The rest of this chapter is structured as follows. Section 6.2 summarizes the main
aspects of the metaprotocol. Section 6.3 presents the experimental results and,
finally, Section 6.4 discusses some related work.
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Figure 6.2: Overall architecture of the MeDRA replication system

6.2 Metaprotocol

The metaprotocol function is to support multiple replication protocols concur-
rently at each replica, properly managing their interaction, i.e., the dependencies
between them. It also allows a working protocol to be exchanged when it is
detected that another one would fit better (a common situation in dynamic en-
vironments). This protocol exchange is seamlessly performed: already started
transactions end their execution using the protocol they started with, while new
ones use the new protocol. Thus, processing does not need to be halted.

6.2.1 Supported Protocols

When two or more protocols are activated at the same time, they execute in con-
currency inside the replica. For this concurrency to be feasible or, at least, prac-
tical, some common characteristics are needed. For this reason, the three repli-
cation protocols that have been tested with our metaprotocol enforce the same
replica consistency level: natively sequential (#S) replica consistency. As seen
before in this thesis, this level is very common in database replication systems
and is easily achieved upon the guarantees provided by a FIFO total order broad-
cast used as the communication primitive to share transaction information among
nodes. Thus, each targeted protocol is a representative of three protocol families
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based on such a kind of broadcast [136]: active, certification-based and weak
voting replication. All these families are update-everywhere [138] (to send its re-
quest, a client chooses one server, which is known as the delegate server), so they
are decentralized replication protocols. On the other hand, each replication pro-
tocol may provide different transaction isolation levels, which can be exploited
by different client applications.

When different replication techniques work concurrently in the same replicated
database, some concurrency issues must be handled with special care in order
to ensure their individual correct execution. Thus, first of all it is interesting to
understand how the targeted replication protocols work. Moreover, it is important
to determine the metadata they need because, when two or more protocols work
concurrently, the metaprotocol must generate, for each executed transaction in
the system, the metadata needed by each executing protocol. We recall next the
description of the targeted protocols.

In active replication, the client request is broadcast in total order.1 Later, all repli-
cas execute and commit the transaction in the order it was delivered. This way,
active transactions do not have local phase nor they need any decision process.
Due to the sequential, non-overlapping execution of transactions, this replication
model does not introduce any additional abortion with regard to a stand-alone
system2 and it can provide any isolation level supported by the local DBMS.

In certification-based replication, transactions are first locally executed in their
delegate server and, when they request commitment, their writesets and, in some
isolation levels, also their readsets, are broadcast in total order to all replicas.
After delivery, a deterministic certification process, based on conflicts with con-
current transactions, starts in all replicas to determine if such a transaction can
commit or not. The total order established by the broadcast determines the certi-
fication result: in case of a pair of conflicting transactions, the newest inside the
total order is the one that is aborted. The transactions that commit, do it in the or-
der established by the broadcast, being sent to the database in a non-overlapping
way. The transaction information that must be broadcast will depend on the guar-
anteed isolation level. The writeset is enough for achieving snapshot isolation;
for serializability, also the readset must be sent. Some additional metadata is also
needed in order to complete the certification; e.g., the transaction start logical
timestamp in case of using the snapshot isolation level.

1The client usually addresses its request to only one server which immediately broadcasts it.
2No system is free of abortions: they may occur due to disk failures, database deadlocks, etc.
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In weak voting replication, transactions are also locally executed and then their
writesets are broadcast in total order. But in this case, upon delivering this mes-
sage, only the delegate (since readsets are never broadcast in this kind of proto-
cols) is able to validate a transaction: if concurrent conflicting transactions have
been committed before (i.e., their writesets have been delivered before), the trans-
action being analyzed should be aborted. Based on this information, the delegate
server does a new broadcast (reliable but without total order) reporting its deci-
sion about the outcome of the transaction to all the replicas. It must be noticed
that with this technique, broadcasting just the transaction writeset already allows
1SR′, since delegate replicas are able to check for conflicts between the readsets
of their own transactions and the writesets of remote transactions.

The transaction metadata needed when all protocols are working is compound
by the writeset and a timestamp of the transaction begin. With this information,
certification-based and weak voting techniques can provide snapshot isolation.
Additionally, if the underlying DBMS features a serializable concurrency con-
trol, weak voting techniques provide 1SR′ at no extra cost. On the contrary,
certification-based techniques need to collect and broadcast readsets to provide
the same correctness criterion. As readset management is costly, certification-
based replication is normally used only for snapshot isolation. Thus, we do not
consider readsets and work upon an underlying database system that provides
snapshot isolation.

In terms of policies, following the model of Chapter 4, the targeted protocols can
be described as the combinations of strategies depicted in Table 6.1.

Each of the targeted protocols presents advantages and disadvantages. Active
replication is pessimistic and forces all replicas to completely execute every trans-
action, which increases the system load but ensures that no transaction ever
aborts. This is very useful for long transactions that otherwise will have a high
probability of being aborted due to conflicts with concurrent transactions. The
other two techniques are both optimistic. Weak voting techniques may provide
1SR′ without the need to work with readsets, but they require an extra broadcast
that forces non-delegate replicas to wait. Certification-based replication achieves
fast certification of transactions, but it is not practical for isolation levels stronger
than snapshot, due to readset management. The metaprotocol adaptability allows
the system to switch to the most appropriate protocol at any moment to exploit
all the advantages, while trying to overcome the disadvantages.
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Table 6.1: Policies in MeDRA protocols

Active Certification-based Weak voting

Client request Cq4-t Cq1 Cq1

Transaction service Ts2 Ts0 Ts0

Group start Gs0 Gs0 Gs0

Database replication Dr2 Dr2 Dr2

Database isolation Di2 Di2 Di2

Group life Gl0 Gl0 Gl0

Group end Ge0 Ge3-t Ge3-t

Transaction decision Td0 Td2-w Td1-w

Transaction remote Tr2 Tr2 Tr2

Client response Cr1 Cr1 Cr1

Group after Ga0 Ga0 Ga0

Correctness criterion 1SI 1SI 1SI

Once the protocols have been described in behavior and metadata, the interaction
between them can be detailed. The meeting point where these replication tech-
niques work concurrently is a pair of shared lists. A transaction is included in
both lists when it is delivered by the GCS and, depending on the protocol class,
it has not been rejected during the validation phase. Transactions are processed
following the list order. Some dependencies may arise due to the behavior of
each replication technique.

6.2.2 Metaprotocol Outline

Two shared lists are maintained by the metaprotocol in each replica: the log list,
with the history of all the system transactions;3 and the tocommit list, with the
transactions pending to commit in the underlying database. These lists, initially
empty, contain transactions from all the protocols working at the moment. Each
transaction has an associated type, which represents its current status and, thus,
is modified during the transaction lifetime. Possible types, as summarized in Ta-
ble 6.2, are the following: (a) resolved, a committable (or already committed)
transaction with writeset information available; (b) c-pending, a transaction with

3This list, only needed by the certification-based technique, can be purged as suggested by
Wiesmann and Schiper [136].
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I. Propagate message Mn related to transaction Ti:

1. broadcast Mn〈Ti〉

II. Upon delivery of Mn related to transaction Ti:

1. call Ti.protocol to process(Mn〈Ti〉)

III. Committing thread:

1. Ti← head(tocommit)

2. if Ti.committable = true then

a. if Ti.delegate 6= Rk then

i. call Ti.protocol to apply(Ti)

b. call Ti.protocol to commit(Ti)

c. L-TOI← Ti.toi

d. if Ti.log_entry_type = w-pending then

i. Ti.log_entry_type← resolved

ii. resolve_w-dependencies(Ti)

e. if Ti.log_entry_type = c-pending then

i. emit vote for Ti

ii. if Ti.outcome = commit then

Ti.log_entry_type← resolved

iii. else

delete Ti from log

iv. resolve_c-dependencies(Ti,Ti.outcome)

f. delete Ti from tocommit

Figure 6.3: Metaprotocol algorithm at replica Rk

writeset information available but not yet committable (e.g., a weak voting trans-
action waiting for its voting message); and (c) w-pending, a transaction with no
writeset information available (i.e., an active transaction not yet committed).

Table 6.2: Log entry types in MeDRA

Type Description

resolved a committable (or already committed) transaction with writeset info available

c-pending a transaction with writeset info available but not yet committable

w-pending a transaction with no writeset info available

A brief outline of the major steps of the metaprotocol at one replica, Rk, is de-
picted in Figure 6.3. Roughly speaking, protocols send messages in step I, which
are processed in step II depending on the message type (see Table 6.3 for a sum-
mary of the different types of messages). The metaprotocol delegates the pro-
cessing of messages on the activated protocols (Figure 6.4), which have access
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a. Active c. Certification-based

process(Mn〈Ti〉): (of type A) process(Mn〈Ti〉): (of type C)

a. Ti.toi← N-TOI++ a. Ti.toi← N-TOI++

b. Ti.log_entry_type← w-pending b. certificate(Ti)

c. Ti.committable← true (check conflicts with concurrent transactions)

d. append to log and tocommit c. if certification = negative then

(if Ti conflicts with a resolved)

b. Weak voting i. if Ti.delegate = Rk then

process(Mn〈Ti〉): (transaction is local)

1. if Mn contains a writeset then (type WV-1) rollback(Ti)

a. Ti.toi← N-TOI++ ii. else

b. Ti.log_entry_type← c-pending discard Ti

c. if Ti.delegate = Rk then d. else

i. Ti.committable← true i. if certification = positive then

d. else (no conflicts and ∄ w-pending)

i. Ti.committable← false Ti.log_entry_type← resolved

e. append to log and tocommit Ti.committable← true

2. else (Mn is a voting message, WV-2) ii. if certification = pending then

a. if Mn.vote = commit then (conflicts with c-pending or ∃ w-pending)

i. Ti.committable← true Ti.log_entry_type← c-pending

ii. Ti.log_entry_type← resolved Ti.committable← false

b. if Mn.vote = abort then iii. append to log and tocommit

i. delete Ti from log and tocommit

c. resolve_c-dependencies(Ti,Mn.vote)

Figure 6.4: Protocol modules for message processing at replica Rk

to all shared variables. These include the log and tocommit lists and two integer
counters: L-TOI and N-TOI. Based on their delivery order, transactions are as-
signed a unique TOI, or total order index. Variable N-TOI, initialized to 1, stores
the index for the next transaction to be delivered. Variable L-TOI, initialized to 0,
stores the index of the last committed transaction in the replica. These counters
provide logical timestamps for transactions.

Active transactions (Figure 6.4a) do not need a decision phase: all commit in
the order established by the broadcast. Thus, when an active message arrives,
the transaction is added to both lists and its entry is marked as w-pending and
committable. As its writeset will be known only after commitment, it prevents
subsequent certifications from being completed, as writesets are needed to de-
termine if transactions present write conflicts. Transaction dependencies will be
explained in detail later.
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Table 6.3: Message types in MeDRA

Type Description

A the whole transaction of an active protocol

C the writeset of a transaction executed in a certification-based protocol

WV-1 the writeset of a transaction executed in a weak voting protocol

WV-2 the voting message of a weak voting protocol

Messages from the certification-based protocol (Figure 6.4c) contain a writeset
that must be certified. This certification is based on two metadata integers rep-
resenting the transaction start and end, respectively: bot, begin of transaction,
only needed for certification-based transactions and set before broadcasting to
the current value of L-TOI,4 and toi, the total order index set at reception. To
certify a transaction Ti, it is checked against every transaction Tj of the log list
such that Tj.toi > Ti.bot, i.e., Ti and Tj are concurrent. If the intersection of the
writesets of Ti and Tj is non-empty, then a conflict exists. In this case, if Tj is
a resolved transaction, then the certification of Ti is negative. With a negative
result, transaction Ti is discarded at remote nodes and aborted at its delegate.
Otherwise, it is added to both lists. Certification obtains a pending result if there
are concurrent w-pending transactions or conflicting transactions whose certifi-
cation/validation phase is incomplete, i.e., c-pending transactions. This creates a
dependency between the transaction being certified, Ti, and each of the previously
delivered transactions that create the indecision. In this case, Ti is also marked
as c-pending and non-committable. Only when the certification result is positive
(there are no conflicts with concurrent transactions and there are no w-pending
transactions in the tocommit list), Ti is marked as resolved and committable.

When the delivered message contains a writeset from the weak voting protocol
(Figure 6.4b), the transaction is added to both lists and marked as c-pending as
its outcome is unknown until commit time in the delegate node (which marks
the transaction as committable) or until the arrival of the voting message in the
rest of nodes (which mark it as non-committable). In the pseudocode outline of
Figure 6.3, the validation is based on the local concurrency control: waiting to

4The validity of L-TOI as logical timestamp for transaction start is ensured by a conflict detec-
tion mechanism developed by our group [93].
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commit turn and trying to commit the transaction in the delegate. If the commit-
ment succeeds, a positive vote is broadcast (reliably but without total order) to all
replicas. Otherwise, a negative vote is sent.

The reception of a voting message for a weak voting transaction changes the
transaction status and resolves the dependencies between this transaction and
subsequent ones. If the vote is positive, the transaction is marked as resolved
and committable. Otherwise, it is deleted from the lists.

The last major step of the algorithm, step III of Figure 6.3, consists in com-
mitting the first transaction in the tocommit list, provided that it is committable.
This is performed sequentially by the metaprotocol, one transaction at a time,
following the list order (provided by the total order broadcast). When applying
remote writesets, conflicts with local transactions may arise. At this point, our
conflict detection mechanism [93] aborts those local transactions allowing the
correct remote writeset application. After commitment, active transactions ob-
tain their writeset and mark their status as resolved. Possible dependencies are
also resolved. In the case of weak voting replication, conflicts with previously
committed transactions force the weak voting transaction to rollback, obtaining
an abort outcome instead of a commit one. If aborted, the transaction is removed
from the log. Otherwise, it is marked as resolved. In any case, this outcome is
used to resolve dependencies and to emit the vote. Finally, the processed trans-
action is removed from the tocommit list.

As seen in the pseudocode outline, the common processing is carried out by
the metaprotocol (control of data structures, sending and reception of messages,
scheduling of transactions. . . ), which calls the corresponding protocol when pro-
tocol-specific steps have to be taken (treatment of messages, commitment of
transactions. . . ). On the other hand, communication with client applications re-
mains in the protocols, thus preserving previous client-protocol interfaces. This
way, the system presents high modularity and protocols remain very simple and
easy to maintain (required adaptations to work within the metaprotocol consist
only in simplifications), while they are still able to introduce some optimiza-
tions in their specific methods (e.g., a pre-certification process prior to broadcast,
which may save useless network communication and subsequent processing).

Please refer to Appendix B for a complete and detailed pseudocode listing of
the current prototype implementation. Apart from containing procedures here
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omitted for simplicity, it introduces an optimization for the weak voting pro-
tocol: a validation phase identical to the certification process, which is run at
message delivery in the delegate node and allows an earlier voting in absence
of dependencies. This validation requires to also assign a bot timestamp to
weak voting transactions before broadcasting their writesets. A minor simplifi-
cation is also included: a transaction Ti is committable depending on the value of
Ti.log_entry_type, which is there called Ti.status. Moreover, the complete pseu-
docode features a garbage collection mechanism: once a writeset is applied in all
replicas, all local conflicting transactions have been aborted, so such a writeset
can be removed from the log list as it will not be needed any more [136]. Fi-
nally, regarding to the protocol exchange possibilities, the complete pseudocode
includes the required functionality for another system component (such as a load
monitor, an administrator, etc.) to enable and disable protocols in order to best fit
the current system requirements.

