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Abstract

We identify a class of linearly ordered topological spaces X that may

satisfy the property that X ×X is homeomorphic to X ×l X or can be

embedded into a linearly ordered space with the stated property. We

justify the conjectures by partial results.
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1. Questions

In this paper we provide a discussion that justifies our interest in the question
of the title. We also identify more specific questions that may lead to affirmative
resolutions. We back up our curiosity by some partial results and examples.
The main result of this work is Theorem 2.7. To proceed further let us agree on
some terminology. A linear order will also be called an order. An order < on X
is compatible with the topology of X , if the topology induced by < is equal to
the topology of X . A linearly ordered topological space (abbreviated as LOTS)
is a pair 〈X,<〉 of a topological space X and a topology-compatible order <
on X . A topological space X is orderable if its topology can be induced by
some order on X . When we consider the lexicographical product X×lY of two
LOTS X and Y , we first take the lexicographical products of the ordered sets
X and Y and then induce the topology as determined by the lexicographical
order on X ×l Y . For the purpose of readability we will assume an informal
style when describing some folklore-type structures or arguments.
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The operations of Cartesian product and lexicographical product produce
(more often than not) completely different structures. The former results in a
visually ”more voluminous” structure, while the latter keeps ”visual linearity”
but introduces ”stretches”. In rare cases, however, both operations produce
the same results from a topological point of view. For example, Q × Q is
homeomorphic to Q ×l Q. Also, S × S is homeomorphic to S ×l S, where
S = {±1/n : n = 1, 2, ...}. Note that S is homeomorphic to the space N of
natural numbers. However, N×N is not homeomorphic to N×l N. Indeed, the
former is discrete while the latter has non-isolated points such as 〈2, 1〉, 〈3, 1〉,
etc. Following this discussion, it is not hard to see that given any discrete
space D, it is possible to find a topology-compatible order ≺ on D such that
D∗ = 〈D,≺〉 is discrete and D∗ × D∗ is homeomorphic to D∗ ×l D

∗. Our
discussion prompts the following general problem.

Problem 1.1. What conditions on X guarantee that there exists a topology-

compatible order ≺ on X such that X×X is homeomorphic to 〈X,≺〉×l〈X,≺〉?

Note that homogeneity is not a necessary condition as follows from the
following folklore fact.

Example 1.2 (Folklore). (ω+1)×l(ω+1) is homeomorphic to (ω+1)×(ω+1).

Proof. First observe that Y = [(ω + 1) ×l (ω + 1)] \ {〈ω, n〉 : n = 1, 2, ..} is
homeomorphic to (ω + 1)×l (ω + 1). We will, therefore, provide a homeomor-
phism between X = (ω + 1)× (ω + 1) and Y . We define our homeomorphism
in three stages as follows:

Stage 1: For every n ∈ ω, fix a bijection fn between {〈n, k〉 ∈ X : k =
n, ..., ω} ⊂ (ω + 1) × (ω + 1) and {〈2n,m〉 ∈ Y : m ∈ ω + 1} ⊂
(ω+1)×l (ω+1). Such a homeomorphism exists since both subspaces
are homeomorphic to ω + 1.

Stage 2: For every n ∈ ω, fix a bijection gn between {〈k, n〉 ∈ X : k =
n+ 1, ..., ω} and {〈2n+ 1,m〉 ∈ Y : m ∈ ω + 1}.

Stage 3: Define the promised homomorphism from X to Y as follows:

f(x) =







fn(x) x ∈ {〈n, k〉 ∈ X : k = n, ..., ω}
gn(x) x ∈ {〈k, n〉 ∈ X : k = n+ 1, ..., ω}
〈ω, 0〉 x = 〈ω, ω〉

Visually, f maps the n-th vertical at or above the diagonal in (ω+1)×
(ω + 1) onto the (2n)-th copy of (ω + 1) in (ω + 1)×l (ω + 1). Also f
maps the n-th horizontal under the diagonal in (ω + 1)× (ω + 1) onto
the (2n+ 1)-st copy of (ω + 1) in (ω + 1)×l (ω + 1). Finally, f maps
the upper right corner point of the Cartesian product to 〈ω, 0〉 of the
lexicographical product, which is the only point that is the limit of a
sequence of non-isolated points.

