TABLE OF CONTENTS

INTRODUCTION	1
General overview and contribution	3
Development framework	4
Objectives	5
Methodologies	8
Thesis organization	9

PART I

DECISION-SUPPORT MODELS FOR COMPLEX SYSTEM MAINTENANCE_____11

1. The AHP for maintenance management	15
1.1. Making decisions by collecting opinions from maintenance experts	19
1.2. Linearisation: a technique to improve consistency of judgments	26
1.3. Weighting elements in a fuzzy environment	31
2. New developments	39
2.1. Estimating missing judgments through graph theory	42
2.2. Probability theory applied to deal with uncertain judgment	53
2.3. A clustering technique for problem size reduction	62
3. Implementation of a website for worldwide companies	71
3.1. Designing the welcome page	74
3.2. Procedures for collecting pairwise comparisons and checking consistency	81
<i>3.3. Formalising the hierarchy structure and the input data</i>	85
3.4. Establishing a feedback-based relationship with the experts and final ranking	92

4. Practical maintenance application of other MCDM methods	99	
4.1. Outranking decision-making methods	101	
4.2. A maintenance-based comparison	103	
4.3. A combined multi-objective and multi-criteria approach	108	

PART II

RELIABILITY ANALYSIS AND MAINTENANCE MONITORING117
--

5. Reliability analysis	
5.1. Choosing the fundamental parameters of study	123
5.2. Focusing on particularly relevant reliability configurations	125
5.3. An exact formula for the stationary availability of k-out-of-n systems	128
5.4. FMEA/FMECA to analyse complex systems in-depth	132
5.5. Real-world case study of a street-cleaning vehicle	135
5.6. Alternative approach to the RPN calculation	147
6. Human reliability analysis	157
6.1. The role of human factors in operational environments	159
6.2. The THERP to calculate the probability of human error	165
6.3. The DEMATEL to evaluate interdependencies among human factors	170
7. Maintenance monitoring of complex systems	183
7.1. Organisation of maintenance actions	185
7.2. Blockchain technology supporting preventive maintenance	188
7.3. KPIs for maintenance monitoring	191
7.4. KPIs-based DSS to implement predictive maintenance interventions	192
7.5. Description of the complex service system	198

CONCLUSIONS AND FUTURE DEVELOPMENTS	203
Conclusions	205
Future developments	209
APPENDIXES	211
APPENDIX A	213
APPENDIX B	227
APPENDIX C	239
REFERENCES AND SCIENTIFIC PRODUCTION	247
REFERENCES	
SCIENTIFIC PRODUCTION	279

ACRONYM LIST

AHP	Analytic Hierarchy Process
AIJ	Aggregation of Individual Judgments
AIP	Aggregation of Individual Priorities
AMC	Annual Maintenance Cost vs annual maintenance budget
ANP	Analytic Network Process
APJ	Absolute Probability Judgement
ASEP	Accident Sequence Evaluation Program
ATHEANA	A Technique for Human Error Analysis
BRC	British Retail Consortium
CAHR	Connectionism Assessment of Human Reliability
CESA	Commission Errors Search and Assessment
CEF	Component efficiency
СНЕР	Conditioned Human Error Probability
CI	Consistency Index
CODA	Conclusions from occurrences by descriptions of actions
CR	Consistency Ratio
CREAM	Cognitive reliability and error analysis method
DEMATEL	Decision-Making Trial and Evaluation Laboratory
DM	Decision-Maker
DS	Dempster-Shafer
DSS	Decision Support System
EJBM	Expert Judgement Based Method
ELECTRE	ELimination Et Choix Traduisant la REalité
EOC	Errors Of Commission
EOO	Errors Of Omission
ER	Equipment reliability
FAHP	Fuzzy Analytic Hierarchy Process
FCPM	Fuzzy Pairwise Comparison Matrix
FGM	First Generation Methods
FM	Facility Management
FMEA	Failure Mode and Effects Analysis
FMECA	Failure Mode, Effects and Criticality Analysis
FTOPSIS	Fuzzy Technique for Order of Preference by Similarity to Ideal Solution

