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Abstract 
 
 

Over the last 20 years, researchers have attempted to exploit the information 
provided by medical images through the computation and evaluation of numerous imaging 
quantitative parameters in order to help clinicians with the diagnosis and assessment of many 
lesions and diseases. This practice has been recently named as radiomics, and its success 
relies mainly on the quality and informativeness of the medical images and the subsequent 
parameters. Texture analysis supply a wide range of features that allow quantifying the 
distinctive heterogeneity of different tissues, especially when obtained from magnetic 
resonance imaging (MRI). With this in mind, we decided to study the possibilities of texture 
features from MRI in order to characterize and categorize several disorders that affect the 
human brain. The potential of texture features was analyzed with various machine learning 
approaches, involving different classifiers and feature selection methods so as to find the 
optimal model to accomplish reliably each specific task. In this thesis, the implemented 
radiomics methodology was used to perform four independent projects related to four 
different clinical challenges. 

In the first project, we studied the differentiation between glioblastomas (GBMs) 
and brain metastases (BMs) in conventional MRI. Sometimes these types of brain tumors can 
be misdiagnosed since they may present a similar radiological profile and the clinical data 
may be inconclusive. In these cases, a definitive diagnosis can only be made by means of 
histopathologic analyses. With the aim of avoiding exhaustive and invasive procedures, we 
studied the discriminatory power of a large amount of 2D texture features extracted from 
baseline original and filtered T1-weighted images. The results suggest that 2D texture 
features provide some heterogeneity information of GBMs and BMs that can help in their 
accurate discernment when using the proper machine learning approach. 

In the second project, we analyzed the classification of BMs by their primary site of 
origin in baseline MRI. A percentage of cancer patients are diagnosed with BM as the first 
manifestation of an unknown primary tumor. These patients are subjected to exhaustive 
imaging evaluations and invasive procedures in order to detect the primary tumor, and 
sometimes the origin remains undiagnosed at the time of death. In order to detect the primary 
tumor in a faster non-invasive way, we examined the capability of 2D and 3D texture analysis 
to differentiate BMs derived from the most common primary tumors (lung cancer, breast 
cancer and melanoma) in T1-weighted images. The results showed that high accuracy was 
achieved when using a reduced set of 3D descriptors to differentiate lung cancer BMs from 
breast cancer and melanoma BMs, so volumetric MRI texture features can be useful to 
differentiate BMs from different primary cancers. 
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In the third project, we evaluated the hippocampus MRI profile of Alzheimer’s 
disease (AD) patients to identify the different stages of the disease. The current criteria for 
diagnosing AD require the presence of relevant cognitive deficits, so the underlying 
neuropathological damage is important by the time the diagnosis is made. With the purpose 
of establishing new biomarkers to detect AD in its early stages, we evaluated a set of 2D and 
3D texture features extracted from MRI scans of the hippocampus of patients with advanced 
AD, early mild cognitive impairment and cognitive normality. Many 3D texture parameters 
resulted to be statistically significant to differentiate between AD patients and subjects from 
the other two populations. When combining these 3D parameters with machine learning 
techniques, high accuracy was obtained, thus suggesting that texture analysis could at least 
help identify the presence of AD. 

In the fourth project, we attempted to characterize the heterogeneity patterns of 
ischemic stroke in structural MRI. In brain MRI of older individuals, some pathological 
processes present similar imaging characteristics, like in the case of stroke lesions and white 
matter hyperintensities (WMH) of diverse natures, thus hindering the study of 
cerebrovascular diseases by means of imaging. Given that stroke effects are present not only 
in the affected region, but also in unaffected tissue, we investigated the feasibility of 3D 
texture features from WMH, normal-appearing white matter and subcortical structures to 
differentiate individuals who had a lacunar or cortical stroke visible on conventional brain 
MRI (T1-weighted, T2-weighted and FLAIR images) from subjects who did not. Texture 
features were not useful to differentiate between post-acute cortical and lacunar strokes, but 
promising results were achieved for discerning between patients presenting an old stroke and 
normal-ageing patients who never had a stroke. These results suggest that texture features 
may help in the detection of stroke lesions. 

This thesis presents four novel feasibility studies to help clinicians in the evaluation 
of different brain disorders by means of a radiomics approach based on texture analysis in 
conventional MRI. The results achieved highlight the potential of this practice for defining 
and characterizing brain lesions in a fast, reliable and non-invasive way. 

 

Keywords: radiomics, magnetic resonance imaging, texture analysis, machine learning, 
glioblastoma, brain metastasis, Alzheimer’s disease, stroke  
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Resumen 
 
 

En los últimos 20 años, los investigadores han intentado explotar la información 
proporcionada por las imágenes médicas a través del cálculo y evaluación de numerosos 
parámetros cuantitativos para ayudar a los clínicos con el diagnóstico y la valoración de 
muchas enfermedades. Esta práctica ha sido bautizada recientemente como radiomics, y su 
éxito reside principalmente en la calidad e informatividad de las imágenes y los 
correspondientes parámetros. El análisis de texturas proporciona una gran variedad de 
parámetros que permiten cuantificar la heterogeneidad característica de diferentes tejidos, 
especialmente cuando se obtienen a partir de imagen por resonancia magnética (IRM). 
Basándonos en estos hechos, decidimos estudiar las posibilidades de los parámetros 
texturales extraídos de IRM para caracterizar varios trastornos que afectan el cerebro 
humano. El potencial de las características de textura se analizó con varios enfoques de 
aprendizaje automático, usando diferentes clasificadores y métodos de selección de 
características para hallar el modelo óptimo para cada tarea específica de forma eficaz. En 
esta tesis, la metodología radiomics implementada se usó para realizar cuatro proyectos 
independientes relacionados con cuatro desafíos clínicos distintos. 

En el primer proyecto, estudiamos la diferenciación entre glioblastomas 
multiformes (GBMs) y metástasis cerebrales (MCs) en IRM convencional. En ocasiones, 
estos tipos de tumores cerebrales pueden confundirse al diagnosticarse, ya que pueden 
presentar un perfil radiológico similar y los datos clínicos pueden no ser concluyentes. En 
estos casos, el diagnóstico definitivo se debe realizar mediante un análisis histopatológico. 
Con el fin de evitar procedimientos exhaustivos e invasivos, estudiamos el poder 
discriminatorio de una gran cantidad de características de textura 2D extraídas de imágenes 
de referencia ponderadas en T1 filtradas y sin filtrar. Los resultados sugieren que las 
características de textura proporcionan información sobre la heterogeneidad de los GBMs y 
las MCs que puede ser de ayuda para distinguir con precisión ambas lesiones cuando se 
utiliza un enfoque de aprendizaje automático adecuado. 

En el segundo proyecto, analizamos la clasificación de las MCs según su origen 
primario en IRM de referencia. En un porcentaje de pacientes con cáncer, las MCs son 
diagnosticadas como la primera manifestación de un tumor primario desconocido. Estos 
pacientes son sometidos a evaluaciones exhaustivas y procedimientos invasivos para detectar 
el tumor primario, y algunas veces el origen permanece sin diagnosticar en el momento de la 
muerte. Con el fin de detectar el tumor primario de una forma no invasiva y más rápida, 
examinamos la capacidad del análisis de texturas 2D y 3D para diferenciar las MCs derivadas 
de los tumores primarios más propensos a metastatizar (cáncer de pulmón, cáncer de mama 
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y melanoma) en imágenes ponderadas en T1. Los resultados mostraron que se logra una alta 
precisión al usar un conjunto reducido de parámetros 3D para diferenciar MCs de cáncer de 
pulmón de MCs de cáncer de mama y melanoma, por lo que los parámetros texturales 3D 
sacados de IRM pueden ser útiles para diferenciar las MCs de diferentes cánceres primarios. 

En el tercer proyecto, evaluamos las propiedades del hipocampo en la IRM para 
identificar las diferentes etapas de la enfermedad de Alzheimer (EA). Los criterios actuales 
para diagnosticar la EA requieren la presencia de déficits cognitivos severos, por lo que el 
daño neuropatológico ya es grave en el momento de su diagnóstico. Con la idea de establecer 
nuevos biomarcadores para detectar la EA en sus primeras etapas, evaluamos un conjunto de 
parámetros texturales 2D y 3D extraídos de IRM del hipocampo de pacientes con EA 
avanzada, deterioro cognitivo leve temprano y normalidad cognitiva. Muchos parámetros de 
textura 3D resultaron ser estadísticamente significativos para diferenciar entre pacientes con 
EA y sujetos de las otras dos poblaciones. Al combinar estos parámetros 3D con técnicas de 
aprendizaje automático, se obtuvo una alta precisión, lo que sugiere que el análisis de textura 
podría al menos ayudar a identificar la presencia de AD. 

En el cuarto proyecto, intentamos caracterizar los patrones de heterogeneidad del 
ictus cerebral isquémico en la IRM estructural. En la IRM cerebral de individuos de edad 
avanzada, algunos procesos patológicos presentan características de imagen similares, como 
en el caso de las lesiones por ictus y las hiperintensidades de la sustancia blanca (HSBs) de 
diversos orígenes, lo que dificulta el estudio de estos procesos por medio de técnicas de 
imagen. Dado que los ictus tienen efecto no solo en la región afectada, sino también en tejido 
adyacente, decidimos estudiar la viabilidad de los parámetros de textura 3D extraídos de las 
HSBs, la sustancia blanca no afectada y las estructuras subcorticales para diferenciar 
individuos afectados por ictus lacunares o corticales visibles en IRM convencional (imágenes 
ponderadas en T1, ponderadas en T2 y FLAIR) de sujetos de avanzada edad sin ictus. Las 
características de textura no fueron útiles para diferenciar entre ictus corticales y lacunares, 
pero se lograron resultados prometedores para discernir entre pacientes que han sufrido un 
ictus y pacientes que nunca lo han sufrido. Estos resultados preliminares sugieren que las 
características de textura pueden ayudar en la detección de lesiones por ictus.  

Esta tesis presenta cuatro estudios de viabilidad originales para ayudar en la 
evaluación de diferentes trastornos cerebrales mediante un enfoque radiomics basado en el 
análisis de texturas sobre IRM convencional. Los resultados logrados resaltan el potencial de 
esta práctica para caracterizar lesiones cerebrales de manera rápida, eficiente y no invasiva. 

 

Palabras clave: radiomics, imagen por resonancia magnética, análisis de texturas, 
aprendizaje automático, glioblastoma, metástasis cerebral, enfermedad de Alzheimer, ictus 
cerebral.  
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Resum 
 
 

En els últims 20 anys, els investigadors han intentat explotar la informació 
proporcionada per les imatges mèdiques a través del càlcul i avaluació de nombrosos 
paràmetres quantitatius per ajudar els clínics amb el diagnòstic i la valoració de moltes 
malalties. Aquesta pràctica ha sigut batejada recentment com radiomics, i el seu èxit resideix 
principalment en la qualitat i informativitat de les imatges i els corresponents paràmetres. 
L’anàlisi de textures proporciona una gran varietat de paràmetres que permeten quantificar 
l’heterogeneïtat característica de diferents teixits, especialment quan s’obtenen a partir 
d’imatge per ressonància magnètica (IRM). Basant-nos en aquests fets, vam decidir estudiar 
les possibilitats dels paràmetres texturals extrets d’IRM per caracteritzar diversos trastorns 
que afecten el cervell humà. El potencial de les característiques de textura es va analitzar amb 
diversos mètodes d’aprenentatge automàtic, usant diferents classificadors i mètodes de 
selecció de característiques per trobar el model òptim per a cada tasca específica de forma 
eficaç. En aquesta tesi, la metodologia radiomics implementada es va emprar per realitzar 
quatre projectes independents relacionats amb quatre desafiaments clínics diferents. 

En el primer projecte, vam estudiar la diferenciació entre glioblastomes multiformes 
(GBMs) i metàstasis cerebrals (MCs) en IRM convencional. En ocasions, aquests tipus de 
tumors cerebrals poden confondre’s al diagnosticar-se ja que solen presentar un perfil 
radiològic similar i les dades clíniques poden no ser concloents. En aquests casos, el 
diagnòstic definitiu s’ha de realitzar mitjançant una anàlisi histopatològic. Per tal d’evitar 
procediments exhaustius i invasius, vam estudiar el poder discriminatori d’una gran quantitat 
de característiques de textura 2D extretes d’imatges de referència ponderades en T1 filtrades 
i sense filtrar. Els resultats suggereixen que els paràmetres texturals proporcionen informació 
sobre l’heterogeneïtat dels GBMs i les MCs que pot ser d’ajuda per distingir amb precisió 
ambdues lesions quan s’utilitza una aproximació d’aprenentatge automàtic adequada. 

En el segon projecte, vam analitzar la classificació de MCs segons el seu origen 
primari en IRM de referència. En un percentatge de pacients amb càncer, les MCs són 
diagnosticades com la primera manifestació d’un tumor primari desconegut. Aquests pacients 
són sotmesos a avaluacions exhaustives i procediments invasius per detectar el tumor primari, 
i algunes vegades l’origen roman sense diagnosticar en el moment de la mort. Per tal de 
detectar el tumor primari d’una forma no invasiva i més ràpida, vam examinar la capacitat de 
l’anàlisi de textures 2D i 3D per diferenciar les MCs derivades dels tumors primaris més 
propensos a metastatitzar (càncer de pulmó, càncer de mama i melanoma) en imatges 
ponderades en T1. Els resultats van mostrar que s’aconsegueix una alta precisió quan 
s’utilitza un conjunt reduït de paràmetres 3D per diferenciar les MCs de càncer de pulmó de 
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les MCs de càncer de mama i melanoma, de manera que els paràmetres texturals 3D obtinguts 
de la IRM poden ser útils per a diferenciar les MCs de diferents càncers primaris. 

En el tercer projecte, vam avaluar les propietats de l’hipocamp en la IRM per 
identificar les diferents etapes de la malaltia d’Alzheimer (MA). Els criteris actuals per 
diagnosticar la MA requereixen la presència de dèficits cognitius severs, de manera que el 
dany neuropatològic ja és greu en el moment del seu diagnòstic. Amb la idea d’establir nous 
biomarcadors per detectar la MA en les seues primeres etapes, vam avaluar un conjunt de 
paràmetres texturals 2D i 3D extrets d’IRM de l’hipocamp de pacients amb MA avançada, 
deteriorament cognitiu lleu i normalitat cognitiva. Molts paràmetres de textura 3D van 
resultar ser estadísticament significatius per diferenciar entre pacients amb MA i individus 
de les altres dues poblacions. En combinar aquests paràmetres 3D amb tècniques 
d’aprenentatge automàtic, es va obtenir una alta precisió, el que suggereix que l’anàlisi de 
textura podria almenys ajudar a identificar la presència de la MA. 

En el quart projecte, vam intentar caracteritzar els patrons d’heterogeneïtat de l’ictus 
cerebral isquèmic en la IRM estructural. En la IRM cerebral d’individus d’edat avançada, 
alguns processos patològics presenten característiques d’imatge similars, com en el cas de 
les lesions per ictus i les hiperintensitats de la substància blanca (HSBs) de diversos orígens, 
dificultant així l’estudi d’aquests processos per mitjà de tècniques d’imatge. Atès que els 
ictus tenen efecte no només a la regió afectada, sinó també en teixit adjacent, vam decidir 
estudiar la viabilitat dels paràmetres de textura 3D extrets de les HSBs, la substància blanca 
no afectada i les estructures subcorticals per diferenciar individus afectats per ictus llacunars 
o corticals visibles en IRM convencional (imatges ponderades en T1, ponderades en T2 i 
FLAIR) d’individus sense ictus. Els paràmetres de textura no van ser útils per diferenciar 
entre ictus corticals i llacunars, però es van aconseguir resultats prometedors per discernir 
entre pacients que han patit ictus i pacients que mai n’han patit. Aquests resultats preliminars 
suggereixen que les característiques de textura poden ajudar en la detecció de lesions per 
ictus. 

Aquesta tesi presenta quatre estudis de viabilitat originals per ajudar els clínics en 
l’avaluació de diferents trastorns cerebrals mitjançant una aproximació radiomics basada en 
l’anàlisi de textures sobre IRM convencional. Els resultats obtinguts destaquen el potencial 
d’aquesta pràctica per definir i caracteritzar lesions cerebrals de manera ràpida, eficient i no 
invasiva. 

 

Paraules clau: radiomics, imatge per ressonància magnètica, anàlisi de textures, 
aprenentatge automàtic, glioblastoma, metàstasi cerebral, malaltia d’Alzheimer, ictus 
cerebral.  
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Brain and Diseases 

AD Alzheimer’s disease 

ADNI Alzheimer’s Disease Neuroimaging Initiative 

BM brain metastasis 

CN cognitively normal, cognitive normality 

CNS central nervous system 

CSF cerebrospinal fluid 

EMCI early mild cognitive impairment 

GBM glioblastoma multiforme 

MCI mild cognitive impairment 

NAWM normal appearing white matter 

PNS peripheral nervous system 

SRS stereotactic radiosurgery 

SS subcortical structures 

SVD small vessel disease 

WBRT whole-brain radiotherapy 

WHO World Health Organization 

WMH white matter hyperintensities 
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Medical Imaging 

CAD  computer-aided detection and diagnosis 

CT computed tomography 

FID free induction decay 

FLAIR fluid-attenuated inversion recovery 

IR-SPGR inversion recovery spoiled gradient-echo 

MP-RAGE magnetization prepared rapid gradient echo 

MR magnetic resonance 

MRI magnetic resonance imaging 

PET positron emission tomography 

SENSE sensitivity encoding 

T1 longitudinal relaxation time 

T1W T1-weighted 

T2 transverse relaxation time 

T2W T2-weighted 

TE  echo time or time-to-echo 

TR  repetition time 

TSE turbo spin echo 

 

Texture Analysis 

2D two dimensions, two-dimensional or bi-dimensional 

3D  three dimensions or three-dimensional 

DWT discrete wavelet transform 

GLCM gray-level co-occurrence matrix 

GLRLM gray-level run-length matrix 
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GLSZM gray-level size zone matrix 

HH high-high (diagonal details of the DWT decomposition) 

HL high-low (horizontal details of the DWT decomposition) 

ISBI Image Biomarker Standardisation Initiative 

LBP local binary patterns 

LH low-high (vertical details of the DWT decomposition) 

LL low-low (approximations of the DWT decomposition) 

NGL number of gray levels 

NGTDM neighborhood gray-tone difference matrix 

ROI  region of interest 

SNR signal-to-noise ratio 

VOI volume of interest 

WCF wavelet co-occurrence features 

WSF wavelet statistical features 

 

Machine Learning and Statistics 

ANN artificial neural network 

ANOVA analysis of variance 

AUC area under the receiver operating characteristics curve 

BH Benjamini-Hochberg procedure 

CM confusion matrix 

CV cross-validation 

FN false negatives 

FP false positives 

ICC intraclass correlation coefficient 



 

 

X 

KNN k-nearest neighbors 

LDA linear discriminant analysis 

LGOCV leave-group-out cross-validation 

LOOCV leave-one-out cross-validation 

MDA mean decrease accuracy 

MDI mean decrease in impurity 

MIC maximal information coefficient 

MLP multilayer perceptron 

MWW Mann-Whitney-Wilcoxon test 

NB naive Bayes 

PCA principal component analysis 

RF random forest 

ROC receiver operating characteristics 

SD standard deviation 

SVM support vector machine 

TN true negatives 

TP true positives 

 
 

  



 

 

XI 

Contents 
 

 

 

Abstract .......................................................................................................................... I 

Resumen ...................................................................................................................... III 

Resum ............................................................................................................................ V 

Abbreviations and Acronyms .................................................................................. VII 

Contents ....................................................................................................................... XI 

Chapter 1. Introduction ................................................................................................ 1 
1.1. The concept of “radiomics” ........................................................................................ 1 
1.2. Objectives ................................................................................................................... 4 
1.3. Contributions to Knowledge ....................................................................................... 4 
1.4. Thesis Structure .......................................................................................................... 6 

Chapter 2. Brain magnetic resonance imaging .......................................................... 9 
2.1. The Human Brain........................................................................................................ 9 
2.2. Brain Disorders ......................................................................................................... 12 

2.2.1. Brain Tumors ............................................................................................................13 
2.2.2. Dementia and Alzheimer’s disease ...........................................................................15 
2.2.3. Cerebrovascular conditions ......................................................................................16 

2.3. Overview of magnetic resonance imaging ................................................................ 17 
2.3.1. The Physics behind MRI ...........................................................................................18 
2.3.2. Basics of MR images .................................................................................................19 

2.4. Conventional MRI of the Brain ................................................................................ 20 

Chapter 3. Texture analysis ....................................................................................... 23 
3.1. Definition of Texture Analysis ................................................................................. 23 
3.2. Region of Interest Delineation .................................................................................. 24 

3.2.1. Segmentation of the Region .......................................................................................24 
3.2.2. Influence of the Region Shape and Size ....................................................................25 
3.2.3. Dimensionality ..........................................................................................................26 



 

 

XII 

3.3. Image Preprocessing ................................................................................................ 28 
3.3.1. Image Interpolation .................................................................................................. 28 
3.3.2. Image Normalization ................................................................................................ 29 
3.3.3. Quantization of Gray levels ...................................................................................... 30 

3.4. Texture Analysis Methods ........................................................................................ 32 
3.4.1. Classification of Texture Analysis Methods .............................................................. 33 
3.4.2. Intensity Histogram .................................................................................................. 36 
3.4.3. Gray-Level Co-occurrence Matrix ........................................................................... 38 
3.4.4. Gray-Level Run-Length Matrix ................................................................................ 43 
3.4.5. Gray-Level Size Zone Matrix .................................................................................... 46 
3.4.6. Neighborhood Gray-Tone Difference Matrix ........................................................... 47 
3.4.7. Local Binary Patterns ............................................................................................... 50 
3.4.8. Wavelet Transform for Texture Analysis .................................................................. 51 

3.5. Review of Texture Analysis in MRI ........................................................................ 53 
3.5.1. The Issues of Texture Analysis in MRI ...................................................................... 54 
3.5.2. The Present of Texture Analysis in MRI ................................................................... 56 
3.5.3. Applications of Texture Analysis in MRI .................................................................. 57 

Chapter 4. Data analysis with machine learning ...................................................... 59 
4.1. What is Machine Learning? ..................................................................................... 59 
4.2. Machine Learning Algorithms for Classification ..................................................... 60 

4.2.1. Naive Bayes Classifier .............................................................................................. 61 
4.2.2. K-Nearest Neighbors ................................................................................................ 62 
4.2.3. Support Vector Machines ......................................................................................... 64 
4.2.4. Decision Trees and Random Forests ........................................................................ 66 
4.2.5. Artificial Neural Networks and Multilayer Perceptrons ........................................... 68 

4.3. Feature Selection ...................................................................................................... 70 
4.3.1. Filter Methods .......................................................................................................... 71 
4.3.2. Wrapper Methods ..................................................................................................... 72 
4.3.3. Embedded Methods ................................................................................................... 73 

4.4. Resampling Techniques ........................................................................................... 74 
4.4.1. Further Applications of Resampling Techniques ...................................................... 75 
4.4.2. K-Fold Cross Validation ........................................................................................... 76 
4.4.3. Leave-Group-Out Cross-Validation ......................................................................... 78 

4.5. Measures for Evaluating Classification .................................................................... 79 
4.5.1. Measures Based on Predicted Classes...................................................................... 79 
4.5.2. Measures Based on Class Probabilities .................................................................... 81 



 

 

XIII 

Chapter 5. Differentiation between brain metastases and glioblastomas .............. 83 
5.1. Introduction and Motivation ..................................................................................... 83 
5.2. Material and Methods ............................................................................................... 87 

5.2.1. Patients and Imaging Protocol .................................................................................87 
5.2.2. Regions of Interest ....................................................................................................88 
5.2.3. Feature Extraction ....................................................................................................89 
5.2.4. Classification Performance and Evaluation .............................................................92 

5.3. Results ...................................................................................................................... 96 
5.3.1. Influence of the Wavelet Decomposition ...................................................................96 
5.3.2. Influence of the Quantization Process and the Classifier Choice .............................99 
5.3.3. Influence of the Feature Selection Method .............................................................. 102 

5.4. Discussion ............................................................................................................... 103 
5.5. Conclusion .............................................................................................................. 106 

Chapter 6. Classification of brain metastases by their primary site of origin ..... 107 
6.1. Introduction and Motivation ................................................................................... 107 
6.2. Material and Methods ............................................................................................. 109 

6.2.1. Patients and Imaging Protocol ............................................................................... 109 
6.2.2. Regions of Interest .................................................................................................. 111 
6.2.3. Feature Extraction .................................................................................................. 112 
6.2.4. Strategies for Classification .................................................................................... 114 
6.2.5. Model Performance and Evaluation ....................................................................... 115 

6.3. Results .................................................................................................................... 118 
6.3.1. Multiclass Strategy .................................................................................................. 118 
6.3.2. One-versus-one Strategy ......................................................................................... 121 

6.4. Discussion ............................................................................................................... 126 
6.5. Conclusion .............................................................................................................. 128 

Chapter 7. Evaluation of new biomarkers for Alzheimer’s disease ..................... 129 
7.1. Introduction and Motivation ................................................................................... 129 
7.2. Material and Methods ............................................................................................. 131 

7.2.1. Patients and Imaging Protocol ............................................................................... 131 
7.2.2. Regions of Interest .................................................................................................. 133 
7.2.3. Feature Extraction .................................................................................................. 134 
7.2.4. Statistical Analysis .................................................................................................. 135 
7.2.5. Machine Learning Analysis ..................................................................................... 136 



 

 

XIV 

7.3. Results .................................................................................................................... 138 
7.3.1. Results from the Statistical Analysis ....................................................................... 138 
7.3.2. Results from the Machine Learning Analysis.......................................................... 140 

7.4. Discussion .............................................................................................................. 144 
7.5. Conclusion .............................................................................................................. 147 

Chapter 8. Characterization of ischemic stroke ..................................................... 149 
8.1. Introduction and Motivation ................................................................................... 149 
8.2. Material and Methods ............................................................................................. 151 

8.2.1. Patients and Imaging Protocol ............................................................................... 151 
8.2.2. Image Processing and Segmentation ...................................................................... 153 
8.2.3. 3D Texture Analysis ................................................................................................ 154 
8.2.4. Texture Descriptors ................................................................................................ 155 
8.2.5. Statistical Analysis .................................................................................................. 158 
8.2.6. Classification Approach ......................................................................................... 158 

8.3. Results .................................................................................................................... 160 
8.3.1. Discrimination between cortical and lacunar stroke patients ................................ 160 
8.3.2. Discrimination between patients with and without stroke ...................................... 161 

8.4. Discussion .............................................................................................................. 168 
8.5. Conclusion .............................................................................................................. 170 

Chapter 9. Final conclusions .................................................................................... 171 

Chapter 10. References ............................................................................................. 175 

Chapter 11. Publications ........................................................................................... 199 
11.1. Publications from the PhD Thesis ........................................................................ 199 
11.2. Other publications ................................................................................................ 201 

 

 

 

  



 

 

XV 

 

 

 

 

 

 

 

 

 

“There’s magic in fighting battles beyond endurance. 

It’s the magic of risking everything for a dream that nobody sees but you” 

 

Million Dollar Baby, 2004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

XVI 

 



 

 

1 

Chapter 1.                      
Introduction 

 

 

 

 

1.1. The concept of “radiomics” 
Medical images may possess abundant unexplored valuable information that 

could be used to assess some diseases since this information may reflect several 
pathophysiologic aspects of the tissue under examination. To analyze, process and take 
advantage of this information, a new promising field has arisen in the past decade: 
radiomics [1]. Radiomics is a new concept that comprises several independent research 
fields with the common aim of extracting from processed medical images as many 
quantitative features as possible, related to texture, color or shape. Hence, medical 
images are converted into mineable high-dimensional data with the purpose of increasing 
the power of decision support tools by combining these data with other clinical 
characteristics. Radiomics analysis has been proved to be a valuable source of 
information to improve the precision in diagnosis, to assess the prognosis or to predict 
treatment response, mainly in cancer research but also applicable to other diseases [1]–
[5]. 

The motivation behind radiomics analysis is based on the hypothesis that 
medical images contain information at the tissue/organ level (macroscopic level) that 
reflects the underlying pathophysiology of the tissue (microscopic level) and that these 
relationships can be revealed by means of quantitative imaging features [1], [6]. 
Furthermore, these features can be statistically combined or correlated with other data of 
diverse nature such as clinical or genomic in order to define the disease more accurately. 

 Radiomics may appear to be a simple and straightforward practice. However, 
radiomics analyses involve several individual processes, each with its own challenges, 
that have been largely studied independently and that have been joined together to pursue 
a common goal. Radiomics practice include: (a) image acquisition, (b) identification, 
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segmentation and pre-processing of the regions (2D) or volumes (3D) of interest (i.e., 
those that contain tissue with possible valuable information), (c) extraction of descriptive 
features from the regions or volumes, and (d) mining of these data to develop 
classification models to predict outcomes either alone or in combination with additional 
information, such as demographic, clinical, histologic or genomic data [7]–[10]. Figure 
1.1 shows a brief diagram of the steps included in the radiomics pipeline. Despite all the 
challenging processes included in the radiomics practice, the focus of interest of 
radiomics is the extraction of features that describe quantitatively the image region under 
analysis. For this purpose, texture analysis has been proved to be an excellent source of 
imaging biomarkers [11]. Texture analysis describes a wide range of techniques that 
enable the quantification of pixel interrelationships, gray level patterns, and spectral 
properties of an image. These techniques allow computing features that provide a 
measure of intralesional heterogeneity or standing out areas that exhibit different textural 
patterns, which are beyond human visual perception [12]. 