Clearly, f is a bijection. Let us show that f and f−1 are continuous. Since the
domains and images of fn and gn are clopen in the respective superspaces, it
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remains to show that f is continuous at 〈ω, ω〉 and f−1 is continuous at 〈ω, 0〉.
For this let Un = [n, ω]× [n, ω]. Then f(U) = {〈(a, b) ∈ Y : a ≥ 2n}, which is
an open neighborhood of 〈ω, 0〉 in Y . We have {Un}n is a basis at 〈ω, ω〉 in X
and {f(Un)}n is a basis at 〈ω, 0〉 in Y . Since Y is bijective, f−1 is continuous at
〈ω, 0〉. We proved that (ω+1)× (ω+1) is homeomorphic to Y , and therefore,
to (ω + 1)×l (ω + 1). �

Even though (ω + 1) is not homogeneous, it is homogeneous at all non-
isolated points (since there is only such point). But even this property is
not necessary for the two types of products to be homeomorphic. A similar
argument can be used to verify the presence of the studied phenomenon in the
following example.

Example 1.3. X ×l X is homeomorphic to X ×X , where X = (ω ×l ω) + 1 .

The limit points in this example have different natures. The leftmost point
cannot be carried by a homeomorphism to any internal limit point. We omit
the proof of the statement of Example 1.3 since we will prove a more general
one later (Lemma 2.6). Following Example 1.2 and the fact that any discrete
space has the property under discussion, one may wonder if any linearly ordered
space with a single non-isolated point has the property. The following example
shows that the answer is negative and opens another direction for our study.

Example 1.4. Let X = (ω + 1) ⊕D, where D is an ω1-sized discrete space.
Then the following hold:

(1) X is orderable.
(2) X × X is not homeomorphic to 〈X,≺〉 ×l 〈X,≺〉 for any topology-

compatible order ≺ on X .

Proof. To see why X is orderable, first observe that we can think of X as the
subspace of ω1 that contains only all isolated ordinals of ω1 and the ordinal ω.
To orderX , simply reverse the order of every sequence in form {α+1, α+2, ..., },
for each limit ordinal greater than ω.

To prove part (2), fix an arbitrary topology-compatible order ≺ on X . The
space X≺ = 〈X,≺〉 has at least one of extreme points or neither. Let us
consider all possibilities.

Case (X≺ has neither minimum nor maximum): Then {x}×lX≺ is clopen
in X≺ ×l X≺ for each x. Therefore, X≺ ×l X≺ is the free sum of ω1

many topological copies of X . Hence, X≺ ×l X≺ is not homeomorphic
to X ×X .

Case (X≺ has minimum but not maximum): Assume first that X≺ has a
strictly increasing sequence {an}n converging to ω. Then any neighbor-
hood of 〈ω,minX≺〉 contains {an}×lX≺. Therefore, any neighborhood
of 〈ω,minX≺〉 has size ω1, while no point in X×X has such populous
base neighborhoods.

We now assume that X≺ has no strictly increasing sequences con-
verging to ω. This and the absence of a maximum imply that X≺×X≺
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does not have a topological copy of ω ×l ω + 1. However, X ×X does,
which is 〈ω, ω〉. In other words, the second derived set of the lexico-
graphical product is empty but (X ×X)′′ = {〈ω, ω〉}.

Case (〈X,≺〉 has maximum but not minimum): Similar to Case 2.
Case (〈X,≺〉 has both maximum and minimum): Similar to the first part

of Case 2.

Since we have exhausted all cases, the proof is complete. �

It is known (see, for example [2]) that given a subspace X of an ordinal,
the square of X is homeomorphic to a subspace of a linearly ordered space if
and only if X has no stationary subsets and is character homogeneous at all
non-isolated points. This statement and the preceding discussion lead to the
following question.

Question 1.5. Let X be a subset of an ordinal, character homogeneous at

non-isolated points, and have no stationary subsets. Can X be embedded in a

linearly ordered space L for which L× L and L×l L are homeomorphic?

Note that even though spaces in examples 1.2 and 1.3 are not homogeneous,
each point has a basis of mutually homeomorphic neighborhoods. This obser-
vation prompts the following question.

Question 1.6. Let X be a subspace of an ordinal and every point of X has

a basis of mutually homeomorphic neighborhoods. Can X be embedded in a

linearly ordered space L for which L× L and L×l L are homeomorphic?