6.2.3 Dependencies Between Protocols

Concurrency can lead to inefficient systems due to natural differences in the be-
havior of the protocols. Several dependencies may arise when certifying trans-
actions in certification-based protocols, or when validating weak voting transac-
tions in the delegate node, if such validation is performed in a way similar to the
certification.

These dependencies, a natural and inevitable consequence of the concurrency
between different replication techniques, imply some delays with regard to the
original behavior of the stand-alone protocol. As this may have a notable impact
on system performance, it is important to understand these dependencies and to
carefully study their implications, as we will do in Section 6.3.

A transaction, in order to be certified (or validated by its delegate, if such vali-
dation follows a similar process), must know the writesets of all concurrent and
previously delivered transactions that will eventually commit. However, this may
not be immediately known, as there is some pending information in the entries
of the log list (see Table 6.2). First, the writesets of w-pending transactions are
unknown until their commit time. Second, the final termination (commit/abort)
of c-pending transactions is not yet known (e.g., weak voting transactions waiting
for their vote or certification-based transactions waiting for the resolution of any
of the previous cases in order to complete their certification phase). This pending
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Figure 6.5: Dependencies between transactions

information prevents the certification/validation of a transaction Ti from finishing
in two ways: (a) Ti cannot check for conflicts with a w-pending transaction Tw,
as the writeset of Tw is not yet available (here we say that Ti has a w-dependency
with Tw); and (b) although the writeset of a c-pending transaction Tc is known
and thus Ti can check for conflicts, the final outcome for Tc is yet unknown due
to a pending vote or another dependency (here we say that Ti has a c-dependency
with Tc). Notice that a conflict should cause the abortion of Ti only if the final
outcome of conflicting transaction Tc is a commit.

Note also that a transaction Ti may present several dependencies, i.e. depend on
several previous transactions, and it will not be considered as resolved until all
its dependencies are resolved. At that moment, the dependencies caused by Ti on
following transactions will be resolved in cascade.

Let us consider an example situation to review the steps of the metaprotocol.
Suppose that all three protocols are running, so transactions from all of them
are delivered at replica Rk. Suppose also that, at a given moment, the tocommit

list is empty. At this moment, an active transaction A is delivered. A is directly
appended to the lists, marked as committable and w-pending. The commitment of
A begins. Then, a weak voting transaction W, writing objects x and y, is delivered.
Suppose Rk is not its delegate replica. Thus, W is added to the lists, marked
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as c-pending and non-committable until its vote arrives. A new transaction is
delivered: C1, a certification-based transaction that writes objects y and z. C1
obtains a pending result in its certification, as there is a concurrent w-pending
transaction (A) and C1 presents write conflicts with W, which is c-pending (thus,
C1 has two dependencies). This pending certification forces C1 to be marked
as c-pending and, thus, non-committable until both dependencies are resolved.
Later, another certification-based transaction C2 is delivered. C2, which writes
object z, is also marked as c-pending and non-committable because of the conflict
with C1 and the existence of A. The current stage corresponds to Figure 6.5a

(where dashed arrows represent dependencies). At this moment, A finally ends
its commit operation and its writeset is collected: it wrote objects u and v. Now
it is time to resolve the w-dependencies of C1 and C2. As A does not conflict
with them, both w-dependencies are just removed. Figure 6.5b represents the
current situation. Now, the voting message for W is delivered with a commit
vote. So W is now committable and some c-dependencies can be resolved. As W
presented conflicts with C1 and W is going to commit, C1 must abort. Due to the
termination of C1, more c-dependencies are resolved on cascade, thus removing
all the dependencies presented by C2, that becomes committable. This stage is
depicted in Figure 6.5c. Any committable transaction at the head position of the
tocommit list is eventually committed.

6.3 Experimental Results

Naturally, there is a trade-off between the high level of adaptability provided
by the metaprotocol and system performance. Differences in protocol behaviors
cause dependencies when two or more replication techniques are executed in con-
currency. When a transaction requires certain piece of information to proceed but
this information is not yet available, a dependency is created and the transaction
must wait. These waiting times may increase the completion time of transactions,
reducing throughput. In order to assess the efficiency of the system, a metapro-
tocol prototype was implemented and a suite of tests were conducted to measure
two aspects. (a) The overhead introduced by the metaprotocol management. To
this end, stand-alone versions of the active, weak voting and certification-based
replication protocols were implemented. Later, we run each protocol in both the
stand-alone manner and as the only available protocol within the metaprotocol.
Differences in performance between each of these two configurations will give
a measure of the metaprotocol overhead. (b) The penalty in performance due
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to protocol concurrency. All possible combinations of protocols were tested in
concurrency within the metaprotocol. Measures were taken separately for each
protocol, thus showing, e.g., the variations on completion time for certification-
based transactions when executed in a pure certification-based system or when
another protocol is also working and some dependencies arise.

System Model We assume a partially synchronous –clocks are not synchro-
nized but the message transmission time is bounded– distributed system where
each node holds a replica of the database, i.e., the database is fully replicated.
For local transaction management each node has a local DBMS which provides
the requested isolation level. On top of it, a database replication middleware
system is deployed. This middleware uses a group communication service that
provides a total order multicast.

Failures were not considered in the metaprotocol prototype. Our group already
worked [37, 106, 112] on recovery protocols for certification-based replication,
or, more generally, for a replication technique based on atomic broadcast and
guaranteeing sequential consistency. As all the protocols supported by the pro-
totype follow the same approach, any recovery protocol that works for this type
of replication, e.g., any of our previously proposed solutions, could be easily
adapted to work with the prototype. Indeed, the required state transfers will be
similar, and transactions that were running in the crashed node will have aborted
and restarted in other nodes. For this reason and for the sake of simplicity, no
recovery protocol is described in this thesis.

Protocol implementation Both weak voting implementations (the one used
within the metaprotocol and the stand-alone version) include the optimization
of starting a validation phase in the delegate node at delivery time, similar to the
certification phase of certification-based protocols.

Test Description To accomplish the analysis, we use Spread [122] as GCS and
PostgreSQL [108] as underlying DBMS providing snapshot isolation by means of
a multiversion concurrency control. Transactions access a database with a single
table (the smaller the database, the greater the probability of conflicts and, thus, of
dependencies) of 10 000 rows and two columns. The first column is the primary
key; the second, an integer field subject to updates made by transactions. A
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prior tuning process was performed on PostgreSQL, which showed that a reduced
number of 10 connections for client transactions in each replica was the best for
our environment. This relates with the work of Milán-Franco et al. [89] which
proves that an even more reduced number of database connections is the best
option in some environments.

Both the metaprotocol and the stand-alone protocols were tested in our replication
middleware MADIS [59] with 2 and 4 nodes. Each node has an AMD Athlon™
64 Processor at 2.0 GHz with 2 GB of RAM running Linux Fedora Core 5 with
PostgreSQL 8.1.4 and Sun Java 1.5.0, and interconnected by a 1 Gbit/s Ethernet.
Transactions are initiated at a fixed pace in each replica to obtain system input
rates of 20, 40, 60 and 80 TPS (transactions per second). As the system load is the
same in the case of 2 and 4 replicas, nodes should be less loaded in the 4-replica
system. On the other hand, a greater number of nodes may affect communication.
We thus study the influence of the number of replicas in the system.

As the number of database connections is reduced for performance, transactions
are started at a certain rate but then they must wait to get a free connection. This
waiting time is included in the transaction length. When a transaction obtains
a connection, it updates 20 rows (a fixed number of items, as the protocol tasks
do not depend on transaction length). These writes may cause conflicts between
transactions, which will be detected during protocol validation or certification.
Although this workload does not represent any standard benchmark, it was de-
signed for the purpose of stressing the system gradually with higher and higher
input rates of write-only transactions causing more and more conflicts and, there-
fore, dependencies. We discard read operations, which are only locally executed
and have no conflicts. As a result, we subject the system to a worst-case envi-
ronment. This ad-hoc benchmark is, indeed, an unfavorable test for any database
replication system. Using a common benchmark would show better performance
results, as read-only transactions would constitute an important part of the load.

Concurrency configurations Active (A), certification-based (C) and weak vot-
ing (W) techniques were tested in a stand-alone manner and within the metapro-
tocol. In the latter case, combinations of 1, 2 and 3 protocols were used (a total
of 5 concurrency configurations for each technique, e.g., for active replication:
Stand-alone A, A, AC, AW and ACW). Each protocol managed a proportional part
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of the issued transactions,5 which were analyzed separately to compute length
and abortion rate.

Results The three aspects considered in our tests (length of committed transac-
tions, length of aborted transactions and abortion rate) were computed for each
protocol at each node in each test iteration. Each one of these iterations dismisses
initial and final transient phases. A total of 2 000 local transactions were consid-
ered at each node (which gives a total of 4 000 values for each time measure in
systems of 2 replicas, and a total of 8 000 values when 4 replicas are used). Each
plotted result is the mean value obtained after 20 of the previously detailed itera-
tions, and it is shown with its 95% confidence interval. Small confidence intervals
prove that the presented results are statistically representative.

Results are presented separately for each protocol family and for each system size
(2 or 4 replicas). To allow an easy comparison, we represent in the same graph
the evolution of a certain measure in the 5 concurrency configurations previously
commented. This way, for example, Figure 6.7b presents mean times for commit-
ted certification-based transactions, depending on the concurrency configuration
and the input TPS, in a 4-replica system.

Protocols do not show important differences in response time when executed in
a stand-alone manner or as the only protocol within the metaprotocol. Indeed,
performance is virtually the same at low input rates or when using a system of
4 replicas. Only when 2 replicas must support a high input rate, differences ap-
pear. Thus, the main factor to consider is the penalty due to concurrency between
different techniques. This concurrency is appropriate when multiple client ap-
plications access the same database in different ways. The active technique is
pessimistic while the other two are optimistic. This different approach limits the
performance: optimistic techniques are forced to wait for the processing of pes-
simistic transactions, thus reducing the advantages of their optimism. Indeed, as
soon as there is one active transaction in the tocommit queue, all non-active subse-
quent transactions in the queue establish a dependency with it. This dependency
lasts until the active transaction is committed. Moreover, weak voting replication
is handicapped by the second broadcast needed to emit the vote: non-delegate
replicas must wait for the delegate to validate the transaction and for the vote to

5When two protocols were combined, half of the total issued transactions were managed by
each of them. Similarly, when all three protocols were concurrent, a third part of the amount of
transactions was managed by each protocol.
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Figure 6.6: Performance of active replication

arrive. All these drawbacks join when mixing active and weak voting replication,
leading to poorer performance in AW and ACW configurations.

Figure 6.6 corresponds to the active technique (recall that it never aborts trans-
actions). Graphs do not show practical differences between stand-alone and A
configurations in either tested system size. When combined with the optimistic
certification-based technique (AC), the response time of active transactions in-
creases with the system load in the case of 2 replicas, while it remains near zero
when 4 replicas are used, showing a correct scalability for this configuration. On
the other hand, configurations which combine active and weak voting replica-
tion (AW and ACW) not only do not improve their response time when increasing
the number of replicas, but they even degrade their performance, especially with
heavy workloads (i.e., with 60 and 80 TPS). This behavioral trend is observed in
all presented graphs. The explanation is that active transactions hold dependen-
cies until their commit time, thus preventing many subsequent transactions from
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being validated or certified until all previous active transactions have commit-
ted. When these subsequent transactions are managed by weak voting replication
(AW), this wait may be bearable in delegate nodes, but remember that the rest
of nodes must wait until the delivery of the voting message. Let us suppose this
time to be a certain amount x of milliseconds. When 2 replicas are used, x mil-
liseconds are wasted per transaction. But when increasing the number of replicas
to 4, we are also increasing the number of non-delegate nodes, which then mul-
tiplies the wasted time up to 3x for each transaction. In the worst case, all 3
non-delegate replicas may have stopped all commitments waiting for the reso-
lution of the transaction in the head of the tocommit list. As the global wasted
time is greater, the global completed work is lesser, thus degrading performance.
When adding the certification-based technique to the configuration (ACW), re-
sulting times are better, as certification-based transactions are not penalized by
voting-waiting times and the dependencies they introduce last less than those of
active transactions. Even though, this configuration also degrades when the num-
ber of replicas is increased.

Results from certification-based techniques are presented in Figures 6.7 (com-
mitted transactions) and 6.8 (aborted transactions and abortion rate). Focusing
on the 2-replica system, times for committed and aborted transactions follow
similar curves. Stand-alone and C configurations obtain very similar measures;
small differences appear only for a 80 TPS load, when the stand-alone version
is better. Times for configuration AC are very close to those observed for active
transactions in the same configuration, thus confirming that dependencies caused
by active transactions are detrimental only when weak voting transactions are also
involved. When combining certification-based and weak voting techniques (CW),
dependencies suffered by weak voting transactions increase response times but,
as these dependencies do not last as much as those caused by active transactions,
the performance of CW is better than that of previous AW. Finally, we obtain the
worst response time and abortion rate when mixing all three protocols. Regard-
ing the abortion rate, the most interesting curve is that pertaining to the ACW
configuration. As transactions last longer with this combination, more conflicts
appear among them. Moreover, as the load grows, a higher level of concurrency
is supported by the system, which involves a greater number of abortions. The
last section of the curve presents a lesser slope because the system is already al-
most saturated at 60 TPS and concurrency slightly grows when introducing 80
TPS (see graphs of Figure 6.11).

Some behavioral trends observed in a 2-replica system are maximized in the case
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Figure 6.7: Performance of certification-based replication.
Committed transactions

of 4 replicas. Configurations that performed well for 2 replicas have here an
even better performance, as each node is less loaded. On the other hand, bad
combinations are worsened by the greater number of replicas. Remember that
the global time wasted in the weak voting protocol augments with the number of
nodes, thus reducing the overall performance.

Graphs from Figures 6.9 and 6.10 show the results of the weak voting technique.
In a 2-replica system, committed and aborted transactions follow similar trends,
although it is the first time that a configuration using the metaprotocol –the CW
combination– is clearly faster than the stand-alone version of the replication pro-
tocol. This reinforces the idea of the weak voting technique being penalized by
a centralized process –the validation of the delegate– which forces non-delegate
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Figure 6.8: Performance of certification-based replication.
Aborted transactions

nodes to wait for the second broadcast. On the other hand, the weak voting tech-
nique is an excellent option when readsets must be also considered for validation,
as this technique avoids the collection and transmission of readsets.
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Figure 6.9: Performance of weak voting replication. Committed transactions

As seen in the graphs, mixing certification-based transactions with weak vot-
ing ones lightens the system, achieving lower response times (certification-based
transactions are not penalized by a second broadcast). On the other hand, as pre-
viously noticed, mixing active transactions with weak voting ones has undesirable
consequences, which can be improved adding certification-based transactions to
the combination (the dependencies will be less and, thus, also the system load).

With regard to the abortion rate, curves corresponding to combinations AW and
ACW stand out from the rest. The same as before, the longer the transactions, the
greater the possibility of conflicts with concurrent transactions.

The behavior observed in the 2-replica system is again maximized in the case of
4 replicas and we clearly see how AW and ACW combinations obtain times and
abortion rates dramatically higher than those of other configurations.
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Figure 6.10: Performance of weak voting replication. Aborted transactions

Figure 6.11 shows the output TPS, i.e., the amount of committed transactions
per second in the whole system. As already seen in previous graphs, all config-
urations are similar at low loads, but their curves diverge when more and more
transactions are initiated per second. Again, configurations AW and ACW show
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the poorest performance, being the gap with the other curves greater when in-
creasing the system size, as already explained. To sum up, it is clearly seen how
some combinations have an excellent performance while others degrade as load
or system size increases.