Radiomics can be applied to different/multiple imaging modalities, and the 
selection of the appropriate technique to investigate each disease or lesion depends on 
several factors, including the resolution of the images and the tissue under analysis. 
However, in the last years, magnetic resonance imaging (MRI) has become popular in 
radiomics studies due to its growing availability in the clinical routine and the resulting 
high-quality images that offer excellent anatomic details thanks to new advances in 
technology [13]. 
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Figure 1.1. Radiomics practice overview showing the major steps: image acquisition, segmentation 
and pre-processing of the images, feature extraction, and data mining. The derived radiomics models 
and results are evaluated and interpreted with statistical metrics and graphical representations. It is 
important to mention that radiomics data may be combined or correlated with genomic, histologic, 
clinical or demographic data to improve precision medicine. 
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1.2. Objectives 
The general objective of the present thesis consists on analyzing several 

common neurological diseases and lesions with a radiomics pipeline focused on texture 
analysis applied to magnetic resonance imaging. With this radiomics approach, we 
intend to provide clinicians with a complementary decision support tool to help in giving 
a prompt response to some medical challenges related to brain pathologies that usually 
are solved too late (in some cases in the advanced stages of the disease or even after the 
patient’s death) by means of invasive procedures, exhaustive neuroimaging or 
neuropsychological tests. 

In particular, four specific objectives related to four different current medical 
challenges are established in the context of this project: 

1. Differentiation between glioblastomas multiforme (GBM) and brain 
metastases (BM) in conventional structural MRI. 

2. Identification of the primary site of origin in patients with brain metastases 
(BM) from an unknown primary cancer in initial detection structural MRI. 

3. Detection of the presence of Alzheimer’s disease (AD) and its early 
diagnosis in structural MRI of the hippocampal region. 

4. Characterization of different types of lesions related to ischemic stroke in 
structural MRI of elderly patients 

In addition to trying to give a solution to these current diagnostic problems, we 
evaluate several aspects of the radiomics practice that may affect the final results: 

 The benefits and detriments of examining texture features extracted from 
three-dimensional regions instead of bi-dimensional regions. 

 The influence of the size of the regions of interest and the quantization of 
the image regions (i.e., reducing the number of gray levels of the image). 

 The ability of several texture analysis methods to offer effective parameters. 
 The performance of different machine learning approaches. 

1.3. Contributions to Knowledge 
This thesis offers four novel contributions for the assessment of patients with 

different neurological diseases or lesions by the study of texture analysis in conventional 
structural MRI combined with machine learning techniques, in the context of the 
radiomics practice. 
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The first contribution is that 2D texture features extracted from structural MRI 
are useful for classifying GBM and BM with a good level of accuracy when applying a 
machine learning scheme. These preliminary results indicate that texture analysis could 
be used by radiologists in the near future to help in the correct diagnosis of each type of 
brain tumor in its early stage, in particular in those cases when the radiological or clinical 
basic information is not conclusive. Moreover, with further research, texture analysis on 
MRI could be used as a faster alternative to biopsies in order to achieve a reliable 
definitive diagnostic without resorting to invasive procedures. 

The second contribution is that texture analysis on MRI showed a promising 
capacity for identifying the primary site of origin in those patients with BM where the 
primary cancer is still unknown. Our results show that BM derived from lung cancer can 
be clearly distinguished from BM from breast cancer and melanoma. These results 
should be further investigated so as to validate texture features as new biomarkers of BM 
since BM from breast cancer and melanoma could not be differentiated and other primary 
sites of origins should be included. Patients presenting BM as a first manifestation of a 
primary tumor could avoid additional imaging or invasive procedures if texture analysis 
applied to MRI were confirmed as a reliable definitive method to identify the origin of 
the BM. 

The third contribution is that AD presence can be detected with texture analysis 
on MRI of the hippocampal region, but an early diagnosis of the disease cannot be 
achieved with the texture features employed in our project, since control subjects could 
not be distinguished from patients suffering from early mild cognitive impairment 
(EMCI). These preliminary results should encourage researchers to further investigate 
this disease by means of texture analysis, since it is a fast and non-subjective way for 
assessing the AD that could help in the near future in the early detection of the disease. 

The fourth and final contribution is that texture features can capture differences 
between structural MRI scans of normal-appearing tissue of older patients presenting 
different pathological brain processes related to stroke. Cortical and lacunar strokes were 
not clearly differentiated with the proposed machine learning approach. On the contrary, 
the results obtained for classifying elderly patients with an old stroke and without 
evidences of a stroke were very promising, thus suggesting that stroke effects can be 
detected in terms of heterogeneity patterns in those cases where other pathologies may 
be considered. 
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Apart from the above-mentioned contributions to the medical field, in this thesis 
other relevant technical conclusions are reached in the context of the radiomics practice 
that may be beneficial for future radiomics analysis and that confirm the conclusions 
presented in other related studies. In first place, 3D texture analysis improves the 
classification performance achieved by 2D texture analysis, but when volumetric 
analyses are not possible due to the resolution of the images or the complexity of the 
volume definition, texture analysis applied on single MRI scans can also offer 
remarkable results in terms of accuracy. In second place, quantization of image regions 
is a necessary process to reduce the computational cost and improve the signal-to-noise 
(SNR) ratio, but the proper number of gray levels used to quantize the images should be 
analyzed since different levels of gray may produce different classification results with 
statistical significance. Finally, the size of the regions of interest plays an important role 
in texture analysis because too small regions may not capture sufficient heterogeneity 
information. 

1.4. Thesis Structure 
This thesis is structured in 11 chapters. Chapter 1 presents a summary of the 

general and specific objectives of the thesis and the novel contributions to knowledge. 
Chapters 2 to 4 present the theoretical background that is essential for understanding the 
experimental studies. Chapters 5 to 8 present the experimental projects performed. 
Chapters 9 to 11 present the final overall conclusions of this thesis, the bibliography and 
the publications issued in different journals and conferences in the context of this thesis. 

A summary of the important chapters of this thesis, which are self-contained and 
can be read independently, is introduced below:  

 
Chapter 2: Brain Magnetic Resonance Imaging 

This chapter gives a background on the principles of conventional MRI, with a 
focus on the techniques used to assess patients with neurological pathologies. The 
chapter begins with a summary of the physiological principles of the brain and the 
common diseases or lesions that can affect it, followed by an introduction of the general 
principles of MRI physics, and finished by an overview of MRI applied to the brain.  
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Chapter 3: Texture Analysis 

This chapter gives a description of texture analysis and explains the process to 
follow in order to perform texture analysis on medical images. The factors to consider 
before performing texture analysis are also presented, since the texture outcome can be 
considerably affected depending on the processing of the regions of interest. The texture 
analysis methods that were used in the experimental studies are also described. Finally, 
a brief review of texture analysis applied to MRI and some additional important 
considerations are also provided. 

Chapter 4: Data Analysis with Machine Learning 

This chapter presents a brief overview of data exploration and machine learning, 
focusing on the predictive models used in this thesis, the importance of feature selection 
and the application of resampling techniques to enhance the classification results. It also 
provides a summary regarding the evaluation of model performance. 

Chapter 5: Differentiation between Brain Metastases and Glioblastomas 

This chapter shows the experimental study that aimed to classify glioblastomas 
multiforme (GBM) from brain metastases (BM) with 2D texture analysis in contrast-
enhanced structural MRI. Texture features extracted from the original images and from 
filtered images were analyzed and compared within a nested cross-validation scheme 
that included five predictive models and three feature selection methods to compare. The 
influence of the quantization of the images was also evaluated. 

Chapter 6: Classification of Brain Metastases by their Primary Site of Origin 

This chapter presents the project developed to identify the primary site of origin 
in patients with BM from an unknown primary cancer. In this work, 2D and 3D texture 
analyses extracted from structural MRI were compared, the influence of the quantization 
process was assessed and the classification performance of several predictive models and 
feature selection techniques was evaluated with a multiclass and a one-versus-one 
approaches within a nested cross-validation scheme.  

 

 

 

 



Chapter 1. Introduction 

 

 

8 

Chapter 7: Evaluation of New Biomarkers for Alzheimer’s disease 

This chapter shows the study carried out to identify the presence of Alzheimer’s 
disease and to assess its early diagnosis in conventional MRI. Global, regional and local 
texture parameters extracted from 2D and 3D regions situated in the hippocampal region 
were first evaluated individually with statistical analyses and then they were analyzed 
with a nested cross-validation structure. Three predictive models were evaluated and the 
influence of the image quantization in the classification results was also studied.  

Chapter 8: Characterization of Ischemic Stroke 

This chapter presents the project elaborated to characterize the heterogeneity 
properties that describe the structural MRI of different stroke patients. In this project five 
groups of 3D textures extracted from different brain tissues were evaluated statistically 
and with a cross-validation machine learning approach based on two known classifiers. 
The effect of the feature selection and the influence of age were also analyzed. 

Chapter 9: Final Conclusions 

 This chapter presents the final overall conclusions reached throughout the thesis 
and a deep reflection of the applicability and suitability of the work carried out. 
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Chapter 2.                         
Brain magnetic 

resonance imaging 
 

 

 

 

2.1. The Human Brain 
The nervous system is considered the most complex product of biological 

evolution. The constantly changing activity patterns of its billions of interactive units 
represent the fundamental physical basis of each of the aspects of human behavior. The 
nervous system is divided in two major subsystems: the central nervous system (CNS) 
and the peripheral nervous system (PNS). The CNS is the structural and functional center 
of the nervous system and it mainly comprises the brain and the spinal cord, surrounded 
by the cerebrospinal fluid (CSF). On the contrary, the PNS consists of the cranial and 
spinal nerves that connect the CNS with the other parts of the body [14]. 

The brain is the command center for the human nervous system. It receives input 
from the sensory organs and sends output to the muscles. In other words, the human 
brain interprets the information that we receive from the outside world and is in charge 
of the control of all body functions. The human brain has the same basic structure as 
other mammal brains but is larger in relation to body size than any other brains.                  
In particular, it weighs about 1400 grams and constitutes about 2% of the total body 
weight of an average adult [15]. The brain is usually divided in four structures, as shown 
in Figure 2.1 [16]: 

• Brain stem: connects the brain with the spinal cord and is composed of the medulla 
oblongata, the pons and the midbrain. This structure works as a bidirectional 
conduction path where the sensory fibers transmit the impulses between the spinal 
cord and the rest of the brain, among other functions. 
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• Cerebellum: is the second largest part of the brain (often referred as “little brain”) 
and controls several subconscious activities such as balance and muscular 
coordination or motor learning. 

• Diencephalon: lies above the brain stem and includes the thalamus, hypothalamus 
and pineal gland. These three substructures are responsible for interpreting and 
regulating emotions and sensations of sound, smell, taste, touch, pain or temperature 
and for controlling some body functions like heartbeat or digestion, among other 
functions. 

• Cerebrum: is the largest part of the human brain, accounting for the 85% of the 
brain’s weight and controls higher brain functions such as language, logic, decision-
making and creativity. It is divided into two almost symmetrical hemispheres (left 
and right) connected by a bundle of nerve fibers called corpus callosum. The left 
brain controls all the muscles on the right-hand side of the body and the right brain 
controls the left side. In the following paragraphs we will focus on this structure to 
explain the specific anatomy and functions of the human brain. 

[16] 

 

 
 

Figure 2.1. Major regions of the central nervous system (CNS) viewed in a sagittal plane. Adapted 
from [16]. 
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Each of the two hemispheres that form the cerebrum can be divided in three 
basic regions (Figure 2.2). The outer layer of the cerebrum is the cerebral cortex, which 
is a thin layer of gray matter mainly composed of a large number of neuronal and glial 
cell bodies. The cerebral cortex is where our conscious mind is found and plays a key 
role in memory, perception, cognition, attention, awareness, thought and language. The 
ridges in the surface of cortex are called gyri while the indentations are called sulci (or 
fissures if they are deeper). The inner part of the cerebrum is known as white matter and 
is mainly composed of bundles of nerve fibers (tracts). The white matter is responsible 
for coordinating communication between different brain regions. Finally, within this 
white matter, there are a few islands of gray matter known as the basal ganglia (or basal 
nuclei), that is in charge of producing automatic movements and postures [17]. 

Focusing on the cerebral cortex, this region can be divided into sections called 
lobes. This division is useful from an anatomical, functional, and pathophysiological 
perspective. The most common division consists of four different lobes separated by 
three deep sulci (central, parieto-occipital and lateral sulcus) and named according to 
the four skull bones protecting them, as shown in Figure 2.2 [18]: 

• Frontal lobe: is located at the front of the brain and is involved in reasoning, 
planning, organizing, selective attention and a variety of higher cognitive functions. 
At the back of this lobe lies the motor cortex, which receives information from 
various lobes of the brain and utilizes them to generate voluntary body movements. 

• Parietal lobe: is located in the middle section of the brain and integrates sensory 
information from various parts of the body. It contains the somatosensory cortex, 
which is essential for processing body’s senses like tactile sensory information 
(touch, pressure, pain, etc.) as well as for spatial orientation and navigation. 

• Occipital lobe: is located at the back of the brain and includes the primary visual 
cortex, so it is the main region for interpreting visual stimuli and information. 

• Temporal lobe: is located on the bottom section of the brain and contains the 
primary auditory cortex, which is important for assigning meaning to the sounds we 
hear. The hippocampus and the amygdala are also located in this lobe, so this lobe 
is also associated to the formation of memories and emotions, respectively. 

[17] 
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It is important to know that each lobe of the brain does not function alone. There 
are very complex relationships between the lobes of the brain and between the right and 
left hemispheres. Additionally, the symptoms associated to some brain disorders may be 
related with the functional areas described by the lobes, thus allowing clinicians to detect 
the approximate location of the lesion or disease. For example, damage to the frontal 
lobe can lead to changes in socialization and attention, damage to the parietal lobe may 
result in problems for interpreting sensory stimuli, damage to the occipital lobe can cause 
visual problems and damage to the temporal lobe can produce problems with memory or 
speech perception. 

2.2. Brain Disorders 
A brain lesion or disease defines any damage caused to any part of the brain, 

producing inflammation, malfunction or destruction of brain cells or brain tissue. 
Classifying all the disorders that can affect the human brain may somewhat be a complex 
task since they can be categorized according to the primary location affected, the primary 
type of dysfunction involved or the primary type of cause. According to the classification 

 
 

Figure 2.2. Lateral view of the left hemisphere with the cerebrum divided into four lobes separated by 
the three main sulci. The zoomed region shows the two types of tissue found in the cerebrum (gray and 
white matter). Adapted from [17]. 
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of brain, spinal cord, and nerve disorders included in The Merck manual of diagnosis 
and therapy [19], the following groups of disorders affecting the brain can be 
highlighted: 

 Brain dysfunctions: such as agnosia, amnesia or apraxia 
 Brain infections: such as abscesses, encephalitis or meningitis 
 Headaches: such as migraines 
 Sleep disorders: such as narcolepsy or parasomnias 
 Dementia and delirium: such as Alzheimer’s disease or Lewy body disorder 
 Movement disorders: such as Huntington’s disease or Parkinson’s disease 
 Demyelinating diseases: such as multiple sclerosis 
 Seizure disorders: such as epilepsy 
 Cerebrovascular conditions: such as ischemic or hemorrhagic stroke 
 Brain tumors: such as primary and secondary brain tumors 

This organization may vary among different literature, and several disorders that 
were separated in this classification may be included in the same group according to 
other patterns of classification. For example, Alzheimer’s, Parkinson’s and Huntington 
diseases (among others) are usually considered together as neurodegenerative diseases 
since they cause a deterioration to the brain and nerves over time. In the following 
subsections, we will briefly discuss the brain lesions and diseases treated in this thesis. 

2.2.1. Brain Tumors 

In the human body, cells are constantly growing and dividing as a consequence 
of the body development or in order to replace dead cells of damaged tissues. The process 
of cell division is regulated by a sequence of control mechanisms that tells the cells when 
to start the division and when to remain static. However, some cells stop responding 
appropriately to these control signals and they start to grow and reproduce in an 
uncontrolled manner, invading normal tissues and organs and eventually spreading 
throughout the body (i.e., metastasis). This unregulated proliferation of cells generates 
abnormal tissues known as tumor or neoplasm. A brain tumor refers to the formation of 
abnormal tissues within the brain. According to the origin of the tumor, brain tumors can 
be categorized in primary and secondary brain tumors. Whereas primary brain tumors 
are originated in the brain, secondary brain tumors (also known as metastatic brain 
tumors or brain metastases) are originated due to a primary cancer located in other part 
of the body that spreads to the brain via the circulatory or lymphatic systems [19]. 



Chapter 2. Brain magnetic resonance imaging 

 

 

14 

Primary brain tumors 

Primary brain tumors can be benign or malignant (i.e., cancerous). Benign 
tumors have clearly defined borders, have a slow growth and remain confined to its 
original location neither invading surrounding normal tissue nor spreading to distant 
body sites. These brain tumors may be surgically removed since they tend to be well 
delimited and usually are not deeply rooted in the brain. Therefore, benign brain tumors 
usually do not represent a major life-threatening problem, but depending on their size 
and location, their management may be more or less complicated and dangerous. On the 
contrary, malignant tumors have usually irregular borders, typically grow faster than 
benign tumors and invade surrounding tissues in an aggressive way. Although brain 
malignant tumors rarely spread to other organs, they may metastasize to other parts of 
the brain or CNS, and additionally, they are more likely to recur after surgical resection 
than benign brain tumors. 

According to the 2016 World Health Organization (WHO) classification of the 
tumors of the central nervous system, there exist over 120 histological types of primary 
brain tumors [20]. The WHO classifies the tumors in four grades depending on the way 
that tumor cells look under the microscope. This classification is indicative of the 
aggressiveness and severity of the brain tumor. For example, WHO grade I brain tumors 
encompasses least malignant tumors with slow cell growth, while WHO grade IV tumors 
comprises tumors with a very abnormal appearance where cells reproduce rapidly and 
where necrosis areas (dead cells) are often present. 

 Benign and malignant brain tumors are commonly named according to the cells 
that proliferate or the tissue in which they originate. For example, tumors that originate 
due to an uncontrolled reproduction of glial cells are called gliomas, and tumors initiated 
in the meninges are called meningiomas. In fact, according to recent reports of the 
incidence of brain and CNS tumors [21], meningiomas are the most common primary 
tumors, accounting for the 36.8% of all primary tumors, and gliomas are the most 
frequent malignant primary tumors, representing about the 80% of malignant tumors. 

Secondary brain tumors 

Secondary or metastatic brain tumors are always malignant tumors (i.e., 
cancerous) since they appear as a result of a proliferation of a cancer generated in other 
part of the body. Their exact incidence is certainly unknown, but they are estimated to 
be about ten times more common than primary tumors, they may occur in 9–17% of 
patients with cancer, and 35–50% of patients with brain metastases presents at least three 
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metastases. The primary tumors that metastasize more frequently to the brain are those 
originated in lung (≥ 50%), breast (15–25%) and skin (melanoma) (5–20%) [22]–[24]. 

2.2.2. Dementia and Alzheimer’s disease 

The term dementia describes a set of neurodegenerative symptoms that mainly 
affects memory, attention, intellectual capacity and personality, among other human 
mental functions. Dementia englobes a variety of diseases that occur due to physical 
changes in the brain based on a degeneration or destruction of brain tissue and nerves. 
Diseases associated to dementia are characterized by a progressive brain functions 
deterioration over time that begins gradually with an uncertain beginning point and is 
usually irreversible. The rapid or slow progression of dementia depends greatly on the 
underlying cause of the dementia [19]. 

Dementia primarily affects elderly people, especially people older than 65 years 
old, and constitutes a major health problem worldwide. In 2011, it was estimated that 
35.6 million people around the world suffered from dementia, whereas, in 2018, this 
figure already amounted to 50 million. At this rate, it is expected that this figure will 
almost double by 2030 and more than treble by 2050 [25], [26]. Alzheimer’s Disease 
(AD) represents the most common type of dementia, accounting for an estimated 60 to 
80 percent of cases [27], [28]. Other common types of dementia are vascular dementia, 
Lewy body dementia or frontotemporal dementia. 

Alzheimer’s disease 

Alzheimer’s disease is a neurodegenerative disease defined by the presence of 
an intellectual and behavioral deterioration of sudden onset and progressive course that 
appears during adulthood. It is estimated that one out of ten people aged 65 and older 
suffers from AD. This disease involves a continuous brain degradation that is broadly 
characterized by a preclinical stage, followed by a phase of mild cognitive impairment 
(MCI), and an final phase of dementia in the strict sense [27], [29]. The differences 
between typical age-related cognitive changes and signs of AD can be subtle. The most 
common initial symptom is a gradually worsening ability to remember new information. 
This occurs because the first neurons to be damaged and destroyed are usually located 
in brain regions involved in forming new memories. As neurons in other parts of the 
brain are damaged and destroyed, individuals experience other difficulties, including 
neurobehavioral symptoms such as agitation, sleeplessness and delusions [27]. 
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The etiology of AD is certainly unknown although it is thought to probably have 
a multifactorial cause. The main neuropathological changes of AD are centered on the 
loss of neuronal synapses and neuronal death due to the abnormal aggregation of the 
proteins involved in the disease: intra-neuronal hyperphosphorylated tau in the form of 
neurofibrillary tangles (tau tangles) and extra-neuronal beta-amyloid in the form of 
senile plaques (beta-amyloid plaques). Beta-amyloid plaques are believed to contribute 
to neuronal death by interfering with neuron-to-neuron communication at synapses, 
while tau tangles block the transport of nutrients and other essential molecules inside 
neurons [27]. 

The diagnosis of AD remains nowadays fundamentally clinical, which means 
that it cannot be diagnosed until the first symptoms appear, or even later, because, as 
mentioned before, these early symptoms are usually associated with consequences due 
to normal aging [25]. Definitive diagnosis can only be made with histopathological 
confirmation of beta-amyloid plaques and tau tangles, usually at autopsy [30]. However, 
experimental evidence indicates that pathophysiological alterations take place in the 
brain more than a decade before clinical decline, in the pre-symptomatic phase known 
as preclinical stage [31], [32]. 

2.2.3. Cerebrovascular conditions 

Cerebrovascular diseases involve a variety of medical conditions that affect the 
blood vessels of the brain and the associated cerebral circulation. The most common 
representation of a cerebrovascular disease is the acute stroke, which occurs when part 
of the blood flow that circulates through the network of cerebral arteries and veins 
decreases drastically or stops, thus resulting in the death of an area of brain tissue. 
Strokes can be grouped into two types: ischemic and hemorrhagic strokes. Ischemic 
strokes occur when there is a lack of blood supply to the brain mainly due to a blood clot 
blocking a blood vessel, while hemorrhagic strokes occur when blood vessels are 
abnormal or weak and suddenly rupture, causing blood to leak into the brain and 
generating congestion and pressure on brain tissue [19]. Ischemic strokes account for 
roughly the 85% of all strokes and are a leading cause of mortality and disability, being 
the second most common cause of death worldwide [33], [34]. Likewise, ischemic 
strokes can be subtyped. The most common ischemic strokes are lacunar strokes, which 
are small infarcts (2-20 mm in diameter) resulting from the occlusion of one of the small 
perforating arteries that provide blood to the deep subcortical structures of the brain. 
They account for a quarter of all ischemic strokes and a fifth of all strokes [35]. 
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The signs and symptoms of a stroke occur suddenly, and they may vary 
depending on the precise location of the blockage or bleeding in the brain and how much 
cerebral tissue is affected. For example, if an artery supplying the area of the brain that 
controls the left leg’s muscle movements is blocked, the leg becomes weak or paralyzed 
and if the area of the brain that senses touch in the right arm is damaged, sensation in the 
right arm is lost [19]. However, one can have a stroke without noticing any outward 
stroke symptoms and the diagnose of this event is made when permanent damage is 
found on neuroimaging evaluations such as MRI. These cerebrovascular accidents are 
known as silent strokes and they are associated with an increased risk of subsequent 
stroke and cognitive dysfunction [36]. 

One of the brain conditions that directly relate to the causes of most of strokes 
is the cerebral small vessel disease (SVD). The SVD refers to a range of pathological 
processes affecting the small arteries, arterioles, capillaries and small veins of the brain, 
that can be described by clinical and imaging findings. This condition accounts for about 
20% of all strokes worldwide and constitutes a major source of cognitive decline [37]. 

2.3. Overview of magnetic resonance imaging 
The use of magnetic resonance imaging (MRI) for clinical and scientific 

purposes is relatively recent. In 1946, Felix Bloch [38] and Edward Purcell [39] 
established the principles of the nuclear magnetic resonance (MR). However, it was not 
until 1971 when Raymond Damadian reported that tumors and normal tissue could be 
distinguished in vivo by nuclear MR [40]. In 1973, Paul Lauterbur published the first 
true MR image [41] and thanks to this and further achievements, he was awarded with 
the 2003 Nobel Prize in Physiology or Medicine for his discoveries concerning MRI as 
a diagnostic tool, along with Sir Peter Mansfield, who developed the echo-planar 
imaging technique [42]. 

Currently, the role of MRI in the field of medicine is constantly expanding 
thanks to the rapid evolution and improvement of the functionality of MRI systems. Its 
clinical efficacy and its benefits over other ionizing imaging techniques such as 
computed tomography (CT) or positron emission tomography (PET) have been 
demonstrated in numerous studies. Moreover, the possibility of selecting the scan plane, 
acquiring true 3D images and generating excellent soft-tissue contrast, makes MRI the 
best choice for many clinical applications [43]. 
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2.3.1. The Physics behind MRI 

All matter is made up of atoms, and these in turn are composed of particles. 
These particles have intrinsic characteristics such as spin, which is defined as the 
property that describes the fact that a particle is rotating around an imaginary axis. The 
operation of an MR scanner is based on the analysis of the interaction between the 
particles that have this property and a certain magnetic field. Normally, MRI focuses on 
the measurement of hydrogen nuclei, mainly because this element is the most abundant 
in the human body (it is present in water and fat) and has one of nature’s greatest response 
to the presence of a magnetic field. The hydrogen nucleus has a unique moving proton 
with positive charge that generates a magnetic field characterized by its magnetic 
moment. In addition, the hydrogen nucleus is characterized by an angular momentum 
because it has an odd number of protons [44]. 

In a certain volume of tissue formed by a set of equal protons, all the magnetic 
moments are oriented in arbitrary directions and the net magnetization of the material M 
is null. When the protons of the hydrogen nuclei interact with an external magnetic field 
B0, these particles acquire a gyroscopic movement, called precession, around the axis 
determined by B0, whose frequency is proportional to the intensity of the external field 
B0. In addition, the magnetic moments will tend to align with the direction of B0, either 
parallel (high energy) or antiparallel (low energy). This process known as polarization 
will induce the appearance of a net magnetization M parallel to the applied field, 
proportional to the difference between parallel and antiparallel moments [43], [44]. 

If we now disturb the created system by applying another field B1 in the 
transverse plane, known as a radiofrequency pulse, the net magnetization M will tend to 
align with the total field B = B0 + B1. This is the process of excitation. After the 
application of an RF pulse, the magnetization M gradually returns to its equilibrium state, 
thus defining the process of relaxation. At a macroscopic level, relaxation is the process 
by which protons release the energy absorbed during the emission of radiofrequency 
pulses. There are two types of relaxation: 

 Longitudinal relaxation: represents the exponential recovery of the 
longitudinal magnetization to its equilibrium value (in the direction of the 
main field B0). The associated relaxation time is T1 (recovery of 63%). 

 Transverse relaxation: defines the exponential decay of the net 
magnetization when leaving the transverse plane. The associated relaxation 
time is T2 (decay of 63%). 
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The electromagnetic radiation emitted by the spins during the relaxation 
process, in which the transverse magnetization decays and the longitudinal recovers, will 
induce a signal in a set of receiver antennas (coils) contained in the MRI system that 
cover the volume of the image. This MRI signal, called free induction decay (FID), is 
based on the release of energy suffered by the system at the end of the RF pulse and is 
represented by a sinusoid that decays with time. The FID signal represents the basis of 
the formation of the MR image [43]. 

2.3.2. Basics of MR images 

An MR image is a map that represents the spatial distribution of some properties 
of the spins contained in a sample of tissue volume. These properties may reflect the 
density of the spins, their mobility or the relaxation times T1 (longitudinal) or T2 
(transverse) for the different tissues. 

In clinical imaging, the contrast of an image is what allows the visualization of 
the different tissues or pathologies. The contrast is defined as the difference in the 
received magnitude of the MRI signal that comes from different spatial locations, which 
result in different levels of intensity or brightness. The difference in relaxation times T1 
and T2 is a frequently used contrast mechanism since different biological tissues 
intrinsically exhibit different relaxation properties. Additionally, different RF pulse 
sequences (i.e., a temporal succession of RF pulses) are used to generate a predominant 
T1 or T2 enhancement of the contrast of the acquired image. This enhancement may be 
achieved by manipulating various parameters of these sequences such as the amplitude 
of the RF pulse, the repetition time (TR) or the echo time (TE) [45]. TR is the amount of 
time between successive pulse sequences applied to the same slice, while TE is the time 
between the delivery of the RF pulse and the receipt of the echo signal. 