In the next section we will justify the discussed questions by proving a
statement that generalizes Example 1.2. Namely, we will show that if X is
a subspace of an ordinal and is homogeneous on its derived set X ′, then X
is embeddable in a linearly ordered space L that has homeomorphic Cartesian
and lexicographical products (Theorem 2.7). To prove this we will first identify
a special class of spaces for which the two types of products are homeomorphic
(Lemma 2.6). The structure of these spaces is similar to that of the space in
Example 1.3. We, therefore, generalize Example 1.3 too.

In notations and terminology we will follow [3]. If X is a linearly-ordered
set, by [a, b]X we denote the closed interval in X . If it is clear that the interval
is considered in X but not in some larger ordered set, we simply write [a, b].
The same concerns other types of intervals. By X ′ we will denote the set of all
non-isolated points of X , that is, the derived set of X . We also say that X is
homogeneous on its subset A if for every x, y ∈ A there exists a homeomorphism
f : X → X such that f(x) = y and f(y) = x.

2. Partial Results

In what follows, by L we denote the class of all subspaces of ordinals that

are homogeneous on their derived sets.

To prove our main statement (Theorem 2.7), we start with two technical
lemmas about the key properties of the members of L that will be used in
further arguments.
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Lemma 2.1. Let X ∈ L. Then, for any x ∈ X ′ there exists αx < x such that

x is the single non-isolated point of [αx, x]X .

Proof. By homogeneity of X on X ′ it suffices to show that the conclusion
holds for some element of X ′. We may assume that X ′ is not empty. Then
z = minX ′ is defined. Then αz = minX is as desired for z. �

Lemma 2.2. Let X ∈ L. Then, X can be written as (⊕x∈X′Ix) ⊕D so that

the following hold:

(1) D is clopen and discrete,

(2) Ix and Iy are homeomorphic for any x, y ∈ X ′,

(3) x is the only non-isolated point of Ix for each x ∈ X ′.

Proof. For any x ∈ X ′, let αx be as in Lemma 2.1. We can find βx between
αx and x such that Ix = (βx, x]X has the same cardinality as any smaller
neighborhood of x. Then D = X \ ∪{Ix : x ∈ X ′} is a clopen discrete subset
of X and X = (⊕x∈X′Ix)⊕D is a desired representation. �

To prove our target statement, first for each infinite cardinal γ, we identify a
linearly ordered topological space 〈Lγ ,≺〉 for which 〈Lγ ,≺〉× 〈Lγ ,≺〉 is home-
omorphic to 〈Lγ ,≺〉 ×l 〈Lγ ,≺〉. Next, we will direct our efforts on the task of
embedding the members of L into such spaces.

Construction of 〈Lγ ,≺〉 for an infinite cardinal γ.

Definition of Lγ. Denote by λγ the ordinal (γ ×l γ) + 1. Define Lγ as the

subspace of λγ that consists of all points α that fall into one of the following
three categories:

(1) α = maxλγ

(2) [α0, α] is order-isomorphic to γ + 1 for some α0 < α.
(3) α is isolated.

Remark. To help visualize Lγ , put I = {α < γ : α is isolated}∪ {γ}. Then Lγ

can be thought of as a γ-long sequence of γ-many clopen copies of I converging
to maxλγ .

Definition of ≺. If γ = ω, then Lγ = λγ and we let ≺ be equal to the existing
ordering<. For γ > ω, we will define ≺ using a folklore ordering procedure. We
first define the order formally and then follow up with a simple demonstration.
For each α ∈ λγ \Lγ , put Rα = {α+1, α+ 2, ...}. By the definition of Lγ and
the fact that γ > ω, we conclude that Rα is a closed subset of Lγ . Define ≺α

on Rα as follows: ...α + 5 ≺ α + 3 ≺ α + 1 < α + 2 ≺ α + 4.... Define ≺ as
follows:

(1) x ≺ y if x, y ∈ Rα and x ≺α y.
(2) x ≺ y if {x, y} is not a subset of Rα for any α and x < y.

Construction of 〈Lγ ,≺〉 is complete.

�
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To convince a reader that the above definition is legal without going into painful
details, let us demonstrate a folklore construction of a topology-compatible
order for the space X = {−1/n : n = 1, 2, 3, ...} ∪ {5 − 1/n : n = 1, 2, 3, ...}.
The spaceX is not a linearly ordered space but there are many simple topology-
compatible orders on X . The one that mimics the above construction is defined
as follows. First, reverse the order on {5 − 1/n : n = 1, 2, 3...}. The resulting
set becomes order isomorphic to {±1/n : n = 1, 2, 3, ..} and is homeomorphic
to X . This short construction is formalized in the above definition in which
we top every ”missing limit point” by the reversed sequence ”converging to the
next missing limit point”.