Final remarks The trade-off between adaptability and performance must be
carefully analyzed in each system. In the system used for our tests, configurations
that combine active and weak voting replication should be avoided if high loads
need to be supported or large system sizes are used, as such protocol concurrency
reduces system performance in these cases. Nevertheless, if performance is not as
important as supporting concurrent client applications of different requirements,
these combinations may be very useful. On the other hand, the CW combination
has shown an excellent performance. This can be combined with the flexibility
already offered at DBMS level by Microsoft SQL Server, which concurrently
supports snapshot and serializable isolation levels. Thus, when the middleware is
deployed on top of such a DBMS, our metaprotocol can provide a straightforward
support for both isolation levels in replicated environments. To our knowledge,
no other solution offers at a middleware layer such a degree of transparency and
functionality.
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6.4 Related Work

The metaprotocol presented here is a continuation of the work started by our
group with MADIS [59], a platform designed to host a wide range of replica-
tion protocols. MADIS was designed to support different kinds of pluggable
protocols, whose paradigms range from eager to lazy update propagation, from
optimistic to pessimistic concurrency control, etc. Consequently, MADIS was
thought to maintain a wide range of metadata in order to cover the most com-
mon database replication protocol requirements. Particularly, it was thought to
switch from one consistency protocol to another, as needed, without the need to
recalculate metadata for the newly plugged-in protocol. The resulting architec-
ture allowed the administrator to change the used protocol, stopping first the old
one and starting later the new one, as no concurrent execution was supported.

An exchanging algorithm for database replication protocols was presented by
Castro-Company and Muñoz-Escoí [24], who designed a protocol for supporting
a closed set of database replication protocols. The metaprotocol presented in this
chapter follows this work, providing a seamless and fast protocol exchange and
enhancing the modularity of the system.

Apart from the work of our group, no academic result presents a valid solution of
a database replication system supporting concurrent replication protocols.

A different approach is to develop a single replication protocol that supports mul-
tiple isolation levels [10, 92, 114]. This was one of the aims in the GlobData
project and some initial solutions were provided by Muñoz-Escoí et al. [92].
But the isolation levels defined in GlobData were not the ANSI standard ones,
since GlobData was a system with an object-oriented interface able to provide
an object-oriented replicated database using relational database replicas, and for
those systems there were considered another set of behaviors. Bernabé-Gisbert
et al. [10] propose a general scheme for designing middleware database repli-
cation protocols supporting multiple isolation levels. The authors based it on
progressive simplifications of the validation rules used in the strictest isolation
level being supported, and on local (to each replica) support for each isolation
level in the underlying DBMS. Unfortunately, the resulting protocol is complex
and it lacks the modularity and maintainability of our metaprotocol.

The idea of a single replication protocol providing a flexible behavior was also
studied by Correia et al. [32], with the AKARA protocol. With it, a transaction
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can be executed in an active or a passive manner, thus taking advantage of the
best characteristics of each replication protocol. Unfortunately, AKARA needs
the database to be partitioned in conflict classes and classifies each transaction
regarding the accessed classes. This allows a straightforward conflict detection
but forces to know the entire transaction before its execution, thus precluding in-
teractive transactions. Moreover, conflict classes are usually entire tables, which
leads to a coarse-grained conflict detection. On the other hand, our metaprotocol
(using block detection mechanisms [93] developed in our group) provides a row-
level conflict detection, which allows the execution of interactive transactions, as
no partition in the database is needed. Finally, although AKARA performs better,
it has to be noted that it uses the TPC-C benchmark where a new request is only
triggered by the completion of the previous one, and read-only transactions are in-
cluded in the load. Our ad-hoc benchmark is much more stressing for the system,
as it involves only update transactions which execute over one single database
table and are initiated at a fixed pace, independently of whether previous requests
have been completed or not. This way, conflict probability increases, which also
raises dependencies between transactions and, thus, completion times. Despite
this, our system is still able to perform in an acceptable way.

Considering general distributed systems, i.e., not necessarily related to data-
base replication, adaptability can also be provided by self-optimization. Taton
et al. [128] propose a queue clustering solution for message oriented middle-
wares. A clustered queue is a set of queues each running on different servers and
sharing clients. Its self-optimization fairly distributes client connections among
the queues belonging to the clustered queue and dynamically adds and removes
queues in the clustered queue depending on the load. As a result, the system uses
the adequate number of queues at any time.

Communication protocols are another distributed system research branch that has
also studied techniques for dynamically changing protocols. In this case, the
goal is to select each time the group communication system which best fits with
the network layer and changing load profile of the system. There are different
approaches to provide this support. Mocito and Rodrigues [90] make a proposal
in order to switch between total order broadcast communication protocols. Their
switching system, instead of buffering messages or blocking their propagation,
spreads each message using both protocols during the switching phase. This
mechanism is less aggressive than others [82, 88] but presents some overload
in the network. On the other hand, some more aggressive mechanisms [82, 88]
benefit from the simplification of not caring about the existence of transactions.
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The general problem of protocol exchange, or dynamic protocol update (abbr.,
DPU), has been broadly discussed [16, 27, 47, 113]. However, DPU solutions
provide adaptability by replacing the working protocol by means of some type of
synchronization between nodes, and do not consider protocol concurrency (ex-
cept, perhaps, for a short transition phase).

Bhargava et al. [16] study the adaptability provided by RAID-V2. RAID-V2 is
a distributed database system where three components have built-in adaptability
features: the concurrency controller, the replication controller and the atomicity
controller. Each of these elements implements several algorithms and offers the
mechanism to convert from one algorithm to another. In that system, protocol
replacement is based on a fully replicated relation, the control relation, which
contains one row for each site and is updated by special control transactions.
An update of a row in this table is interpreted by the corresponding server as a
dynamic adaptability request, issuing a protocol replacement.

Fritzke et al. [47] also focus on DPU in the context of database replication. They
provide adaptability to mobile systems, where disconnected nodes can work with
weak consistency levels but switch to stronger levels when connected. This pro-
tocol replacement is based on uniform reliable multicast and uniform consensus.

Chen et al. [27] presented a general solution for DPU, where each layer of a
distributed system can be adaptive and algorithms are changed in a three-step
process: change detection, agreement and adaptive action. The changeover does
not halt processing or message exchange but it requires communication with the
protocol modules, which forces to extend them. To solve this, Rutti et al. [113]
propose a modular, highly flexible architecture where protocol modules are not
even aware of replacements. This solution is based on services (specifications
of distributed protocols) rather than on protocols (implementations of distributed
protocols).

6.5 Conclusions

Adaptability is a desirable feature for all systems, especially for those more sen-
sitive to changes in the environment. Moreover, client applications of database
replication systems may demand different requirements that can be better served
with different replication techniques.
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We propose here a metaprotocol that is the key piece of an adaptable system
allowing the dynamical change of the replication protocol used in a replicated
database as well as the concurrent execution of several protocols. The idea is
to select each time the replication technique(s) that best fits with the changing
requirements and dynamic environment characteristics, trying to provide always
the best achievable performance. This selection can be made at system level,
at application level or even at transaction level (using, for each transaction, the
protocol which is the most appropriate for that transaction).

As first approach, the goal of the metaprotocol prototype is to provide support for
the concurrent execution of the most relevant database replication protocol fam-
ilies based on total order broadcast: active, certification-based and weak voting
replication.

Experimental results demonstrate that our metaprotocol introduces very low over-
head when compared with stand-alone versions of the same replication protocols.
On the other hand, inherent differences in the protocol behaviors may penalize
performance when concurrency is exploited. We show and explain that certain
combinations of protocols should be avoided if performance is a major system
goal. Other protocol combinations, however, showed excellent performance and
good scalability.
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Chapter 7

Integrity Awareness in Database
Replication at Middleware Level

Integrity constraints are usually forgotten in distributed and replicated databases,
while they constitute an important part of the database: the semantic consistency.
This chapter analyzes the problems an improper integrity management can orig-
inate, proposes simple solutions for abcast-based replication protocols and pro-
vides a comparative experimental evaluation.

7.1 Introduction

Data usually needs to be characterized beyond the basic database schema. There
is a wide range of semantic constraints that belong to the domain of the applica-
tion. Those constraints specify the semantic consistency of data, which comple-
ments the transaction consistency (guarantees of atomicity and isolation) and the
replication consistency (accordance between replicas in their individual copies of
common data items). The semantic consistency must be guaranteed; otherwise
the data is inconsistent and does not correspond with the reality the application
works with. Carefully checking at application level that semantic consistency
is always kept would be costly and hard to maintain. Therefore, it is defined at
database level by means of integrity constraints whose observance is ensured at
data management level, inside the DBMS. The restrictions expressed by these
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constraints can vary from a very simple condition affecting one single piece of
data (e.g., a car rental company could require the age of drivers to be greater or
equal than 21) to a complex relationship involving several tables (e.g., the sum
of the salaries of the employees belonging to certain department cannot exceed
the amount assigned to human resources in that particular department, and, in
turn, the sum of these amounts of all departments cannot be greater than the total
amount available in the company), including all the constraints commonly sup-
ported by any relational database (domain constraints, uniqueness constraints,
not-null constraints, primary and foreign keys). Although the current support in
commercial databases is far away from being standard, they will never commit
a transaction if it violates any of such integrity constraints. To ensure this, the
DBMS checks the constraints either at each update operation (immediate check-
ing) or at the end of the transaction, before the final commitment (deferred check-
ing). In any case, actions of concurrent transactions must be taken into account.
If any violation is detected, the transaction responsible for it is aborted to guaran-
tee that integrity is preserved. This works fine in centralized, stand-alone systems
but can originate several problems when replicating the database.

In a database replication middleware, the replication protocol is responsible for
maintaining the consistency of replicas, deciding which transactions to commit
and which to abort. These decisions are based on the accesses made by transac-
tions, so that two concurrent transactions are not allowed to conflictingly access
the same object. If a transaction T successfully passes this validation, it is sent to
the database to be committed. At the same time, the protocol informs the client
about the transaction success, and it regards T as confirmed in order to abort sub-
sequent concurrent transactions that try to conflictingly access the same objects.
All this operation would be correct if no error could prevent the actual commit-
ment of the transaction. But, e.g., T might violate any constraint and thus be
aborted by the DBMS during deferred checking. Integrity violation is a perma-
nent error, so re-attempts of applying the transaction are in vane. At this point,
several undesirable conditions arise. First, the accesses made by the DBMS dur-
ing integrity checking remain unnoticed by the protocol, which cannot consider
them for conflict checking (we call this the problem of increased accesses). Sec-
ond, the client was positively informed about the updates made by T but now it
cannot see the state it expects (premature client notification). Third, the protocol
discarded some transactions due to conflicts with T , which was never actually
committed, causing unnecessary abortions (compromised validation). Lastly, the
protocol is blocked trying to apply the violating transaction while subsequent
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transactions accumulate to be applied in turn (infinite reattempting). Good news:
integrity was preserved. Bad news: everything else is a mess.

Many database replication protocols have been proposed, as already shown in
this thesis, mostly oriented towards dependability details; i.e., they are focused
on the problems that should be overcome regarding performance, availability,
and scalability. Unfortunately, none of these proposals has assessed the support
of semantic consistency defined by integrity constraints, when precisely those
constraints are one of the important differences that make databases quite special-
ized with regard to other regular components of a distributed application. This is
an interesting matter to consider because, at least in middleware-oriented systems
[20, 25, 31, 43, 59, 85, 93, 99], complications may arise if constraints are checked
in deferred mode, i.e., at effective commit time, after conflict validation by the
replication protocol. Most modern database replication protocols use total order
broadcast for propagating sentences or writesets/readsets of transactions to other
replicas. Some classes of replication protocols are able to seamlessly deal with
the integrity support of the underlying DBMS, but others are not. Following again
the classification proposed by Wiesmann and Schiper [136], we analyze here the
integrity support that can be provided in various classes of replication protocols,
proposing extensions for those that cannot directly manage constraints. Our aim
is to ensure that each database replication protocol class provides at middleware
level the same integrity support than its underlying DBMS. Finally, we include
an experimental study that shows the negative effects of an improper integrity
management as well as the performance penalty of an appropriate one.

Section 7.2 describes the architecture and database model. Section 7.3 recapitu-
lates the main database replication classes identified by Wiesmann and Schiper
[136]. Section 7.4 describes the problems that arise without an appropriate con-
straint management in a replicated system. In Section 7.5, we propose solutions
for those identified problems. Later, Section 7.6 presents an experimental com-
parison between a correct and an incorrect integrity constraint management in
middleware protocols. Related work is analyzed in Section 7.7.
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7.2 System Model

We consider here a partially synchronous distributed database with full replica-
tion, where the process that executes the replication protocol belongs to a mid-
dleware [11] layer. A solution for DBMS-core replication protocols could be
trivially derived from the solutions presented here.

Failures are not specifically considered in this chapter, as integrity maintenance
is a problem orthogonal to failures and recovery. A system wanting to implement
any of the solutions proposed here could use any available recovery protocol in
accordance with the replication protocol and failure model assumed by such a
system. However, some possible solutions can have negative effects in case of
failures and we signal this later.

The data stored in the database is subject to integrity constraints, which are en-
forced at data management level, i.e., not at protocol or application levels (which
would be costly and hard to maintain as it would require the examination of every
update made by concurrent transactions to data items involved in a constraint).

The underlying DBMS directly provides support for integrity maintenance, by
raising exceptions or reporting errors in case of constraint violation. Such excep-
tions and error messages are then managed by the replication protocol. Thus, they
do not reach the user-level application, unless the replication protocol decides so.
The DBMS also supports the isolation level for which the replication protocol has
been conceived. Thus, the replication protocol may focus on its native purpose of
ensuring replica consistency, and delegate local concurrency control and integrity
maintenance to the DBMS.

7.3 Database Replication Protocols

As already stated before in this thesis, Wiesmann and Schiper [136] present
a comparison of the three most relevant database replication techniques based
on total order broadcast (active, certification-based and weak voting replication)
along with other approaches that do not rely on group communication (primary-
copy [18] and lazy replication). All the studied protocols use a constant inter-

action [138] principle: the number of messages used to synchronize the servers
for a given transaction is constant and independent of the number of operations
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in the transaction. Such a paper concludes that the replication protocol classes
with the best performance are those that combine the usage of a single delegate
replica per transaction with eager total order update propagation. Lazy replica-
tion is included in the study only for comparison purposes (it requires a minimal
amount of synchronization but it later needs reconciliation techniques for ensur-
ing consistency, which makes this technique not practical). We recall here the
description of active, certification-based and weak voting replication, along with
the primary copy technique:

Active replication (AR) The client sends its request to a given replica Rd ,
which forwards the whole transaction to all replicas by a single total order broad-
cast. Each replica independently and deterministically processes the transaction.
Total order propagation ensures the same scheduling in all replicas, which get the
same results for each transaction. Once the transaction is completed, Rd returns
its results to the client.