The appearance of some specific tissues in conventional structural MR images 
is well-known. Solid tissues, such as hard bone, or air areas provide low MRI signals, 
since water is practically immobilized or absent inside them. For this reason, these tissues 
appear dark in MR images compared to fluids or soft tissues. On the contrary, fluids and 
soft tissues can be represented with different contrasts according to the T1 or T2 
enhancement chosen [45]. 

T1-weighted images are generated using shorter TR and TE and are the ones 
that best determine the anatomy as they show most clearly the boundaries between 
different tissues. This type of image is directly proportional to the release of energy in 
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the hydrogen nuclei. This means that, for example, liquids present longer T1 because the 
corresponding energy is released more slowly, and they appear darker in MR images 
(i.e., hypointense). If an auxiliary contrast agent (such as gadolinium) is used, MRI signal 
intensities change by shortening T1, thus making some lesions clearly visible in the 
images. In contrast-enhanced T1-weighted images, some pathological tissues, such as 
tumors or areas of inflammation/infection demonstrate accumulation of contrast (mostly 
due to leaky blood vessels) and therefore they appear brighter than surrounding tissue.  

T2-weighted images are generated using longer TR and TE are the ones that best 
detect pathological areas since, in general, these areas have a higher water content. 
Therefore, liquids present longer T2 since their practically isolated nuclei perceive the 
same magnetic field around them and relax in a coherent way, and they appear brighter 
in MR images (i.e., hyperintense). 

A third conventional type of MR weighted image commonly used in the clinical 
practice is the fluid attenuation inversion recovery (FLAIR) image. The FLAIR sequence 
is similar to a T2-weighted image but in this case, TE and TR times are very much longer 
in order to reduce the brightness of fluids while maintaining the brightness of the rest of 
the tissues in the image. This way, abnormalities near fluid areas can be better detected. 

2.4. Conventional MRI of the Brain 
Conventional MRI is the most commonly performed examination in neurology 

and neurosurgery at most institutions since this technique provides and reflects an 
enormous amount of information about such a complex organ as the brain. Brain MRI 
outperforms other brain imaging techniques such as CT and PET because it is a non-
invasive technique (avoids ionizing radiation) that provides higher resolution detailed 
images of the brain in all three planes (axial, sagittal and coronal), shows an excellent 
contrast of soft tissues like gray and white matter, and allows controlling the 
visualization of different brain pathologies and injuries by varying the sequence 
parameters [43]. 

Broadly speaking, conventional brain MRI is useful to detect a variety of 
conditions of the brain such as cysts, tumors, bleeding, swelling, infections, 
inflammatory conditions, problems with the blood vessels, or damage caused by an 
injury or a stroke. Additionally, brain MRI may be appropriate for evaluating problems 
such as persistent headaches, dizziness, weakness, blurry vision or seizures, and it is the 
preferred choice for detecting certain chronic and neurodegenerative conditions of the 
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CNS, such as multiple sclerosis or Alzheimer’s disease, due to its excellent contrast 
between gray and white matter [46].  

As stated before, the appearance of some specific brain tissues according to the 
structural MRI sequence chosen is widely known. Focusing on the most common 
sequences used in almost every clinical MRI protocol (i.e., T1-weighted, T2-weighted 
and FLAIR sequences), the relative appearance of the structures that form the brain in 
each sequence is indicated in Table 2.1 and shown in Figure 2.3. 

To conclude, it is important to emphasize the use of contrast-enhanced T1-
weighted images for evaluating some brain disorders. Contrast injection improves the 
value of T1-weighted images by giving the greatest sensitivity for detecting pathological 
processes that break down the normal blood-brain barrier. Some brain pathologies such 
as tumors, infections and inflammations break down the blood-brain barrier and light up 
intensely on post-contrast T1-weighted images. Additionally, for patients with primary 
or secondary brain tumors, post-contrast imaging is important for detecting and 
characterizing metastatic brain tumors, determining the extent of primary tumor growth 
and defining the precise boundary between normal and neoplastic tissue [45], [47]. An 
example of the benefits of contrast-enhanced T1-weighted images for detecting brain 
lesions is shown in Figure 2.4. 

 

 

Table 2.1. Relative appearance of some brain tissues and structures in conventional MR images. In 
T1-weighted images, darker appearance implies longer T1 while brighter appearance implies shorter 
T1. In T2-weighted images, darker appearance implies shorter T2 while brighter appearance implies 

longer T2. FLAIR images are analogous to T2-weighted images but with CSF set to dark. 

Tissue or Structure T1-weighted T2-weighted FLAIR 

Cerebrospinal Fluid Dark Bright Dark 

White Matter Light Dark Gray Dark Gray 

Gray Matter (Cortex) Gray Light Gray Light Gray 

Fat (within bone marrow) 
and skin Bright Light Light 

Bone (skull) Dark Dark Dark 
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Figure 2.3. Comparison between axial views of T1-weighted, T2-weighted and FLAIR images of a 
patient with a demyelinating disease (multiple areas of abnormal signal intensity displaying bright 
signal in T2 and FLAIR). The difference in contrast between MRI sequences of different brain tissues 
can be observed in these images. Case courtesy of Dr Ahmed Abdrabou, Radiopaedia.org, rID: 22973. 

 
Figure 2.4. Axial T1-weighted scans of a patient with multiple brain metastases acquired before and 
after administration of a contrast agent. The red arrows indicate the metastatic lesions detected in this 
view. In the post-contrast image, these lesions are visible and present clearly delimited borders. In the 
pre-contrast image, only the biggest lesion can be slightly identified but without a clear boundary. 
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Chapter 3.                      
Texture analysis 

 

 

 

 

3.1. Definition of Texture Analysis 
There is no strict definition of what texture is. In general terms, every object 

around us presents texture and humans can easily perceive this texture as a visualization 
of complex patterns expressing the nature of a physical object, composed of randomly 
spatially organized subpatterns with uniform appearance which have characteristic 
brightness, color, slope or size. The spatial arrangement of these local subpatterns give 
rise to a set of perceived properties that describe the texture of an object: lightness, 
uniformity, density, roughness, regularity, linearity, frequency, phase, directionality, 
coarseness, randomness, fineness, smoothness or granulation, among others. In 
summary, the texture of an object describes the spatial arrangement of visual subpatterns 
in an object by means of a set of properties. However, humans usually assess these 
properties only qualitatively, while often a quantitative texture analysis is required to 
measure numerically the visual appearance on these properties [48]–[50]. 

In terms of image processing, texture analysis can be defined as the application 
of mathematical methods to extract parameters from the images that describe the pixel 
interrelationships, the gray level distributions and the spectral properties within these 
images. These texture parameters allow quantifying intrinsic heterogeneity properties 
from the images that are usually imperceptible to the human eye, thus characterizing and 
distinguishing different images accurately by their textural patterns [12]. In the past 
years, texture analysis has gained major attention in the medical imaging field because 
it is considered a reliable source of imaging biomarkers describing the internal structure 
of human tissues or organs that can be used to increase the precision in diagnosis or to 
predict treatment response, especially in cancer research [3], [51].  
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There exists a wide range of texture analysis methods that can be applied directly 
to raw medical images without processing them. However, most of the studies coincide 
that the best option is to process these images before applying texture analysis in order 
to make the most of texture analysis. In the following sections we will discuss the 
benefits and pitfalls of the most common processing strategies, we will introduce the 
texture analysis methods employed in the present thesis and we will review the state-of-
the-art of texture analysis on magnetic resonance imaging (MRI). 

3.2. Region of Interest Delineation 
As previously stated, texture features can be extracted from the original entire 

images. However, this approach may present some important issues as unimportant 
heterogeneity information may blur the true texture profile of the specific tissue or organ 
under analysis. Therefore, texture features are usually extracted from predefined regions 
of interest (ROI), or volumes or interest (VOI) in the case of 3D texture analysis, 
containing the tissue or organ under analysis in order to delimit and characterize only 
certain structures present on the image. In the literature, these ROIs or VOIs are defined 
in different ways and there is not a definitive agreement about the best practice since 
different applications might require different approaches. 

3.2.1. Segmentation of the Region 

Despite the advances in the field of automatic and semi-automatic segmentation 
methods and their advantages, manual delineation of the ROIs or VOIs by expert 
radiologists still remains as the preferred option in most of the studies since certain 
tissues or organs are difficult to segment properly without an expert supervision [10], 
[52], [53]. However, the manual segmentation approach has some disadvantages. Firstly, 
the manual delineation of regions may represent a time-consuming task not applicable 
in the clinical practice, especially when dealing with volumetric regions and large 
imaging datasets. Secondly, manual segmentation may be prone to high inter-observer 
variability. Consequently, when choosing a manual segmentation approach, it is 
important to assure the reproducibility and repeatability of the segmentation and the 
corresponding extracted features because different observers can segment certain regions 
differently, like in the case of brain tumors where the margins of the lesion are complex, 
thus leading to different texture values, especially in small regions [54], [55]. 



3.2. Region of Interest Delineation 

 

 

25 

The state-of-the-art literature recommends that, when working with large 
datasets and volumetric regions, the segmentation method should be as automatic as 
possible to minimize the operator interaction and to be efficient in terms of time [1], [7], 
[56]. However, it is important to mention that, although automatic segmentation methods 
outperform manual segmentations in terms of repeatability, texture features may still be 
depending on the segmentation method [10]. 

3.2.2. Influence of the Region Shape and Size 

As mentioned in the previous subsection, texture analysis is usually applied to 
delimited image regions that only include the whole tissue or organ area (or volume) 
under analysis. This delimitation is usually performed with manual, semi-automatic or 
automatic methods, thus leading to possible inter-observer variability or time-consuming 
processes. However, many studies employ other simpler techniques for selecting the 
regions or volumes of interest based on predefined equal-sized geometric figures in 2D 
or 3D, like circles/spheres [57], [58] or squares/cubes [59], [60]. The benefits of using 
these geometric ROIs/VOIs are that the ROI definition process is easier and faster and 
that the size of the regions does not influence in the texture analysis performance since 
all the regions are sufficiently large and have the same size. 

When choosing geometric regions for defining the ROIs/VOIs, two approaches 
are usually considered: encompassing only part of the tissue under analysis, or defining 
the smallest enclosing area or volume containing the whole tissue or organ of interest. 
The first approach captures only heterogeneity information of the tissue under analysis, 
but some texture details may be lost since the geometric regions does not cover the entire 
area or volume of interest. The second approach overcome this last issue as it covers the 
entire tissue or organ, but it also comprises heterogeneity information of adjacent parts 
that may obscure the characteristic texture outcome of the specific tissue or organ. 
Despite the advantages of these approaches, the segmentation of the entire area or 
volume of interest is still considered the best approach for conducting texture analysis 
because analyzing the whole region tissue without including surrounding structures may 
offer better texture characterization of the specific tissue [61]. Figure 3.1 shows an 
example of the three approaches for delineating the area of interest commented in this 
section. 
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As briefly stated in the last paragraph, the size of the ROIs or VOIs may also 
influence in the texture outcome. The region size should be sufficiently large to capture 
the texture information that really represents the tissue. Additionally, many texture 
features may be dependent on the region size, thus probably leading to false results when 
classifying different tissues if the differences in the region sizes between groups become 
significant [50]. It is reported that the effect of the ROI size in the texture parameters 
becomes insignificant when using large areas in terms of pixels [62]. However, the 
region size depends directly on the imaging acquisition parameters and, although certain 
texture features may obey this rule, there is a wide range of texture features and not all 
of them have been proven to be unaffected by the ROI/VOI size [13]. Therefore, when 
performing texture analysis, it is important to assure that the regions are large enough to 
capture texture heterogeneity and that the difference between ROI/VOI sizes among 
groups is not statistically significant. To avoid possible effects of the region size, equal-
sized geometric regions can be used, but, as mentioned before, the complete delineation 
of the ROI might offer better results. In conclusion, the use of a segmentation approach 
is recommended when the range of ROI/VOI sizes among samples is not significantly 
different or when the selected texture features are not affected by this difference; 
otherwise, geometric regions of the same size might be a better approach [13]. 

3.2.3. Dimensionality 

Traditionally, texture analysis has been conducted in 2D but in the past years, 
the biomedical community has made an effort to extend the 2D texture analysis 

 
Figure 3.1. Approaches for defining a 2D region of interest (ROI) on a brain tumor. The preferred 
option is the segmentation of the entire area of interest (a) by manual or automatic strategies. However 
geometric regions like squares comprising only part of the tumor tissue (b) or covering the complete 
lesion and adjacent tissue (c) may be used to simplify the delineation process. 
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techniques to the 3D space. This is a consequence of the improvement in the 3D data 
acquisition and the reaching of high spatial resolutions. Hence, many studies state that 
promising 3D texture analysis should be considered instead of traditional 2D texture 
analysis because texture features extracted from volumetric regions capture more 
information about the tissue heterogeneity than features extracted from a single scan, 
thus increasing the discrimination between different tissues [51], [63]. 

However, 3D inter-slice texture analysis (i.e., true volumetric texture analysis) 
is not always applicable since not all the medical images present sufficient resolution in 
the third dimension. When the slice thickness of the image (the inter-slice distance) is 
very large in comparison to the in-plane resolution (the inter-pixel distance), 3D inter-
slice texture analysis methods are not recommended [51]. This is because extending 2D 
texture analysis to 3D requires isotropic image resolution to ensure the conservation of 
scales and directions in all three dimensions, thus meaning that image interpolation 
should be applied in the third dimension and then the 3D image would be highly 
transformed due to the big difference between inter-slice and inter-pixel distances [51], 
[64]. In these cases, 3D intra-slice texture analysis approaches to capture the volumetric 
information of each image by evaluating 2D texture features may be proposed. One 
approach consists on extracting the 2D texture features from each scan, and then, 
averaging the texture values of all the scans to obtain the 3D texture features of the whole 
image region. Another approach consists on averaging the texture-based matrices or 
histograms obtained in each scan and then extracting the corresponding 3D texture 
features from these averaged matrices or histograms. Using these approaches, the gray-
level distributions in the third dimension are not considered, but some studies 
demonstrated that features computed with these methods are more discriminative than 
features extracted from a single scan [65], [66]. Figure 3.2 shows a graphic explanation 
of all the approaches for computing 2D and 3D texture analysis 

Despite the potential of 3D texture analysis, 2D texture analysis still remains as 
the selected option in many studies. Volumetric texture analysis presents some 
disadvantages that should be considered before discarding 2D texture analysis. First, the 
3D segmentation of the VOI is more complex and time-consuming than the segmentation 
of a single scan, so for clinicians it is easier and faster to delineate 2D ROIs. Additionally, 
in some cases, only single scans present tissue of interest, thus making 3D texture 
analysis unviable. Finally, the clinical evaluation still remains mostly based on 2D scans, 
so 2D texture analysis is easier to combine with this procedure [64]. 
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3.3. Image Preprocessing 
Once the area or volume of interest is selected, texture analysis can now be 

executed. Nevertheless, it is highly recommended to pre-process these image regions in 
order to enhance the characteristics of each tissue or organ and to minimize the effects 
of imaging acquisition protocols. The following pre-processing techniques are optional, 
but one should consider implementing them depending on the quality of the images and 
the purpose of each specific application. It is important to know that the texture outcome 
can be considerably affected depending on the methodology used throughout the process. 

3.3.1. Image Interpolation 

Image spatial resolution is one of the most influential factors in texture analysis. 
Although it has been demonstrated that higher resolutions tend to improve texture 
discrimination power due to the increased level of detail of the captured tissue, high-
resolution images are not always available in clinical routine because their acquisition 
time is high and they are prone to motion artifacts [67]–[70]. 

 

 
Figure 3.2. Approaches for computing texture analysis in 2D (a) and 3D (b, c and d), where M 
represents texture matrices and f represents texture features. Volumetric features can be obtained 
through 3D inter-slice analysis (extending directly 2D approaches to 3D) as in (b), or through 3D intra-
slice analysis, by averaging 2D texture features (c) or 2D texture matrices (d).  
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Image interpolation is a conventional option to enhance medical images with a 
low spatial resolution. The effect of image interpolation (Figure 3.3) on the texture 
outcome has been previously analyzed. For example, Mayerhoefer et al. [71] compared 
three interpolation methods applied on T2-weighted MRI images acquired at five 
different resolutions. They concluded that MR image interpolation does not improve 
classification rates of images at a very low resolution, but for clinical images with higher 
resolutions, image interpolation has the potential to improve the results of texture-based 
classification, recommending a maximum interpolation factor of four. Despite the 
promising results of this last study, the benefits of interpolation should be further 
investigated for each specific clinical task and for all texture analysis methods, since this 
method transforms the image and may not be appropriate for certain applications. 

Image interpolation is of special interest when dealing with 3D texture analysis. 
As previously discussed, in most imaging sequences the slice thickness is larger than the 
in-plane resolution, so re-slicing all images to obtain isotropic image resolution is 
required in texture analysis to guarantee the conservation of scales and directions in the 
three dimensions. However, this approach is not suitable when difference between the 
slice thickness of the image and the in-plane resolution is substantially big [51]. 

3.3.2. Image Normalization 

Texture analysis is sensitive to all the imaging acquisition settings, including 
protocols, scanners and/or adjustments. Even if the same scanner and protocol are 
employed among subjects, the resulting images can show substantial intensity variations 
due to other acquisition conditions such as room temperature and hygrometry, calibration 
adjustment or slice location [72]. When performing texture analysis, this phenomenon 
may obscure true image texture since some higher-order texture parameters show 
dependency on global image characteristics defining the overall brightness or contrast, 
like mean intensity and variance [48]. 

Image normalization removes this dependency of texture parameters on the first 
order gray-level distribution, thus suppressing the effect of the imaging acquisition 
settings and enhancing the true texture profile of the image. This dependency was 
demonstrated on texture features extracted from T2-weighted images by Collewet et al. 
[72]. In this work, they concluded that a method consisting on adjusting the histogram 
to the μ ± 3σ range, being μ is the mean value of gray levels inside the ROI and σ is the 
SD, yielded the best classification results. Specifically, this simple method just ignores 
the gray levels located outside the range [μ - 3σ, μ + 3σ] for further analyses. As a result 
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of this study, normalization has become an essential step prior to texture analysis, and 
this μ ± 3σ normalization method has become a popular choice in most of the studies 
since many texture analysis software packages implement this method [49], [73]. 

3.3.3. Quantization of Gray levels 

Common images have a bit depth of 8 bits per pixel, but medical images are 
generally represented by bit depths ranging from 10 to 16 bits per pixels (bpp), thus 
resulting in contrast resolutions of 1024 to 65536 levels of gray. Texture analysis 
methods based on matrix computation are dependent on this gray-level range since they 
quantify the relationship between levels of gray. Therefore, the computation of this 
matrices and the corresponding texture features in images with high bit depths may 
become a tedious process [74], [75]. 

Quantization of gray levels is usually applied image regions prior to texture 
analysis in order to shorten the computational time of the matrix-based features by 
reducing the number of gray levels used to represent the image. Additionally, quantizing 
the images improves the signal-to-noise ratio (SNR) of the texture outcome [74]. Typical 
numbers of gray levels (i.e., dynamic range) tested in texture analysis studies are 8, 16, 
32, 64, 128 or 256 gray levels. Figure 3.4 shows the effect of quantizing an image with 
different number of gray levels. 

The influence of this quantization process in the discriminative power of the 
matrix-based texture features has been previously analyzed with diverse results. Several 
studies reported that no substantial difference was found when comparing the texture 
analysis results derived from quantizing the images with several number of gray levels 
[73], [76]. However, other studies showed that the discriminative power of texture 
features changed depending on the dynamic range chosen to quantize the images. For 
example, Mahmoud-Ghoneim et al. [75] concluded that better results were obtained for 
characterizing brain white matter regions when quantizing with 128 gray levels; Chen et 
al. [61] found that the optimal results for characterizing breast lesions were achieved 
when quantizing with 32 gray levels; and Leite et al. [77] observed that quantizing with 
16 gray levels allowed identifying the etiology of brain white matter lesions more 
accurately. In the light of these mixed conclusions, it is possible to affirm that larger 
dynamic ranges do not necessarily give better texture results and that there is no optimal 
number of gray levels vary among studies. Consequently, the dynamic range should be 
optimized for each specific application because it can lead to better classification results 
[13], [75], [78]. 
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Figure 3.3. Effect of interpolating a bi-dimensional low-resolution image of a brain tumor by factors 2 
and 4. The interpolated images show better definition and may characterize the texture profile of the 
tumor more appropriately. 

 
Figure 3.4. Effect of quantization in an image with a dynamic range of 4096 levels of gray. The contrast 
appearance of the image region is highly transformed, especially when using low bit depths. However, 
reducing the number of gray levels shorten the computational time and may improve the texture 
analysis performance. 
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3.4. Texture Analysis Methods 
There exists a wide range of techniques to extract parameters that quantify the 

texture of an image. The first texture analysis methods date from the 70s but, nowadays, 
new methods are still being proposed and the number of possible texture features 
increases year after year. Testing all these texture features in a single specific study may 
result in a demanding and unfeasible task, so a reduced set of the best approaches is 
usually chosen depending on the images under analysis or the specific application, since 
some texture analysis methods may work better than others based on these conditions. 

Extensive helpful reviews of existing feature extraction methods have been 
published during the past ten years [79]–[81]. However, in 2016, a large group of 
researchers from around the world decided to create the Image Biomarker 
Standardisation Initiative (IBSI), an independent international collaboration that works 
towards the standardization of imaging radiomics biomarkers for the purpose of high-
throughput quantitative image analysis. As part of this initiative, a reference manual was 
published to provide a common nomenclature and definition for radiomics parameters, 
as well as reporting guidelines for the correct performance of radiomics analyses [82]. 
Therefore, this continuously updated review should be used as the reference manual for 
consulting the state-of-the-art of texture analysis methods and features since one of the 
main purposes of the radiomics practice is to establish a common framework for using 
reproducible and validated texture biomarkers. 

The IBSI reference manual provides the equations and formulas to compute all 
the texture features included in the manual, so one may implement in-house functions to 
perform texture analysis. However, several useful software packages are currently 
available to conduct texture analysis. Open-source software packages mostly use 
MATLAB (The MathWorks Inc., Natick, MA, USA) as the preferred coding 
environment. Examples of open-source packages implemented in MATLAB are: 

 Radiomics package, implemented by Vallieres et al. [73] 
(available from https://github.com/mvallieres/radiomics) 

 Local binary patterns software, implemented by Ojala et al. [83] 
(available from http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware) 

 IBEX (Imaging Biomarker EXplorer), implemented by Zhang et al. [84] 
(available from http://bit.ly/IBEX_MDAnderson) 

Other open-source software tools do not require MATLAB, like the famous 
MaZda package: 

https://github.com/mvallieres/radiomics
http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware
http://bit.ly/IBEX_MDAnderson
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 MaZda (Institute of Electronics, Technical University of Lodz, Poland) [49] 
(available from http://www.eletel.p.lodz.pl/programy/mazda/) 

As opposed to freely available packages, several companies decided to offer 
commercial tools following the success of texture analysis, for example: 

 RadiomiX (OncoRadiomics, Maastricht, The Netherlands) 
 TexRAD (Feedback plc, Cambridge, UK) 

In the following subsections, we will give details of the texture analysis methods 
and the corresponding features used in the projects developed in the context of this thesis. 
All these features are included in the IBSI reference manual [82] and they were computed 
with open-source tools coded in MATLAB, using mainly a combination of the 
Radiomics package, the MATLAB implementation of the local binary patterns and our 
own self-implemented scripts. 

3.4.1. Classification of Texture Analysis Methods 

Texture analysis methods have been traditionally categorized in four big groups 
according to how relationships between pixels/voxels are mathematically computed: 
structural, model-based, transform and statistical methods [12], [48], [79], [85]. 

Structural methods 

These methods assume that textures are represented by well-defined primitives 
(microtexture) and a hierarchy of spatial arrangements (macrotexture) of these primitives 
dependent on the chosen spatial location rules. Microtextures can be as simple as 
individual pixels/voxels, a region with uniform gray levels or line segments. 
Macrotextures can be obtained by modeling geometric relationships between 
microtextures or by learning their statistical properties. These methods offer a good 
symbolic description of the image but, however, they are more useful for synthesis than 
for analysis tasks. 

Model-based methods 

These methods attempt to represent the texture by using sophisticated 
mathematical models, like fractals or autoregressive models. The parameters derived 
from each model are used to characterize the image. The main disadvantage of these 
methods resides in the computational complexity for estimating the descriptors. 

 

http://www.eletel.p.lodz.pl/programy/mazda/


Chapter 3. Texture analysis 

 

 

34 

Transform methods 

These methods transform the images to represent them in a different space, such 
as the spatial or the frequency domain, thus providing quantitative information about the 
texture that is not possible to obtain from the original image. In other words, transform 
methods consist on applying filter banks to the image and then extracting statistical 
properties from the filter responses. The most popular filters for computing this type of 
textures are the Fourier, Gabor or Wavelet transforms. 

Statistical methods 

These methods represent the texture by quantifying directly the distributions and 
relationships between gray levels of an image in different ways, without considering any 
model behind the image generation and without interpreting reasons for pattern 
generation. Statistical methods are the most popular texture analysis methods due to their 
simplicity and their proved efficiency for achieving higher discrimination accuracies. 
Additionally, these methods provide more interpretable information that may be 
correlated with the pathological properties of the tissues. Therefore, most of the texture 
analysis methods used in the projects presented in this thesis belong to this group. 

Statistical methods can be in turn classified in different subgroups according to 
several criteria. On the one hand, depending on the number of pixels/voxels involved in 
the computation, statistical methods can be categorized in: 

 First-order statistics: describe the frequency distribution of the gray levels 
within the region of interest and are dependent on a single pixel/voxel value 
rather than its interaction with neighboring pixels/voxels. 

 Second-order statistics: examine the relationship between a pair of 
pixels/voxels across the image domain by measuring the probability of 
finding a pair of gray levels at random distances and orientations over the 
image region. 

 Higher order statistics: explore the spatial relationship among three or more 
pixels/voxels and are thought to closely resemble the human experience of 
the image. 

On the other hand, according to the type of spatial relationship between 
pixels/voxels quantified, statistical methods can be classified in: 
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 Global metrics: quantify the whole gray-level distribution of the image 
region without spatial information. 

 Local metrics: describe the spatial interrelationship between neighboring 
pixels/voxels with different or equal gray levels. 

 Regional metrics: measure the distribution of groups of connected 
pixels/voxels with the same gray-level values (i.e., gray-level areas or 
volumes). 

Table 3.1 presents a list of the texture analysis methods used in the context of 
this thesis. They are also classified according to the criteria explained above. Further 
details of these methods can be found in the following subsections. These methods have 
been selected mainly due to their popularity and efficiency in related studies, their 
availability in the software implementations used and their interpretability. However, as 
mentioned before, there exists a wide range of texture methods and, when possible, all 
these methods should be tested because the efficiency of one method may depend on the 
specific application.  

 

 

Table 3.1. List of the texture analysis methods used in this thesis and how they are classified. 

Texture Analysis Method Group Order Scale 

Intensity histogram Statistical First-order Global 

Gray-level 
co-occurrence matrix Statistical Second-order Local 

Gray-level 
run-length matrix Statistical Higher-order Regional 

Gray-level 
size zone matrix Statistical Higher-order Regional 

Neighborhood gray-tone 
difference matrix Statistical Higher-order Local 

Local binary patterns Statistical / 
Structural Higher-order Local 

Discrete wavelet transform Transform - - 
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3.4.2. Intensity Histogram 

Image intensity histogram is a first-order statistical texture analysis method that 
quantifies the global heterogeneity of an image region by measuring the frequency of 
appearance of each gray level, without taking into account correlations between pixels. 
This method is not only computationally simple, but also rotation and translation 
invariant [79]. However, histogram-derived parameters are not considered as texture 
descriptors by many researchers since they do not reflect spatial statistical relationships 
between image pixels and only refer to pixels or voxels treated as random variables. 
Despite everything, these parameters do characterize image regions and are usually 
combined with texture features in order to improve classification studies [50]. 

The shape of the histogram provides many clues as to the nature of the image, 
as shown in Figure 3.5. For example, a narrowly distributed histogram is associated to a 
low-contrast image and, on the contrary, a wide histogram is associated to an image with 
a higher range of gray levels. Bimodal histograms often suggest that the image contains 
an object with a narrow intensity range against a background of differing intensity [86]. 

 

 
Figure 3.5. Histograms associated to different brain tumors. The first lesion (a) presents a wide 
histogram due to its heterogeneity. The second lesion is more homogeneous, so its histogram is 
narrower. The third lesion (c) is a ring-enhancing tumor mainly dominated by a central necrosis area 
and a brighter rim, which relates to a bimodal histogram with two peaks (necrosis and margin areas). 
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Different useful parameters can be derived from the histogram to quantitatively 
describe the heterogeneity properties of the image region. Assuming that 𝑁𝑁𝑔𝑔 is the 
number of distinct gray levels, and 𝑝𝑝(𝑖𝑖) is the normalized histogram vector (histogram 
whose entries are divided by the total number of pixels in the ROI) of intensity levels 𝑖𝑖, 
the most common features derived from the histogram are: 

 
• Mean: indicates the average level of intensity or brightness of the image region. 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜇𝜇 = �𝑖𝑖𝑖𝑖(𝑖𝑖)

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.1 

 

• Variance: describes the variation of intensity around the mean, thus suggesting the 
level of heterogeneity of the region. 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜎𝜎2 = �(𝑖𝑖 − 𝜇𝜇)2𝑝𝑝(𝑖𝑖)

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.2 

 

• Skewness: measures the asymmetry of the histogram. This feature is zero if the 
histogram is symmetrical about the mean and is either positive or negative 
depending whether it has been skewed above or below the mean. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜎𝜎−3�(𝑖𝑖 − 𝜇𝜇)3𝑝𝑝(𝑖𝑖)

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.3 

 

• Kurtosis: measures the flatness (positive) or peakedness (negative) of the histogram 
in comparison to the normal distribution.  