Note that in our definition of ≺ for Lγ we do not change the order position of
limit points of Lγ , which means that the new order coincides with the natural
order when one of the compared elements is in L′

γ . In a sense, the new order ≺
on Lγ is almost indistinguishable from the standard order < if ”observed from

far away”. Also note that if X is a subspace of an ordinal that is homogeneous
on the derived set, then by Lemma 2.2, X can be embedded into Lγ for some
γ. Let us record these observations for future reference.

Lemma 2.3. The following hold:

(1) Every X ∈ L embeds in  Lγ for some cardinal γ.

(2) If x ∈ L′
γ , y ∈ Lγ, and x < y, then x ≺ y.

(3) If x ∈ L′
γ , y ∈ Lγ, and y < x, then y ≺ x.

We will often use the facts in this summary lemma without explicit referencing.
Our next goal is to show that lexicographical and Cartesian product operations
produce topologically equivalent results when applied to an Lγ . We start by
considering the two operations on smaller pieces of Lγ ’s. In the following three
statements the arguments will be very similar to each other. For clarity, we
will also use similar wording.

Lemma 2.4. Let γ be an infinite cardinal. Then [0, γ]Lγ
× [0, γ]Lγ

is homeo-

morphic to Lγ.

Proof. To prove the statement we will visualize [0, γ]Lγ
and Lγ as described

in the remark after the definition of Lγ . Namely, [0, γ]Lγ
= I = {α < γ :

α is isolated} ∪ {γ} and Lγ is a γ-long sequence of γ-many clopen copies of
I converging to ∞ = maxLγ . We can write then Lγ = (⊕{Iα = I : α <
γ, α is isolated}) ∪ {∞}, where every neighborhood of ∞ contains all Iα’s
starting from some moment. Having these visuals in mind we will construct a
desired homeomorphism in three stages as follows:

Stage 1: Partition the set of isolated ordinals of γ into pairs {{aα, bα} :
α < γ, α is isolated} so that bα = aα +1 and indexing agrees with the
natural well-ordering < of the partitioned set.

Stage 2: Since γ is an infinite cardinal, [α, γ]Lγ
is homeomorphic to I for

any α < γ. Therefore, for each isolated α < γ we can fix homeomor-
phisms gα : {α} × [α, γ]Lγ

→ Ibα and hα : (α, γ]Lγ
× {α} → Iaα

. That
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is, gα maps the α’s vertical of [0, γ]Lγ
×[0, γ]Lγ

at or above the diagonal
onto bα’s copy of I in Lγ and hα maps the α’s horizontal strictly below
the diagonal onto aα’s copy of I.

Stage 3: Define a homomorphism f from [0, γ]Lγ
× [0, γ]Lγ

to Lγ as fol-
lows:

f(p) =







gα(p) if p ∈ {α} × [α, γ]Lγ

hα(p) if p ∈ (α, γ]Lγ
× {α}

∞ if p = 〈γ, γ〉

The argument similar to that in Example 1.2 shows that f is a homeomorphism.
�

Lemma 2.5. Let γ be an infinite cardinal. Then [0, γ]Lγ
×Lγ is homeomorphic

to [0, γ]〈Lγ ,≺〉 ×l 〈Lγ ,≺〉.

Proof. Denote the spaces in the statement by X and Y , respectively. Since Y
is homeomorphic to Z = Y \ ({γ} ×l [1, γ]〈Lγ ,≺〉), it suffices to construct an
isomorphism from X to Z, which we will do next.

When treating [0, γ]〈Lγ,≺〉 and 〈Lγ ,≺〉 as topological spaces with regard to
order, we will visualize them as described in Lemma 2.4. For convenience, let
us copy our notation from Lemma 2.4 next:

[0, γ]Lγ
= I = {α < γ : α is isolated} ∪ {γ}

Lγ = (⊕{Iα = I : α < γ, α is isolated}) ∪ {∞},

where ∞ is the maximum element of Lγ in either of the two orders. We are
now ready to construct a desired homeomorphism in three stages as follows:

Stage 1: Partition the set of isolated ordinals of γ into pairs {{aα, bα} :
α < γ, α is isolated} so that bα = aα +1 and indexing agrees with the
natural well-ordering < of the partitioned set.