Certification-based replication (CBR) A transaction is first locally executed
in a single delegate replica. Once the client application requests its commitment,
the transaction readset and writeset are collected and propagated to all replicas
using a total order broadcast. Once such a message is delivered, a determinis-
tic certification phase starts in all replicas to determine if such a transaction can
commit or not. This certification is based on conflicts with concurrent trans-
actions previously delivered that were already accepted for commitment. This
validation stage is symmetrical since all replicas hold the same history log of pre-
viously certified readsets and writesets. Once certified, accepted transactions are
applied and committed, and their writesets and readsets are temporarily held in
order to certify subsequent transactions. Otherwise, i.e., when the transaction has
been aborted in the certification stage, its readset and writeset are discarded.

Weak voting replication (WVR) As in the previous class, a transaction is ex-
ecuted in a single delegate replica. When it requests its commitment, its readset
and writeset are collected but only its writeset is broadcast in total order to all
replicas. In this case, once the writeset is delivered, only the delegate is in the po-
sition to validate the transaction against concurrent transactions previously deliv-
ered. Note that write-read conflicts are also detectable, since the delegate replica
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knows the readset of its local transaction and also the writesets from remote repli-
cas. The result of the validation is propagated using a reliable broadcast [28] to
all replicas, which behave accordingly.

Primary copy replication (PCR) All transactions must be executed by the
same primary replica which may rely on its local concurrency control mecha-
nisms to decide whether transactions can be committed or not. Once a transaction
has been executed in the primary replica, its writeset is propagated to the other
replicas (that behave as backups) and applied there. Finally, the transaction is
committed in all replicas, and the results are sent to the client.

7.4 Integrity Problems in Replication Protocols

Integrity constraints can be checked either in immediate or in deferred mode.
When using immediate checking, constraints are checked each time an update
is attempted in a transaction. With deferred checking, those integrity checks are
delayed until the transaction requests its commitment. In centralized, stand-alone
settings, some integrity constraints have been traditionally managed in deferred
mode [21, 72, 83], thus avoiding intermediate checks that could have uselessly re-
quired time and resources and, more important, allowing temporary inconsisten-
cies, sometimes unavoidable, that can be solved before transactions end. In any
case, not only the effects of the current transaction but also those of concurrent
ones must be considered during integrity checking. This leads to the mandatory
use of deferred checking when dealing with distributed or replicated databases,
where concurrent transactions can be executed in different delegate nodes. In that
case an immediate checking is unable to see the effects of all concurrent transac-
tions since they can be in execution in remote nodes and their updates need some
time to be propagated and applied. Moreover, the set of concurrent transactions
to consider when checking the integrity consistency of a given transaction is un-
known until the global commit order is decided. For most replication protocols
[136], which rely on total order broadcast, this happens only after the client re-
quests transaction commitment. As a result, deferred checking is the appropriate
and single choice.

However, deferred checking gives raise to some problems at current replication
protocols. There are some common behaviors that are incorrect when integrity
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constraints are involved. A generic replication protocol featuring all of these be-
haviors would execute transactions in one delegate node and, later, use two steps
for transaction management once updates were broadcast and delivered. The first
step would be devoted to conflict checking among concurrent transactions, based
on a history log containing previously (positively) validated transactions. This
validation would decide whether the current transaction could be committed or
not, informing the client. The second step would take place only when the trans-
action were positively validated. In this case, the transaction would be added to
the history log and sent to the database to be applied in non-delegate replicas and
finally committed. If the commit operation failed, it would be considered a tem-
porary error (e.g., a deadlock) and the operation would be reattempted again and
again until its successful completion. These reattempts are necessary to avoid
that temporary and local errors prevent a transaction from committing in one
node, while it committed in the rest of replicas. In this generic protocol, an in-
tegrity violation detected in deferred checking turns some of the previous actions
into serious problems:

Premature client notification The protocol admitted the transaction as correct
in the conflict-checking step and reported its success to the client application.
This early client notification reduces the completion time perceived by applica-
tions. However, the client expects the database to be updated accordingly but it
will never be.

Increased readset/writeset Integrity management is an internal process of the
DBMS and, thus, is highly vendor-dependent. Broadly speaking, read and even
write operations could be performed during this checking. As they are within the
scope of the transaction, they should be considered as part of its readset or write-
set for conflict checking. But validation has already been performed. A deeper
study of the integrity management done in commercial databases (PostgreSQL,
Oracle, Microsoft SQL Server, Sybase, IBM DB2 and MySQL) concludes that no
write operation is allowed during deferred checking, as all cascade actions, when
supported, are restricted to immediate mode. Thus, only the readset is increased
in such databases. As a result, replication protocols using readsets to validate
transactions during conflict checking are missing some read operations.
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Compromised validation A transaction successfully validated1 in the conflict-
checking step is appended to the history log of the protocol to be considered
when validating subsequent transactions. This is to ensure that two concurrent
transactions with any conflict in their accesses are not both committed. When
an integrity-violating transaction T is positively validated and added to the his-
tory log, it will possibly (depending on conflict rate) cause the rejection of some
subsequent transactions. But T will not be actually applied in the database, so
those rejections could have been avoided. We call this abort errors. These abort
errors cause, in turn, that some other transactions are accepted (commit errors)
when they would not have passed the validation in a system properly handling
integrity-related abortions. In short, the history log does not reflect the transac-
tions actually applied in the database, leading to more and more validation errors.

Infinite reattempting The protocol notices the abortion of the transaction, but
it assumes it is due to some temporary error and, thus, requests the operation
again, maybe after an exponential backoff. But an integrity violation is a perma-
nent error, so those reattempts are useless because the database will always raise
the integrity exception. As transactions in abcast-based replication protocols usu-
ally follow a global commit order equal to the delivery order of the atomic broad-
cast, infinite reattempting eventually stops all committing processes. The loss
of protocol liveness cannot be avoided even though some optimizations are used.
The concurrent writeset application technique [79] allows several non-conflicting
transactions to be sent to the database at the same time. This way, when indefi-
nitely reattempting an integrity-violating transaction, subsequent non-conflicting
transactions can be also sent to the database, allowing the committing process to
continue. However, this optimization cannot be applied when the next transac-
tion presents conflicts with the ones already in the database, so the protocol will
eventually stop all processing.

These problems will arise in any database schema with integrity constraints, if
the replication protocol follows any of the identified incautious behaviors, inde-
pendently of the load or the conflict rate or the amount or kind of constraints.

1Remember that we use validation as the general term to refer to the decision process of a repli-
cation protocol. On the other hand, we use the term certification to specifically refer to a validation
performed by each system node in an independent, deterministic and symmetrical manner.
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7.5 How To Support Constraints

In order to adapt current database replication protocol families to properly man-
age integrity constraints, we must first analyze which of the previously identified
problems present each of the targeted classes.

Active replication (AR) protocols do not perform any kind of validation. As
transactions are completely executed in parallel at every replica, local DBMS
management is enough. As a result, compromised validation does not appear in
this class. Moreover, although transaction readsets will be extended, this does not
pose any problem, as readsets are not considered at protocol level.

In these protocols, clients are informed only after transaction completion, which
discards any premature client notification problem. In conclusion, only a slight
modification will be necessary for an AR protocol in the case it reattempts trans-
action commitment. In such cases, the protocol must be able to recognize the
cause of the abortion, as reported by the DBMS, rejecting transactions that vio-
late integrity.

Primary copy replication (PCR) protocols neither require a validation step since
only one replica is processing the transaction. So, in this regard, it is equivalent to
a non-replicated architecture. Consequently, extended readset and compromised
validation are not raised in this protocol family.

Client notification is delayed in PCR protocols until transaction is applied at the
primary replica, preventing any premature client notification. Similarly to AR
protocols, the only possible problem would be infinite reattempting.

Therefore, AR and PCR are able to deal with integrity constraints in a seamless
way, by relying on the support provided by the underlying DBMS. Unfortunately,
neither AR nor PCR protocols (direct translations into the database field of the
general active and passive replication models, respectively) provide good per-
formance [136]. Fortunately, there are specialized variations of these protocol
classes able to break some of their limitations. For instance, the database can be
partitioned and the subsets distributed, according to predefined conflict classes,
among multiple primary copies (each one being responsible for each subset) [63].
These adaptations significantly improve the performance of PCR protocols, while
the reliance on the integrity support from the underlying DBMS is not impaired.
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On the other hand, the two classes that provide best performance and scalability
(CBR and WVR) also feature several of the previously identified behaviors that
give rise to problems with regard to integrity constraints. Our aim is to carefully
study these two last classes in order to find some adaptations of their protocols
that ensure a correct integrity support, while keeping their performance as good as
possible. Next we recall the original pseudocode of these protocols and propose
and explain extended versions that correctly manage integrity constraints.

7.5.1 Weak Voting Replication Protocols

1: Execute T

2: On T commit request:

3: TO-bcast(R,〈wset(T ),Rk〉)

4: Upon 〈wset(T ),Rd〉 reception:

5: if Rk = Rd then

6: statusT ← validate(T )

7: R-bcast(R,statusT )

8: send(c,statusT )

9: else DB.apply(wset(T ))

10: Upon statusT reception:

11: if statusT = commit then

12: DB.commit(T )

13: else DB.abort(T )

a. Original

1: Execute T

2: On T commit request:

3: TO-bcast(R,〈wset(T ),Rk〉)

4: Upon 〈wset(T ),Rd〉 reception:

5: if Rk = Rd then

6: statusT ← validate(T )

7: R-bcast(R,statusT )

8: // Client notification delayed until line 15

9: else DB.apply(wset(T ))

10: Upon statusT reception:

11: if statusT = commit then

12: statusT ← DB.commitIA(T )

13: else DB.abort(T )

14: if Rk = Rd then

15: send(c,statusT )

b. Extended

Figure 7.1: Integrity support in weak voting protocols

The pseudocode listing of Figure 7.1a represents the three event-driven blocks
of a WVR protocol. Block I (lines 1–3) starts at transaction beginning and lo-
cally executes T . It lasts until T is requested to be committed, when its writeset,
wset(T ), is broadcast in total order to the set R of alive replicas. The identifier of
the local replica, Rk, is included in such a message, as the delegate identifier. The
following two blocks describe what is executed in all replicas.

In block II (lines 4–9), action is taken upon writeset delivery. The delegate
replica validates the transaction, broadcasting its decision to the rest of nodes
and also notifying the client, c. Non-delegate replicas apply the delivered write-
set (through the local DBMS interface, DB) and wait to the arrival of the voting
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message. Note that line 6 is shaded in gray. This means that the validation op-
eration must be executed in mutual exclusion, one transaction at a time. Each
sequence of shaded rows in following listings corresponds to a block of protocol
steps that are mutually exclusive.

In block III (lines 10–13), action is taken upon arrival of the voting message,
resulting in a commitment or abortion request. As the commit operation was as-
sumed to be always successful in the original WVR protocol, any failure is inter-
preted as temporary and the commitment is retried. For clarity, this reattempting
policy is assumed inside the DB.commit(T ) operation.

Considering this pseudocode, the integrity problems of WVR are the premature
client notification and the infinite reattempting. Problems related to validation
(increased readset and compromised validation) do not necessarily appear here.
Indeed, instead of using a history log, validation can be based on local concur-
rency control and follow several approaches. A possibility is to defer update
operations until commit time and ask for the corresponding write locks as soon
as a writeset is delivered. This solution, only possible for lock-based DBMSs,
allows the protocol to obtain an immediate response: whenever a lock cannot be
granted, a conflicting transaction was validated before and so the validation is
negative. This approach, however, assimilates to one based on a history log and
leads to a compromised validation when integrity constraints are involved.

Another possibility for a validation based on local concurrency control was sug-
gested in Chapter 6: the delegate may wait until the end of the commit operation
and adopt DBMS response as its vote for that transaction. This approach would
provide a correct integrity management but would involve a potential problem. In
a system following this approach and with a crash-recovery failure model, if a del-
egate replica Rd fails, for any positively validated transaction T between its com-
mitment and the broadcast of its voting message, the delegate replica has already
committed the transaction while all others are still waiting for its commit/abort
message. This violates the uniformity principle [105] required for preserving in
modern replication protocols the same functionality than in the traditional 2PC
one. Such uniformity is preserved in the original WVR protocol using uniform
total order broadcast for writeset propagation, and uniform reliable broadcast in
the termination/voting final message. In the system using the commit response as
a vote, in case of failure one of the non-delegate replicas must be selected as the
new transaction delegate, in order to broadcast that message. This complicates
such transaction termination, demanding much more time. Additionally, this also
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complicates the recovery protocols since the state maintained in a crashed del-
egate replica for its transactions is uncertain (it may have applied their updates
or not), violating also the assumptions of the persistent logical synchrony [94]
model that was specifically tailored for replicated database recovery.

A validation based on local concurrency control that does not suffer from the
above problems is the one where the delegate notices the abortion of its transac-
tions, caused by the commitment of previously delivered writesets. This approach
is similar to the previous one, but it does not commit the transaction before send-
ing its vote. Indeed, when a transaction T survives to the commitment of all
previously delivered transactions, the delegate sends a positive vote for T . Other-
wise, a negative vote is sent as soon as the abortion of T is detected. We assume
both the original and the extended version of WVR follow this approach.2

The extended protocol of Figure 7.1b, where original line numbers are main-
tained, includes the adaptations needed for appropriate integrity management.
First, the operation responsible for requesting the commitment is now integrity-
aware (DB.commitIA(T )): if the operation fails due to integrity violations, it will
not be reattempted, solving the infinite reattempting problem. Moreover, this
operation returns a value with the final outcome of the transaction (either com-
mitted or aborted by integrity violation). On the other hand, client notification
is delayed until transaction termination (from original line 8 to new lines 14 and
15), informing the application about the actual final termination of the transac-
tion, thus eliminating the premature client notification problem.

It is important to note that despite a positive voting of the delegate replica for a
given transaction, this transaction could be later aborted due to a constraint viola-
tion. But this abortion will occur in every replica as each local DBMS performs
integrity checking. This way, no inconsistency will appear and such mismatch
between voting and final outcome does not affect any other replication processes.

Although these extensions demand a minor effort, they do have some impact
from the point of view of the client. In the original algorithm, as it is described
by Wiesmann and Schiper [136], control was returned to the client before the
actual commit was requested to the DBMS, thus reducing the transaction com-
pletion time perceived by the user application. When integrity constraints are
involved, such behavior is not correct. However, actual transaction completion

2Approaches subject to the compromised validation problem can be solved as in the CBR case.
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time remains the same in the extended version, so proper integrity management
does not carry performance implications in WVR protocols.

7.5.2 Certification-Based Replication Protocols

CBR protocols are quite similar to WVR ones but, instead of a validation where
only the delegate replica decides and broadcasts later its decision, CBR protocols
perform a symmetrical evaluation stage: the certification.

To provide a serializable isolation level, readset propagation is needed in CBR
protocols, since only the delegate replica maintains such information when trans-
actions request their commitment, but all replicas need it when the certification
is executed. However, readset collection and propagation can be costly if row-
level granularity is used for managing readsets and writesets.3 So, in practice,
certification-based protocols are rarely used for implementing serializable isola-
tion. Nonetheless, CBR is the preferred protocol class for providing the snapshot
isolation (SI) level [9], where readsets do not need to be checked. So we focus
on SI-oriented CBR protocols, whose pseudocode is displayed in Figure 7.2a.