 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 𝜎𝜎−4�[(𝑖𝑖 − 𝜇𝜇)4𝑝𝑝(𝑖𝑖)] − 3

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.4 

 

• Energy: describes the uniformity of the histogram. Assumes its maximum value 
only if the image has a very narrow histogram, dominated by a single value. Broader 
intensity variations cause the energy to decrease. 



Chapter 3. Texture analysis 

 

 

38 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �[𝑝𝑝(𝑖𝑖)]2
𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.5 

 

• Entropy: quantifies the irregularity of the histogram. A predominantly random 
distribution has a high entropy. Highly correlated or uniform distributions have a 
low entropy. 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = −�𝑝𝑝(𝑖𝑖) log2 𝑝𝑝(𝑖𝑖)

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.6 

 

3.4.3. Gray-Level Co-occurrence Matrix 

The gray-level co-occurrence matrix (GLCM) is a second-order statistical 
texture analysis method that was first proposed by Haralick et al. in 1973 [87] to describe 
local heterogeneity information. This method quantifies the relationship between gray 
levels in an image region by counting the pairs of pixels separated by a predefined 
distance (𝑑𝑑) and direction (θ) that have the same distribution of gray-level values. Each 
pixel of the resulting matrix represents the number of times that the gray level of a 
reference pixel and the gray level of the neighbor pixel in the predefined distance and 
direction are seen in the image region under analysis. Consequently, the size of the 
GLCM will be 𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑔𝑔, being 𝑁𝑁𝑔𝑔 the number of gray levels of the image. Figure 3.6 
shows an example of computation of this GLCM. 

When computing GLCMs, it is important to know that, according to the original 
definition, GLCMs are symmetric, thus meaning that the co-occurring pairs obtained, for 
example, for θ = 0° would be equal to those obtained for θ = 180° (i.e., when calculating 
the number of times the gray-level value 𝑖𝑖 is adjacent to the value 𝑗𝑗, counts both (𝑖𝑖, 𝑗𝑗) 
and (𝑗𝑗, 𝑖𝑖) pairings). Non-symmetric GLCMs, as the one showed in Figure 3.6, can be 
also computed, but they are less common than the original symmetric GLCMs. 

As previously mentioned, GLCMs are dependent on the distance and the 
direction. The dependence on the distance is not a problem and the pixel distance may 
be chosen according to the application, although typically distances of d = 1 pixel are 
selected in order to maintain the texture analysis as local as possible. However, the 
GLCMs present one major concern based on their dependence on the direction. If this 
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dependence is not suppressed in some way, different texture values may be obtained if 
the image is rotated, thus affecting the results when images from different patients have 
different orientations [13]. To solve this problem, rotation invariance may be achieved 
by computing symmetric GLCMs in the four directions (horizontal, vertical, 45°, 135°) 
of the 2D space (13 directions for 3D approaches) and then averaging or summing these 
matrices to obtain a single matrix from which rotation invariant features are extracted. 
Another approach consists on extracting firstly the features from the direction-dependent 
GLCMs and then averaging the features over all directions. 

Several statistics can be mathematically computed from the GLCM in order to 
quantify the homogeneity (smoothness) or heterogeneity (coarseness) of the image 
region. Let us assume that 𝑝𝑝(𝑖𝑖, 𝑗𝑗) is the (𝑖𝑖, 𝑗𝑗)-th entry in a normalized GLCM; 𝑝𝑝𝑥𝑥(𝑖𝑖) =
∑ 𝑝𝑝(𝑖𝑖, 𝑗𝑗)𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑗𝑗=1  and 𝑝𝑝𝑦𝑦(𝑗𝑗) = ∑ 𝑝𝑝(𝑖𝑖, 𝑗𝑗)𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖=1  are the 𝑖𝑖-th and 𝑗𝑗-th entries in the marginal 
probability matrix obtained by summing the rows and columns of 𝑝𝑝(𝑖𝑖, 𝑗𝑗) respectively; 
and 𝜇𝜇𝑥𝑥 , 𝜇𝜇𝑦𝑦,𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 represent the mean and SD of 𝑝𝑝𝑥𝑥 and 𝑝𝑝𝑦𝑦. Let us also define the diagonal 
and cross-diagonal probabilities 𝑝𝑝𝑥𝑥+𝑦𝑦(𝑘𝑘) and 𝑝𝑝𝑥𝑥−𝑦𝑦(𝑘𝑘), which represent the gray level 
sum (𝑘𝑘 = 𝑖𝑖 + 𝑗𝑗) and difference (𝑘𝑘 = |𝑖𝑖 − 𝑗𝑗|) distributions respectively. Assuming the 
latter, the features used in this thesis are: 

 

 

 
Figure 3.6. Computation of GLCMs for a given 5×5 pixel image with a dynamic range of 4 gray levels. 
The first GLCM is computed non-symmetrically for the horizontal direction (θ = 0°) and for one-pixel 
separation (d = 1). The values in blue and red in this GLCM indicate the number of transitions of each 
of the gray-level pairings marked. The second GLCM is the result of summing the symmetric GLCMs 
over the four directions of the 2D space to achieve rotation invariance. 
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• Energy: also known as Angular second moment or Uniformity, measures the local 
uniformity (or orderliness) of an image. High values are related to homogeneous 
regions, thus indicating that the intensities within the region are very similar. 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ��[𝑝𝑝(𝑖𝑖, 𝑗𝑗)]2
𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.7 

 

• Contrast: describes the local intensity variations between different structures present 
in the image region. High values are related to high heterogeneity. 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��(𝑖𝑖 − 𝑗𝑗)2𝑝𝑝(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.8 

 

• Correlation: measures the gray-level linear dependency between intensities. It 
presents how a reference pixel/voxel is locally correlated to its neighbor. High values 
indicate high level of correlation between pixels/voxels, that is, homogeneity. 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��
𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗) − 𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦

𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
 

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.9 

 

• Homogeneity: also known as Inverse difference moment, describes the local 
homogeneity of the image. High values are associated to smooth regions, in which 
most of the gray levels are the same. 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = ��
𝑝𝑝(𝑖𝑖, 𝑗𝑗)

1 + (𝑖𝑖 − 𝑗𝑗)2

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.10 

 

• Variance: also known as Sum of squares, measures the dispersion of the values 
around the mean of the gray-level distribution, that is, the randomness of the 
pixel/voxel distribution in the image. Higher values refer to heterogeneous regions. 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = ��(1 − 𝜇𝜇)2𝑝𝑝(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.11 
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• Entropy: expresses the degree of chaos or disorder (i.e., randomness) within an 
image. High values imply random distributions, that is, heterogeneous regions. 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = −��𝑝𝑝(𝑖𝑖, 𝑗𝑗)𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝(𝑖𝑖, 𝑗𝑗)�

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.12 

 

• Dissimilarity: also known as Difference Average, measures the level dissimilarity 
between pairs of pixels/voxels in an image. 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = ��|𝑖𝑖 − 𝑗𝑗|𝑝𝑝(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.13 

 

• Autocorrelation: measures how pixel/voxel pairs are correlated. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ��𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.14 

 

• Sum Average: estimates the overall image brightness. Originally, this feature 
measures the mean of the cross-diagonal probabilities, but the following adapted 
version allows computing the mean of all gray-level combinations.  

 𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ��[𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗) + 𝑗𝑗𝑗𝑗(𝑖𝑖, 𝑗𝑗)]

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.15 

 

• Sum Variance: measures the dispersion (with regard to the mean) of the gray level 
sum distribution of the image.  

 𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = ��𝑘𝑘 − ��𝑘𝑘𝑘𝑘𝑥𝑥+𝑦𝑦(𝑘𝑘)

2𝑁𝑁𝑔𝑔

𝑘𝑘=2

� �

2

𝑝𝑝𝑥𝑥+𝑦𝑦(𝑘𝑘)

2𝑁𝑁𝑔𝑔

𝑘𝑘=2

 Equation 3.16 

 

• Difference Variance: measures the dispersion (with regard to the mean) of the gray 
level difference distribution of the image. 
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 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = � �𝑘𝑘 − �� 𝑘𝑘𝑘𝑘𝑥𝑥−𝑦𝑦(𝑘𝑘)

𝑁𝑁𝑔𝑔−1

𝑘𝑘=0

� �

2

𝑝𝑝𝑥𝑥−𝑦𝑦(𝑘𝑘)

𝑁𝑁𝑔𝑔−1

𝑘𝑘=0

 Equation 3.17 

 

• Sum Entropy: estimates the disorder related to the gray level sum distribution of the 
image. 

 𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = −�𝑝𝑝𝑥𝑥+𝑦𝑦(𝑘𝑘)log (𝑝𝑝𝑥𝑥+𝑦𝑦(𝑘𝑘))

2𝑁𝑁𝑔𝑔

𝑘𝑘=2

 Equation 3.18 

 

• Difference Entropy: estimates the disorder related to the gray level difference 
distribution of the image.  

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = − � 𝑝𝑝𝑥𝑥−𝑦𝑦(𝑘𝑘)log (𝑝𝑝𝑥𝑥−𝑦𝑦(𝑘𝑘))

𝑁𝑁𝑔𝑔−1

𝑘𝑘=0

 Equation 3.19 

 

• Information Measure of Correlation: quantifies the linear dependency or 
correlation between intensities but adding some desirable properties that are not 
represented by the original correlation descriptor. This measure is subdivided in two 
features: the first and the second information measures of correlation (FIMC and 
SIMC respectively). 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝐻𝐻1

max {𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻} 
 Equation 3.20 

 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �(1 − exp[−2(𝐻𝐻𝐻𝐻𝐻𝐻2 − 𝐻𝐻𝐻𝐻𝐻𝐻)]) Equation 3.21 

 
where 𝐻𝐻𝐻𝐻𝐻𝐻 is equivalent to the entropy descriptor, 𝐻𝐻𝐻𝐻 and 𝐻𝐻𝐻𝐻 are the entropies of 
𝑝𝑝𝑥𝑥(𝑖𝑖) and 𝑝𝑝𝑦𝑦(𝑗𝑗) respectively, 𝐻𝐻𝐻𝐻𝐻𝐻1 and 𝐻𝐻𝐻𝐻𝐻𝐻2 are types of entropy defined as: 

 𝐻𝐻𝐻𝐻𝐻𝐻1 = −∑ ∑ 𝑝𝑝(𝑖𝑖, 𝑗𝑗)𝑙𝑙𝑙𝑙𝑙𝑙 �𝑝𝑝𝑥𝑥(𝑖𝑖)𝑝𝑝𝑦𝑦(𝑗𝑗)�𝑁𝑁𝑔𝑔
𝑗𝑗=1

𝑁𝑁𝑔𝑔
𝑖𝑖=1  

 𝐻𝐻𝐻𝐻𝐻𝐻2 = −∑ ∑ 𝑝𝑝𝑥𝑥(𝑖𝑖)𝑝𝑝𝑦𝑦(𝑗𝑗)𝑙𝑙𝑙𝑙𝑙𝑙 �𝑝𝑝𝑥𝑥(𝑖𝑖)𝑝𝑝𝑦𝑦(𝑗𝑗)�𝑁𝑁𝑔𝑔
𝑗𝑗=1

𝑁𝑁𝑔𝑔
𝑖𝑖=1  
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3.4.4. Gray-Level Run-Length Matrix 

The gray-level run-length matrix (GLRLM) is a statistical matrix-based texture 
analysis method of a higher-order that describes regional heterogeneity information. This 
method, first proposed by Galloway in 1975 [88] and extended by Chu et al. [89] and 
Dasarathy and Holder [90], examines the times that each gray level value is seen 
consecutively in an image in a predefined direction (θ). The GLRLM is constructed by 
detecting and counting the runs (sequences of consecutive pixels with the same gray 
level) of different gray levels and their lengths in the image. Each row of the GLRLM 
represents a gray level and each column a specific length, so each element of the matrix 
indicates the number of runs of a specific gray level and length in the image (Figure 3.7). 

The GLRLMs are originally symmetric, and runs are only counted once per 
pairing of directions (θ = 0º and 180º, θ = 45º and 225º, etc.). Additionally, features 
derived from the GLRLM are originally dependent on direction, as in the case of GLCM. 
To achieve rotation invariance, the method consisting on averaging the matrices 
computed over all directions is usually applied, as previously mentioned for the GLCMs.  

In general, the features extracted from the GLRLM can be used to define fine 
textures (dominated by short runs) or coarse textures (dominated by longer runs) [80]. 
Assuming that 𝑁𝑁𝑔𝑔 is the number of gray levels, 𝑁𝑁𝑟𝑟 is the maximal possible run, and 
𝑟𝑟(𝑖𝑖, 𝑗𝑗) is the 𝑟𝑟(𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ entry in the normalized GLRLM (i.e., the number of times there is 
a run of length 𝑗𝑗 having gray level 𝑖𝑖), the most common features derived from the 
histogram are: 

 

 

 
Figure 3.7. Computation of GLRLMs for a given 5×5 pixel image with a dynamic range of 4 gray 
levels. The first GLRLM is computed for the horizontal direction (θ = 0°). The values in blue, red and 
green in this GLRLM indicate the number of runs of different sizes (lengths) counted in the horizontal 
direction for the 0 gray-level. The second GLRLM is the result of summing the GLRLMs over the four 
directions of the 2D space to achieve rotation invariance. 
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• Short Run Emphasis (SRE): emphasizes short run lengths. 

 𝑆𝑆𝑆𝑆𝑆𝑆 = ��
𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑗𝑗2

𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.22 

 

• Long Run Emphasis (LRE): emphasizes long run lengths. 

 𝐿𝐿𝐿𝐿𝐿𝐿 = ��𝑗𝑗2𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.23 

 

• Gray-level Non-uniformity (GLN): assesses the distribution of runs over the gray 
values. Low values are related to runs equally distributed along gray levels. 

 𝐺𝐺𝐺𝐺𝐺𝐺 = ���𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑁𝑁𝑟𝑟

𝑗𝑗=1

�

2𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.24 

 

• Run-Length Non-uniformity (RLN): assesses the distribution of runs over the run 
lengths. Low values are related to runs equally distributed along run lengths. 

 𝑅𝑅𝑅𝑅𝑅𝑅 = ���𝑟𝑟(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑔𝑔

𝑖𝑖=1

�

2𝑁𝑁𝑟𝑟

𝑗𝑗=1

 Equation 3.25 

 

• Run Percentage (RP): assesses the fraction of the number of realized runs and the 
maximum number of potential runs. Low values are associated to strongly linear or 
highly uniform regions. 

 𝑅𝑅𝑅𝑅 =
∑ ∑ 𝑟𝑟(𝑖𝑖, 𝑗𝑗)𝑁𝑁𝑟𝑟

𝑗𝑗=1
𝑁𝑁𝑔𝑔
𝑖𝑖=1

∑ 𝑗𝑗 ∑ 𝑟𝑟(𝑖𝑖, 𝑗𝑗)𝑁𝑁𝑟𝑟
𝑗𝑗=1

𝑁𝑁𝑔𝑔
𝑖𝑖=1

 Equation 3.26 

 

• Low Gray-level Run Emphasis (LGRE): is analogous to SRE but, instead of short 
run lengths, low gray levels are emphasized.  
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 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ��
𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑖𝑖2

 
𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.27 

 

• High Gray-level Run Emphasis (HGRE): is analogous to LRE but, instead of short 
run lengths, high gray levels are emphasized. 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = ��𝑖𝑖2𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.28 

 

• Short Run Low Gray-level Emphasis (SRLGE): emphasizes runs in the upper left 
quadrant of the GLRLM, where short run lengths and low gray levels are located. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��
𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑖𝑖2𝑗𝑗2

𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.29 

 

• Short Run High Gray-level Emphasis (SRHGE): emphasizes runs in the lower left 
quadrant of the GLRLM, where short run lengths and high gray levels are located. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��
𝑖𝑖2𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑗𝑗2

𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.30 

 

• Long Run Low Gray-level Emphasis (LRLGE): emphasizes runs in the upper right 
quadrant of the GLRLM, where long run lengths and low gray levels are located.  

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ��
𝑗𝑗2𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑖𝑖2

𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.31 

 

• Long Run High Gray-level Emphasis (LRHGE): emphasizes runs in the lower right 
quadrant of the GLRLM, where long run lengths and high gray levels are located. 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ��𝑖𝑖2𝑗𝑗2𝑟𝑟(𝑖𝑖, 𝑗𝑗)
𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.32 
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• Gray-level Variance (GLV): estimates the variance in runs for the gray levels. 

 𝐺𝐺𝐺𝐺𝐺𝐺 =
1

𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑟𝑟
���𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗) −�𝑖𝑖�𝑟𝑟(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

�

2𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.33 

 

 

• Run-Length Variance (RLV): estimates the variance in runs for run lengths. 

 𝑅𝑅𝑅𝑅𝑅𝑅 =
1

𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑟𝑟
���𝑗𝑗𝑗𝑗(𝑖𝑖, 𝑗𝑗) −�𝑗𝑗�𝑟𝑟(𝑖𝑖, 𝑗𝑗)

𝑁𝑁𝑔𝑔

𝑖𝑖=1

𝑁𝑁𝑟𝑟

𝑗𝑗=1

�

2𝑁𝑁𝑟𝑟

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 Equation 3.34 

 

3.4.5. Gray-Level Size Zone Matrix 

The gray-level size zone matrix (GLSZM) is a higher-order statistical matrix-
based texture analysis method introduced by Thibault et al. in 2009 [91] that describes 
regional heterogeneity information in a similar way to the GLRLM. The concept of 
GLSZMs is based on extending the GLRLM runs to areas or volumes. This way, a 
GLSZM counts the number of groups of connected pixels or voxels with the same gray 
levels (i.e., zones) along across the entire image. An example of computation of this 
matrix is shown in Figure 3.8. 

An advantage of this method is that GLSZMs are originally independent on 
direction and distance, so they are rotation invariant by default and only one matrix is 
extracted per image region. The features extracted from the GLSZM are analogous to 
those defined for the GLRLM (Equation 3.22 to Equation 3.34) but replacing the number 
of runs (𝑁𝑁𝑟𝑟) with the number of zones (𝑁𝑁𝑧𝑧). Therefore, the features derived from the 
GLSZM are: Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-level 
Non-uniformity (GLN), Zone-Size Non-uniformity (ZSN), Zone Percentage (ZP), Low 
Gray-level Zone Emphasis (LGZE), High Gray-level Zone Emphasis (HGZE), Small 
Zone Low Gray-level Emphasis (SZLGE), Small Zone High Gray-level Emphasis 
(SZHGE), Large Zone Low Gray-level Emphasis (LZLGE), Large Zone High Gray-
level Emphasis (LZHGE), Gray-level Variance (GLV) and Zone-Size Variance (ZSV). 
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3.4.6. Neighborhood Gray-Tone Difference Matrix 

The neighborhood gray-tone difference matrix (NGTDM) is a higher-order 
statistical texture analysis method that describes the local heterogeneity of the image 
under analysis. This method, proposed by Amadasun and King in 1989 [92], is an 
alternative to GLCM in order to quantify the local properties of the image by counting 
the sum of gray level differences of pixels/voxels with discretized gray level 𝑖𝑖 and the 
average discretized gray level of neighboring pixels/voxels within a distance 𝑑𝑑. 
Therefore, the 𝑖𝑖-th entry of the NGTDM is a summation of the differences between all 
pixels with gray-tone 𝑖𝑖 and the average value of their surrounding neighbors at a distance 
𝑑𝑑, as shown in Figure 3.9. 

The NGTDM is not really a matrix but an array, since its size is 𝑁𝑁𝑔𝑔 × 1, being 
𝑁𝑁𝑔𝑔 the highest gray level present in the image. In addition, as in the case of GLCM, this 
method is dependent on the distance, usually being d = 1 the preferred option, but, on 
the contrary, it is not dependent on the direction, so it is rotation invariant by default. 

The mathematical formulation to compute the NGTDM and its features is 
somewhat complex. Assuming that 𝑠𝑠(𝑖𝑖) represents the NGTDM, the 𝑖𝑖-th entry of the 
NGTDM is defined as: 

 𝑠𝑠(𝑖𝑖) = ��|𝑖𝑖 − 𝐴𝐴𝚤𝚤� |          for  𝑖𝑖 ∈ 𝑁𝑁𝑖𝑖   if  𝑁𝑁𝑖𝑖 ≠ 0,

0                                            otherwise.
 Equation 3.35 

 

 
Figure 3.8. Computation of the GLSZM associated to a given 5×5 pixel image with a dynamic range 
of 4 gray levels. The GLSZM is not dependent on distance or direction, so it is invariant to rotation and 
only one GLSZM can be computed per image. The values in blue, red and green indicate the number 
of zones (linked pixels with the same gray level) of a particular size and gray level found in the image. 
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being 𝑁𝑁𝑖𝑖 the set of all pixels with gray-level 𝑖𝑖 in the image excluding the peripheral 
region of width 𝑑𝑑, and 𝐴𝐴𝚤𝚤�  is the average gray-level summation of the neighbors around 
a center pixel with gray-level 𝑖𝑖 located at position (𝑘𝑘, 𝑙𝑙). Therefore, 𝐴𝐴𝚤𝚤�  is defined as 
follows: 

𝐴𝐴𝑖𝑖 = 𝐴𝐴(𝑘𝑘, 𝑙𝑙) =
1

𝑊𝑊 − 1
� � � 𝑓𝑓(𝑘𝑘 + 𝑚𝑚, 𝑙𝑙 + 𝑛𝑛)

𝑑𝑑

𝑛𝑛=−𝑑𝑑

𝑑𝑑

𝑚𝑚=−𝑑𝑑

� , (𝑚𝑚,𝑛𝑛) ≠ (0,0) Equation 3.36 

 
being 𝑑𝑑 the chosen distance that coincide with the neighborhood size, and 𝑊𝑊 =
(2𝑑𝑑 + 1)2. Figure 3.9 also shows an example of how to compute this matrix. 

In general, five textures are extracted from the NGTDM. Assuming that for an 
𝑁𝑁 × 𝑁𝑁 image, the probability of occurrence of the gray-level value 𝑖𝑖 is defined as 𝑛𝑛𝑖𝑖 =
𝑁𝑁𝑖𝑖
𝑛𝑛2

, where 𝑛𝑛2 = 𝑁𝑁 − 2𝑑𝑑, the NGTDM features are defined as: 

 
• Contrast: represents the level of contrast of the image. High values indicate that the 

intensity difference between neighboring regions is large. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �
1

𝑁𝑁𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒[𝑁𝑁𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 − 1]
��𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗(𝑖𝑖 − 𝑗𝑗)2

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

� �
1
𝑛𝑛2
�𝑠𝑠(𝑖𝑖)

𝑁𝑁𝑔𝑔

𝑖𝑖=1

�  Equation 3.37 

 

 
Figure 3.9. Computation of the NGTDM of d = 1 associated to a given 5×5 pixel image with a dynamic 
range of 4 gray levels. By selecting a distance d = 1, the neighborhood of centered pixels is set to a size 
of 3×3 (orange square). The pixels outside the orange square are in the periphery of the image. 
Therefore, the NGTDM elements are computed by summing the differences between all centered pixels 
(inside the orange square) with gray level 𝒊𝒊 and the average value of their neighbors. For example, the 
NGTDM entry corresponding to the gray level i = 1 is marked in blue and red. 
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where 𝑁𝑁𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 is the effective number of different gray levels in the image (some gray 
levels may not appear in the image region due to the quantization process). 

 

• Coarseness: gives an indication of the level of spatial rate of change in intensity. 
High values represent coarse textures, where gray-level differences are small. 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝜖𝜖 + �𝑛𝑛𝑖𝑖𝑠𝑠(𝑖𝑖)

𝑁𝑁𝑔𝑔

𝑖𝑖=1

�

−1

 Equation 3.38 

 
where the constant 𝜖𝜖 is a small number to prevent this parameter becoming infinite. 

 

• Busyness: represents the level of spatial frequency of intensity changes. High values 
indicate busy textures (i.e., there are rapid changes of intensity from one pixel to its 
neighbor). 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
∑ 𝑛𝑛𝑖𝑖𝑠𝑠(𝑖𝑖)𝑁𝑁𝑔𝑔
𝑖𝑖=1

∑ ∑ (𝑖𝑖𝑛𝑛𝑖𝑖 − 𝑗𝑗𝑛𝑛𝑗𝑗)𝑁𝑁𝑔𝑔
𝑗𝑗=1

𝑁𝑁𝑔𝑔
𝑖𝑖=1

,𝑛𝑛𝑖𝑖 ≠ 0,𝑛𝑛𝑗𝑗 ≠ 0 Equation 3.39 

 

• Complexity: refers to the visual information content of a texture. High values 
represent complex textures, that is, non-uniform textures with high information 
content, for example when many patches or primitives are present. 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��
|𝑖𝑖 − 𝑗𝑗|�𝑛𝑛𝑖𝑖𝑠𝑠(𝑖𝑖) + 𝑛𝑛𝑗𝑗𝑠𝑠(𝑗𝑗)�

𝑛𝑛2(𝑛𝑛𝑖𝑖 + 𝑛𝑛𝑗𝑗)

𝑁𝑁𝑔𝑔

𝑗𝑗=1

𝑁𝑁𝑔𝑔

𝑖𝑖=1

,𝑛𝑛𝑖𝑖 ≠ 0,𝑛𝑛𝑗𝑗 ≠ 0  Equation 3.40 

 

• Strength: gives an idea of the level of detail of the primitives. High values are related 
to strong textures, where the primitives are easily definable and clearly visible. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ =
∑ ∑ (𝑛𝑛𝑖𝑖 + 𝑛𝑛𝑗𝑗)(𝑖𝑖 − 𝑗𝑗)2𝑁𝑁𝑔𝑔

𝑗𝑗=1
𝑁𝑁𝑔𝑔
𝑖𝑖=1

�𝜖𝜖 + ∑ 𝑠𝑠(𝑖𝑖)𝑁𝑁𝑔𝑔
𝑖𝑖=1 �

,𝑛𝑛𝑖𝑖 ≠ 0,𝑛𝑛𝑗𝑗 ≠ 0 Equation 3.41 

 
where the constant 𝜖𝜖 is a small number to prevent infinite values. 
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3.4.7. Local Binary Patterns 

The local binary patterns (LBP) is a texture analysis method introduced by Ojala 
et al. in 1996 [93] that has become very popular in the past years due to its high 
discrimination efficiency and its computational simplicity at the same time. This method 
is a combination of a higher-order statistical method and a structural approach that 
measures the local heterogeneity of the image. The LBP functioning consists on labelling 
each pixel of the region under analysis by comparing its gray level with the gray levels 
of the surrounding pixels and then assigning a specific binary number. This binary 
number for each pixel is obtained by allocating a value of 1 to those surrounding pixels 
with a greater or equal gray level value and a 0 to those surrounding pixels with a lower 
gray level value. Originally, LBP was defined for patches of 3 × 3 pixels, but it was later 
extended for blocks of 𝑃𝑃 surrounding pixels separated by a distance 𝑅𝑅. Taking this 
generalization into account and given a pixel 𝑐𝑐 with coordinates (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐), the LBP binary 
number assigned to each pixel of the image is calculated using Equation 3.42. 

 𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅,𝑃𝑃 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐� × 2𝑝𝑝
𝑃𝑃−1

𝑝𝑝=0

 Equation 3.42 

 
Where 𝑔𝑔𝑝𝑝 and 𝑔𝑔𝑐𝑐 are the gray level values of the central pixel 𝑐𝑐 and its neighbor 

pixel 𝑝𝑝, and the function 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐� is defined as: 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐� = �
 1    𝑖𝑖𝑖𝑖  𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐 ≥ 0
0    𝑖𝑖𝑖𝑖  𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐 < 0 Equation 3.43 

 
Once the Equation 3.42 is applied to all the pixels in the image, an LBP image 

or map is obtained and all the bins of the histogram of this image are used as texture 
features. Figure 3.10 shows an example of computation of this LBP map. Other statistics 
can be extracted from the LBP image and used as texture features like the mean or the 
variance. 

In most of the studies, the original LBP operator (patches of 3 × 3 pixels: P = 8, 
R = 1) is employed to preserve the texture analysis as local as possible since some regions 
may not be very large. Using this approach, 256 texture features are computed, 
corresponding to the 2P = 256 bins of the associated histogram. However, the original 
version of the LBP is not invariant to rotation, so an improved approach was proposed 
by Ojala et al. in 2002 [83] to solve this concern. The authors aimed to achieve rotation 
invariance by performing a circular bit-wise right shift operation (rotating the neighbor 
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pixel set clockwise) and assigning the smallest LBP binary number. Using this approach 
with the original LBP parameters (P = 8, R = 1), 36 unique rotation invariant histogram-
based LBP features are obtained, as only 36 LBP binary numbers can occur for P = 8. 
Another advantage of this rotation invariant LBP approach is that a previous image 
quantization step is not required since it is robust to intensity variations [94]. 