Stage 2: By Lemma 2.4, for each isolated ordinal α < γ there exists a
homeomorphism hα of [α, γ]Lγ

× Iα onto {aα}×l 〈Lγ ,≺〉. Since γ is an
infinite cardinal, Vα = Lγ \

⋃

β≤α Iβ is homeomorphic to Lγ . Hence,

we can find a homeomorphism gα from {α}× Vα onto {bα}×l 〈Lγ ,≺〉.
Stage 3: Define a homomorphism f from X to Z as follows:

f(p) =







gα(p) if p ∈ {α} × Vα

hα(p) if p ∈ [α, γ]Lγ
× Iα

〈γ,∞〉 if p = 〈γ,∞〉

In words, f maps most of the α’s horizontal strip corresponding to Iα onto the
aα’s copy of 〈Lγ ,≺〉, most of the α’s vertical onto bα’s copy of 〈Lγ ,≺〉, and the
corner point of the Cartesian product to the maximum of Z. The argument
similar to that in Example 1.2 shows that f is a homeomorphism. �

We are now ready to prove a generalization of the statement of Example 1.3.
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Lemma 2.6. For every infinite cardinal γ, the space Lγ×Lγ is homeomorphic

to 〈Lγ ,≺〉 ×l 〈Lγ ,≺〉.

Proof. Denote byX and Y the two spaces in the statement. As in Lemma 2.5, it
suffices to construct a homeomorphism from X to Z = Y \({∞}×l [1,∞]〈Lγ ,≺〉)
As in the previous two lemmas, we visualize [0, γ]Lγ

and Lγ as follows:

[0, γ]Lγ
= I = {α < γ : α is isolated} ∪ {γ}

Lγ = (⊕{Iα = I : α < γ, α is isolated}) ∪ {∞},

where ∞ is the maximum element of Lγ in either of the two orders. We will
closely follow our constructions in the previous two lemmas and construct the
promised homeomorphism in three stages as follows:

Stage 1: Partition the set of isolated ordinals of γ into pairs {{aα, bα} :
α < γ, α is isolated} so that bα = aα +1 and indexing agrees with the
natural well-ordering < of the partitioned set.

Stage 2: By Lemma 2.5, for each isolated α < γ, we can fix two homeo-
morphisms:

hα : Lγ × Iα → 〈Iaα
,≺〉 ×l 〈Lγ ,≺〉

gα : Iα ×



Lγ \
⋃

β≤α

Iβ



 → 〈Ibα ,≺〉 ×l 〈Lγ ,≺〉

Stage 3: Define a homomorphism f from X to Z as follows:

f(p) =











gα(p) if p ∈ Iα ×
(

Lγ \
⋃

β≤α Iβ

)

hα(p) if p ∈ Lγ × Iα
〈∞,∞〉 if p = 〈∞,∞〉

In words, f maps most of the α’s horizontal strip onto the aα’s copy of I×lLγ ,
most of the α’s vertical strip onto the bα’s copy of I×lLγ , and the corner point
of the Cartesian product to the maximum of Z. An argument similar to one
of Example 1.2 shows that f is a homeomorphism. �

Lemmas 2.6 and 2.3 imply the following main statement of our discussion.

Theorem 2.7. Let X be a subspace of an ordinal that is homogeneous on

the derived set. Then X can be embedded into a LOT Z such that Z ×l Z is

homeomorphic to Z × Z.

In search for candidates with the discussed phenomenon, it is clear that
we should immediately eliminate any ordered spaces with stationary subsets.
Indeed, the square of such a space is not orderable as follows from a standard
generalization of Katetov’s example [5]. Therefore, by the characterization of
hereditary paracompactness for GO-spaces due to Engelking and Lutzer ([1] or
[4]), we should consider only hereditary paracompact ordered spaces. It is clear
that if X has no stationary subset, then X2 does not have such either. Thus, we
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need to concentrate on spaces with orderable hereditary paracompact squares.
While the Engelking-Lutzer characterization is incredibly handy for testing an
ordered space for hereditary paracompactness, the author is not aware of any
criterion for the square of a LOTS to be hereditary paracompact. Is there such
a criterion? If not, let us find one!
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