GMM	Geometric Mean Method
GPR	Ground Penetrating Radar
HEART	Human Error Assessment & Reduction Technique
HEP	Human Error Probability
HF/E	Human Factors and Ergonomics
HFACS	Human Factors Analysis and Classification System
HFACS-MA	Human Factors Analysis and Classification System for Maritime Accidents
HMS	Human Management System
HPC	High-Performance Computer
HRA	Human Reliability Analysis
HRM	Human Resource Management
HRMS	Human reliability management system
ICT	Information and Communication Technology
IFS	International Food Standard
ПоТ	Industrial Internet of Things
ІоТ	Internet of Things
IWDS	Industrial Water Distribution System
IWSS	Intermittent Water Supply System
JHEDI	Justified Human Error Data Information
KPI	Key Performance Indicator
MCDM	Multi-Criteria Decision Making
MERMOS	Assessment method for performance of safety operation
MOA	Multi-Objective Algorithm
MOA	Maintenance and Repair Organization
MTTF	Mean Time To Failure
NA	Number of alarms
NARA	Nuclear Action Reliability Assessment
NDT	Non-Destructive Techniques
NI	Number of interventions
NPA	Not Publicly Available
NSGA-II	Non-Dominated Sorting Genetic Algorithm II
P2P	Peer-to-Peer
PA	Publicly Available
PC	Paired comparisons

РСМ	Pairwise Comparison Matrix
PM-FD	Process Monitoring and Fault Detection
PSF	Performance Shaping Factor
PU	Pressure Uniformity
QFD	Quality Function Development
RCM	Reliability-Centred Maintenance
RI	Random Index
RPN	Risk Priority Number
SA	Simulated Annealing
SC	Schedule compliance
SGM	Second Generation Methods
SLIM-MAUD	Success likelihood index methodology, Multi-Attribute Utility Decomposition
SPAR-H	Standardized Plant Analysis Risk-Human
SW	System wear
TD	Total downtime
TFN	Triangular Fuzzy Numbers
TGM	Third Generation Methods
THERP	Technique for Human Error Rate Prediction
TOPSIS	Technique for Order of Preference by Similarity to Ideal Solution
TrFN	Trapezoidal Fuzzy Numbers
WAMM	Weighted Arithmetic Mean Method
WGMM	Weighted Geometric Mean Method
WSS	Water Supply System

SUMMARY OF FIGURES

Figure 1.1. Example of an AHP hierarchical structure	20
Figure 1.2. Membership functions for TFNs and TrFNs	32
Figure 1.3. Fuzzy version of the Saaty scale	34
Figure 1.4. Representation of the degree of possibility that $\tilde{n}_1 \ge \tilde{n}_2$	35
Figure 1.5. Hierarchical structure representing the problem	36
Figure 2.1. Hierarchy structure of the storage layout reorganisation problem	46
Figure 2.2. Layout proposals LP ₁ , LP ₂ and LP ₃	47
Figure 2.3. Hierarchy structure of the IWDS optimisation problem	56
Figure 2.4. Studied IWSS, south area of Oruro, Bolivia	65
Figure 2.5. Studied IWSS, after cluster identification	69
Figure 3.1. "Welcome" section	75
Figure 3.2. "AHP" section	75
Figure 3.3. "SERVICES" and "RESEARCH" sections	76
Figure 3.4. Link to more research items	77
Figure 3.5. "About" section	78
Figure 3.6. REGISTER/LOGIN pages	79
Figure 3.7. Confirm email/Confirm registration pages	80
Figure 3.8. Scheme of general process	81
Figure 3.9. Process of weighting elements	81
Figure 3.10. Process of checking and adjusting consistency	83
Figure 3.11. Adjusted matrix procedure	84
Figure 3.12. "ahpDecision" class	
Figure 3.13. "ahpOpinion" class	88
Figure 3.14. Example of consistent input matrix for chief	
Figure 3.15. Example of non-consistent input matrix for chief	92

Figure 3.16. Window of the main program of the AHP test94
Figure 3.17. Example of non-consistent input matrices for three experts95
Eigung 4.1 ELECTRE methods and chipatives 102
Figure 4.1. ELECTRE methods and objectives 102
Figure 4.2. GPR images resulting from: raw image analysis (HF ₁), multi-agent system (HF ₂),
subtraction method (HF ₃), variance filter (HF ₄) 104
Figure 4.3. 3-D representation of the Pareto front for the optimal pump scheduling111
Figure 4.4. 3-D representation of the criteria for each solution of the Pareto front 113
Figure 5.1. A traditional bathtub curve provided by Roesch (2012) 124
Figure 5.2. Markov graph for a 2-out-of-3 system124
Figure 5.3. Hierarchical structure of the complex system "Street-cleaning vehicle" 136
Figure 5.4. Hierarchical structure of the sub-system "Hydraulic circuit and sweeping elements"_137
Figure 5.5. Reliability diagram of the system "Street-cleaning vehicle" 143
Figure 5.6. Reliability diagram of the sub-system "Right side system" 144
Figure 5.7. Linguistic variables for C1, time of operation 152
Figure 5.8. Linguistic variables for C2, modality of execution 152
Figure 5.9. Linguistic variables for C3, frequency of occurrence 152
Figure 6.1. HRA methods 164
Figure 6.2. Event tree169
Figure 6.3. Steps for implementing the DEMATEL methodology174
Figure 6.4. Phases of the bottling process 175
Figure 6.5. Scheme of the production line representing the bottling process 176
Figure 6.6. DEMATEL chart with HFs spread out into quadrants 180
Figure 6.7. Chart representing interdependencies among the six selected HFs 181
Figure 7.1. Impact-relations map195