3.4.8. Wavelet Transform for Texture Analysis 

The discrete Wavelet transform (DWT) is a technique that examines the spatial 
frequency patterns of an image within different scales and frequency directions, 
considering that frequency is directly proportional to gray level variations in an image. 
The DWT applied to an image produces four matrices of coefficients (subimages) that 
represent the approximations or low frequencies (LL: low-low) and the details or high 
frequencies in the vertical (LH: low-high), horizontal (HL: high-low) and diagonal (HH: 
high-high) directions, as shown in Figure 3.11. The DWT can be repeated consecutively 
to achieve a major image decomposition: the first level of decomposition (LL1, LH1, HL1 
and HH1) is applied to the original image as mentioned before and the subsequent levels 
are applied to the matrix of approximations of the previous level (LLi, LHi, HLi and HHi, 
where i is the level of decomposition). 

The DWT can be used as a transform texture analysis method by processing 
these subimages to obtain statistical parameters that describe the spatial frequency 
information of the image. This method has received much attention because it presents 
some advantages. Firstly, textures may be represented at the most appropriate scale by 
varying the spatial resolution, and moreover, a wide range of choices for the DWT 
function are available in order to enhance texture analysis according to each specific 
application [48]. Additionally, DWT-based texture features were demonstrated to be less 
sensitive to changes in the acquisition protocols [95]. Statistical texture descriptors (like 
the ones presented in the previous subsections) extracted from the DWT subimages have 
been previously used in some studies with successful results [96]–[98]. 
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Figure 3.10. Computation of an LBP map using the original LBP operator (patches of 3×3 pixels: P = 
8, R = 1). The gray level of each pixel in the original image is compared to the gray level of the 8 
connected pixels. A value of 1 is assigned to the pixels with gray level greater or equal than the central 
pixel, and a value of 0 otherwise. Then, a binary number is calculated and this value is allocated in the 
same position of the original pixel. This process is repeated for all the pixels of the original image. 

 
Figure 3.11. First DWT decomposition of MRI T1-weighted image of a brain tumor. The high-high 
(HH) subimage represents diagonal high frequencies, high-low (HL) extracts the horizontal high 
frequencies, low-high (LH) vertical high frequencies and the subimage low-low (LL) represents the 
lowest frequencies. 
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3.5. Review of Texture Analysis in MRI 
Texture analysis may be applied to different or multiple imaging modalities and 

selecting the one (or ones) to investigate depends on each specific application. However, 
the most popular techniques in the context of the radiomics practice are Computed 
Tomography (CT) and MRI, since they are believed to contain valuable undiscovered 
information that may have a potential impact in routine care [11]. 

Of all the imaging modalities, CT appears to be the most appropriate technique 
to conduct reproducible radiomics studies because imaging performance tends to be 
standardized across institutions and vendors, thus facilitating the comparisons between 
results. Furthermore, texture data extraction and interpretation from CT is relatively easy 
because their units of measurement, Hounsfield units (HUs), represent tissue 
radiodensity. This means that CT images may contain information directly associated to 
structural properties of the tissue that can be translated into clinically meaningful data 
[7]. Nevertheless, radiomics studies in CT present some disadvantages such as the 
implicit patient exposure to ionizing radiation or the fact that CT acquisition conditions 
like the reconstruction algorithms or the image noise might influence the appearance of 
texture features [99], [100]. 

Despite the success of CT radiomics studies in texture analysis’ earliest years, 
the majority of literature over the past years has been directed toward tissue classification 
and characterization in MRI, especially for brain studies [51], [85]. The current success 
of MRI in radiomics studies is mainly based on its growing availability in the clinical 
routine and the resulting high-quality images that offer excellent anatomic details thanks 
to new advances in technology. Additionally, existing MRI techniques provide different 
contrasts or modalities that have the ability to sense not only macroscopic alterations, 
but also microscopic-level organization of the tissues from different perspectives. 
Texture analysis on MRI is believed to capture these microscopic-level patterns and to 
extract and quantify the heterogeneous characteristics that may define each pathology. 
However, MRI present some specific issues that have to be considered and assessed 
before performing texture analysis in order to obtain reliable and reproducible results. 

In the following subsections we will discuss the disadvantages of MRI that 
difficult radiomics analyses and we will introduce the most studied applications of 
texture analysis on MRI. 
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3.5.1. The Issues of Texture Analysis in MRI 

Despite the potential of MRI for providing quantitative biomarkers, the 
acquisition conditions associated to this imaging technique presents some important 
characteristic drawbacks that may obscure texture analysis if they are not addressed 
properly. 

Influence of the field strength 

The field strength of the MRI scanners influence in the texture outcome since 
scanners with higher field strength produce images with higher spatial and temporal 
resolutions. Not all MRI scanners have the same field strength but, in clinical routine, 
only scanners of 1.5T and 3T are commonly employed. Based on the resulting image 
resolution, 3T scanners are expected to be better for texture characterization because of 
the higher definition of the images. However, texture features extracted from images 
obtained with 3T scanners may be more sensitive to changes in the MRI acquisition 
parameters [71]. Additionally, scanners with higher field strength are prone to enhance 
artefacts derived from the patient movement, thus possibly affecting the true texture 
profile of the image region under analysis [101]. 

Selection of the best MRI sequence 

There is no general agreement on which the best MRI sequence for texture 
analysis is since it depends on the application. Therefore, it is recommended to check 
previous works before applying texture analysis in order to select the MRI sequence that 
better suits each specific task. For example, contrast-enhanced T1-weighted MRI is the 
most popular MRI protocol for to assessing brain tumor characterization by means of 
texture analysis as it is employed for initial brain tumor detection and contains abundant 
diagnostic information [102]–[107]. However, the most desirable approach would be to 
compare the performance of different modalities, but these imaging data is not always 
available. 

Inhomogeneity correction in MRI 

Intensity inhomogeneity (also known as also intensity non-uniformity or spatial 
bias) is a residual MRI artifact that produces subtle smooth variations of intensity in the 
resulting images. This issue is mainly caused by static magnetic field inhomogeneity and 
imperfections of the radiofrequency coils [108], [109]. As mentioned before, texture 
features quantify the intensity profile of the image in different ways, so this intensity 
inhomogeneity may affect the texture outcome. Normalization of the image region may 
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solve partially this problem but, in some cases, this residual effect is not completely 
eliminated with normalization and correction of these inhomogeneity artifacts in MRI is 
recommended as a preprocessing step prior to region normalization [110]. However, it 
is important to remark that this issue principally affects large regions containing entire 
organs or even the whole brain, but for uncommon brain structures/masses like brain 
tumors, the heterogeneity of the tissue may change considerably when applying 
inhomogeneity correction, thus affecting the true lesion texture profile. 

Multicenter validation and reproducibility 

As previously introduced, variations in acquisition parameters may result in 
differences in the texture outcome that are not due to underlying biologic effects. This 
issue is not very important in studies using CT images because acquisition settings tend 
to be standardized across centers. On the contrary, in studies using MRI, this is a major 
problem of reproducibility as different centers and manufacturers may apply different 
acquisition parameters. Therefore, when reporting results of texture analysis, one should 
explain in detail the acquisition protocol to allow reproducibility of the work [108], 
[111]. To reduce the possible differences among multicenter MRI scans, images can be 
normalized into a common spatial and intensity space. However, the best approach 
would be to standardize the MRI protocols and parameters to ensure the utility of texture 
descriptors as reliable biomarkers regardless of acquisition conditions. 

Interpretation of the information 

As opposed to CT images, where signal intensity can be directly correlated with 
the density of the tissue, the signal intensities in MR images are difficult to associate to 
physical properties of tissue since they are generated from a complex interaction of 
parameters intrinsic to the technology, such as pulse sequences, relaxation times and 
acquisition conditions [7], [112]. However, in the past years many studies have focused 
on studying the correlation between the heterogeneity properties derived from MRI and 
the histopathology of the tissue under analysis [113]–[115]. The results are promising 
but still uncertain and dependent on the application, so substantial efforts are still 
required to integrate radiomic features on MRI in the clinical routine for functioning as 
general biomarkers. 
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3.5.2. The Present of Texture Analysis in MRI 

As previously mentioned, texture analysis has been applied to different imaging 
modalities since it was first proposed in the 70s. Although CT has been the preferred 
imaging modality to conduct texture analysis over the years and it is still useful for some 
medical applications, major attention has been paid to MRI texture analysis in the last 
years, since this technique offers excellent anatomic details and enables the enhancement 
of different types of tissues by modifying the acquisition settings. 

In 2014, Depeursinge et al. [51] conducted a systematic review of publications 
using 3D texture analysis on medical images and concluded that MRI was the preferred 
imaging modality for performing volumetric analysis (38.5% of the papers). Regarding 
the organs under study, Depeursinge et al. found that brain lesions and diseases were the 
most investigated organs in the context of texture analysis, being MRI the preferred 
option to image the brain. However, for studying other organs like liver or lung, CT 
images were still the favorite modality. 

In a recent and specific review conducted by Larroza et al. [13], they revealed 
that a total of 140 original studies published before February 2016 dealt with texture 
analysis in clinical MRI. The distribution of these publications per organ revealed that 
nearly the 54% of the published works examined different diseases or lesions affecting 
the brain. 

To know the current state-of-the-art of texture analysis in MRI, we performed a 
similar search in SciVerse Scopus (https://www.scopus.com as of January 29th 2019) of 
original articles and conference proceedings containing one of the following 
combinations of keywords in the title: 

 “texture” and “MRI” 
 “texture” and “magnetic resonance” 
 “radiomics” and “MRI” 
 “radiomics” and “magnetic resonance” 

We tested these combinations of keywords because in the past years the concept 
of “texture analysis” has been interchanged in many studies with “radiomics analysis”, 
as it also may comprise the analysis of other quantitative features apart from texture 
features. In this search we obtained a total of 429 documents between 1977 and 2018. 
From this quantity, 197 documents were published during the past 3 years (44 in 2016, 
62 in 2017 and 91 in 2018), which represents a 45.92% of the total amount of documents 
presenting texture analyses on MRI. These figures reveal that there still exists a huge 

https://www.scopus.com/
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interest in this research field since the number of publications per year seems to be 
increasing as the years go by. The distribution of papers per organ obtained in this search 
also confirms that texture analysis on MRI for studying brain disorders is still the most 
popular application with 75 publications in the past 3 years (representing the 38.07% of 
the total amount of papers published between 2016 and 2018), so it is clear that one 
should consider MRI as the best imaging modality for examining different brain 
pathologies with texture analysis. 

3.5.3. Applications of Texture Analysis in MRI 

Texture analysis applications in MRI mainly encompass segmentation of 
specific anatomical structures or lesions and differentiation between pathological and 
healthy tissues. Concerning the specific objectives of these studies, texture analysis has 
been applied to examine a huge variety of diseases and lesions in different organs, but, 
as stated in the previous subsection, major attention has been paid to neurological 
applications [116]. Table 3.2 shows some relevant example of applications of texture 
analysis on MRI to evaluate lesions or diseases affecting different organs published 
during the past decade. 

However, over the past few years, substantial efforts have been made towards 
understanding the biologic profile of cancer by means of radiomic features extracted 
from MRI, in order to improve the diagnostic, treatment and follow-up stages of the 
disease [4], [5], [8], [10]. Radiomics analyses using CT images have already 
demonstrated that imaging quantitative features may be useful for characterizing the 
tumor nature [52], [100], so based on these promising results, this seems to be the main 
goal of texture analysis studies on MRI for the following years. 

 

BRAIN: [103], [104], [117], [118] [106], [107] [58], [119]
 [120], [121]  [122], [123] [57] 

HEART: [124] [125] 

BREAST: [60], [61], [126] 

PROSTATE: [127], [128] 

KIDNEY: [129] 

LIVER:  [130] 
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KNEE:  [131], [132] 

 

Table 3.2. Examples of applications of texture analysis in MRI published during the past decade. 

Organ Lesion / Disease Objectives References 

Brain Primary brain tumors Classification of benign and malign tumors; 
Grading of gliomas 

[103], [104], 
[117], [118] 

Brain Brain metastases Differentiation from radiation necrosis; 
Identification of the primary cancer [106], [107] 

Brain Dementia Identification of Alzheimer’s disease [58], [119] 

Brain Multiple sclerosis Early diagnosis [120], [121] 

Brain Ischemic Stroke Prediction of hemorrhagic transformation; 
Evaluation of small vessel disease [122], [123] 

Brain Mild traumatic brain 
injury Effect of trauma in cerebral tissue [57] 

Heart Myocardial infarction Differentiation between acute and chronic [124] 

Heart Arrhythmias Classification of low and high-risk patients [125] 

Breast Breast cancer Classification of benign and malign lesions; 
Classification of cancer molecular subtypes  

[60], [61], 
[126] 

Prostate Prostate cancer Detection of cancerous tissue [127], [128] 

Kidney Autosomal dominant 
polycystic disease Prediction of renal function decline [129] 

Liver Liver fibrosis Assessment of the disease [130] 

Knee Knee osteoarthritis  Quantification of subchondral bone architecture; 
Identification of bone marrow lesions [131], [132] 
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Chapter 4.                           
Data analysis with 
machine learning 

 

 

 

 

4.1. What is Machine Learning? 
Machine learning refers to the branch of the artificial intelligence field that uses 

sophisticated statistical algorithms to give computer systems (i.e., the machines) the 
power of learning from mineable data with the purpose of recognizing patterns 
automatically and building predictive models capable of comprehending new unseen 
data and solve practical tasks. The concept of learning refers to the autonomous 
optimization of the algorithm parameters in order to improve progressively the 
performance of the specific task. 

Thanks to its power and efficacy, machine learning has seen an increased 
interest over the years in many fields [133] such as speech recognition and translation 
between languages [134], business intelligence [135], autonomous navigation [136] or 
fraud and credit scoring [137]. In the medical imaging field, this discipline has been 
implemented more slowly than in other fields. However, in the past decades, machine 
learning has demonstrated its growing potential for complementing medical imaging 
thanks to the advances in computer technology and new applications have been 
developed mainly in the areas of computer-aided detection and diagnosis (CAD) and 
clinical decision support systems. The implementation of machine learning algorithms 
in these systems helps clinicians to interpret appropriately medical imaging findings and 
reduce interpretation times [138], [139]. Machine learning problems can be categorized 
mainly into two learning types according to the main purpose of the task to be solved 
[140], [141]: 
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• Supervised learning: implies that each sample is formed by two elements: the set of 
input observations (features) and the output observation (label or class). The main 
goal is prediction, that is, to deduce a functional relationship between training data 
features that generalizes well to testing data in order to predict their class. Supervised 
learning can be subdivided in classification (when the labels are grouped into 
discrete categorical classes) and regression (when the labels are continuous 
numerical values) problems. 

• Unsupervised learning: implies that each sample is only represented by the input 
observation or features, and no output observation or label is provided. The main 
goal is description, that is, to discover associations or patterns between samples and 
reveal the latent classes behind the features. The most representative example of 
unsupervised learning is clustering (grouping data without prior information of the 
groups). 

Machine learning is part of the data mining practice, which also encompasses 
data acquisition and exploration. In this thesis, the data acquisition process represents 
the extraction and processing of texture features from MR images, and the data 
exploration process implies every statistical test or data visualization technique (e.g., 
boxplots or scatterplots) conducted for detecting preliminary tendencies, incomplete data 
or outlier values. In this chapter, we are going to focus only on machine learning, 
concretely on supervised classification methods and the corresponding previous issues 
and challenges to be studied so as to make the most of them. 

4.2. Machine Learning Algorithms for Classification 
In practice, machine learning becomes an iterative process where not only one 

algorithm is applied. The development of the optimal predictive model implies the 
selection of the most appropriate technique. This selection is not direct and requires the 
implementation of several models so as to test them and choose the one that offers best 
results in terms of accuracy, generalization and interpretability [142]. 

In this thesis, we dealt with supervised classification problems in all the projects 
conducted, as all our samples were previously labelled and our main objective was to 
evaluate the categorization of these samples in various known groups or classes. 
Therefore, we had to choose the most appropriate classification models (also known as 
classifiers) from a wide range of available algorithms in order to perform our analyses 
and compare their performances. Concretely, for our classification analyses we used the 
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Caret package (short for Classification And REgression Training) [143] in R language 
(R Development Core Team, Vienna, Austria), which presents 189 different 
classification models, so we had to select a reduced diverse set of commonly used 
classifiers, including models from different families and nature, considering their proved 
efficacy in other applications [144]–[146]. Testing all the available classification models 
would be an exhaustive, unfeasible task that may not result in a remarkable improvement 
of the classification results. 

Hence, in this section we only provide a brief description of the five different 
classification models implemented throughout the realization of the experimental studies 
involved in this thesis.  

4.2.1. Naive Bayes Classifier 

The naive Bayes (NB) classifier is one of the oldest machine learning models 
and stands out for its computational simplicity, time efficiency and robustness. This 
classifier works well in many real-life applications. In particular, it is widely used in 
areas such as text classification [147] and spam filtering [148], but it has been also 
successfully applied in the study of medical data [141], [149]. 

The NB classifier is a probabilistic model that predicts the probability of a given 
case belonging to a certain class. It uses the Bayes rule, based on the Bayes theorem. 
This rule allows answering the following question: “based on the features that we have 
observed, what is the probability that the outcome belongs to class 𝐶𝐶𝑖𝑖?”. Mathematically, 
let 𝑌𝑌 represent the class variable and 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) the collection of 𝑁𝑁 feature 
variables. The goal is to estimate the posterior probability 𝑃𝑃(𝑌𝑌 = 𝐶𝐶𝑖𝑖|𝑋𝑋), which is defined 
as the probability that the outcome is the 𝑖𝑖-th class given 𝑋𝑋. The corresponding formula 
to compute this probability is: 

 𝑃𝑃(𝑌𝑌 = 𝐶𝐶𝑖𝑖|𝑋𝑋) =
𝑃𝑃(𝑋𝑋|𝑌𝑌 = 𝐶𝐶𝑖𝑖)𝑃𝑃(𝑌𝑌 = 𝐶𝐶𝑖𝑖)

𝑃𝑃(𝑋𝑋)
 Equation 4.1 

 
where 𝑃𝑃(𝑋𝑋|𝑌𝑌 = 𝐶𝐶𝑖𝑖) is the conditional probability (the probability of observing the set of 
feature values 𝑋𝑋 for the data associated to class 𝐶𝐶𝑖𝑖),  𝑃𝑃(𝑌𝑌) is the prior probability of the 
outcome (the probability of expecting the class 𝐶𝐶𝑖𝑖), and 𝑃𝑃(𝑋𝑋) is the probability of 
expecting the set feature values 𝑋𝑋. The final predicted class will be the one associated 
with the largest posterior probability. 
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The naive Bayes model simplifies the computation of these last probabilities by 
assuming that the effect feature value on a certain class is independent of the values of 
the other features. This assumption, known as class conditional independence, is 
extremely strong (naive) but, however, yields a significant reduction in the complexity 
of the calculations [142], [150]. 

As mentioned before, the NB model is very attractive because it is simple and 
quick even for large training datasets, and it is often surprisingly effective even in its 
simplest form. A large number of modifications have been introduced over the years in 
an attempt to make it more flexible, but such modifications may introduce complications 
that detract from its basic simplicity [151]. 

4.2.2. K-Nearest Neighbors 

The k-nearest neighbors (KNN) classifier is a non-parametric method that works 
easily with multiclass problems as well as with applications in which an object can have 
many class labels, and is usually tested due to its simplicity, flexibility and good 
performance [145], [151]. This classifier is a type of instance-based learning, or lazy 
learning, method where a generalized model is not built explicitly and all computation 
is deferred until classification, thus meaning that there is no explicit training phase and 
all (or most) of the training data is needed during the testing phase. 

Typical supervised classification methods search for linear or nonlinear 
boundaries that optimally separate the data. Instead, KNN classifier takes a different 
approach based on the concept of similarity that uses the sample’s geographic 
neighborhood to define these boundaries. The KNN classifier predicts a new sample 
using the K closest samples of the training set, so that only the distance to the K nearest 
neighbors and their associated classes are used to classify new samples. Class probability 
estimates for the new sample are calculated as the proportion of training set neighbors in 
each class [150]. Figure 4.1 shows an example of prediction of a new sample using KNN. 

Basically, the accuracy of the KNN method relies on the number of neighbors 
taking into account and distance or similarity metric evaluated between samples. The 
choice of the number of neighbors K depends mainly on the characteristics of the data. 
Small K values may generate many small regions of each class, thus representing a highly 
localized fitting (i.e., overfitting), whereas high K values may lead to the formation of 
fewer, larger and less flexible regions that do not really represent the local structure of 
the data. 
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Regarding the measurement of distance to assess the closeness of the training 
samples, several metrics can be considered. A common metric is the Minkowski 
distance, whose equation is: 

 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝑦𝑦) = ��(|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|)𝑟𝑟
𝑁𝑁

𝑖𝑖=1

�

1 𝑟𝑟�

 Equation 4.2 

 
where 𝑥𝑥 and 𝑦𝑦 represent the 𝑁𝑁 values of the features of two cases and 𝑟𝑟 is the order. 
Minkowski distance is typically used with 𝑟𝑟 being 1 or 2, where the former is known as 
the Manhattan distance and the latter is the Euclidean distance. 

It is important to recall that, for any distance metric, the scales of the features 
affect the resulting distance calculations because, if features are on widely different 
scales, the distance between samples will be biased towards features with larger scales. 
Hence, it is recommended to center and scale all features prior to KNN classification in 
order to allow each feature to contribute equally to the distance estimate [150]. 

 
Figure 4.1. Example of KNN classification for a dataset with two features and two classes illustrated 
as blue and red points. A new sample (the black rhombus) must be assigned to one of the classes. The 
new sample will belong to the most commonly occurring class depending on the number of neighbors 
K selected. In this case, if K = 1, 2 or 3 (blue circle), the new sample will be predicted as blue since the 
two closest samples are blue. If K > 5 (for example, the red circle K = 6), it will be predicted as red. 
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4.2.3. Support Vector Machines 

Support Vector Machine (SVM) is an advanced classification model with high 
popularity due to its robustness, flexibility and efficacy in a variety of applications, 
especially in computational biology and CAD systems in radiology [141], [151], [152]. 
Originally, this classifier was developed to solve binary classification problems 
involving linearly separable data, but it was extended over the years to deal with different 
classification tasks effectively. 

In a binary classification task, the main function of the SVM algorithm is to 
maximize the margin distance between the classification boundary (i.e., hyperplane) and 
the closest samples of both classes. In the case of perfectly separable classes, there exist 
infinite hyperplanes that can separate the classes correctly but SVMs only select the one 
that allows the linear maximum margin classification, that is, the one that achieves the 
maximum space from the boundary to the closest training set samples from both classes, 
as shown in Figure 4.2. The associated margin is usually known as hard margin and the 
samples on this margin are called support vectors. The reason behind finding the 
hyperplanes that accomplish the maximum margin distance is that they deliver the best 
classification performance on the training data and they offer the best generalization 
ability by leaving much room for the correct classification of future data [150], [151]. 

When working with more complex data where the classes are not perfectly 
separable, it is not possible to obtain the unique hyperplane that satisfies the maximum 
margin classification. In those cases, the SVM algorithm constructs a hyperplane with a 
soft margin, which also separates both classes but allowing some misclassified points 
with the purpose of performing better when grouping the remaining data points. The 
SVM algorithm allows controlling and optimizing the trade-off between 
misclassification of the training data and the size of the soft margin by adjusting the 
internal parameter known as cost or C in the training process. 

The use of hyperplanes allows classifying linearly separable data, but when the 
data are not linearly divisible, a kernel function may be used to map the data into a higher 
dimensional space where it is possible to separate the data linearly. Non-linear kernels 
like Gaussian or polynomial (Figure 4.3) allow more flexible classification boundaries 
at the expense of risk of overfitting and a time-consuming training process with more 
internal parameters to be adjusted. 
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Figure 4.2. Dataset with linearly separable classes, illustrated in blue and red points, classified with 
SVM. The left plot shows several hyperplanes, out of many possible, that correctly separates both 
classes. The right plot illustrates the maximal margin hyperplane, shown as a solid black line. The 
margin is the distance from the solid line to either of the dashed lines (in light orange). The points 
circled in black that lie on the dashed lines are the support vectors. 

 
Figure 4.3. Data set with non-linearly separable classes, illustrated in blue and red points, classified 
with SVM with non-linear kernels. The plots show how a Gaussian kernel (left) and polynomial kernel 
of degree 2 (right) can separate both classes. The classification boundaries are shown in light purple 
while the support vectors are highlighted with solid points. 
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4.2.4. Decision Trees and Random Forests 

The Random Forest (RF) classifier is an ensemble machine learning model that 
has been proved to provide better results than other models in many studies (including 
medical imaging studies) involving classification tasks [144], [153], especially when 
dealing with multiclass problems [146] and image segmentation challenges [154]. This 
classifier is an ensemble model because it combines the results of a multitude of 
independent and decorrelated decision trees with different structures in the training 
process.  

Decision or classification trees are predictive models based on the 
accomplishment of a set of successive binary rules that results in the partition of data 
into smaller, more homogeneous groups. The construction of a decision tree is based on 
the principle of “divide and conquer”: through a supervised learning algorithm, 
successive divisions of the data based on the feature values are carried out in order to 
maximize the distance between groups in each division. A basic tree is formed by a 
collection of nodes organized in a hierarchical structure and interconnected with edges 
or branches that represent the decisions made. Nodes are subdivided into internal (or 
split) nodes and terminal (or leaf) nodes. The function of the internal nodes is to store 
test functions based on the feature values that are used to sort sequentially each new 
incoming sample introduced in the decision tree through the root node, which 
corresponds to the feature that best divides the training data. Each terminal node stores 
the final answer. Therefore, a decision tree can be interpreted as a technique for splitting 
complex problems into a hierarchy of simpler ones. Additionally, decision trees present 
an important advantage: they produce human-readable, comprehensible rules regarding 
how to classify a given sample [142], [153]. Figure 4.4 shows an example of a simple 
decision tree trained for solving a binary task. 

Decision trees are prone to overfitting if grown sufficiently deep and tend to 
ignore some variables that may be important in the case of small sample sizes and large 
number of features. The RF classifier allows improving the generalization of the model 
and the robustness against overfitting and small sample size problems by evaluating 
multiple decision trees, at the expense of interpretability [155], [156]. Specifically, the 
RF algorithm for constructing each tree of the forest and predict the class of new samples 
works as follows: 

 A specific number of trees to be built is selected 
 A subset of the training data is selected randomly to grow each tree to the 

largest extent possible.  
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 A subset of features is selected randomly out of all feature variables and the 
best candidates are used to split the nodes successively.  

 The remaining subset of training data is used as a validation set to assess 
the accuracy of the model. The average error obtained for each training 
sample in all the trees (out-of-bag error estimate) is used to determine the 
overall performance of the classification in the training phase.  

 For assigning a new sample to a class, each tree in the forest generates a 
vote for the classification of the new sample, and the class chosen will be 
the one with the highest proportion of votes, that is, the most represented 
among all the trees in the forest. 

Another advantage of the advantages of RF model is the little parameter tuning 
required. The parameter mtry, which identifies the number of random features used in 
each tree, controls the strength (i.e., how accurate the individual trees are) and the 
correlation (i.e., the dependence between trees) of the RF model. Another tuning 
parameter may be the number of trees to be built, that has to be chosen according to each 
specific application. 

  

 
Figure 4.4. A simple classification tree trained for assessing the survival of the Titanic sinking by 
classifying passengers into dead and surviving. Each passenger of the training dataset is characterized 
by four features (sex, age, class and number of relatives). Each node shows the selected predicted class 
(died or survived), the predicted probability of survival and the percentage of observations in the node. 
Titanic passengers data acquired from the “Titanic: Machine Learning from Disaster” competition 
dataset provided by Kaggle (https://www.kaggle.com/c/titanic) 

 

https://www.kaggle.com/c/titanic
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4.2.5. Artificial Neural Networks and Multilayer Perceptrons 

An artificial neural network (ANN) is a learning technique inspired by the way 
the human brain works, learns and processes information. The original purpose of the 
ANN approach was to solve problems in the same way that a human brain would. 
However, over time, this technique was also applied to study other diverse classification 
tasks such as speech recognition, machine translation, social network filtering or 
forecasting. In the biomedical field, ANNs have been used extensively for clinical 
diagnosis, medical imaging analysis, histopathology assessment, drug evaluation and 
follow-up of a wide variety of diseases [141], [157], [158]. 

The ANNs simulate the way the brain sends a receives information by 
implementing neurons joined together in a pattern of inter-connections. The neurons in 
the ANN are known as nodes, and they process the information and transmit signals to 
other nodes through established connections with associated weights. Each node applies 
an activation or transfer function to the sum of inputs weighted according to the 
connection weights, thus producing an output value that is transmitted to the remaining 
nodes of the network. If the activation function chosen is a binary step function, each 
node will behave like a switch, that is, activating only under certain thresholds just as 
neurons are activated only when sufficient neurotransmitter is accumulated. By doing 
so, the ANN behaves like a linear classifier. However, non-linear activation functions 
are usually preferred because this way the combination of nodes and activation functions 
will be able to represent non-linear relationships [142].  

The nodes in an ANN are organized in layers. Three types of layers can be found 
in an ANN: input layers, which receive the information to be processed; output layers, 
which show the results of the processing; and hidden layers, situated in between. 
Different layers may perform different kinds of transformations on their inputs. 