1: Execute T

2: On T commit request:

3: TO-bcast(R,〈wset(T ),Rk〉)

4: Upon 〈wset(T ),Rd〉 reception:

5: statusT ← certify(wset(T ),wslistk)

6: if statusT = commit then

7: append(wslistk,wset(T ))

8: if Rk 6= Rd then

9: DB.apply(wset(T ))

10: DB.commit(T )

11: else DB.abort(T )

12: if Rk = Rd then

13: send(c,statusT )

a. Original

1: Execute T

2: On T commit request:

3: TO-bcast(R,〈wset(T ),Rk〉)

4: Upon 〈wset(T ),Rd〉 reception:

5: statusT ← certify(wset(T ),wslistk)

6: if statusT = commit then

7: // append delayed until line 10b

8: if Rk 6= Rd then

9: DB.apply(wset(T ))

10: statusT ← DB.commitIA(T )

10a: if statusT = commit then

10b: append(wslistk,wset(T ))

11: else DB.abort(T )

12: if Rk = Rd then

13: send(c,statusT )

b. Extended

Figure 7.2: Integrity support in SI-oriented certification-based protocols

3It is also possible to use table-level granularity, but its coarse grain may increase abortion rate.
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Initially, a transaction T is locally executed in Rk. When T requests commitment,
its writeset is collected and broadcast in total order to the set R of alive replicas,
along with the identifier of its delegate replica, Rk. Upon the reception of such
a message, each replica certifies the incoming writeset against concurrent trans-
actions (logical timestamps are used to determine the set of concurrent transac-
tions), looking for write-write conflicts (line 5). This certification process returns
a commit result if no conflicts are found, or an abort result otherwise. This result
is regarded as the status of the transaction, statusT . Note that the certification is
symmetrical since each replica holds the same history log of previously delivered
and successfully certified writesets, wslistk. If no conflict is found, the writeset is
included in the history log (which should be pruned to avoid indefinite growth, as
suggested by Wiesmann and Schiper [136]) and the local DBMS interface, DB, is
used to apply the writeset in non-delegate replicas and to commit it in each node
(if writeset application is impeded, e.g., by T being involved in a deadlock and
aborted by the DBMS, it is reattempted until it succeeds). On the other hand, if a
conflict appears during certification, T is aborted in its delegate and discarded in
the rest of replicas (for simplicity, the pseudocode represents both actions as the
DB.abort(T ) operation, although no operation is requested to the DBMS in non-
delegate replicas). Finally, the delegate informs the client c with the transaction
outcome, represented by statusT .

SI-oriented CBR protocols are not affected by the increased readset problem, as
readsets are not considered. However, they base certification on a history log
that adds transactions as soon as they pass their validation, ignoring the results
of their commit requests. This leads to a compromised validation when integrity
constraints are involved. In addition, infinite reattempting appears when trying
to commit an integrity-violating transaction. As the processing for such a trans-
action will stop at line 10, the protocol will never reach line 13, which trivially
avoids any premature client notification.

The extensions for managing integrity constraints in SI-oriented CBR protocols
are displayed in Figure 7.2b. Line 10 is modified to perform an integrity-aware
commit request, which solves the infinite reattempting problem by detecting
abortions due to integrity violation. The result of this commit attempt is also
recorded and, only if it is successful, the writeset of such a transaction is ap-
pended to the history log. This is done in lines 10a and 10b, instead of in line 7,
in order to avoid the compromised validation problem. Moreover, as the status
of the transaction is updated with the result of its commit attempt, the client is
appropriately notified.
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These extensions, although simple, may have a notable impact on system perfor-
mance. Typical SI-oriented CBR protocols [40, 41, 79, 93] use some optimiza-
tions in order to achieve better performance. A possible optimization consists in
minimizing the set of operations to be executed in mutual exclusion in the part of
the protocol devoted to managing incoming messages. The related protocol sec-
tion in Figure 7.2a encompasses only lines 5 to 7. As a result, new certifications
can be made once the current writeset is certified. In our extended protocol, no
new writeset can be certified until a secure decision on the current one is taken.
Indeed, no possible assumption about the current writeset is secure: if we as-
sume that the current writeset T will commit and it later aborts due to integrity
constraints, subsequent writesets that were negatively certified due to T were un-
necessarily aborted. If, on the other hand, we assume that the current writeset
T will abort due to integrity, subsequent writesets that were positively certified
due to the absence of T from the history log were incorrectly validated and they
should be rejected. In any case, either if we add the writeset to the log and later
remove it, or if we wait for its commitment before adding a writeset to the log, a
fatal situation may arise if the access to the log is not prevented in the meantime.
Indeed, replica divergence may occur due to the different pace at which replicas
apply transactions in the database. If the final outcome of a writeset modifies the
history log (either removing that transaction from the log or adding that trans-
action to the log), such a modification may take place at different instants in
different replicas. This natural lack of synchrony may cause different outcomes
at different nodes in the validation of new delivered transactions, which may in
turn lead to replica divergence.

As a result of the problems just mentioned, no new writeset can be certified until
the real outcome of the current one is known. That only happens once the transac-
tion termination is completed in the DBMS. This might require quite some time,
but must be done one writeset at a time. Thus, the mutual exclusion zone in the
extended protocol of Figure 7.2b includes lines 5 to 10b.

Another possible optimization [41] for CBR protocols consists in grouping mul-
tiple successfully certified and non-conflicting writesets, applying all of them at
once in the underlying DBMS. This reduces the number of DBMS and I/O re-
quests, thus greatly improving the overall system performance. Unfortunately,
extensions needed to prevent a compromised validation make impossible the for-
mation of such groups of transactions. And even if it were possible, an integrity
violation detected when applying one of such batches should lead to the rejection
of the whole batch, as the protocol could not find out which one of the individual
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writesets caused the violation. Still worse problems can raise. This is the case of
the optimization proposed by Lin et al. [79], where certified and non-conflicting
writesets can be concurrently sent to the database in order to parallelize writeset
application. As we will see in Section 7.7, this technique may lead the protocol
to break the fundamentals of database replication, by allowing different replicas
to commit different sets of transactions.

A final consideration must be done. As stated before, our aim in supporting in-
tegrity checking in database replication protocols is to guarantee at middleware
level the same support present in the DBMS. Although several DBMS products
(PostgreSQL, Oracle, Microsoft SQL Server. . . ) support the snapshot isolation
level, some of them label it as serializable not enforcing a true serializable level
but their own flavor of the SI one. These DBMSs are actually providing an en-
hanced integrity management in their systems, equivalent to the one provided in a
serializable level. The resulting isolation level cannot be tagged as a pure SI one
(as it was first defined [9]) but as an extended SI level able to support integrity
constraints in a serializable way [80]. As a result of this, pure SI certification-
based protocols [40, 69, 79, 93] should not be criticized for omitting the exten-
sions shown above.

7.5.3 Compromise Solutions

As we will see in the experimental study of Section 7.6, a proper integrity man-
agement may cause performance degradation. From the identified problems, the
most serious one is the infinite reattempting issue, as it causes the loss of protocol
liveness. The solution to this problem, as showed above, is simple and carries no
performance implication, so all systems will surely want to apply it if integrity
constraints are in use.

Other problems, however, are not as severe as infinite reattempting and may be
tolerated by some systems. Thus, the increased readset problem can be safely
ignored by protocols that do not use readsets for validation. In other systems,
client notifications might be simply used as an informal notice for the user, being
unimportant if they carry the actual outcome of the transaction.

Compromised validation, although it involves unnecessary abortions as we will
see later, does not cause more important problems like replica divergence, as
long as all nodes arrive to the same decision for each transaction. In WVR,
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the decision of the delegate is assumed by remote nodes, so such agreement is
guaranteed. In CBR, as long as all replicas certify over the same history log
(which is ensured if transactions are processed in their delivery order and no
modification –like removing transactions aborted due to integrity– is made to the
log outside the corresponding mutual exclusion zone), they will make the same
certification errors.4 As a result, the same set of transactions is committed and
aborted in all replicas. If those unnecessary abortions caused by the compromised
validation are bearable, it may be worth maintaining such a compromise solution
due to the performance penalty of an increased mutual exclusion zone.

An example of a compromise solution would be a WVR system where delegates
validate a transaction by asking for write locks as soon as its writeset is delivered.
As stated before, this approach, although based on local concurrency control (and
not in a history log), is still compromised: as a writeset asks for locks upon
delivery, it holds its locks from delivery-time until its termination. This may
result on some subsequent transactions being negatively validated based on the
assumption that the writeset will be committed. If the writeset is later aborted due
to integrity violation, those transactions were unnecessarily aborted.5 However,
as said before, as the rest of replicas assume the decision of the delegate, no
divergence occurs.

In summary, each system should assess which problems matter to it, correct such
issues, and accept the consequences, if present, of the rest.

7.5.4 Metaprotocol Extensions

In order to correct all the identified integrity-related problems that could arise in
our metaprotocol MeDRA, similar extensions as the proposed above need to be
applied.

As readsets are not used in the metaprotocol, the increased readset problem can
be safely ignored. Moreover, control is not returned to the client until after the

4In Section 7.6, we will force a situation where different nodes execute different protocol ver-
sions and so the condition of having the same history log will not hold.

5Once a writeset aborts due to integrity constraints, it will release its locks and thus the replica
will stop sending unnecessary abort votes due to that writeset.
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commit operation is invoked at the DBMS (see the complete metaprotocol pseu-
docode in Appendix B), and therefore the metaprotocol does not suffer from the
premature client notification.

In order to avoid infinite reattempting, the metaprotocol needs to identify the
abortion cause as reported by the DBMS. This can be easily done by distinguish-
ing among the different error codes and discarding the reattempt whenever an
integrity violation occurs.

Finally, both the validation of the weak voting protocol and the certification of the
certification-based one are implemented in the metaprotocol by the execution of
a procedure that checks for write conflicts with concurrent previously delivered
transactions, as stored in the history log (Algorithm 4 of Appendix B). Due to the
dependencies that appear among transactions, the validation/certification result is
often pending. Our dependency tracking, however, would allow us to easily adapt
the metaprotocol in the case of an integrity violation of an active transaction. In-
deed, whenever an active transaction TA exists in the tocommit list, all subsequent,
non-active transactions establish a w-dependency with it. Should TA abort due to
integrity violation, the metaprotocol could notice it and, instead of marking TA

as resolved and aborting all conflicting w-dependent transactions, the metapro-
tocol would delete TA from the lists and simply remove all the w-dependencies
it caused. This allows a correct, non-compromised integrity support for active
transactions without any additional overhead, as the current dependency tracking
serves as an extended mutex.

On the other hand, in order to support integrity violations by weak voting or
certification-based transactions, the metaprotocol could add a new log entry type,
i-pending, that would substitute the current resolved type for WVR and CBR
transactions positively validated but not yet committed. This new status would
mean that the final outcome of the transaction is not yet known, as it depends on
the deferred integrity checking. The solutions proposed above extended their mu-
tual exclusion zone. Likewise, with this new status, we extend our dependency
tracking in order to support integrity constraints. This way, the status of a CBR or
WVR transaction that is free of c- and w-dependencies but it is not yet committed
will be i-pending instead of resolved. Remember that whenever a c-pending TC

transaction removes all its c- and w-dependencies, a process is run for resolving
the dependencies it caused in cascade. For a correct integrity support, as said
before, the status of TC would become i-pending and existing c-dependencies
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on it will be transformed into i-dependencies during this cascade process.6 The
implications of an i-pending transaction for the validation of subsequent transac-
tions would be identical to those of c-pending transactions: whenever a delivered
transaction T overlaps with an i-pending transaction TI , a new i-dependency is
created and T is said to i-depend on TI . It is important to note that, as opposed
to a c-pending transaction, an i-pending transaction is committable, i.e., it can be
sent to the database to try to commit (another thing is whether it will be able to
actually commit or not, depending on integrity constraints). Only after the end
of the commit operation of TI , the i-dependencies it caused will be resolved: if TI

achieved to commit, its status changes to resolved and all its i-dependent transac-
tions are aborted. Otherwise, TI is removed from the log and such i-dependencies
are also removed.

Of course, an easier and less penalized approach would be to accept the conse-
quences of the compromised validation and thus provide a compromise solution
that tolerates integrity constraints although makes some unnecessary abortions.
In this case, without i-dependencies, transactions aborted due to integrity viola-
tion must remain in the log in order to avoid replica divergence.

7.6 Evaluation

The extensions or adaptations proposed in this chapter have performance impli-
cations only in the case of CBR protocols, where the greater mutual exclusion
zone of the extended version represents a serious disadvantage of the proper in-
tegrity management. On the other hand, in WVR protocols, although the client
perceives higher response times in the extended than in the original version, the
truth is that the premature client notification of the original protocol actually pro-
vided clients with an unreal vision of transaction completion times. As long as
the approach followed for validation is not compromised, the extensions of the
proposed version do not entail performance implications. Otherwise, when val-
idation is compromised and the system requires an absolutely correct integrity
support, an extension of the mutual exclusion zone, similar as the one made in
CBR, is also required. In such a case, one may expect the performance penalty of
the WVR extended version to be similar as in the CBR case, which is analyzed
in this section.

6The transformation of c-dependencies on i-dependencies can be only logical, as both depen-
dencies could be resolved after commit operation likewise.
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In order to study the costs of a correct constraint management in the CBR protocol
class, this section shows some experimental results, which confirm the increment
of transaction completion times and also reflect the problems that an incorrect
integrity management causes in a database replication middleware.

Experimental tests were performed in order to observe in a real system both
the negative effects of an incorrect integrity management and the performance
degradation due to a proper one. To this end, the original and the extended ver-
sions of the SI-oriented CBR protocol family were implemented and tested in our
replication middleware system, MADIS [59, 93]. From the original SI-oriented
CBR class shown in Figure 7.2a, we derived an integrity-unaware protocol, Int-
Unaware, which corrects the infinite reattempting problem (it is able to identify
those transactions that raise integrity exceptions when tried to be committed and
so it does not indefinitely reattempt them) and also notifies the client with the
real outcome of the transaction. These two modifications were needed to keep
protocol liveness and to be able to compute real abortion times. The only re-
maining problem in IntUnaware is the compromised validation: it keeps in the
history log those transactions that were aborted due to integrity violations. On
the other hand, the extended pseudocode shown in Figure 7.2b was implemented
in an integrity-aware version, IntAware.

Test Description To accomplish the analysis, we use Spread [122] as our GCS
and PostgreSQL [108] as the underlying DBMS. Client transactions access a da-
tabase with two tables, tbl1 and tbl2, each with 2 500 rows and two columns. The
first column of each table is declared as its primary key. The second column of
tbl1 is an integer field that is subject to updates made by transactions. The second
column of tbl2 is a foreign key, set to be evaluated in deferred mode, that refer-
ences the first column of tbl1. The primary and foreign key constraints define the
integrity consistency of our database.

Two types of transactions are used: (a) transactions that preserve integrity, called
IntS –integrity-safe– transactions; and (b) transactions that violate an integrity
constraint. The latter update the foreign key column of tbl2 with a value that
has no referenced value in the primary key column of tbl1, and are called IntV
–integrity-violating– transactions. In the test runs of our analysis, we varied the
proportions of IntS and IntV transactions. More precisely, we analyzed test runs
with 0, 3, 6, 9, 12 and 15% of IntV transactions,7 in order to analyze the evolution

7Higher percentages would not be realistic.
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of the system as more and more transactions originate integrity violations. Thus,
all shown graphs display this percentage in their X axis.