ip
۱p_

SUMMARY OF TABLES

Table 1. Development of the research activity	5
Table 2. Definition of objectives	6
Table 1.1. Saaty scale	20
Table 1.2. Random index values	22
Table 1.3. Criteria evaluations with respect to the decision makers	23
Table 1.4. Aggregated matrix and criteria weights	24
Table 1.5. Evaluation of alternatives with respect to criteria, local priorities and CR value	24
Table 1.6. Ranking of alternatives	26
Table 1.7. Allocation for various PC matrices	27
Table 1.8. Fuzzy Pairwise Comparison Matrix	36
Table 1.9. Degrees of possibility to compare values of fuzzy synthetic extent	37
Table 2.1. Evaluation of alternatives with respect to criteria, local priorities and <i>CR</i> value	48
Table 2.2. Evaluation of criteria with respect to experts, local priorities and CR value	49
Table 2.3. Completed matrices	51
Table 2.4. Aggregated matrix and criteria weights	52
Table 2.5. Ranking of layout alternative	52
Table 2.6. Description of the maintenance actions to be ranked	55
Table 2.7. Roles and weights of the decision makers	56
Table 2.8. Decision-makers' random reciprocal matrices of criteria evaluations	56
Table 2.9. Geometric expectation and variance of random variables	57
Table 2.10. Lower bounds of the probability	60
Table 2.11. Aggregated matrix and criteria weights	61
Table 2.12. Evaluation of alternatives respect to the criteria, local priorities and <i>CR</i> value	61
Table 2.13. Ranking of maintenance actions	62
Table 2.14. Comparison matrix for the qualitative criterion: ease of operation for sectors	66

Table 3.1. Linguistic scale	82
Table 4.1. Normalised input data	105
Table 4.2. Correlation test matrix	105
Table 4.3. Non-discordance test matrix	105
Table 4.4. Outranking matrix	106
Table 4.5. Input data of the ELECTRE III	106
Table 4.6. Outranking credibility matrix	107
Table 4.7. Qualification of alternatives	107
Table 4.8. Ascending distillation results	107
Table 4.9. Descending distillation results	107
Table 4.10. Final ranking	108
Table 4.11. Final ranking for the vector of criteria weights [0.25, 0.25, 0.25, 0.25]	114
Table 4.12. Final ranking for the vector of criteria weights [0.10, 0.30, 0.30, 0.30]	114
Table 4.13. Final ranking for the vector of criteria weights [0.40, 0.20, 0.20, 0.20]	114
Table 5.1. Failure Modes and Effects analysis	138
Table 5.2. List of failure modes and evaluation criteria	145
Table 5.3. Linguistic terms and associated fuzzy numbers	151
Table 5.4. FTOPSIS results	153
Table 5.5. Ranking of the more critical failure modes	155
Table 6.1. Categories of HRA methods and acronyms' meaning	163
Table 6.2. Equations for the computation of the conditioned probability of human error	167
Table 6.3. HEP related to each task	167
Table 6.4. Dependence degree between tasks	168
Table 6.5. Description of investigated area related to human factors and ergonomics	170
Table 6.6. Critical human factors related to each area	176
Table 6.7. Roles of the decision makers	177

Table 6.8. Direct-relation matrix A	178
Table 6.9. Normalised direct-relation matrix D	178
Table 6.10. Total direct-relation matrix T	179
Table 6.11. Final ranking	179
Table 7.1. Main maintenance policies	186
Table 7.2. List of maintenance KPIs	192
Table 7.3. Non-negative matrix filled in by expert H_1	193
Table 7.4. Non-negative matrix filled in by expert H_2	194
Table 7.5. Non-negative matrix filled in by expert H_3	194
Table 7.6. Direct-relation matrix A	194
Table 7.7. Total direct-relation matrix T and final ranking	195
Table 7.8. Sensitivity analysis results	199
Table 7.9. List of most critical failure modes	200