There is a large variety of ANN models, classified depending mainly on the 
topology (number of neurons and hidden layers, and how they are connected) and the 
learning algorithm. In practice, the most commonly used ANN model is the multilayer 
perceptron (MLP). The MLP is a feedforward ANN (i.e., allow signals to travel only in 
one way, from input to output) that consists of at least three layers (input, hidden and 
output layers). Each node of the input layer corresponds to a feature and each node of 
the output layer represents a classification (e.g., one output layer corresponds to a binary 
prediction based on a certain cut off point). The MLP can be composed of different 
number of hidden layers, with a minimum of one, which transform and transfer the data 
from the input to the output layer. For training the MLP, a supervised learning technique 
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called backpropagation is used. It consists of distributing the error term computed at the 
output layer backwards throughout the layers, by modifying the weights at each node. 
Figure 4.5 shows an example of a simple trained MLP. 

One of the main concerns of MLPs is determining the proper size of the hidden 
layer/layers, because an underestimate of the number of hidden neurons may lead to poor 
approximation and generalization abilities, while excessive nodes can result in 
computationally expensive, complex networks prone to overfitting. Additionally, MLPs 
are said to lack of interpretability since it is difficult to understand the nature of the 
underlying representations generated by the networks. However, MLPs have several 
advantages that make them one of the preferred machine learning methods for 
classification: modelling of any sort of functional relationship, adaptive and flexible 
learning through examples and robustness in handling redundant and inaccurate 
information [142], [159]. 

 

 

 

 
Figure 4.5. An example of an MLP with three layers (one input layer, one output layer and only one 
hidden layer). The input layer has five nodes (I1 to I5) corresponding to five features. The output layer 
has only one node (O1) since it is a binary prediction. The hidden layer has seven nodes (H1 to H7). 
The interconnections between nodes are indicated with lines, where thicker lines indicate larger weights 
and color indicates the sign of the weight value (positive weights in black and negative weights in gray). 
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4.3. Feature Selection 
Most of the machine learning algorithms are strongly influenced by the quality 

of the features used to train the models. In many cases, the success of a classification 
task mainly depends on choosing the right features to build the right models. 
Consequently, it can be said that features, also commonly referred indistinctively as 
predictors, parameters or variables, are intimately connected to classification models 
because a model is only as good as its features are [160]. However, choosing the right 
features is not always an easy task that can be simply assessed with data exploration and 
statistical tests because features that may be completely useless by themselves can 
provide a significant performance improvement when combined with others within a 
machine learning approach [161]. 

One important aspect of studying a set of features is that they may interact in 
various ways, thus having different effects on the classification results. Sometimes such 
interaction can be exploited to enhance discrimination, sometimes it can be ignored, and 
sometimes it implies a challenge. The main challenge appears when dealing with a high-
dimensional feature space, that is, when a huge number of features of different nature 
are processed and combined within a machine learning structure. In first place, as the 
number of features increases, the classification modelling becomes more complex. In 
addition, some of the features may be highly correlated and some may contain irrelevant 
information that can affect negatively the construction of the classification model [162]. 

Feature selection is the process that allows managing the choice of the proper 
subset of features that maximizes the classification accuracy. Most of the feature 
selection techniques make use of statistical metrics or search algorithms in order to 
generate a feature ranking that indicates which are the most meaningful features and 
which the redundant ones. This way, the proper combination of features for each specific 
task according to their relevance can be chosen. In contrast, some feature selection 
methods skip the ranking generation step and search and choose the proper subset of 
features automatically, without user interaction. Implementing a feature selection 
method in the classification process allows reducing the dimensionality of the feature 
space, speeding up the classification of new data and increasing the accuracy of the 
predictive model in most of the cases [161], [163]. 

It is important to mention that feature selection methods differ from other 
commonly used dimensionality reduction techniques such as principal component 
analysis (PCA) or linear discriminant analysis (LDA). The latter attempt to reduce the 
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dimension of the feature space by altering and transforming the original representation 
of all the features whereas feature selection methods select an optimal subset of features, 
thus preserving their meaning and avoiding the loss of interpretability [164]. 

Feature selection methods can be categorized in three main groups depending 
on how they combine the feature selection process with the construction of the predictive 
model: filter, wrapper and embedded methods. Each category has its own advantages 
and drawbacks, which are discussed hereafter. 

4.3.1. Filter Methods 

Filter feature selection methods make use of a certain metric to rank and assess 
the discriminatory power of each feature individually, without taking the interaction with 
the classifier into consideration. This last fact may seem a disadvantage, but, on the 
contrary, it leads to important advantages: they are adaptable to all classification 
techniques, easily scalable to high-dimensional datasets and computationally simple and 
fast. Additionally, these methods can be used as preliminary analyses in order to measure 
the importance of the features for accomplishing certain classification task according to 
some criteria. However, most of the filter feature selection techniques are univariate, 
meaning that they evaluate the relevance of each feature individually and probably 
ignore some dependencies between features that might improve the accuracy of the 
classification task [164]. 

Typical statistical methods, such as the t-test or the Mann-Whitney-Wilcoxon 
(MWW) test, which is analog to the t-test but without the requirement of the normality 
assumption, can be used as univariate methods to rank and select features presenting 
statistical significance between groups, according to the corresponding p-value [162]. 

Another group of univariate metrics commonly used to assess the variable 
importance is the one based on mutual information and information gain measures, 
which give an overall estimation of the mutual dependence between the features and the 
classes [165]. One of the most recent metrics based on mutual information theory is the 
maximal information coefficient (MIC), which can be defined as a correlation coefficient 
computed by using binning as a means to find the largest mutual information value and 
that belongs to the maximal information-based nonparametric exploration (MINE) class 
of statistics [166]. The use of MIC for feature selection can be also seen as a correlation-
based feature selection technique which measures the strength of the linear or non-linear 
association between each feature and the corresponding class distribution [167], [168]. 
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This metric has a similar scale to the simple Pearson correlation statistic (which only 
measures linear associations), where a value of zero indicates no relationship between 
the feature and the class, whereas a value of one demonstrate an extremely strong 
functional relationship or correlation. Therefore, higher values of MIC suggest that the 
corresponding features can explain the distribution of classes better than other features. 

To solve the main problem presented by univariate techniques, some 
multivariate filter methods have been proposed over the years, aiming at the 
incorporation of feature dependencies to some degree. One of the most recognized 
families of multivariate filter methods is the one based on the Relief algorithm [169]. 
The original Relief algorithm [170] uses the interaction between randomly selected 
samples and their closest neighbors in order to compute a score for each feature. In 
particular, to calculate this score, this technique performs iterations through a procedure 
of weight updating. First, this method randomly selects a sample from the training set 
and then identifies the nearest samples of both classes (by Euclidean distance), 
considering each of these samples as a hit when belonging to the same class or a miss 
otherwise. For each feature, the difference between the feature values at the random point 
and the hits and misses is calculated. This process is repeated for a predefined number 
of randomly selected samples and the weight of each feature is an accumulation of these 
differences, in such a way that the weight increases if the hit is close to the randomly 
selected sample and decreases if the miss is close. The idea is that a feature with a high 
discriminatory power between classes should have hits nearby and misses far away (i.e., 
higher Relief weight or score). Over the years, improved variants of the Relief algorithm 
were proposed, being the ReliefF algorithm the most successful version [171]. The 
ReliefF variant, unlike the original Relief algorithm, allows dealing with more than two 
classes and is more robust since it is able to work with noisy or even incomplete data by 
means of conditional probabilities. This method also uses a difference metric but, in this 
case, more than one neighbors can be selected to determine the weights or scores. 

4.3.2. Wrapper Methods 

Wrapper feature selection methods employ search algorithms in combination 
with multiple classifiers to evaluate the predictive capacity of features in groups and 
determine the optimal feature subset. The main advantage of these methods is that they 
analyze the interaction between features, so the optimal feature subset should include 
those features that together provide the best classification accuracy. Nevertheless, the 
evaluation of the candidates for optimal feature subset in wrapper approaches is obtained 
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by training and testing several times a specific classification algorithm, thus tying the 
outcome to a specific model. Additionally, this classifier dependence makes wrapper 
methods very computationally expensive, especially as the feature space grows, and 
susceptible to overfitting if all possible feature combinations are not tested [164]. 

The quality of the selected subset of features in wrapper methods depends 
fundamentally on the search algorithm. The most straightforward approach to find the 
optimal combination of features is to perform an exhaustive search, consisting on testing 
all possible combinations of features with the selected classifier in order to find the one 
that yields the best classification accuracy. However, this method is extremely time-
consuming, especially when the feature space is very high, so an algorithm that uses 
some type of smart search strategy is usually preferred. The most popular search 
strategies are forward selection and backward elimination. Forward selection starts with 
an empty testing subset and features are added one (or more) at time to this subset so as 
to form progressively larger subsets. On the contrary, backward elimination starts with 
the full set of features as the testing subset and the least promising features are iteratively 
removed one (or more) at time in order to form smaller subsets. Both strategies evaluate 
the candidates feature subsets by using an objective function, such as the classification 
accuracy of a predictive model. In general, forward selection is computationally more 
efficient but it may result in more unstable subsets since the interaction of all features is 
not completely assessed [161]. 

4.3.3. Embedded Methods 

Embedded feature selection methods are similar to wrapper approaches, but in 
this case, the process of selecting the optimal feature subset is implemented by default 
in the construction of certain classification models. Therefore, the advantages and 
disadvantages of embedded methods are similar to those of wrapper methods but, in this 
case, the computational complexity is better [164]. 

One of the most popular embedded techniques is the internal estimate of variable 
importance implemented in the RF training scheme [156], [172]. The RF classifier 
evaluates the importance of each feature automatically during the training phase of the 
multiple decision trees with several measures, and, at the end, all features are ranked 
according to these measures. One of these variable importance measures is the Gini 
importance or mean decrease in impurity (MDI), which is defined as the total decrease 
in impurity of the nodes representing certain feature, weighted by the probability of 
reaching that node (which is approximated by the proportion of samples reaching that 
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node) and averaged over all trees of the ensemble. Another more interesting measure is 
the permutation importance or mean decrease in accuracy (MDA), which directly 
measures the impact of each feature on the accuracy of the model during the out-of-bag 
error estimate. This measure is computed by permuting the values of each feature and 
measuring how much this permutation decreases the accuracy of the model. Permuting 
unimportant variables should have little effect on model accuracy, while permuting 
important variables should significantly decrease it. Therefore, features with larger MDA 
values are considered as more important and are ranked first. An advantage of these 
variable importance rankings provided by the RF modelling is that once they are 
computed, they can be extracted and tested with another model. 

4.4. Resampling Techniques 
Many complex non-linear models are capable of learning data so well that can 

correctly predict every sample used in for training the model. However, this is not the 
goal of building a classifier. The true interest is to accurately predict new samples that 
were not used when fitting the model. As more flexible is the model it will better fit the 
data but its generalization to new samples will be very poor. This problem has been 
previously introduced in some classification models such as ANN, MLP or SVM with 
non-linear kernels and is commonly known as overfitting. To avoid overestimated 
values, it is always recommended to split the data into non-overlapping training and 
testing sets so that results on new data can be reported (hold-out validation). The testing 
set will only be used to estimate the classification performance of the model developed 
with the training set. However, this simple approach may result in selection bias, that is, 
the model may produce overoptimistic results since only a random portion of the dataset 
that may not be representative of the population is used for testing. If the selection bias 
is not taken into account, then some conclusions of the study may not be accurate. This 
problem becomes more relevant when dealing with small sample sizes because in these 
cases the reliability of the results is highly dependent on the choice for the training/test 
split (the instances chosen for inclusion in the test set may be too easy or too difficult to 
classify, thus skewing the results). Furthermore, when training datasets with a 
considerably reduced number of samples, it is recommended that all available samples 
contribute to the modelling of the classifier in order to obtain a more generalized model. 
To address all these issues, resampling techniques are usually applied when building a 
classifier [173]–[175]. 
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Resampling methods such as cross-validation (CV) approaches and bootstrap 
can be implemented within the model training process to get good estimates of the 
performance, generalization and stability of the model using only the training set, 
without the need to separate a set of samples for testing purposes. Therefore, the entire 
dataset can be used as the training set. In general, resampling techniques partitions 
multiple times this training set into a subset of samples for fitting the model and another 
subset for validating the model. The whole model performance accuracy is then 
evaluated by averaging the validation results obtained across repetitions. This process 
allows obtaining non-overfitted results and addresses the selection bias problem by 
testing diverse subsets of samples, thus giving an idea of the true generalization of the 
model [173], [174]. 

Resampling methods can be classified according to the way they partition the 
data. Hereafter, we present two of the most used resampling techniques and further 
objectives of these methods so as to improve the reliability of the model performance. 

4.4.1. Further Applications of Resampling Techniques 

Apart from reporting good estimates of the model performance accuracy, 
resampling techniques can be used to assess other issues regarding model building so as 
to get a good sense of how the model works without setting apart a test set. 

In first place, it is known that most of the models have one or more intrinsic 
parameters (or hyperparameters) that control their complexity. These parameters have 
to be properly selected so as to make the most of the models, but they cannot be 
straightforwardly estimated by only analyzing the input data externally. For example, as 
previously mentioned, choosing the number of neighbors in KNN is critical since few 
neighbors may result in overfitting, whereas many features may result in less flexible 
and sensitive classification. Another example commented before is related to the size of 
the hidden layers in MLP: few hidden nodes may lead to poor approximation and 
generalization, while excessive nodes can lead to complex networks prone to overfitting. 
Resampling techniques allow evaluating repeatedly a group of candidate parameter 
values within the model building process in order to choose the appropriate values, that 
is, the ones that maximize the classification accuracy through all the repetitions of the 
modelling process. This procedure is commonly known as model tuning and the 
hyperparameters to be adjusted are usually referred as tuning parameters [173]. 
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Another use of resampling techniques is related to the correct application of the 
feature selection procedure. When using a feature selection method to select the optimal 
combination of features in a specific dataset, one could argue that if the same feature 
selection approach were repeated with a slightly different dataset, the resulting optimal 
subset of features might change, thus misinterpreting the results and resulting in a poor 
generalization. This fact can be considered as a methodological error that occurs when 
feature selection is applied to the entire dataset as a previous step to the model building 
process and as part of it. Therefore, it is recommended to include the feature selection 
method within the model building process and implement a resampling technique to 
validate it. This way, feature selection is repeated for each iteration of the resampling 
procedure in order to obtain a different optimal group of features for each subset of 
training samples and capture this variation of feature selection in the results. By using 
this approach, the chances of overfitting the features will be drastically reduced, 
especially when dealing with small training sets, at the expenses of a decrease in the 
computational efficiency of the feature selection process [162], [176]. 

To assess the two concerns presented above within the resampling procedure, it 
is necessary to implement two levels of resampling, that is, to apply two nested 
resampling techniques (i.e., one inside the other) so as to evaluate each issue within the 
same process but separately. This practice is commonly known as nested cross-
validation and is organized in two resampling layers: the inner loop and the outer loop. 
Usually, the inner loop is used to assess the model tuning while the outer loop is 
employed for implementing the feature selection method and estimate and compare the 
generalization performance of several models with the selected features. 

4.4.2. K-Fold Cross Validation 

One of the most common resampling techniques used due to its accurate 
performance estimation is the k-fold cross-validation. This approach randomly partitions 
each dataset into K equally (or nearly equally) sized subsets of samples or folds 
accomplishing stratification, that is, maintaining a balanced amount of the involved 
classes in each fold to ensure each fold is a good representation of the whole. Then, K 
models are trained and tested so that each of the K folds is used once as the test set, while 
the K-1 remaining folds are used to train the model. A schematic example representing 
this resampling technique is shown in Figure 4.6. Common values of K are 5 or 10, but 
there is no formal rule of which K value is better. As K gets larger, the difference in size 
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between the training set and the folds gets smaller, as well as the difference between the 
estimated and true values of the performance [173]. 

A common strategy for reducing the variance of the validation results produced 
by this resampling technique and avoiding possible selection bias in the random 
separation of the folds is to repeat several times the partition into K folds. This 
resampling approach is known as repeated k-fold cross-validation and is said to increase 
the precision of the estimates at the expenses of an increase in computation time. This 
approach is the most recommended resampling technique in the literature [173]. 

A particular version of this resampling technique is the leave-one-out cross-
validation (LOOCV), which is the special case where K is the number of samples. In this 
case, since only one sample is held-out at a time, the final performance is computed from 
the K individual held-out predictions. This variant is not recommended for large sample 
sizes because it requires as many model fits as data samples and each model fit uses a 
subset that is nearly the same size of the training set, thus becoming very computationally 
taxing. Additionally, the LOOCV strategy is said to have high variance, thus resulting in 
overfitting [174]. 

 

 

 
Figure 4.6. Scheme of stratified k-fold cross-validation with K = 3. A dataset with twelve samples 
belonging to two classes (blue and red spheres) are subdivided in three groups or folds. Each of these 
folds works as test set in each of the three iterations, thus ensuring that every sample tested once. The 
remaining two folds in each iteration are used as training set. Performance estimates are calculated 
from each held-out fold and the average of the three estimates would be the cross-validation estimate 
of the model performance. 
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4.4.3. Leave-Group-Out Cross-Validation 

A conceptually simple resampling technique that also produces stable estimates 
of the model performance is the leave-group-out cross-validation (LGOCV), also known 
as Montecarlo cross-validation. This method randomly divides each dataset into training 
and test sets N times, forming N groups. Then, each group is examined independently: 
the samples of the training set of a group are used to build the model and then this model 
is evaluated using the samples of the test set of the same group. Finally, the classification 
results provided by the estimates of all groups are averaged. This approach is quite 
flexible since the proportion of the data going into each subset (training and test) and the 
number of repetitions can be controlled [173]. Additionally, as opposed to k-fold cross-
validation, LGOCV does not allows controlling the times a specific sample is included 
for testing, thus increasing the randomness. A simple example of this resampling 
technique is represented in Figure 4.7. 

The LGOCV approach is usually recommended among other techniques 
because it is a more randomized and generalized strategy and allows reducing the 
uncertainty (variance) and the bias by choosing a recommended number of repetitions 
(N between 50 and 200) and a recommended percentage of held-out samples (20-25%) 
[173]. This strategy is also recommended when dealing with datasets with a reduced 
number of samples [177]. 

 

 

 
Figure 4.7. Scheme of stratified leave-group-out cross-validation with N repetitions and 1/3 of the 
samples used as test set in each repetition. A dataset with twelve samples belonging to two classes (blue 
and red spheres) is randomly subdivided N times, forming N groups. A model is built in each repetition 
using 2/3 of the samples and tested with the remaining 1/3. Samples can be represented in multiple 
held-out subsets and the times that each sample is included in the test set is different for all samples. 
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4.5. Measures for Evaluating Classification 
With the purpose of evaluating the quality of a predictive model and discard 

models that are not optimal enough to carry out certain classification task, several 
methods such as metrics or graphical representations are used to facilitate the task of 
interpreting the results. These methods represent the classification performance of the 
model when applied to a test set and the corresponding measures can be based on the 
predicted classes (discrete values) or the class probabilities (continuous values) [178], 
[179]. 

4.5.1. Measures Based on Predicted Classes 

The most common and simplest method for evaluating and describing the 
performance of a classifier based on the predicted classes is the confusion matrix (CM). 
The CM is a cross-tabulation of the observed (or true) and predicted classes in a 
classification task. In essence, the diagonal cells of the matrix represent the number of 
samples that were correctly classified in each class, while the off-diagonal cells represent 
the number of samples that were erroneously classified in other class. 

Considering a classification task with two classes (positive and negative), the 
elements of the CM are defined as follows. The first row of the matrix contains the true 
positives or TP on the left (i.e., number of positive samples that were correctly classified 
as positive) and the false positives or FP on the right (i.e., number of negative samples 
that were incorrectly classified as positive). The second row of the matrix contains the 
false negatives or FN on the left (i.e., number of positive samples that were incorrectly 
classified as negative) and the true negatives or TN on the right (i.e., number of negative 
samples that were correctly classified as negative). Figure 4.8 shows a CM for a binary 
classification task representing the latter concepts. The computation of the CM can be 
also extended to multiclass problems. 

Several metrics can be extracted from the CM to assess numerically the 
performance of the classification. All these metrics values range from 0 to 1, where 1 is 
the optimal value. Although there are numerous metrics, the most cited in the literature 
are the following ones: 
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• Sensitivity: represents the proportion of all samples belonging to positive class that 

are correctly predicted as positive. It is also known as the true positive rate (TPR). 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 Equation 4.3 

 

• Specificity: represents the proportion of all samples belonging to negative class that 
are correctly predicted as negative. The false positive rate (FPR) is defined as one 
minus the specificity. 

 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 Equation 4.4 

 

• Overall Accuracy: reflects the proportion of true results (both true positives and true 
negatives) among the total number of cases evaluated. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 Equation 4.5 

 

Although the overall accuracy is probably the most used classification measure, 
it does not take into account class imbalance (i.e., disparities in the class proportions). In 
order to consider the class distribution of the training set samples, other metrics such as 
the Kappa statistic, also known as the Cohen’s Kappa, can be used. This metric evaluates 
the accuracy that would be generated simply by chance and its equation is as follows: 

 
Figure 4.8. Confusion matrix for a two-class problem (positives and negatives). The matrix elements 
indicate the number of the true positives (TP), false positives (FP), false negatives (FN) and true 
negatives (TN). 
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 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
𝑂𝑂 − 𝐸𝐸
1 − 𝐸𝐸

 Equation 4.6 

 
where 𝑂𝑂 is the observed accuracy and 𝐸𝐸 is the expected accuracy based on the marginal 
totals of the CM. A Kappa value of 1 indicates perfect concordance of the model 
prediction and the observed class while a value of 0 indicates no concordance. However, 
in some cases Kappa values within 0.30 to 0.50 may indicate reasonable agreement 
[178]. 

4.5.2. Measures Based on Class Probabilities 

Apart from providing a predicted class for each sample, many classifiers also 
generate continuous predictions when evaluating the model with the test set that are in 
the form of a probability for each class. In some cases, these class probabilities obtained 
for each predicted value may offer more information about the model predictive capacity 
than the simple class value. In a binary classification task with positive and negative 
classes, a probability threshold value may be established for the vector of probabilities 
of the positive class to define a boundary between classes so that probabilities above this 
threshold will be classified as positive and probabilities below this threshold will be 
classified as negative. Many classification models usually take the probability of 0.5 as 
threshold but, however, in some applications it may be of interest to set a different value. 

The receiver operating characteristic (ROC) curve is the most common method 
to evaluate graphically the confidence of the classification model with class probabilities. 
It is constructed by evaluating the class probabilities across different thresholds and 
recomputing the corresponding predicted classes. For each threshold, the TPR 
(sensitivity) and FPR (one minus specificity) are computed and plotted against each 
other, thus resulting in a curve that reflects the variations that sensitivity and specificity 
suffer depending on the chosen threshold. Therefore, one can choose a specific threshold 
(usually referred as cutoff point) so as to obtain better sensitivity or specificity depending 
on the purpose of the application, although the common approach is to choose the 
threshold that maximizes both measures equally. Figure 4.9 shows an example ROC 
curve representing two cutoff points that provide different sensitivity and specificity 
measure. A model that perfectly separates two classes would have unity sensitivity and 
specificity and this will be represented as a single step between (0, 0) and (0,1) and 
constant from (0, 1) to (1, 1) on the ROC curve. 
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The area under the curve (AUC) is a way to explain and evaluate the ROC curve 
with a single numerical value representing the overall expected performance of a 
classifier. Defining this measure in a simple and understandable way is somewhat 
difficult. In terms of probabilities, the AUC describes the probability that, the classifier 
will rank a randomly chosen positive instance higher than a randomly chosen negative 
instance [179]. A perfect classifier will have AUC = 1 whereas a completely ineffective 
classifier will have AUC = 0.5, which is plotted as a diagonal line. The ROC curve has 
the advantage to be insensitive to class imbalance since it is a function of sensitivity and 
specificity, so it is recommended to report classification results using the AUC instead 
of the overall accuracy, especially when dealing with imbalanced datasets, because the 
accuracy is mostly influenced by the majority class [178]. 

 

 

 
Figure 4.9. A receiver operating characteristic (ROC) curve for a given data. The blue point indicates 
the value corresponding to a probability threshold of 50%, which gives better sensitivity, while the red 
point corresponds to a threshold of 80%, which maximizes both sensitivity and specificity at the same 
time. The zone in light purple represents the area under the ROC curve (AUC). 
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5.1. Introduction and Motivation 
Primary glioblastoma multiforme (GBM) and intracranial brain metastasis (BM) 

are the two more common malignant brain tumors in adults. 

Glioblastomas are the most aggressive diffuse gliomas and are defined as grade 
IV cancer according to the World Health Organization (WHO) classification of tumors 
of the central nervous system (CNS) [20], thus meaning that these types of brain tumors 
have a high level of malignancy and tend to grow and spread rapidly. GBM is the most 
common malignant primary brain and CNS tumor. According to recent studies, GBMs 
are estimated to account for 56% of all gliomas, 47% of malignant primary brain and 
CNS tumors and 15% of all primary and CNS tumors approximately [21]. GBM has a 
very poor prognosis, with less than 5% of patients surviving 5 years past diagnosis and 
a median survival of 15-18 months for patients with newly diagnosed GBM [180], [181]. 

Brain metastases are the most common tumors of the CNS in adults, even more 
than primary brain tumors [22], [24], [182]. The prognosis of patients diagnosed with 
metastatic brain tumors is poor: the median survival of these patients is estimated to be 
limited to months even for patients under treatment [183], [184]. The exact incidence of 
BM is certainly unknown, although some studies reported that these lesions occur in 9–
17% of patients with cancer [23], [185]. However, these rates are currently increasing 
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due to improved imaging techniques for diagnosis and prolonged survival from primary 
cancers, among other reasons [23]. 

The clinical symptoms associated with GBM and BM may be similar, but each 
brain tumor type has a different biologic nature, so different treatment strategies are 
required for each tumor type. Therefore, differentiating these types of brain tumors 
rapidly is crucial [186]. The current standard for treating newly diagnosed GBMs implies 
a maximal safe surgical resection followed by a combination of radiotherapy and 
chemotherapy [187], [188]. Conversely, BMs are mainly treated with stereotactic 
radiosurgery (SRS) and/or whole-brain radiotherapy (WBRT) depending on the number 
of metastatic lesions, among other reasons [189], [190] 

In some cases, a correct diagnosis can be achieved by combining the clinical 
information of the patient and the radiological information provided by conventional 
structural MRI. Generally, a GBM appears as a solitary big tumor mass in the brain. In 
contrast, a patient with BM usually tends to have multiple metastatic brain lesions and 
the primary cancer is commonly known. However, there are exceptions to these rules 
(e.g., multifocal GBM, solitary BM or unknown primary cancer) and additionally, GBM 
and BM may present similar appearance in conventional MR images [191]–[194], as 
shown in Figure 5.1. For example, GBMs frequently appear as ring-enhancing lesions 
with a predominant necrosis area in structural MRI, but this appearance is not specific 
and some BMs can also show a similar radiologic profile [195]–[197]. Therefore, a 
definitive diagnosis cannot be made exclusively with this information. 

Nowadays, the histopathologic analysis of a sample of the tumor region (i.e., 
biopsy) is the only accepted way to make a definitive diagnosis [47], [198]. However, 
the use of non-invasive, fast methods to identify correctly the type of lesion would be 
preferable. Furthermore, invasive procedures are not allowed in those cases when there 
exists an important risk for the patient (e.g., when the mass is located near an eloquent 
area), so in these cases, non-invasive procedures are mandatory [191]. In this context, 
several studies tried to classify both types of tumors by using advanced MRI techniques 
(e.g., MR spectroscopy or diffusion and perfusion weighted imaging) and multi-
parametric imaging analysis [192]–[194], [199]–[201]. Despite the promising results 
obtained, the MR techniques proposed in these studies are not commonly performed 
when screening the tumor for the first time and require long acquisition times, so these 
analyses may be quite demanding and time-consuming, among other disadvantages 
[202]. Other studies investigated other imaging techniques like positron emission 
tomography (PET) to this end, obtaining good results [203]. However, this technique in 
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particular exposes the patient to ionizing radiation as opposed to MRI, and for this 
reason, MRI would be the preferable imaging technique for screening the brain tumor. 
To this effect, it would be desirable to have an efficient approach for differentiating the 
type of brain lesion (GBM and BM) based on the conventional MR images obtained in 
the first screening of the tumor mass in order to accelerate the process of identification. 
With this approach, the patient would not be exposed to additional imaging, nor invasive 
or ionizing procedures. 

To accomplish the objective of classifying BM from GBM using conventional 
MRI, morphometric analysis could be of help, like showed in [191]. However, 
morphometric features do not take advantage of all the information that MR images may 
provide about the tumor lesion. Texture analysis is a powerful methodology that 
processes the images to extract a wide variety of features that define the properties of the 
MR image region under analysis in different ways. In contrast to morphometric features 
that only define the shape of the tumor region, texture features describe the intrinsic 
heterogeneous characteristics of the lesions, thus making possible the characterization of 
different tumor lesions based on the information extracted from the MR images. Several 
studies attempted to examine the differentiation of several brain tumor types, including 
GBM and BM, by means of texture analysis [104], [105], [204]. The results obtained in 
these studies were promising, and we took them as a basis for our work. However, 
although these studies considered GBM and BM, they also included other brain tumor 
types like meningiomas or WHO grade II or III gliomas in their analyses, thus interfering 
in the results of classification between GBM and BM. In the present work, we only 
focused on the discrimination between GBM and BM since these two types of brain 
tumors are the most common aggressive tumors in adults and they can be radiologically 
confused, as explained before. We additionally increased the number of features, tested 
different texture analysis methods and used other classification approaches to reduce the 
possibilities of achieving overfitted results. 