Both protocols were tested using MADIS with 2 replica nodes. Each node (as
those used for the evaluation of the metaprotocol in Chapter 6) has an AMD
Athlon™ 64 Processor at 2.0 GHz with 2 GB of RAM running Linux Fedora
Core 5 with PostgreSQL 8.1.4 and Sun Java 1.5.0. They are interconnected by
a 1 Gbit/s Ethernet. In each replica, there are 4 concurrent clients, each of them
executing a stream of sequential transactions. Two environments have been stud-
ied: a low-load one, with 100 ms of pause between each pair of consecutive
transactions from the same client; and a high-load environment, with no pause
between transactions. Both IntS and IntV transactions access a fixed number of
20 rows from table tbl1 for writing. These accesses may cause conflicts, which
will be detected during certification and will cause the abortion of some trans-
actions. Besides this, every transaction also updates a row from table tbl2: IntS
transactions do it preserving integrity, whilst IntV ones always violate the related
foreign key constraint.

Evaluating Incorrect Decisions To clearly show the differences in the deci-
sions made by each protocol, one replica node works with the IntAware version
and the other one uses the IntUnaware protocol. So, for convenience, we call
nodes as the aware and the unaware node, respectively. With this configura-
tion, it is easy to detect the incorrect decisions made by the IntUnaware protocol.
Suppose that an IntV transaction Tv is delivered in the system, presenting no
conflicts with concurrent transactions, and therefore being positively certified by
both nodes. The aware node tries to commit Tv and discards it when the database
notifies the integrity violation, preventing Tv from be appended to the history log.
In the unaware node, Tv is first inserted in the log and later sent to the database
for the commit operation. Although the integrity violation is detected and so Tv is
not indefinitely retried (one of the corrections we added to the original protocol,
as explained above), the violating transaction remains in the history log.

Problems arise when a subsequent IntS transaction Ts presents write conflicts
only with IntV transactions (see Figure 7.3). In the unaware node, some of these
IntV transactions –those that were positively certified– are present in the history
log and thus are considered during the certification of Ts. As a result, Ts may fail
the certification phase and thus be aborted, while it is allowed to commit in the
aware node, which does not present any IntV transaction in its history log. Let
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Event History logs

Non-conflicting IntV transaction Tv:
successfully certified in all nodes
nodes try to commit Tv and violation is detected

IntAware: {}
IntUnaware: {Tv}

IntS transaction Ts conflicts only with Tv:
IntAware successfully certifies and commits Ts

IntUnaware detects conflicts and aborts Ts (abort error)
IntAware: {Ts}
IntUnaware: {Tv}

IntS transaction Ts2 conflicts only with Ts:
IntAware detects conflicts and aborts Ts2

IntUnaware successfully certifies and commits Ts2 (commit error)
IntAware: {Ts}
IntUnaware: {Tv,Ts2}

Figure 7.3: Compromised validation in integrity-unaware nodes. An incorrect
behavior for IntV transactions leads to incorrect decisions about subsequent

IntS transactions.

us call this situation an abort error. A transaction Ta incorrectly aborted in the
unaware node is committed in the aware one, and it appears in the history log of
the aware node but not in the history log of the unaware one. Now suppose that a
subsequent IntS transaction Tc is delivered. If Tc presents conflicts only with Ta,
then, due to the differences in the history logs, Tc will abort in the aware node but
commit in the unaware one. This is a commit error.

As a result of the improper management of the unaware node, its history log in-
correctly includes some transactions (IntV and erroneously committed IntS trans-
actions) and it also incorrectly misses others (erroneously aborted IntS transac-
tions). This way, the unaware node may certify incoming transactions in a wrong
way, i.e., with different certification result that the aware node, or, even, with the
same final certification decision but based on conflicts with different transactions.
In our tests, we compute the differences in the final outcome of transactions from
both nodes. As IntV transactions always end in abortion, certification errors for
IntV transactions remain unnoticed in our tests. Thus, Figure 7.4 shows both
abort and commit errors over IntS transactions, made by the unaware node as a
result of its compromised validation. Values are expressed in absolute numbers
over the total of transactions issued (16 000 in each test).

Mainly, detected errors consist in abort errors, i.e., aborting transactions that con-
flict with others incorrectly included in the history log. Commit errors are less
usual as transactions in an unaware node are certified against a greater number
of transactions (compared to the aware node), thus being much more likely to
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Figure 7.4: Errors of the IntUnaware protocol

get aborted by mistake than to successfully pass certification. Indeed, for an IntS
transaction to be erroneously committed, it can present conflicts only with pre-
vious IntS transactions erroneously aborted. The graphs show that, as expected,
the greater the percentage of IntV transactions, the greater the number of errors
made by the unaware node, as opposed to the always correct behavior of the
aware node. This trend is maximized when the load increases.

Evaluating the Abortion Rate Figure 7.5 shows the average percentage of
local transactions that are aborted in a node due to a failed certification caused
by write conflicts with concurrent transactions previously delivered. Abortions
due to integrity violations at commit time are not computed here. As seen before,
the history logs of both protocol versions differ when transactions involve any
integrity violation. This may lead to a different set of transactions to be checked
for conflicts against the one being certified. Therefore, the abortion rate differs
from aware to unaware nodes: the abort errors of the unaware node result in an
abortion rate in this protocol which is higher than in aware nodes.

In a low-load environment, the abortion rate remains constant in the IntUnaware
protocol, while it linearly decreases in the IntAware node, where, as the percent-
age of IntV transactions increases, more and more transactions are not inserted
into the history log due to integrity violation, leading to a smaller probability
for local IntS transactions to fail certification due to conflicts with the remaining
ones. In a high-load environment, this behavioral trend is maintained; i.e., the
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Figure 7.5: Abortion rate due to actual certification conflicts

IntAware protocol aborts less transactions than the IntUnaware one. However, the
abortion rate of the unaware node should be constant (as it was in the low-load
case) as the conflict rate does not change in our test. The upward trend observed
in the graph for the IntUnaware protocol under a high load is surely due to the fact
that the environment chosen as high load was really stressing for our middleware,
which became saturated in many test iterations whose results we were forced to
discard. Remaining results, as they are variable and non-representative, might
lead to a biased interpretation of the evolution of the abortion rate in high-load
environments.

Evaluating the Length of Transactions Figure 7.6 presents the length of lo-
cal committed transactions (in ms). No important differences appear between the
protocols in the low-load environment, as the arrival rate is low enough and trans-
actions do not have to wait for accessing the mutual exclusion zone. On the other
hand, when the load becomes higher, it is clearly seen that the IntAware protocol
performs worse than the IntUnaware one. Indeed, completion times increase up
to 16.18% in the case of 12% of IntV transactions. As before, it can be observed
an upward trend in the high load case which is, again, due to the reduced number
of test results caused by system saturation.

Regarding aborted transactions, those that abort due to integrity violation present
completion times only slightly higher than those that commit. This is expected,
as the processing of those two types of transactions is the same except for the
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Figure 7.6: Length of committed transactions in presence of integrity
constraints

final integrity exception and subsequent rollback suffered by the first type. On
the other hand, transactions that suffer some block when locally executing at
their delegate, due to conflicts with other concurrent transactions, experiment an
increment in their duration which increases the probabilities of being aborted
during certification. As a result, transactions aborted due to conflicts present
completion times noticeable higher than the rest.

Recall that the proper management of integrity constraints prevents the IntAware
protocol from applying any optimization proposed for certification-based replica-
tion protocols. Moreover, the aware protocol requires a greater mutual exclusion
zone. Obviously, these conditions penalize performance and such a drawback
is more noticeable at higher loads. On the other hand, the IntUnaware protocol
applies only the optimization consisting in certifying newly delivered writesets
concurrently with the application of previous ones. This means that the per-
formance difference observed between the two considered protocols would be
bigger when comparing the IntAware algorithm with an optimized version of the
SI-oriented CBR protocol type. Likewise, when increasing the number of repli-
cas and clients, the performance gap will also increase. Nevertheless, also recall
that the IntUnaware version used for our tests was a correction over the original
SI-oriented CBR protocol and thus it was able to identify abortions due to in-
tegrity violation, avoiding the problem of infinite reattempting and also notifying
the client with the actual outcome. The original SI-oriented CBR protocol would
simply have lost liveness in our tests.
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7.7 Related Work

The literature on integrity checking in replicated database systems is extremely
scant; exceptions are few and peripheral (e.g., Veiga and Ferreira [132] focus on
supporting referential integrity in the world wide web, i.e., they attempt to avoid
broken links). Apart from the study presented here, which continues the work
initiated by Muñoz-Escoí et al. [94], and up to our knowledge, only Lin et al.
[80] make a contribution in this topic. We next analyze such a contribution.

In that paper, Lin et al. present a formal framework for reasoning about snapshot
isolation in a replicated environment. They later derive a new isolation level,
denoted SI+IC, which corresponds to the DBMSs that guarantee the maintenance
of integrity constraints upon the snapshot isolation level. Authors then extend
their dependency graphs in order to be able to identify a replicated history as 1-
copy-SI+IC. These contributions are very important, as all the existing literature
about integrity management was based on the serializable isolation level. Lin et
al. are thus the first to formally reason about integrity in snapshot isolation and
they achieve to provide a formal characterization for an isolation level that was
already supported in commercial systems but lacked of sound formalism, and to
adapt such a formalization for a replicated environment.

In order to show the applicability of their framework to real replication protocols,
authors show three sample protocols and describe their integrity support. The
first protocol is SRCA [79] (included in the survey of Chapter 5). As originally
described by Lin et al. [79], SRCA was a simple replica control algorithm for
SI and its pseudocode did not include any special treatment for possible errors
detected during the commit operation. Nevertheless, Lin et al. [80] assert that
the middleware is able to track the failure of a commit operation accordingly
(unfortunately, they do not provide details about what actions are made by this
tracking). From their description of the protocol and following our classifica-
tion of integrity-related problems, we can say that SRCA does not suffer from
infinite reattempting nor it does a premature client notification, thanks to such
failure tracking. Moreover, as readsets are not considered in snapshot isolation,
the increased readset problem can be safely ignored. However, the compromised
validation remains as a problem: even if SRCA removed an integrity-violating
transaction from its history log (which is not said in the paper, as details are not
provided), other transactions could have been incorrectly validated in the mean-
while. Truly, as all nodes apply the same writesets, no divergence would occur
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among replicas. However, as showed in our experimental results (Section 7.6),
a compromised validation entails a higher abortion rate than a correct integrity
management. In short, SRCA is a compromise solution for integrity support and
it may make validation errors. As a result, it does not provide the same integrity
support than the underlying DBMS, as it may make unnecessary abortions that
would not occur in a local DBMS.

The second sample replication protocol presented by Lin et al. [80] is there called
SRCA-Ex (which corresponds to the SRCA-Rep protocol included in the survey
of Chapter 5). This protocol allows non-conflicting writesets to be concurrently
sent to the database in order to parallelize such writeset application. As a re-
sult, different replicas may commit transactions in different orders. The loss of
sequentiality that follows is concealed from clients by not allowing new local
transactions to start whenever a hole in the commit order exists. In the absence
of integrity constraints, authors prove that SRCA-Ex provides one-copy snap-
shot isolation. However, as authors highlight, SRCA-Ex allows different replicas
to commit different sets of transactions when integrity constraints are involved.
Imagine two non-conflicting transactions that violate integrity if they are concur-
rent and both commit (e.g., the insertion of an employee into an empty department
and the deletion of that department). If these transactions concurrently execute
at different delegate replicas and their validation success (suppose no other con-
flicting transactions are executing), then in SRCA-Ex they are both immediately
committed at their delegate node. Later, when the second transaction tries to
commit, the violation is detected and that second transaction, which is different
at each node, aborts. As a result, a different set of transactions is committed by
these two replicas: not only integrity constraints are not supported but also the
correctness criterion of one-copy snapshot isolation is violated.

The third protocol described by Lin et al. [80] tries to unify the benefits of the
concurrent writeset application of the second protocol with the integrity support
of the first one. Thus, SRCA-2PC follows the same algorithm as SRCA-Ex but it
runs a 2PC protocol for the commitment of each transaction, after its writeset has
been applied at all nodes. This allows replicas to concurrently apply writesets
while ensuring that they will later agree on the set and the order of committed
transactions. Unfortunately, SRCA-2PC requires two consensus per transaction
(one for the abcast and one for the 2PC). This may have a cost similar to our
proposed solutions in a fast network, but it may seriously penalize performance
in networks with low bandwidth or high latency.
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In summary, the contributions of Lin et al. [80] regarding integrity support in
replicated databases are the definition of the new correctness criterion of 1-copy-
SI+IC and the detailed presentation of a formal framework that allow us to prove
if a replication protocol guarantees such a criterion. However, as the main objec-
tive of the paper is not the same as ours, the paper does not show the integrity-
related problems that may appear with an incautious integrity management8 and it
does not detail how replication protocols must be designed in order to provide the
new criterion. Indeed, from the two protocols providing 1-copy-SI+IC which are
described in the paper, SRCA and SRCA-2PC, the first one is said to directly and
seamlessly support integrity although, always based on the given information,
it actually constitutes a compromise solution; and the second one, which inher-
its the compromised validation from SRCA, requires an atomic commit protocol
additional to the consensus of the abcast which might severely penalize perfor-
mance. On the other hand, Lin et al. [80] were mainly focused in the formal
characterization of snapshot isolation in replicated databases, and so they make
an extensive and pioneering study of it.

7.8 Conclusions

Integrity constraints define what is a consistent database state, by requiring cer-
tain conditions to be invariant across updates. Due to the physical distribution
of a replicated database, concurrent transactions may execute at different servers
without being aware of each other. Thus, to guarantee the ACID properties of
transactions [55], integrity, i.e., semantic consistency, has to be checked at de-
ferred mode, when the set of concurrent transactions is finally known. Except for
very rare exceptions, replication protocols do not consider semantic consistency
at all. This poses a problem when the database schema includes integrity con-
straints: as protocols sanction transactions as ready to commit if no conflicting
accesses to shared data resources are detected, some accepted transactions are
later unexpectedly aborted by the DBMS to guarantee integrity.

8SRCA-Ex, as a vast majority of replication systems, does not support integrity, but the conse-
quence this entails is the loss of one-copy equivalence when integrity constraints are involved. As
a result, it would not make sense to study the possible quality degradation of the protocol in the
presence of integrity constraints, as it cannot be used as a correct replication protocol in such an
environment.
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We have identified four problems related to an improper or null integrity man-
agement: premature client notification, increased readset/writeset, compromised
validation, and infinite reattempting. Their implications vary from the loss of
protocol liveness to a misinformed client. We have also analyzed several well-
known classes of abcast-based replication protocols. For some of them, support
for integrity checking can be seamlessly integrated. For others, some modifica-
tions are needed to make them work well also when integrity is checked by the
DBMS at hand. The solution to their problems is not difficult and has been de-
scribed in this chapter by providing the required extensions for each critical class.
Unfortunately, the extensions for CBR and WVR protocols (which have the best
performance properties [136]) demand longer critical sections and prevent them
from using most of the optimizations that are responsible for their good reputa-
tion, thus leading to a performance decrease.