The main objective of this project was to evaluate the potential of 2D texture 
features extracted from T1-weighted MR images for differentiating between BM and 
GBM by using machine learning techniques. With this approach, we proposed a decision 
support tool to help in the diagnosis of the lesion in a fast, non-invasive way by analyzing 
the conventional MR images used for detecting the brain tumor for the first time. We 
additionally analyzed the influence of the number of gray levels used to quantize the 
images and the performance of different classifiers and feature selection methods. 
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Figure 5.1. Examples of contrast-enhanced T1-weighted MRI scans of six different patients with GBM 
(left column) and BM (right column) where the lesions present similar appearances and cannot be 
distinguished. Patients (a) and (b) present a big ring-enhancing lesion, more typical of GBM. Patients 
(c) and (d) show a small solitary mass. Patients (e) and (f) have multiple lesions, typical of BM. 
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5.2. Material and Methods 

5.2.1. Patients and Imaging Protocol 

This retrospective, single-center study was approved by the Institutional Review 
Board of the Hospital Universitario de La Ribera and all subjects provided written 
informed consent. Patients presenting single or multiple GBMs or BMs were reviewed 
by an expert neuroradiologist with 20 years-experience. Inclusion criteria for BMs 
covered: (1) pathologically confirmed primary cancer; (2) only one single primary 
tumor; (3) no previous treatment, biopsy or surgical resection on BM and (4) all BMs 
confirmed by imaging and clinical follow-up. Exclusion criteria for BM included: (1) 
small metastases (longest diameter < 10 mm) as texture analysis cannot capture texture 
information properly in small regions [13]; (2) more than one BM per patient and (3) 
lesion affected by MRI artifacts like motion or truncation (Gibbs phenomenon) artifacts. 
Inclusion criteria for GBMs comprised: (1) no previous treatment, biopsy or surgical 
resection on GBM and (2) all GBMs confirmed by imaging or histopathology and 
clinical follow-up. Exclusion criteria for GBM included: (1) more than one GBM per 
patient and (2) lesion affected by MRI artifacts. The first one hundred patients (63 men 
and 37 women, mean age 60.98 years, age range 24–86 years) who complied with 
inclusion criteria and not with exclusion criteria and selected between December 2010 
and January 2017 were included. Since we only included one lesion per patient, one 
hundred baseline lesions were collected: 50 GBMs and 50 BMs. The distribution of 
primary known cancers for patients with BM was: lung cancer (38), renal cancer (4), 
breast cancer (3), colorectal cancer (3), thyroid cancer (1) and melanoma (1). The 
properties of the study group are shown in Table 5.1. 

Imaging was conducted using a 1.5T MRI scanner (Philips Achieva 1.5T; 
Philips Healthcare, Best, The Netherlands) and an eight-channel sensitivity encoding 
(SENSE) head coil. The MRI protocol included two-dimensional turbo spin echo (TSE) 
coronal T1-weighted brain images. Images were acquired without magnetization 
transfer, after intravenous administration of a single-dose of gadobutrol (1 mmol/ml, 
Gadovist; Bayer Schering Pharma, Berlin, Germany). All the GBMs and BMs were 
scanned using the same imaging parameters since changing these parameters may 
influence texture analysis performance [95], [111]: repetition time/echo time (TR/TE) of 
500/20 ms; flip angle of 90º; matrix size of 512×512; pixel size of 0.43×0.43 mm2; and 
slice thickness of 7.3 mm. Some examples of the contrast-enhanced T1-weighted images 
of patients with GBM and BM used in this work can be seen in Figure 5.1. 
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5.2.2. Regions of Interest 

To perform the segmentation of each lesion in 2D, the coronal slice of the T1-
weighted image showing the most representative lesion area was selected and segmented 
by an expert neuroradiologist (20 years-experience). The rest of the slices showing lesion 
tissue were not segmented since 3D texture analysis was not conducted. We decided not 
to apply 3D texture analysis because the slice thickness of our images (7.3 mm) was very 
large in comparison to the in-plane resolution (0.43 mm) and in this case it is 
recommended to perform 2D texture analysis [51]. For considering 3D texture analysis, 
isotropic image resolution is required to ensure the conservation of scales and directions 
in all three dimensions, thus meaning that image interpolation should be applied in the 
third dimension and then the image would be highly transformed due to the big 
difference between the inter-slice and inter-pixel distances [51], [64]. 

Prior to the feature extraction process, we verified that there was no statistical 
difference between the size of the lesions in the two groups (GBM and BM), since some 
texture features may be influenced by the region of interest (ROI) size. In this case, it is 
important to ensure this fact because GBMs tend to be much larger than BMs and falsely 
optimistic results may be achieved due to this difference in size and its influence on the 
texture outcome [13], [62]. We evaluated the distribution of the ROI areas and the ROI 
longest diameters for both groups of lesions with the Mann-Whitney-Wilcoxon (MWW) 
test for independent samples. We did not find statistically significant differences when 
evaluating the ROI areas (GBM: 830.14 ± 420.84 mm2; BM: 711.31 ± 453.22 mm2; p > 
0.05, p = 0.088) and the ROI longest diameters (GBM: 36.93 ± 9.73 mm; BM: 33.46 ± 
10.50 mm; p > 0.05, p = 0.065) of both groups, so the size of the ROIs should not 
influence in the texture analysis. 

Table 5.1. Baseline characteristics of the study group per class 

 GBM BM Total 

Number of samples 50 50 100 

Number of patients 50 50 100 

Age* (years) 61.96 ± 13.68 60.00 ± 11.58 60.98 ± 12.64 

Sex (Male/Female) 26 M / 24 F 37 M / 13 F 63 M / 37 F 

* Continuous variables are expressed as mean ± SD 
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Some preprocessing techniques were applied to improve texture discrimination. 
Firstly, normalization was applied to the MRI regions using the μ ± 3σ method (µ is the 
mean value of the gray levels and σ is the SD) to enhance the differences between classes, 
as proposed by Collewet et al. [72]. This method adjusts the histogram of the MRI region 
to µ ± 3σ by rejecting the pixels with intensities out of this range. 

Quantization of gray levels was also applied to the MRI regions to improve the 
signal-to-noise (SNR) ratio of the texture outcome [74]. This process refers to the 
reduction of levels of gray used to represent the image, which is originally represented 
by 4096 gray levels (12 bits per pixel). In particular, different number of gray levels 
(NGL) were tested (8, 16, 32, 64 and 128) to study the influence of the quantization 
process in the discriminative power of the matrix-based texture features. 

The delineation and preprocessing of the ROIs in 2D was performed using a 
software tool developed specifically for this study in MATLAB (R2015b; The 
MathWorks Inc., Natick, MA, USA). 

5.2.3. Feature Extraction 

The feature extraction process was conducted using the Radiomics MATLAB 
package implemented by Vallieres et al. [73] and the MATLAB implementation of the 
local binary pattern (LBP) operator provided by Ojala et al. [83].  A total of 88 texture-
based features were computed for each lesion. These features derived from six different 
statistical methods: intensity histogram with 100 bins (6 features), gray-level co-
occurrence matrix (GLCM) (9 features), gray-level run-length matrix (GLRLM) (13 
features), gray-level size-zone matrix (GLSZM) (13 features), neighborhood gray-tone 
difference matrix (NGTDM) (5 features) and LBP (42 features). Table 5.2 summarizes 
the features used in this study. 

When calculating the matrix-based textures, only one GLCM, GLRLM, 
GLSZM and NGTDM per lesion was computed with the Radiomics package. The 
GLCM and NGTDM features are originally dependent on the distance of the neighboring 
pixels, so only adjacent connected pixels (according to [87], distance d = 1) were counted 
when computing these matrices (8 pixel-connectivity). Additionally, the GLCM and 
GLRLM features are originally dependent on direction, so the neighboring properties in 
the four possible directions in 2D (0, 45, 90 and 135°) were summed when computing 
these matrices to achieve rotation invariant features. To account for discretization length 
differences, neighbors at a distance of √2 pixels (45º and 135º) around a center pixel 
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incremented the matrix by a value of √2, and neighbors at a distance of 1 pixel (0º and 
90º) around a center pixel incremented the matrix by a value of 1 [73]. 

When computing the LBP textures, the original LBP operator (patches of 3 × 3 
pixels: neighboring pixels P = 8, distance R = 1) was used to preserve the texture analysis 
as local as possible. Rotation invariance was achieved by performing a circular bit-wise 
right shift operation (rotating the neighboring pixel set clockwise) and assigning the 
smallest LBP binary number [83]. Using this approach, 36 unique rotation invariant 
histogram-based LBP features (LBP bins) were obtained, as only 36 LBP binary 
numbers can occur for P = 8. Moreover, six histogram-based measures (mean, variance, 
skewness, kurtosis, energy and entropy) were calculated from the LBP image and added 
to the LBP feature set. The MR images were not quantized to compute the LBP features 
since the rotation invariant LBP approach is robust to intensity variations [94]. 

 

Table 5.2. List of the 88 texture features used in this study. 

Method Features Number of 
features 

Histogram Mean, Variance, Skewness, Kurtosis, Energy and Entropy 6 

GLCM Energy, Contrast, Correlation, Homogeneity, Variance, Entropy, 
Sum Average, Dissimilarity and Autocorrelation 9 

GLRLM 

 

Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-level Non-
uniformity (GLN), Run-Length Non-uniformity (RLN), Run Percentage 
(RP), Low Gray-level Run Emphasis (LGRE), High Gray-level Run 
Emphasis (HGRE), Short Run Low Gray-level Emphasis (SRLGE), 
Short Run High Gray-level Emphasis (SRHGE), Long Run Low Gray-
level Emphasis (LRLGE), Long Run High Gray-level Emphasis 
(LRHGE), Gray-level Variance (GLV) and Run-Length Variance (RLV) 
 

13 

GLSZM 

 

Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-level 
Non-uniformity (GLN), Zone-Size Non-uniformity (ZSN), Zone 
Percentage (ZP), Low Gray-level Zone Emphasis (LGZE), High Gray-
level Zone Emphasis (HGZE), Small Zone Low Gray-level Emphasis 
(SZLGE), Small Zone High Gray-level Emphasis (SZHGE), Large Zone 
Low Gray-level Emphasis (LZLGE), Large Zone High Gray-level 
Emphasis (LZHGE), Gray-level Variance (GLV) and Zone-Size 
Variance (ZSV) 
 

13 

NGTDM Coarseness, Contrast, Busyness, Complexity and Strength 5 

LBP 
LBP histogram bins: LBP1, LBP2, LBP3, … , LBP36 
LBP image statistics: Mean, Variance, Skewness, Kurtosis, Energy and 
Entropy 

42 
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Apart from extracting the above-mentioned features from the original T1-
weighted scans, we decided to apply the discrete wavelet transform (DWT) to the 
original image and extract the same 88 features from the four subimages yielded after 
the first DWT decomposition, that is, the four matrices of coefficients that represent the 
approximations or low frequencies (LL: low-low) and the details or high frequencies in 
the vertical (LH: low-high), horizontal (HL: high-low) and diagonal (HH: high-high) 
directions. The Haar family of wavelets was used to perform the DWT decomposition. 

At the end, 25 different datasets of texture features were obtained: five datasets, 
one per NGL, extracted from the original 2D regions and five datasets, one per NGL, 
from the four DWT images. As 88 features were computed for each ROI, a total of 2200 
texture-based features (88 × 25) were extracted. All features of the 25 datasets were 
standardized to zero mean and unit variance to improve numerical stability when 
computing the model and to avoid model building being affected by the differences in 
the feature scales [205]. Initially, each dataset contained all 88 features, but some of these 
features were eliminated before applying machine learning. Firstly, those features that 
were not reproducible were removed because the segmentation of the ROIs was based 
on a manual segmentation. To evaluate the reproducibility of the features, the lesions 
were segmented by two different observers: the first observer was the expert 
neuroradiologist (20 years-experience) that originally performed the segmentations and 
the second observer was an expert in image processing and segmentation (5 years-
experience) trained to segment BM. Then, we calculated the intraclass correlation 
coefficient (ICC) for all the features extracted from the 2D ROIs computed by both 
observers and those features with ICC < 0.75 were eliminated. This process led to the 
exclusion of 750 texture features, with all the excluded features corresponding to features 
extracted from the wavelet subimages. Table 5.3 shows the number of features per 
dataset that remained after checking their reproducibility. Finally, zero-variance and 
near-zero-variance predictors were excluded from the model training process since they 
are uninformative and may cause the model to crash or the fit to be unstable [205]. 
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5.2.4. Classification Performance and Evaluation 

In the present work, two groups of patients were studied (GBM and BM), so for 
our study a binary classification approach was necessary. To this end, five different 
predictive models from different families of classifiers were tested: random forest (RF), 
support vector machine (SVM) with linear kernel, k-nearest neighbors (KNN), naïve 
Bayes classifier (NB) and multilayer perceptron (MLP). These models were chosen due 
to their well-known performance in application to other datasets [144]. The following 
hyperparameters were evaluated for each classifier: 

 NB: a Gaussian kernel for estimating the probability density function was 
selected and any additional parameter was tuned. 

 KNN: the Euclidean distance was chosen and the number of neighbors (k) 
was selected from k ∈ {1, 3, 5, ..., 13, 15} in the parameter tuning process. 

 RF: the number of trees (ntree) was set to ntree = 250 and the number of 
random variables used as candidates at each split (mtry) was chosen from 
mtry ∈ {2, 3, 4, ..., 11, 12} in the parameter tuning process. 

 SVM: a linear kernel was evaluated and the cost parameter (C) was chosen 
from C ∈ {2-3, ... ,20, ... ,23} in the parameter tuning process. 

 MLP: a single hidden layer was chosen and the number of neurons or nodes 
in the hidden layer (size) was selected from size ∈ {3, 6, 9, 12, 15} in the 
parameter tuning process. 

Table 5.3. Number of texture features in each of the 25 datasets after eliminating the features that 
were not reproducible (ICC < 0.75) 

 NGL=8 NGL=16 NGL=32 NGL=64 NGL=128 Number of 
features 

Original image 88 88 88 88 88 440 

Subimage LL  59 59 59 59 59 295 

Subimage HL 49 50 51 49 46 245 

Subimage LH 47 47 51 50 48 243 

Subimage HH 37 46 49 46 49 227 

      1450 
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To evaluate these predictive models, we decided to implement a nested cross-
validation (CV) scheme, recommended when the sample size is not large enough and all 
the samples are needed for training and evaluating the models [173]. The structure of the 
nested CV used to evaluate each model is shown in Figure 5.2. 

A 5-fold CV approach was implemented in the outer loop, which was used to 
optimize the number of features and to cross-validate the models. This resampling 
method randomly partitions each texture dataset into K = 5 equally sized subsets of 
samples or folds, maintaining a balanced amount of both classes in each fold. Then, five 
models are trained and tested so that each of the five folds is used once as the test set, 
while the four remaining folds are used to train the model. This process was repeated R 
= 10 times to reduce the variance of the cross validation results and to avoid possible 
bias in the random separation of the folds [173]. At the end 50 models (K × R) were built 
using different sets of patients for training and testing each time. A 10-fold CV without 
repetitions was applied in the inner loop, and it was used to execute the hyperparameter 
tuning process. 

The optimal number of features was evaluated in the outer loop by means of a 
feature selection approach. Three filter feature selection methods were employed in this 
work to generate a ranking of features based on some statistic and then their effectiveness 
was compared. In first place, we tested a simple feature selection method based on the 
p-value provided by the Mann-Whitney-Wilcoxon (MWW) test for independent groups 
of samples. This method was then compared with two other filter methods: the first 
method was based on the maximal information coefficient (MIC), which measures the 
strength of the linear or non-linear association between two variables and the second 
method was based on the ReliefF algorithm. The feature selection step was included 
within the model-building process to avoid overfitting [176]. 
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The classification performance was evaluated using the average area under the 
curve (AUC) of the receiver operating characteristic (ROC) that resulted from averaging 
the AUC values obtained from the 50 iterations (mean ± SD). Good estimates of the 
model performance can be obtained using the validation data when the sample size is not 
large [173]. Assuming that R represents the number of repetitions and K represents the 
number of folds per repetition, the average AUC for each subset of features is calculated 
with the following equation: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘,𝑟𝑟

𝑅𝑅
𝑟𝑟=1

𝐾𝐾
𝑓𝑓=1

𝐾𝐾 × 𝑅𝑅
 Equation 5.1 

 
The AUC results obtained in this training process for each of the subsets of 

features were summarized in a graphic called “profile curve”, which represents the 
evolution of the average AUC as the size of the subset of features increases. Other 
metrics like sensitivity, specificity and accuracy were also obtained to validate the 
results. 

The model evaluation process was implemented with the Caret package [143] 
in R language, version 3.2.5 (R Development Core Team, Vienna, Austria). 
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Figure 5.2. Structure of the nested CV method used to evaluate the different datasets of features. All 
the samples of each texture dataset were randomly separated R = 10 times in F = 5 folds to evaluate the 
model with the average AUC, examining different subsets of features. 
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5.3. Results 

5.3.1. Influence of the Wavelet Decomposition 

The 25 different datasets were first analyzed with all the classifiers and with the 
feature selection method based on the p-value. The results indicated that the 
classification improved when no DWT was applied to the original image. Although the 
texture datasets extracted from the DWT provided good classification results in some 
cases (AUC > 0.8), the results always improved when employing the datasets extracted 
from the original images, for all the classifiers and for all NGL, as shown in Figure 5.3, 
Figure 5.4 and Figure 5.5. 

The influence of the DWT was especially obvious when using the MLP 
classifier (Figure 5.5). In this case, the datasets of textures extracted from the four DWT 
subimages only achieved AUC < 0.8 for all NGL, while the datasets of textures extracted 
from the original image reached AUC > 0.85 for all NGL. Furthermore, the differences 
between the AUC results obtained with textures from the original image and the AUC 
results obtained with textures from the DWT subimages were statistically significant for 
all NGL when using the MLP model (MWW test, p < 0.05). When analyzing the 
performance of the other classifiers, these mentioned differences were subtler, especially 
for NB and KNN models (Figure 5.3). 

The textures obtained from the HL subimage (horizontal details) provided AUC 
results very similar to those obtained with the original image when quantizing with NGL 
= 8 gray levels and using RF and KNN models. However, in general, as the number of 
gray levels increased, the differences between the AUC results were more pronounced 
for all DWT subimages and all classifiers. 

In the following subsections, we are going to focus only on the texture datasets 
extracted from the original image, since applying DWT did not improve the results. 
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Figure 5.3. Average AUC results obtained for the 25 datasets when using the feature selection method 
based on the p-value and NB and KNN models. The numbers situated on the bars indicate the number 
of features used to achieve the maximum AUC. Notice that in most of the cases, texture features 
extracted from the original images provided better AUC results than features from the DWT subimages. 
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Figure 5.4. Average AUC results obtained for the 25 datasets when using the feature selection method 
based on the p-value and RF and SVM models. The numbers situated on the bars indicate the number 
of features used to achieve the maximum AUC. Notice that in most of the cases, texture features 
extracted from the original images provided better AUC results than features from the DWT subimages. 
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5.3.2. Influence of the Quantization Process and the Classifier Choice 

Depending on the classifier employed, the influence of the number of gray levels 
used to quantize the images was more or less subtle. However, according to the results 
summarized in Figure 5.6, quantizing with different number of gray levels caused that 
the classification results differed for all models, so matrix-based texture features were 
affected by this quantization process. The optimal number of gray levels for MLP, SVM 
and RF models was NGL = 128, but for KNN and NB classifiers the best AUC values 
were achieved for NGL = 16 and NGL = 32 respectively. These last results indicate that 
different classifiers respond differently when modifying the quantization level. 

Regarding the best classifier, MLP model outperformed the rest of the models 
for all NGL. The best AUC result was achieved for the MLP model and the dataset of 
textures from images quantized with NGL = 128 (AUC = 0.912 ± 0.060, 82 features). 
When using the same model with textures from images quantized with NGL = 32, the 
results were also good (AUC = 0.904 ± 0.065, 85 features), with no statistical 
significance between these results and those obtained with NGL = 128 (paired t-test, p = 

 
 

Figure 5.5. Average AUC results obtained for the 25 datasets when using the feature selection method 
based on the p-value and MLP model. The numbers situated on the bars indicate the number of features 
used to achieve the maximum AUC. Notice that in all cases, texture features extracted from the original 
images provided substantial better AUC results than features from the DWT subimages. 
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0.269, p > 0.05). However, we decided to choose the dataset that provided the highest 
results (NGL = 128) for the subsequent analyses since the optimal number of features 
was similar in both cases and the computational cost of the corresponding features was 
similar for both levels of quantization. Good AUC results were also achieved when using 
the SVM model and the dataset of textures from images quantized with NGL = 128 
(AUC = 0.901 ± 0.066, 41 features), with no statistical significance between these results 
and those obtained with the MLP model (paired t-test, p = 0.102, p > 0.05). In this case, 
the results were considered important because the number of features used to obtain the 
highest AUC value was halved, thus reducing notably the computational cost. 

Figure 5.7 shows the profiles curves and the ROC curves obtained for the five 
models under analysis when using the dataset of features extracted from images 
quantized with NGL = 128. Moreover, Table 5.4 shows additional metrics obtained for 
the two best models (SVM and MLP). 

 

 

 
Figure 5.6. Comparison between the AUC results obtained for the datasets of features extracted from 
the original images quantized with five different NGL when applying the five models tested in this 
study with the p-value feature selection approach. The numbers on the curves indicate the number of 
features used to achieve the maximum AUC. 
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Figure 5.7. Profile curves and the corresponding average ROC curves for the best subset of features 
obtained with the five classifiers and the p-value feature selection method for the dataset of features 
extracted from the original image quantized with NGL = 128 gray levels. The highlighted points on the 
profile curves indicate the optimal subset of features. The highlighted points on the ROC curves 
indicate the optimal cutoff points that weighs both sensitivity and specificity equally computed with 
the “closest-to-(0,1)” criterion. 



Chapter 5. Differentiation between brain metastases and glioblastomas 

 

 

102 

 

5.3.3. Influence of the Feature Selection Method 

Besides using the p-value feature selection method, we decided to test other 
filter feature selection methods (MIC and ReliefF algorithm) to check if ranking the 
features according to different statistical criteria improved the results of classification 
and reduced the optimal number of features. For this experiment, we used the dataset of 
textures extracted from the original image quantized with NGL = 128 gray levels and we 
tested the two best classification models according to the previous analyses: MLP and 
SVM classifiers. 

According to the results presented in Table 5.5, changing the feature selection 
method did not improve significantly the AUC values. When using the MLP model, the 
AUC results were very similar, without statistical significance (paired t-test, p > 0.05), 
and the optimal number of features did not decrease. Regarding the SVM model, the 
AUC results were reduced when using the other feature selection methods but without 
statistical significance (paired t-test, p > 0.05). However, in this case, the optimal number 
of features to achieve the best AUC values increased notably when using other feature 
selection methods, which is a clear disadvantage since it implies a higher computational 
cost. 

Table 5.4. Additional metrics obtained when using the two best models (MLP and SVM) and the p-
value feature selection method on the dataset of features from images quantized with NGL = 128 gray 

levels. 

Classifier MLP SVM 

Number of Features 82 41 

AUC 0.912 ± 0.060 0.901 ± 0.066 

Sensitivity a 0.806 ± 0.135 0.810 ± 0.146 

Specificity a 0.834 ± 0.142 0.800 ± 0.125 

Overall Accuracy 0.818 ± 0.099 0.805 ± 0.089 

Kappa Index 0.636 ± 0.199 0.610 ± 0.177 

* Values are shown as mean ± SD as a result over groups’ estimates. 
a Sensitivity and specificity were computed according to the optimal cutoff point of the ROC curve 
computed with the “closest-to-(0,1)” criterion. 
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5.4. Discussion 
Distinguishing reliably GBM from BM without resorting to invasive procedures 

and exhaustive, time-consuming neuroimaging evaluations is still a challenging task. To 
accelerate the correct diagnosis, it would be helpful to find radiological patterns in the 
conventional structural MRI acquired when screening the tumor lesions for the first time 
that allow classifying these lesions. To this end, in this work we proposed a 2D texture 
analysis approach combined with machine learning techniques to identify the lesion 
correctly. Our imaging dataset consisted on contrast-enhanced T1-weighted images of 
50 patients diagnosed with GBM and 50 patients with BM. A total of 2200 features were 
extracted from the original images and from the images filtered with the DWT and 
quantized with 5 different numbers of gray levels. These features were analyzed with 
five different predictive models and three different feature selection methods. The 

Table 5.5. Classification results obtained when using the MLP and SVM models and different feature 
selection methods on the dataset of features from images quantized with NGL = 128 gray levels. 

Classifier MLP SVM 

MWW – p-value   

Number of Features 82 41 

AUC 0.912 ± 0.060 0.901 ± 0.066 

MIC   

Number of Features 82 77 

AUC 0.917 ± 0.056 0.897 ± 0.063 

p-value a 0.631 0.817 

ReliefF   

Number of Features 84 85 

AUC 0.912 ± 0.061 0.889 ± 0.065 

p-value a 0.987 0.368 

* Values of AUC are shown as mean ± SD as a result over groups’ estimates. 
a The p-value rows correspond to a paired t-test that evaluates whether the AUC values over groups’ 
estimates obtained for each model and the MIC and ReliefF feature selection methods were 
significantly different (p < 0.05) from those obtained with the p-value feature selection method. 
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preliminary results showed that the combination of texture features extracted from the 
original images after quantizing them with NGL = 128 gray levels allows classifying 
GBM from BM with good accuracy (AUC > 0.9) when using SVM or MLP classifiers. 
Furthermore, we proved that quantizing the image with different numbers of gray levels 
resulted in different classification results. Finally, we evidenced that, for some models, 
a feature selection step is useful to reduce the optimal number of features to achieve 
higher accuracy, thus reducing the computational cost of the whole process. 

Our work is not the first attempt to classify GBM and BM using features 
extracted from conventional structural MRI. Blanchet et al. [191] proposed a 
morphologic analysis based on T1-weighted images to classify these lesions, achieving 
a good level of accuracy (overall accuracy of 93.9%). Although using shape descriptors 
is a very interesting approach, the small sample size used in this study (18 GBM and 15 
BM) cannot be considered statistically representative and the classification approach that 
they applied may lead to overoptimistic results since they did not apply machine learning 
techniques. 

Regarding the use of texture features for identifying brain tumors, most of the 
related published studies focused on grading gliomas [117], [118], [206], [207], 
classifying primary brain tumors [103], [208], [209] or assessing the malignancy of the 
tumor [210], [211]. Only a few studies included both GBM and BM in their analyses, 
but in these studies other tumor types were also evaluated, so the comparison between 
their results and ours is not straightforward. 

In the study of Georgiadis et al. [105], the authors evaluated 3D texture analysis 
on contrast-enhanced T1-weighted images from 67 patients with gliomas (27), 
meningiomas (19) and BM (19) to classify primary versus secondary tumors in a first 
stage and malignant versus benign tumors in a second stage. When evaluating the 
classification with an external cross-validation scheme comparable to ours to generalize 
the performance, they achieved an overall accuracy of 88.18% with only five features 
for classifying metastatic brain tumors from primary brain tumors. These results are 
promising but their analyses included WHO grade II and III gliomas and meningiomas, 
so comparing their results to ours is imprecise. 

Sachdeva et al. [204] conducted an exhaustive study where they analyzed the 
potential of texture analysis to classify different types of brain tumors with SVM and 
artificial neural networks (ANN). They achieved an overall multiclass classification 
accuracy of 94% when classifying astrocytomas, meningiomas, medulloblastomas, 
GBM and BM with an ANN classifier combined with a genetic algorithm for selecting 
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the optimal number of features. However, they did not apply a resampling approach like 
LGOCV or K-fold CV and they evaluated textures extracted from 428 T1-weighted MRI 
scans from only 55 patients, so the results may be overoptimistic and overfitted. In our 
work we only took one lesion per patient to avoid overfitting and we applied a 5-fold 
approach repeated 10 times to generalize the process, avoid selection bias and obtain 
trustworthy results. 

Finally, Zacharaki et al. [104] examined the classification of brain tumor type 
and grade by means of 3D texture and shape analysis and machine learning techniques. 
In this study, they evaluated 102 lesions from 98 patients, including 24 BM and 34 GBM. 
They explored several feature selection methods and classifiers within a leave-one-out 
CV structure. Additionally, they evaluated features extracted from several MRI 
modalities like T1 and T2-weighted images, fluid attenuated inversion recovery (FLAIR) 
images or relative cerebral blood volume maps, which is a very interesting approach. 
When applying a binary classification for differentiating GBM from BM, they achieved 
an accuracy of 81% and an AUC of 0.819 by using an SVM classifier and only 11 
features selected with the SVM recursive feature elimination algorithm. We consider that 
their methodology was valid to obtain reliable and generalized results, and their work 
was very influential to the present study. However, our work presented some advantages 
for classifying GBM from BM like the inclusion of more patients per group and the 
improvement in the results obtained (AUC > 0.9).  