We have presented an experimental study of the negative effects of not correctly
managing integrity constraints, along with the performance implications of a cor-
rect integrity management. This has been accomplished by comparing the behav-
ior of two protocols. The first one reflected the traditional behavior of protocols
which do not care about integrity maintenance, based on the incautious assump-
tion that all transactions are programmed in such a way that they will preserve
integrity. On the other hand, the second protocol studied in our analysis prop-
erly handles semantic consistency as declared by integrity constraints. We have
showed that an improper processing of integrity-violating transactions entails a
history log that does not reflect the transactions actually applied in the database,
which leads to errors when validating subsequent transactions. This causes not
only incorrect abortions but also incorrect commits. Moreover, resulting from
those errors, incorrect nodes present higher conflict-related abortion rates than
correct nodes. On the other hand, results show that transactions suffer some de-
lay when managed by the extended, integrity-aware protocol version. This delay
is due to the greater mutual exclusion zone needed to safely access the history
log, which forces transactions to wait before accessing it. This way, as the load
increases, also the queue length (and, therefore, the waiting time) becomes larger.
This opens a new line of research in the field of database replication, that could
lead to efficient integrity-aware protocols, if new protocol optimizations, compat-
ible with a correct integrity constraint management, are designed for overcoming
the current limitations, as identified in this thesis.
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Chapter 8

Conclusions

This thesis is devoted to the consistency, characterization, adaptability and in-
tegrity of database replication systems. Among its results, the following insight-
ful conclusions can be highlighted:

• The correctness criterion of 1SR, widely accepted and used, can be sub-
divided into three different levels of user-centric consistency, regarding
the possibility of inversions between transactions that present a real-time
precedence among them. The strictest level avoids all inversions; the in-
termediate level avoids inversions within user sessions; and the most per-
missive level allows any inversion. These three levels correspond to new
proposed correctness criteria: 1ASR, 1SR+ and 1SR′, respectively.

• Such division into different criteria is interesting because it removes all the
possible confusion among users faced to one-copy equivalent databases:
users now know exactly what to expect from the system, both in terms of
transaction isolation and replica consistency.

• Different synchronization models based on different levels of server-centric
consistency can be used to guarantee each of the proposed criteria. Design-
ers, providers and administrators can then benefit from this distinction, as
the exact level of replica consistency maintained among the set of replicas
may have a notable influence upon the performance of the system.
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• A fine-grained characterization model based on interactions, policies and
strategies can precisely describe a database replication system while being
open enough to cover the great majority of the existing systems.1

• By means of a metaprotocol, different combinations of policies, i.e., dif-
ferent replication protocols, can be executed concurrently in the same da-
tabase system while achieving a performance similar2 to that obtained by
the original protocols executed in a stand-alone manner. Such concurrency
allows the system to face heterogeneity, providing it with what we have
called outward adaptability.

• The same metaprotocol can be used for the on-the-fly exchange of proto-
cols, with a transition phase where protocols are executed in concurrency.
This allows the system to adapt to dynamic conditions in the environment,
the applications and the users, achieving forward adaptability.

• Not only transaction and replica consistency are important: semantic con-
sistency defines constraints that must be enforced so that data appropriately
reflects reality as needed by the semantics of the application. While stand-
alone databases commonly support such integrity constraints, distributed
databases usually do not consider them, which may lead to several anoma-
lies of different gravity: from unnecessary abortions to replica divergence
or loss of protocol liveness.

• Some replication protocols, maybe unintendedly, already avoid most of
such integrity-related problems, allowing a seamlessly support for integrity
constraints with minimum adaptations. Other protocols, however, require
further extensions that penalize performance by preventing some well-
known optimizations. Trading complete correctness in integrity support
for less penalized performance, compromise solutions can be designed.
Such solutions tolerate constraints without increasing costs but must as-
sume some negative consequences such as unnecessary abortions.

The results presented in this thesis meet the established objectives and constitute a
contribution to the state of the art of database replication at the time the respective

1Upon 60 different analyzed protocols, only 2 presented some difficulties to be described with
the model, which represents a percentage over 96.6% of applicability of the model.

2From the studied combinations, only those mixing the weak voting and the active techniques
suffered a significant performance penalty in our test bed.
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works were started. Moreover, such results are also relevant because they open
the door to prospective interesting contributions in different lines of work:

• In the light of the survey and based on the policies followed by different
replication systems, a handful of criteria could give a non-expert designer
some guidance on their election of the best protocol to use in their sys-
tem, depending on the characteristics of the system, the applications or the
workload.

• Starting from the characterization model and the survey, the metaprotocol
could be further explored by studying the gains and penalties of the con-
currency of different sets of protocols or, individually, of different sets of
strategies for each policy.

• Based on the previous prospective results, different metrics could be iden-
tified as relevant in order to be measured by an on-line monitoring compo-
nent able to deduce the likely optimal combination of policies for a given
scenario in a dynamic and heterogeneous system that exploits the metapro-
tocol.

• Analyzing the combinations of strategies used by the systems studied in
the survey, not yet explored combinations could be identified in order to
evaluate their adequacy if new goals are set for replication protocols.

• The historical study of replicated databases may also help researchers to
identify which advances at which fields allowed the appearance of each
proposal, as well as to foresee which other advances could lead to new
systems.

• New optimizations could allow integrity-aware database replication proto-
cols to overcome the performance penalties identified in this thesis.

All these lines of work could lead to new and significant contributions that would
join many other encouraging results of the research community in order to further
improve and enrich the state of the art of database replication.
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Conclusiones

Esta tesis está dedicada a la coherencia, la caracterización, la adaptabilidad y la
integridad de los sistemas de replicación de bases de datos. Entre sus resultados,
se pueden destacar las siguientes conclusiones:

• El criterio de corrección de 1SR, ampliamente aceptado y usado, puede
subdividirse en tres niveles diferentes de coherencia desde el punto de vis-
ta del usuario, según la posibilidad de inversiones entre transacciones que
presentan una precedencia de tiempo real entre ellas. El nivel más estric-
to evita todas las inversiones; el nivel intermedio evita inversiones en el
contexto de las sesiones de usuario; y el nivel más permisivo permite cual-
quier inversión. Estos tres niveles corresponden con los nuevos criterios de
corrección propuestos: 1ASR, 1SR+ y 1SR′, respectivamente.

• Esta división en diferentes criterios es interesante porque elimina toda po-
sible confusión entre los usuarios de bases de datos equivalentes a una co-
pia: los usuarios saben ahora exactamente qué esperar del sistema, tanto en
términos de aislamiento de transacciones como de coherencia de réplicas.

• Para garantizar cada uno de los criterios propuestos, pueden usarse diferen-
tes modelos de sincronización basados en distintos niveles de coherencia
desde el punto de vista de los servidores. Los diseñadores, proveedores y
administradores pueden así beneficiarse de esta distinción, ya que el nivel
exacto de coherencia de réplicas que se mantiene entre el conjunto de ser-
vidores puede tener una influencia notable en el rendimiento del sistema.

• Un modelo de caracterización de grano fino y basado en interacciones, po-
líticas y estrategias puede describir con precisión un sistema de replicación
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de bases de datos y ser a la vez lo suficientemente abierto como para cubrir
una amplia mayoría de los sistemas existentes.3

• A través de un metaprotocolo, se pueden ejecutar concurrentemente en el
mismo sistema de bases de datos diferentes combinaciones de políticas, es
decir, diferentes protocolos de replicación, consiguiendo un rendimiento
similar4 al conseguido por los protocolos originales ejecutados individual-
mente. Esta concurrencia permite al sistema afrontar la heterogeneidad,
proporcionándole lo que hemos llamado adaptabilidad hacia fuera.

• El mismo metaprotocolo puede usarse para el intercambio en caliente de
protocolos, con una fase de transición en la que ambos protocolos se eje-
cutan concurrentemente. Esto permite al sistema adaptarse a condiciones
dinámicas en el entorno, en las aplicaciones y en los usuarios, proporcio-
nándole adaptabilidad hacia delante.

• No sólo la coherencia de transacciones y de réplicas es importante: la cohe-
rencia semántica define restricciones que deben respetarse para que los da-
tos reflejen apropiadamente la realidad, tal y como necesita la semántica de
la aplicación. Mientras que las bases de datos centralizadas generalmente
soportan tales restricciones de integridad, las bases de datos distribuidas
suelen no considerarlas, lo que puede dar lugar a varias anomalías de dife-
rente gravedad: desde abortos innecesarios a divergencia de las réplicas o
pérdida de la viveza del protocolo.

• Algunos protocolos de replicación, quizá sin pretenderlo, ya evitan la ma-
yoría de los problemas relacionados con la integridad, lo que permite un so-
porte directo de las restricciones de integridad con mínimos cambios. Otros
protocolos, sin embargo, requieren mayores extensiones que penalizan el
rendimiento al impedir ciertas optimizaciones bien conocidas. Sacrifican-
do la completa corrección en el soporte de la integridad por un rendimiento
menos penalizado, pueden diseñarse soluciones de compromiso. Estas so-
luciones toleran las restricciones sin incurrir en costes pero deben asumir
algunas consecuencias negativas, como los abortos innecesarios.

3De los 60 protocolos analizados, sólo 2 presentaron dificultades a la hora de ser descritos con
el modelo, lo que representa un porcentaje de aplicabilidad del modelo de más del 96,6 %.

4De las combinaciones estudiadas, sólo las que mezclan las técnicas de votación débil y de re-
plicación activa sufrieron una penalización notable en su rendimiento en nuestro banco de pruebas.
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8. CONCLUSIONS

Los resultados presentados en esta tesis cumplen los objetivos establecidos y
constituyen una contribución al estado del arte de la replicación de bases de datos
en el momento en que se iniciaron los trabajos respectivos. Estos resultados son
relevantes, además, porque abren la puerta a posibles contribuciones futuras:

• A la vista del estudio del capítulo 5 y basándose en las políticas seguidas
por diferentes sistemas de replicación, un pequeño conjunto de criterios
podrían orientar a un diseñador no experto en su elección del mejor proto-
colo para usar en su sistema, dependiendo de las características del mismo,
las aplicaciones o la carga de trabajo.

• A partir del modelo de caracterización y el estudio del capítulo 5, puede ex-
plorarse el metaprotocolo en mayor profundidad, analizando las ganancias
y penalizaciones de la concurrencia de diversos conjuntos de protocolos o,
individualmente, de diferentes conjuntos de estrategias para cada política.

• En base a los puntos anteriores, se pueden identificar diferentes métricas
como relevantes para su medición por un componente de monitorización en
línea capaz de deducir la combinación de políticas probablemente óptima
para un escenario dado en un sistema dinámico y heterogéneo que explote
el uso del metaprotocolo.

• Analizando las combinaciones de estrategias usadas por los sistemas estu-
diados en el capítulo 5, pueden identificarse combinaciones aún no explo-
radas con el fin de evaluar su adecuación en el caso de que se establezcan
nuevos objetivos para los protocolos de replicación.

• El estudio histórico de los sistemas de bases de datos replicadas puede tam-
bién ayudar a los investigadores a identificar qué avances en qué campos
permitieron la aparición de cada propuesta, así como a predecir qué otros
avances podrían dar lugar a nuevos sistemas.

• Nuevas optimizaciones podrían conseguir protocolos de replicación de ba-
ses de datos que sean conscientes de las restricciones de integridad pero
que no sufran las penalizaciones de rendimiento identificadas en esta tesis.

Todas estas líneas de trabajo podrían dar lugar a nuevas y significativas contri-
buciones que se unirían a muchos otros alentadores resultados de la comunidad
científica con el fin de mejorar y enriquecer aún más el estado del arte de la re-
plicación de bases de datos.
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Appendix A

On the Correctness of MeDRA

We provide here some hints about the correctness of our metaprotocol MeDRA.
Although this appendix does not pretend to be a formal and complete correct-
ness demonstration, it includes some guidelines that intuitively reason about the
goodness of MeDRA.

A.1 Correctness Arguments for the Supported Protocols

Pedone et al. [105] presented a replication scheme based on atomic broadcast.
The correctness proof for that replication protocol, as presented in the technical
report version of that work, is based on the Multiversion Graph theorem [15].
The demonstration first proves that every two processes produce the same mul-
tiversion serialization graph and, then, it proves that every graph is acyclic, con-
cluding that the proposed replication protocol guarantees one-copy serializabil-
ity. This reasoning is directly applicable to each of the protocol classes currently
supported by the metaprotocol, as they are also based on a total order broad-
cast, which determines the order on which transactions are validated and finally
committed. Therefore, the same reasoning can be used to sketch an intuitive
correctness proof for these three protocol families, which follow the same basic
scheme as the algorithm by Pedone et al. [105]: (a) transactions are locally ex-
ecuted in one process without interaction with other processes (this step is void
in active replication); and (b) when the transaction requests its commitment, its
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A.2. PRINCIPLE OF NO INTERFERENCE

writeset is propagated to the other processes, so that the transaction can be val-
idated and, if possible, committed (in active replication, this step contains the
full processing of the transaction). As each process receives the same input (i.e.,
transactions) in the same order (that of the atomic broadcast), and each process
follows a deterministic algorithm to commit or abort transactions, the resulting
history of applied transactions will be the same in all processes. As a result of
these steps, each protocol achieves one-copy equivalence with natively sequential
replica consistency.

Deployed upon a local DBMS that provides SI, and enforcing in their validation
phase the rules for SI, these protocols guarantee, at least, a snapshot isolation
level among all the system transactions. Active replication, for its part, increases
the isolation level until the serializable one if transactions are executed in a non-
overlapping manner.

A.2 Principle of No Interference

We claim that MeDRA does not interfere with the original behavior of the sup-
ported protocols when executed either as the only protocol inside the metapro-
tocol or in concurrence with other protocol families. The sequence of steps fol-
lowed by the protocols, the rules that govern their decisions, and the behavior of
their transactions are the same as in a stand-alone execution.

A.2.1 MeDRA Running Only One Protocol

The metaprotocol does not interfere nor it introduces any modification in the be-
havior of a supported protocol affecting to its isolation guarantees or its level
of replica consistency. The execution of the stand-alone version and the ver-
sion running inside MeDRA are identical. Indeed, the aspects of a system which
contribute to the correctness criterion provided are: (a) the global concurrency
control in collaboration with the local concurrency control of the underlying da-
tabase; (b) the communication guarantees used to propagate the transaction in-
formation and the way writesets are applied; and (c) the rules for the validation
phase of the protocol, if any. None of these change when using the metaprotocol.
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A. ON THE CORRECTNESS OF MEDRA

A.2.2 MeDRA Running Multiple Protocols

Transactions from several or all the protocols coexist in the local database and
in the queues of the middleware metaprotocol: tocommit, with all the delivered
transactions pending to be processed in this node, and log, which includes the
history of all transactions applied in this node. The isolation level provided by
the DBMS is the same for all: snapshot isolation. During validation,1 all concur-
rent transactions are considered, regardless of their protocol. In order to validate a
transaction Ti in a node Rk, its writeset Ti.wset is compared against the writesets of
all concurrent transactions Tj that were previously delivered at Rk and that are or
will be finally committed. Thus, we need to know which concurrent transactions
committed or will commit and which are their writesets. An active transaction
is not executed until it reaches the first position in the tocommit queue and, thus,
its writeset is unknown before its commitment. A weak voting transaction in
non-delegate replicas must wait to the arrival of the vote of the delegate to know
if it will commit. These conditions create what we call dependencies between
the transaction being validated and all previous transactions whose pending in-
formation prevents the validation from finishing. These dependencies are stored
as part of the transaction information. As the tocommit queue is processed and
active transactions are committed, and as voting messages arrive from delegate
nodes, dependencies are resolved, leading to the abortion of the transaction if a
conflict is detected or to its acceptance and later commitment otherwise. Depen-
dencies introduce additional waiting times but liveness is ensured. The turn for
an active transaction eventually arrives, as well as the voting message of a weak
voting transaction. (In case of failure of a node, not originally considered, all
replicas can safely abort all weak voting transactions whose delegate replica was
the crashed one, i.e., the failure of a replica can be understood as a negative vot-
ing message for all its local transactions.) This way, the behavior of the protocols
is not changed, only possibly delayed. The complete history of each replica will
guarantee SI. Interleaved in this history, active transactions remain completely
serialized between them but with snapshot isolation with regard to the rest of
transactions.

1See Algorithm 4 of Appendix B.
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A.3. CORRECTNESS CRITERION

A.3 Correctness criterion

On the basis of the principle of no interference, which states that the metaproto-
col does not pervert the basic scheme used in the original protocols, even in case
of concurrency, we can say that the correctness criterion provided by the meta-
protocol prototype deployed upon a full replicated database where local DBMSs
guarantee snapshot isolation by means of a multiversion concurrency control is
1SI. Indeed, the metaprotocol, based on the snapshot isolation of the underlying
database and on the validation rules of the running protocols, ensures an isolation
level of SI among all transactions executed in the system (higher isolation would
involve the management of readsets). On the other hand, as update propaga-
tion and application is based on a total order broadcast and on a non-overlapping
processing, server-centric replica consistency is natively sequential (#S). Finally,
no mechanisms avoid the appearance of inversions. As a result, the correctness
criterion is 1SI.
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Appendix B

Pseudocode of MeDRA

Algorithms 1 to 13 reflect the pseudocode of the current MeDRA prototype.

Algorithm 1 Metaprotocol pseudocode (in replica Rk)
1: Initialization:
2: for each available protocol Pq do
3: Pq.activated← suitable(Pq) ⊲ true if Pq is currently suitable
4: end for
5: tocommit← /0 ⊲ transactions pending to commit in Rk

6: log← /0 ⊲ history log of all system transactions
7: L-TOI← 0 ⊲ Total Order Index (TOI) of the last committed transaction
8: N-TOI← 1 ⊲ TOI for the next transaction to be delivered
9: GCcounter← 0 ⊲ Counter for garbage collection heartbeat

10:

11: I. Protocol Pq has to be deactivated: ⊲ deactivate a protocol
12: Pq.activated← false
13: if Pq.locals = 0 then
14: unload(Pq)
15: end if
16:

17: II. Protocol Pq has to be activated: ⊲ activate a protocol
18: Pq.activated← true
19: load(Pq)
20:
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Algorithm 2 Metaprotocol pseudocode (in replica Rk) (cont.)
21: III. New local request for a transaction Ti in protocol Pq:
22: if Pq.activated then
23: Pq.locals← Pq.locals+1
24: call Pq to serve(Ti) ⊲ request is granted
25: else
26: deny request
27: end if
28:

29: IV. A local Pq transaction terminates:
30: Pq.locals← Pq.locals−1
31: if (Pq.activated = false)∧ (Pq.locals = 0) then
32: unload(Pq)
33: end if
34:

35: V. Pq asks to send message Mn related to transaction Ti:
36: if Mn contains a writeset then
37: ⊲ from a certification-based or weak voting transaction
38: Ti.bot← L-TOI ⊲ logical timestamp of begin of transaction
39: end if
40: piggyback garbage collection info (L-TOI) ⊲ Rk committed until L-TOI

41: GCcounter← 0 ⊲ reset counter for garbage collection heartbeat
42: broadcast(Mn〈Ti〉) ⊲ in total order, except for voting messages
43:

44: VI. Upon delivery of Mn related to transaction Ti:
45: call Ti.protocol to process(Mn〈Ti〉)
46: do garbage collection ⊲ step VIII
47:

48: VII. Garbage collection heartbeat:
49: if GCcounter = GCMAX then
50: ⊲ GCMAX must be set according to node capabilities, workload. . .
51: broadcast garbage collection info (L-TOI)
52: ⊲ no guarantees required (or reliable if GC is critical)
53: GCcounter← 0
54: end if
55:
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B. PSEUDOCODE OF MEDRA

Algorithm 3 Metaprotocol pseudocode (in replica Rk) (cont.)
56: VIII. Garbage collection:
57: remove from the log until the last writeset applied by all replicas
58:

59: IX. Committing thread:
60: Ti← head(tocommit) ⊲ oldest transaction in tocommit

61: if Ti.status 6= c-pending then ⊲ Ti is committable
62: if Ti.delegate 6= Rk then
63: call Ti.protocol to apply(Ti) ⊲ apply in non-delegate replicas
64: end if
65: call Ti.protocol to commit(Ti) ⊲ commit in all replicas
66: L-TOI← Ti.toi ⊲ update L-TOI

67: if Ti.status = w-pending then
68: ⊲ a w-pending transaction obtains its writeset now
69: Ti.status← resolved ⊲ Ti is not w-pending any more
70: resolve_w-dependencies(Ti) ⊲ resolve dependencies
71: end if
72: tocommit →֒ Ti ⊲ delete Ti from tocommit

73: GCcounter← GCcounter +1
74: ⊲ increment counter for garbage collection heartbeat
75: end if
76:
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Algorithm 4 Common procedures (in replica Rk): validate
1: procedure VALIDATE(Ti)
2: ⊲ check for write conflicts with concurrent previously delivered writesets
3: for each Tj ∈ log such as Tj.toi > Ti.bot do ⊲ concurrent with Ti

4: if (Tj.status = resolved)∧ (Tj.wset∩Ti.wset 6= /0) then
5: ⊲ a resolved conflicts with Ti

6: remove_dependent(Ti) ⊲ remove references to Ti

7: return negative ⊲ Ti did not pass its validation
8: end if
9: if (Tj.status = w-pending)∨

10: ((Tj.status = c-pending)∧ (Tj.wset∩Ti.wset 6= /0)) then
11: ⊲ w-pending and conflicting c-pending cause dependencies
12: Tj.dependent ←֓ Ti ⊲ consider Ti as dependent on Tj

13: Ti.dependencies← Ti.dependencies+1
14: ⊲ increase dependency counter
15: end if
16: end for
17: if Ti.dependencies > 0 then
18: return pending ⊲ some dependencies were found
19: else
20: return positive ⊲ Ti successfully validated
21: end if
22: end procedure

Algorithm 5 Common procedures (in replica Rk): remove_dependent
1: procedure REMOVE_DEPENDENT(Ti)
2: ⊲ Ti must abort, remove references from all dependent lists
3: for each Tj ∈ log such as Ti ∈ Tj.dependent do
4: Tj.dependent →֒ Ti ⊲ remove Ti

5: end for
6: end procedure
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B. PSEUDOCODE OF MEDRA

Algorithm 6 Common procedures (in replica Rk): resolve_w-dependencies
1: procedure RESOLVE_W-DEPENDENCIES(Tj)
2: ⊲ Tj was a w-pending transaction and now its writeset is known
3: for each Ti ∈ Tj.dependent do ⊲ for each dependent transaction
4: Tj.dependent →֒ Ti ⊲ remove Ti from Tj.dependent

5: if Ti.wset∩Tj.wset = /0 then ⊲ no conflicts between Ti and Tj

6: Ti.dependencies← Ti.dependencies−1
7: ⊲ decrease dependency counter
8: if Ti.dependencies = 0 then ⊲ all dependencies are resolved
9: call Ti.protocol to set_resolved(Ti) ⊲ Ti is resolved

10: resolve_c-dependencies(Ti,commit)
11: ⊲ resolve dependencies in cascade
12: end if
13: else ⊲ conflicts between Ti and Tj

14: log →֒ Ti; tocommit →֒ Ti ⊲ remove Ti from both lists
15: remove_dependent(Ti) ⊲ remove references to Ti

16: resolve_c-dependencies(Ti,abort)
17: ⊲ resolve dependencies in cascade
18: if Ti.delegate = Rk then
19: call Ti.protocol to rollback(Ti) ⊲ rollback in delegate
20: end if
21: end if
22: end for
23: end procedure
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Algorithm 7 Common procedures (in replica Rk): resolve_c-dependencies
1: procedure RESOLVE_C-DEPENDENCIES(Tj, termination))
2: ⊲ Tj was a c-pending transaction and now its outcome is known
3: for each Ti ∈ Tj.dependent do ⊲ for each dependent transaction
4: Tj.dependent →֒ Ti ⊲ remove Ti from Tj.dependent

5: if termination = commit then ⊲ if Tj committed, Ti must abort
6: log →֒ Ti; tocommit →֒ Ti ⊲ remove Ti from both lists
7: remove_dependent(Ti) ⊲ remove references to Ti

8: resolve_c-dependencies(Ti,abort)
9: ⊲ resolve dependencies in cascade

10: if Ti.delegate = Rk then
11: call Ti.protocol to rollback(Ti) ⊲ rollback in delegate
12: end if
13: else ⊲ Tj aborted, so the dependency is removed
14: Ti.dependencies← Ti.dependencies−1
15: ⊲ decrease dependency counter
16: if Ti.dependencies = 0 then ⊲ all dependencies are resolved
17: call Ti.protocol to set_resolved(Ti) ⊲ Ti is resolved
18: resolve_c-dependencies(Ti,commit)
19: ⊲ resolve dependencies in cascade
20: end if
21: end if
22: end for
23: end procedure
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B. PSEUDOCODE OF MEDRA

Algorithm 8 Protocol modules (in replica Rk): active
1: procedure SERVE(Ti) ⊲ serve an incoming local request
2: Ti.proxy← Rk

3: ask metaprotocol to send Mn〈Ti〉
4: ⊲ Rk acts as a proxy to broadcast the request on behalf of the client
5: end procedure

6: procedure PROCESS(Mn〈Ti〉) ⊲ process an incoming message
7: Ti.toi← N-TOI ⊲ assign total order index
8: N-TOI← N-TOI +1 ⊲ increase N-TOI for next transaction
9: Ti.status← w-pending

10: ⊲ active transactions are w-pending until commitment
11: log ←֓ Ti; tocommit ←֓ Ti ⊲ append Ti to both lists
12: end procedure

13: procedure APPLY(Ti) ⊲ apply a transaction in the database
14: ⊲ in active replication there is no writeset to apply
15: end procedure

16: procedure COMMIT(Ti) ⊲ commit a transaction in the database
17: DB.execute(Ti) ⊲ call DBMS to execute Ti

18: DB.commit(Ti) ⊲ call DBMS to commit Ti

19: if Ti.proxy = Rk then
20: return to client
21: end if
22: end procedure

Algorithm 9 Protocol modules (in replica Rk): weak voting
1: procedure SERVE(Ti) ⊲ serve an incoming local request
2: Ti.delegate← Rk

3: while operation 6= commit do
4: let Ti execute the operation locally
5: ⊲ in case of abortion, the service of Ti ends
6: end while
7: Ti.wset← DB.writeset(Ti) ⊲ collect the writeset
8: ask metaprotocol to send Mn〈Ti〉 ⊲ broadcast the writeset
9: end procedure
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Algorithm 10 Protocol modules (in replica Rk): weak voting (cont.)
10: procedure PROCESS(Mn〈Ti〉) ⊲ process an incoming message
11: if Mn contains a writeset then
12: Ti.toi← N-TOI ⊲ assign total order index
13: N-TOI← N-TOI +1 ⊲ increase N-TOI for next transaction
14: if Ti.delegate = Rk then ⊲ Ti is local
15: validation← validate(Ti) ⊲ perform a validation process
16: if validation = negative then ⊲ Ti conflicts with a resolved
17: rollback(Ti) ⊲ Ti must abort due to negative validation
18: else
19: if validation = positive then ⊲ no conflicts and ∄ w-pending
20: set_resolved(Ti) ⊲ Ti is now resolved
21: else ⊲ validation is pending
22: Ti.status← c-pending
23: end if
24: log ←֓ Ti; tocommit ←֓ Ti ⊲ append Ti to both lists
25: end if
26: else ⊲ Ti is not local
27: Ti.status← c-pending
28: ⊲ non-delegate nodes mark it as c-pending until the vote arrives
29: log ←֓ Ti; tocommit ←֓ Ti ⊲ append Ti to both lists
30: end if
31: else ⊲ Mn is a voting message
32: if Ti.delegate 6= Rk then ⊲ ignore in the delegate
33: if Mn.vote = commit then
34: Ti.status← resolved ⊲ if vote is positive, Ti is resolved
35: else ⊲ Mn.vote = abort
36: log →֒ Ti; tocommit →֒ Ti ⊲ delete Ti from both lists
37: end if
38: resolve_c-dependencies(Ti,Mn.vote)
39: ⊲ outcome is known, resolve dependencies
40: end if
41: end if
42: end procedure

216



B. PSEUDOCODE OF MEDRA

Algorithm 11 Protocol modules (in replica Rk): weak voting (cont.)
43: procedure SET_RESOLVED(Ti) ⊲ Ti is now resolved
44: Ti.status← resolved ⊲ update status
45: if Ti.delegate = Rk then
46: vote(Ti,commit) ⊲ emit a positive vote in the delegate
47: end if
48: end procedure

49: procedure APPLY(Ti) ⊲ apply a transaction in the database
50: DB.apply(Ti.wset) ⊲ call DBMS to apply the writeset of Ti

51: end procedure

52: procedure COMMIT(Ti) ⊲ commit a transaction in the database
53: DB.commit(Ti) ⊲ call DBMS to commit Ti

54: if Ti.delegate = Rk then
55: return to client
56: end if
57: end procedure

58: procedure ROLLBACK(Ti) ⊲ rollback a transaction in the delegate
59: vote(Ti,abort) ⊲ emit a negative vote
60: DB.rollback(Ti) ⊲ call DBMS to rollback Ti

61: return to client
62: end procedure
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Algorithm 12 Protocol modules (in replica Rk): certification-based
1: procedure SERVE(Ti) ⊲ serve an incoming local request
2: Ti.delegate← Rk

3: while operation 6= commit do
4: let Ti execute the operation locally
5: ⊲ in case of abortion, the service of Ti ends
6: end while
7: Ti.wset← DB.writeset(Ti) ⊲ collect the writeset
8: ask metaprotocol to send Mn〈Ti〉 ⊲ broadcast the writeset
9: end procedure

10: procedure PROCESS(Mn〈Ti〉) ⊲ process an incoming message
11: Ti.toi← N-TOI ⊲ assign total order index
12: N-TOI← N-TOI +1 ⊲ increase N-TOI for next transaction
13: validation← validate(Ti) ⊲ check conflicts with concurrent transactions
14: if validation = negative then ⊲ Ti conflicts with a resolved
15: if Ti.delegate = Rk then
16: rollback(Ti) ⊲ rollback Ti in the delegate
17: else
18: discard(Ti) ⊲ discard Ti in non-delegate replicas
19: end if
20: else
21: if validation = positive then ⊲ no conflicts and ∄ w-pending
22: Ti.status← resolved ⊲ Ti is now resolved
23: else ⊲ validation is pending
24: Ti.status← c-pending
25: end if
26: log ←֓ Ti; tocommit ←֓ Ti ⊲ append Ti to both lists
27: end if
28: end procedure
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Algorithm 13 Protocol modules (in replica Rk): certification-based (cont.)
29: procedure SET_RESOLVED(Ti) ⊲ Ti is now resolved
30: Ti.status← resolved ⊲ update status
31: end procedure

32: procedure APPLY(Ti) ⊲ apply a transaction in the database
33: DB.apply(Ti.wset) ⊲ call DBMS to apply the writeset of Ti

34: end procedure

35: procedure COMMIT(Ti) ⊲ commit a transaction in the database
36: DB.commit(Ti) ⊲ call DBMS to commit Ti

37: if Ti.delegate = Rk then
38: return to client
39: end if
40: end procedure

41: procedure ROLLBACK(Ti) ⊲ rollback a transaction in the delegate
42: DB.rollback(Ti) ⊲ call DBMS to rollback Ti

43: return to client
44: end procedure
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