One major concern about the present work consists on the use of 2D texture 
analysis instead of 3D texture analysis. As explained before, 3D texture analysis requires 
an image interpolation step to obtain isotropic image resolution, but when the slice 
thickness of the images is very large in comparison to the in-plane resolution, as in our 
case, 3D texture analysis should be avoided. Some studies have demonstrated that texture 
features extracted from volumetric regions capture more information about the lesion 
heterogeneity than features extracted from a single slice [51], and especially for brain 
tumors [102], [103], [105], so 3D texture analysis should be tested for the purpose of our 
work to verify if an improvement of the classification accuracy occurs. However, it is 
important to mention that 3D texture analysis presents some disadvantages in 
comparison to 2D texture analysis. First of all, the 3D segmentation of the lesion may be 
more complex and time-consuming than the segmentation of a single slice, so for 
clinicians it would be easier and faster to define 2D ROIs. Additionally, in some cases, 
only single slices are available, thus making 3D texture analysis unfeasible. Finally, the 
clinical evaluation still remains mostly based on 2D slices, so 2D texture analysis is 
easier to combine with this procedure [64]. 
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Our work showed other limitations. Although the final results presented in this 
work are promising, we consider that further research should be carried out to increase 
the accuracy of a future validated final model, since the task of differentiating GBM from 
BM is very crucial and requires a precise diagnostic. Other features like clinical data, 
shape descriptors or other texture descriptors should be included in the model building 
to test their effectiveness and enhance the radiomics analysis. Other structural 
conventional MRI modalities like T2-weighted images or FLAIR images could be also 
examined by means of texture analysis to check if they show characteristic patterns of 
each lesion that are not present in T1-weighted images. Finally, more patients should be 
included in the analysis to confirm the results with a more representative sample size and 
to enable the creation of a final effective predictive model to classify GBMs and BMs. 

5.5. Conclusion 
The preliminary results presented in this study show that GBMs and BMs can 

be classified with a good level of accuracy by employing a set of 2D texture features 
extracted from structural MRI combined with a machine learning scheme. Currently, a 
definitive diagnostic can only be made by histopathologic analysis, but these promising 
results indicate that in the near future radiologists could provide a correct diagnosis with 
the combination of clinical, radiological and textural information derived from the first 
MRI evaluation where the lesion is detected. With this approach, patients could avoid 
invasive and exhaustive additional procedures and will be correctly diagnosed in the 
earliest stages of the disease. 
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Chapter 6.            
Classification of brain 

metastases by their 
primary site of origin 

 

 

 

 

6.1. Introduction and Motivation 
As previously stated in Chapter 5, brain metastases (BMs) are the most common 

neoplasms of the central nervous system (CNS) in adults and constitute a significant 
cause of morbidity and mortality. The prognosis of patients diagnosed with metastatic 
brain tumors is poor: the median survival of these patients is estimated to be limited to 
months even for patients under treatment [22], [24], [184]. The incidence of brain 
metastases is certainly unknown, although some studies indicate that they occur in nearly 
9–17% of patients with cancer. Noticeably, the incidence of brain metastases has 
increased in the past years mainly due to the improved availability of imaging techniques 
and to the prolonged survival from primary cancers, among other reasons [23], [185]. 

The primary tumors that metastasize more frequently to the brain are those 
originated in lung (≥ 50%), breast (15–25%) and skin (melanoma) (5–20%) [22]. 
However, recent studies indicated that there is a percentage of patients (2–14%) 
presenting brain metastases as the first manifestation of an unknown primary tumor [23]. 
Although the exact management of these patients remains unclear since scarce and not 
recent literature concerning this group of patients is available [186], [212], one of the 
main goals to achieve when diagnosing a BM from an unknown primary tumor consists 
in finding the primary site of origin. Generally, patients with BM from an unknown 
primary site have similar symptoms irrespective of the origin and they are subjected to 
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additional exhaustive imaging evaluations in order to detect the primary tumor. 
However, this approach is not always conclusive and invasive neuropathological 
procedures have to be carried out. In some review articles, like the ones published by 
Pekmezci and Perry [213] and Bekaert et al. [214], the neuropathology of BM is revised 
thoroughly, focusing on the evaluation of metastatic neoplasms of unknown primary 
tumor. In these reviews, the authors sustain that the distinction between carcinoma, 
sarcoma, lymphoma, and melanoma BM may be possible based on cell morphology 
alone, but when morphology is not enough, further investigation is needed. For example, 
immunohistochemical profiles are a widely accepted initial step in cases of metastases 
of unknown primary site. Despite everything, sometimes the origin of the brain 
metastases remains undiagnosed at the time of death [214]–[218]. Therefore, there is a 
clear need to detect the primary tumor in a fast, reliable and non-invasive way to 
determine the appropriate treatment, as even neuropathological strategies can offer 
contradictory results [214]. 

Some studies have attempted to determine the primary cancer by means of 
metrics extracted from advanced MRI techniques, like MR diffusion and perfusion 
weighted imaging or MR spectroscopy [219]–[221]. However, the results reported by 
these studies must be further corroborated and a combination of advanced MRI metrics 
should be tested in order to generate a robust model to identify the primary lesion [196], 
[222]. Furthermore, as stated in Chapter 5, the MR techniques proposed in these studies 
are not commonly performed when screening the tumor for the first time and may be 
quite demanding and time-consuming. 

A practical approach for detecting the origin of the BM rapidly would be to find 
reliable imaging features or metrics extracted from the conventional structural MRI 
acquired when screening the metastatic lesion for the first time. Several studies have 
evaluated the differences between BM from some primary cancer types according to 
their location in the brain [223] or their appearance [224], [225]. Despite the promising 
conclusions obtained in these studies, their results require further validation. Another 
approach could be based on texture analysis applied to conventional MRI. Texture 
analysis has been proved to be an promising source of imaging biomarkers for 
identifying and classifying brain tumor lesions, including BMs [102]–[107]. Particularly, 
contrast-enhanced T1-weigted MRI was the main sequence evaluated in these studies as 
it is employed for initial brain tumor detection and contains abundant diagnostic 
information [107], [226]. 
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The purpose of this work was to identify the primary site of origin of metastatic 
brain tumors using texture features extracted from T1-weighted MRI in combination 
with a machine learning classifier, based on the radiomics practice. Additionally, in this 
work we compared the performance of different machine learning approaches and the 
discriminative power of 2D and 3D texture features, and analyzed the influence of the 
number of gray levels used to quantize the images in the classification of these BMs. 

6.2. Material and Methods 

6.2.1. Patients and Imaging Protocol 

This retrospective, single-center study was approved by the Institutional Review 
Board of the Fundación Instituto Valenciano de Oncología and all subjects provided 
written informed consent. Patients showing single or multiple BMs were consecutively 
reviewed by an expert neuroradiologist (20 years-experience). Inclusion criteria 
comprised: (1) pathologically confirmed lung cancer, breast cancer or melanoma and 
only one single primary tumor; (2) no previous treatment, biopsy or surgical resection 
on BM; (3) all BMs confirmed by imaging and clinical follow-up and (4) no clear 
qualitative and/or systematic differences on T1-weighted images of the BM to identify 
the primary cancer (i.e., hyperintense in every melanoma case). Exclusion criteria were 
as follows: (1) small lesions (longest diameter < 9 mm) as texture analysis cannot capture 
texture information properly in small regions [13]; (2) more than 3 BMs per patient; (3) 
multiple BMs situated in the same brain area. 

The first thirty-eight patients (22 men and 16 women, mean age 60.05 years, age 
range 24–74 years) who complied with inclusion criteria and not with exclusion criteria 
and selected between December 2013 and April 2016 were included. Sixty-seven 
baseline BMs were found in these patients: 27 derived from lung cancer, 23 from 
melanoma and 17 from breast cancer. The characteristics of the study group divided 
according to the type of lesion are displayed in Table 6.1 and an example of each type 
of BM is shown in Figure 6.1. 
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Table 6.1. Baseline characteristics of the study group per class 

 Lung BM Melanoma BM Breast BM Total 

Number of samples 
per group 27 23 17 67 

Number of patients 
per group 20 10 8 38 

Age* (years) 57.70 ± 8.73 67.52 ± 12.21 57.71 ± 7.91 61.07 ± 10.84 

Sex (Male/Female) 22 M / 5 F 19 M / 4 F 0 M / 17 F 41 M / 26 F 

* Continuous variables are expressed as mean ± SD 

 
Figure 6.1. Examples of contrast-enhanced T1-weighted axial MRI scans of three different patients 
with BMs derived from a) breast cancer, b) melanoma and c) lung cancer. 
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 Imaging was performed using a 1.5T MRI scanner (Optima MR450w; GE 
Medical Systems, Milwaukee, WI, USA). The MRI protocol included three-dimensional 
inversion recovery spoiled gradient-echo (IR-SPGR) T1-weighted brain images, 
according to standardized protocol [227]. Images were acquired without magnetization 
transfer, after intravenous administration of a single-dose of gadobenate dimeglumine 
(0.1 mmol/kg, MultiHance, Bracco; Milan, Italy) with a 6 minutes delay. All the BMs 
were scanned using the same imaging parameters since changing these parameters may 
lead to differences in texture analysis performance [95], [111]: repetition time/echo time 
(TR/TE) of 8.5/2.2 ms; flip angle of 12º; matrix size of 256×256; pixel size of 0.98×0.98 
mm2; and slice thickness of 1.3 mm. Partial bias field correction in raw data was 
conducted via the on-scanner “pre-scan normalize” option. No on-scanner gradient 
distortion correction was applied. As no diffusion weighted-sequences were used in this 
work, post processing bias field correction was not applied. 

6.2.2. Regions of Interest 

To segment each BM in 2D, the axial slice of the 3D T1-weighted image 
showing the most solid lesion component was manually delineated by an expert 
neuroradiologist (20 years-experience). To segment each BM in 3D, all the axial slices 
of the 3D T1-weighted image showing tissue of the same lesion were segmented using a 
semiautomatic method based on the Chan-Vese algorithm [228] that takes the manually 
segmented 2D lesion as the initial contour. Each 3D segmented lesion was revised by 
the expert. The longest diameters of the volumetric lesions were normally distributed 
without statistical differences (One-way ANOVA F-test, p > 0.05, p = 0.314) between 
the three classes, with mean ± SD of 24.22 ± 10.67 mm (lung cancer BM), 19.92 ± 7.93 
mm (melanoma BM) and 22.08 ± 10.92 mm (breast cancer BM). 

Prior to the computation of texture features, some preprocessing techniques 
were carried out to improve texture discrimination. Firstly, normalization was applied to 
the MRI regions using the μ ± 3σ method (µ is the mean value of the gray levels and σ 
is the SD) to enhance the differences between classes, as proposed by Collewet et al. 
[72]. This method adjusts the histogram of the MRI region to µ ± 3σ by rejecting the 
pixels with intensities out of this range. 

Quantization of gray levels was also applied to the MRI regions to improve the 
signal-to-noise (SNR) ratio of the texture outcome [74]. This process refers to the 
reduction of levels of gray used to represent the image, which is originally represented 
by 4096 gray levels (12 bits per pixel). In particular, different number of gray levels 
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(NGL) were tested (8, 16, 32, 64 and 128) to study the influence of the quantization 
process in the discriminative power of the texture features. 

Finally, volumetric regions were isotropically resampled to the in-plane 
resolution (voxel size = 0.98×0.98×0.98 mm3) using cubic interpolation to ensure the 
conservation of scales and directions when extracting the 3D features [51]. 

Segmentation of the BM in 2D and 3D and preprocessing of the corresponding 
ROIs was conducted using a software tool developed specifically for this study in 
MATLAB (R2015b; The MathWorks Inc., Natick, MA, USA). 

6.2.3. Feature Extraction 

Feature extraction was performed using the Radiomics MATLAB package [73]. 
Forty-three texture-based features derived from five statistical methods were computed. 
Three features were extracted from the intensity histogram (first-order statistics) with 
100 bins and the other 40 features were extracted from the following higher-order 
statistical methods: gray-level co-occurrence matrix (GLCM), gray-level run-length 
matrix (GLRLM), gray-level size-zone matrix (GLSZM) and neighborhood gray-tone 
difference matrix (NGTDM). Table 6.2 compiles the features used in this study. 

Only one GLCM, GLRLM, GLSZM and NGTDM per lesion was computed 
with the Radiomics package. The GLCM and NGTDM features are originally dependent 
on the distance of the neighboring pixels, so only adjacent connected pixels/voxels 
(according to [87], distance d = 1) were taken into account when computing these 
matrices (8 pixel-connectivity for 2D analysis and 26 voxel-connectivity for 3D 
analysis). Additionally, the GLCM and GLRLM features are originally dependent on 
direction, so the neighboring properties in all the possible directions (4 directions for 2D 
analysis and 13 directions for 3D analysis) were summed when computing these matrices 
to achieve rotation invariant features. To account for discretization length differences, 
neighbors at a distance of √3 voxels around a center voxel incremented the texture 
matrix by a value of √3 (only in 3D analysis), neighbors at a distance of √2 pixels/voxels 
around a center pixel/voxel incremented the matrix by √2, and neighbors at a distance 
of 1 pixel/voxel around a center pixel/voxel incremented the matrix by 1 [73]. 

Finally, 10 different datasets of texture features were obtained and analyzed: 
five datasets, one per NGL, extracted from the 2D regions and five datasets, one per 
NGL, from the 3D regions. All features of the 10 datasets were standardized to zero 
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mean and unit variance to improve numerical stability when computing the model and 
to avoid model building being affected by the differences in the feature scales [205]. 

The reproducibility of the features was evaluated since the segmentation of the 
ROIs was based on a manual segmentation. The lesions were segmented by two different 
observers: the first observer was the expert neuroradiologist (20 years-experience) that 
performed the segmentations for this work and the second observer was an expert in 
image processing and segmentation (5 years-experience) trained to segment BMs. To 
evaluate the reproducibility of the features, we calculated the intraclass correlation 
coefficient (ICC) for interrater reliability for all the features extracted from the 2D ROIs 
computed by both observers. In particular, we analyzed the ICC for the 43 features 
obtained after quantizing with the 5 different number of gray levels (43 × 5 = 215 
features). Only 5 features showed an ICC < 0.75, so 210 features achieved excellent 
reliability. These 5 features showed an ICC > 0.5, so good reliability was achieved after 
all. 

 

Table 6.2. List of the 43 texture features used in this study. 

Method Features Number of 
features 

Histogram Variance, Skewness and Kurtosis 3 

GLCM Energy, Contrast, Correlation, Homogeneity, Variance, Entropy, 
Sum Average, Dissimilarity and Autocorrelation 9 

GLRLM 

 

Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-level Non-
uniformity (GLN), Run-Length Non-uniformity (RLN), Run Percentage 
(RP), Low Gray-level Run Emphasis (LGRE), High Gray-level Run 
Emphasis (HGRE), Short Run Low Gray-level Emphasis (SRLGE), 
Short Run High Gray-level Emphasis (SRHGE), Long Run Low Gray-
level Emphasis (LRLGE), Long Run High Gray-level Emphasis 
(LRHGE), Gray-level Variance (GLV) and Run-Length Variance (RLV) 
 

13 

GLSZM 

 

Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-level 
Non-uniformity (GLN), Zone-Size Non-uniformity (ZSN), Zone 
Percentage (ZP), Low Gray-level Zone Emphasis (LGZE), High Gray-
level Zone Emphasis (HGZE), Small Zone Low Gray-level Emphasis 
(SZLGE), Small Zone High Gray-level Emphasis (SZHGE), Large Zone 
Low Gray-level Emphasis (LZLGE), Large Zone High Gray-level 
Emphasis (LZHGE), Gray-level Variance (GLV) and Zone-Size 
Variance (ZSV) 
 

13 

NGTDM Coarseness, Contrast, Busyness, Complexity and Strength 5 
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6.2.4. Strategies for Classification 

As mentioned before, three classes of BMs were considered according to the 
primary site of origin (lung cancer, breast cancer and melanoma), so for our study a 
multiclass classification approach was needed. Random forest (RF) is a well-known 
ensemble learning method of the decision trees family that usually provides excellent 
classification results, especially when dealing with multiclass problems [144], [146]. K-
nearest neighbors (KNN) is also a classifier that works easily with multiclass problems 
and it is usually tested due to its simplicity and good performance [104], [145]. Support 
vector machine (SVM) is one of the most popular classification techniques for computer-
aided detection and diagnosis (CAD) in medical imaging [141], with satisfactory results 
reported in brain lesions classification studies [104], [106]. However, SVM is not very 
efficient for multiclass problems from a computational perspective since it is only 
directly applicable for two-class tasks, so for multiclass problems a set of binary 
classifiers have to be applied. 

In the first stage of this study, the 10 datasets were analyzed separately using a 
purely multiclass approach based on RF and KNN, with the following hyperparameters: 

 RF: the number of trees (ntree) was set to ntree = 250 and the number of 
random variables used as candidates at each split (mtry) was chosen from 
mtry ∈ {2, 3, 4, ..., 14, 15} in the parameter tuning process. 

 KNN: the Euclidean distance was chosen the number of neighbors (k) was 
selected from k ∈ {1, 3, 5, ..., 13, 15} in the parameter tuning process. 

The resulting statistical metrics derived from the model performance of each 
dataset were compared to identify the dataset of features that provided the best 
classification results. Afterwards, the optimal datasets were evaluated using the one-
versus-one strategy to examine the capability of these features to differentiate between 
individual types of BM. In this latter step, RF and KNN approaches were again tested 
with the same hyperparameters and an additional SVM approach was implemented with 
the following hyperparameters: 

 SVM: a linear kernel was evaluated and the cost parameter (C) was chosen 
from C ∈ {2-4, ... ,20, ... ,24} in the parameter tuning process. 

 

 



6.2. Material and Methods 

 

 

115 

6.2.5. Model Performance and Evaluation 

Considering the small sample size of our datasets, we decided to evaluate the 
performance of each classifier within a nested cross-validation (CV) structure (Figure 
6.2). Good estimates of the model performance can be achieved using the validation data 
when the number of samples is not large [173]. The outer resampling loop of the nested 
CV structure was used to optimize the number of features and to cross-validate the 
models and the inner resampling loop was used to tune the model parameters. 

Leave-group-out CV (LGOCV) was applied in the outer resampling loop. This 
resampling method randomly divides each dataset into training and test sets N times, 
forming N groups. Each group is examined independently: the samples of the training 
set of a group are used to build the model and then this model is evaluated using the 
samples of the test set of the same group. Then, the classification results provided by the 
estimates of all groups are averaged. A total of N = 100 groups were used to reduce the 
variance of the CV results [173]. In each group, 25% of the samples were randomly 
selected as test set and the remaining 75% were used as training set. 

Brain metastases from the same patient were treated indistinctively in the 
resampling step to avoid selection bias. To support this decision, a Pearson correlation 
test was conducted to measure the linear dependence between random pairs of vectors 
of texture features from BM of the same patient (|r| = 0.431 ± 0.296) and BM from 
different patients (|r| = 0.424 ± 0.248). No statistical difference was found between the 
two groups (Welch’s t-test: p = 0.917), suggesting that BM from the same patient are 
correlated in the same way that BM of different patients can be. 

For the feature selection step, a filter method based on the p-value was employed 
to obtain a ranking of features with the most discriminative power. The p-values were 
obtained with the one-way analysis of variance (ANOVA) F-test for the multiclass 
strategy and the Mann-Whitney-Wilcoxon (MWW) test for the one-versus-one strategy. 
The ReliefF algorithm (filter method) and the mean decrease accuracy (MDA) computed 
in the training process of the RF model (embedded method) were also tested as feature 
selection methods to compare the results obtained with these approaches and our 
proposed filter method. To avoid overfitting, feature selection was implemented within 
the model-building process, that is, a different ranking of features was obtained in each 
group using only the training samples of each group [176]. The ranked features were 
progressively added one by one from most to least important and then each feature subset 
was used to tune the model parameters (inner 10-fold CV loop), to train the model and 
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to compute the metrics on the test samples of the same group. At the end, a total of F = 
43 sets of metrics were obtained in each group evaluation, one per each feature subset. 

Although several metrics were obtained, the relevance of the classification 
results was estimated using the area under receiver operating characteristic curve (AUC) 
averaged over groups’ estimates (mean ± SD). In the multiclass strategy, AUC was 
computed by averaging the one-versus-all statistics, as it is a simple way to extend the 
AUC computation to multiple classes problems [229]. Assuming that N represents the 
number of groups chosen to perform LGOCV, the average AUC for each subset of 
features was calculated with the following equation: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑁𝑁
𝑛𝑛=1

𝑁𝑁
 Equation 6.1 

 
The AUC results obtained in the training process for each of the 43 possible 

subsets of features were summarized in a graphic called “profile curve”, which represents 
the evolution of the average AUC as the size of the subset of features increases. 

The model evaluation process was implemented with the Caret package [143] 
in R language, version 3.2.5 (R Development Core Team, Vienna, Austria). 
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Figure 6.2. Structure of the nested CV method used to evaluate the different datasets of features. All 
the samples of each dataset were randomly separated in training and test sets N = 100 times to evaluate 
each model with the AUC, examining different subsets of features. 



Chapter 6. Classification of brain metastases by their primary site of origin 

 

 

118 

6.3. Results 

6.3.1. Multiclass Strategy 

In general, 3D features provided better classification accuracy than 2D features 
in the multiclass strategy for both RF and KNN approaches and for the three feature 
selection methods tested (p-value obtained with ANOVA F-test, ReliefF and MDA). 
However, the number of gray levels used for quantization affected the model 
performance considerably. As it is shown in Figure 6.3, 3D features from the MRI lesions 
quantized with NGL of 8, 16 and 32 gray levels provided better average AUC than the 
equivalent 2D features. However, for NGL = 64 and NGL = 128, the resulting AUC was 
similar for 3D and 2D features and in some cases 2D features were even more 
discriminative than 3D features. Therefore, 3D features were more influenced by the 
quantization of the MRI regions than 2D features, losing discriminative power when 
increasing NGL. Additionally, for achieving the highest AUC, in general 3D analysis 
required fewer features than 2D analysis, which is an advantage for reducing the time 
complexity of the process. 

Regarding the comparison between classifiers and between feature selection 
methods, the differences were not very noticeable. Focusing only on the 3D texture 
analyses, RF models combined with ANOVA F-test and ReliefF feature selection 
methods provided higher AUC values than KNN models with the same feature selection 
methods. The results obtained with MDA feature selection method were similar for both 
RF and KNN classifiers. For the following analyses, we decided to apply only the p-
value feature selection method since it is simpler and more intuitive, and ReliefF and 
MDA algorithms did not improve the results. 

The highest AUC was achieved when using 3D features extracted from the 
lesions quantized with NGL = 32 and a RF model trained with only the top four features 
ranked with the p-value feature selection method (AUC = 0.873 ± 0.064). Hence, we 
chose the dataset of 3D features and NGL = 32 as the optimal dataset for the following 
analyses. However, it is important to mention that no statistically significant difference 
was found when using 3D features from images quantized with 8, 16 and 32 gray levels 
(paired t-test with the arrays of AUCs obtained over groups’ estimates, p > 0.05), so the 
three datasets provided comparable good results. Additionally, the paired t-test results 
indicated that the optimal dataset (3D features and NGL = 32) provided an average AUC 
that was significantly different from the AUCs obtained with 2D features (p < 0.05). 
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Figure 6.3. Comparison between the multiclass results of RF and KNN models using 2D and 3D 
features and the three feature selection approaches (p-value from ANOVA F-test, ReliefF and MDA) 
for all the number of gray levels considered in this study. The numbers on the curves indicate the 
number of features used to achieve the maximum AUC. 
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Table 6.3 shows the top ten ranked features of the optimal dataset, with the 
average p-value of each feature computed using the ANOVA F-test. It is important to 
mention that the nested CV scheme used in this study did not allow determining the exact 
ranking of features because the feature selection step was recomputed at each loop, so 
an average ranking was obtained. Table 6.3 also shows that features derived from the 
GLCM, GLRLM and GLSZM topped the ranking with significant p-value (p < 10-3). 
However, when the p-value is obtained with the ANOVA F-test, the value indicates that 
there is a significant difference between at least two of the three classes of BMs, so 
additional evaluation of the difference between individual groups was needed. 

 

 

 

 

Table 6.3. Top ten features of the dataset with the highest AUC (3D features, NGL = 32 gray levels) 
ranked according to their average p-value computed with the ANOVA F-test in the multiclass 

analysis. 

Method Feature Average Ranking Average p-value 

GLCM Variance 1.02 < 10-8 

GLSZM Low Gray-level Zone Emphasis 2.72 < 10-6 

GLCM Sum Average 3.02 < 10-6 

GLSZM Small Zone Low Gray-level Emphasis 3.73 < 10-6 

GLRLM Short Run Low Gray-level Emphasis 5.36 < 10-5 

GLRLM Low Gray-level Run Emphasis 6.72 < 10-5 

GLRLM High Gray-level Run Emphasis 6.86 0.00001 

GLSZM High Gray-level Zone Emphasis 7.37 0.00001 

GLCM Autocorrelation 8.52 0.00004 

GLSZM Gray-level Non-uniformity 10.32 0,00062 

* The subset of features highlighted in bold provided the highest classification accuracy. 
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6.3.2. One-versus-one Strategy 

An overall confusion matrix (CM) was obtained from the analysis presenting 
the highest results in the multiclass strategy (3D features, NGL = 32, RF model and 4 
features from p-value ranking) by summing up all CMs obtained in every group’s 
estimate (Table 6.4). The overall CM revealed that lung cancer BMs were classified 
correctly most of the time (82%), but breast cancer and melanoma BMs were often 
misclassified. This statement is in accordance with the results provided by the one-
versus-one analysis. 

The one-versus-one analysis revealed that it would be possible to differentiate 
precisely lung cancer BMs from breast cancer BMs (AUC > 0.96) and melanoma BMs 
(AUC > 0.92) using few features of the optimal dataset (less than 4 and 12 features 
respectively), no matter which classifier is used. However, poor accuracy (AUC < 0.62) 
was achieved when discriminating BMs from breast cancer and melanoma for the three 
classifiers, thus indicating that these features are not suitable for classifying those types 
of BMs. These results are displayed in Figure 6.4. Additional statistical metrics were 
computed to validate the results (Table 6.5). 

 

 

Table 6.4. Overall confusion matrix extracted from the RF model performance using the dataset with 
the best results in the multiclass strategy (3D features, NGL = 32 gray levels). 

 
 Predicted Class 

 Breast Cancer Lung Cancer Melanoma 

T
ru

e 
C

la
ss

 

Breast Cancer 235 (58.75%) 44 (11%) 121 (30.25%) 

Lung Cancer 55 (9.17%) 492 (82%) 53 (8.83%) 

Melanoma 95 (19%) 66 (13.20%) 339 (67.80%) 

* The percentages indicate the proportion of samples of one specific class that were classified in each 
of the three classes, throughout all the iterations of the nested cross-validation process. 
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Figure 6.4. Profile curves and the corresponding average ROC curves for the best subset of features 
obtained in the one-versus-one analysis with the three classifiers (KNN, RF and SVM). The highlighted 
points on the profile curves indicate the optimal subset of features. The highlighted points on the ROC 
curves indicate the optimal cutoff points that weighs both sensitivity and specificity equally computed 
with the “closest-to-(0,1)” criterion. 
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Table 6.5. Additional metrics obtained in the one-versus-one analysis using the KNN, RF and SVM 
models on the best dataset (3D features, NGL = 32 gray levels). 

Classifier KNN RF SVM 

Lung Cancer vs. Breast Cancer    

Number of Features 2 3 2 

AUC 0.976 ± 0.036 0.966 ± 0.051 0.976 ± 0.040 

Sensitivity a 0.908 ± 0.145 0.905 ± 0.165 0.895 ± 0.159 

Specificity a 0.921 ± 0.099 0.880 ± 0.140 0.925 ± 0.116 

Overall Accuracy 0.905 ± 0.078 0.870 ± 0.089 0.894 ± 0.081 

Kappa Index 0.795 ± 0.174 0.728 ± 0.187 0.769 ± 0.182 

Lung Cancer vs. Melanoma    

Number of Features 11 6 11 

AUC 0.924 ± 0.066 0.926 ± 0.079 0.935 ± 0.066 

Sensitivity a 0.818 ± 0.159 0.853 ± 0.164 0.845 ± 0.172 

Specificity a 0.824 ± 0.161 0.876 ± 0.147 0.832 ± 0.165 

Overall Accuracy 0.833 ± 0.093 0.870 ± 0.096 0.845 ± 0.090 

Kappa Index 0.662 ± 0.188 0.739 ± 0.190 0.687 ± 0.181 

Melanoma vs. Breast Cancer    

Number of Features 14 41 30 

AUC 0.566 ± 0.159 0.615 ± 0.176 0.522 ± 0.175 

Sensitivity a 0.363 ± 0.276 0.598 ± 0.248 0.423 ± 0.286 

Specificity a 0.730 ± 0.181 0.516 ± 0.229 0.624 ± 0.221 

Overall Accuracy 0.562 ± 0.133 0.550 ± 0.153 0.554 ± 0.098 

Kappa Index 0.074 ± 0.287 0.082 ± 0.310 0.034 ± 0.208 

* Values are shown as mean ± SD as a result over groups’ estimates. 
a Sensitivity and specificity were computed according to the optimal cutoff point of the ROC curve 
computed with the “closest-to-(0,1)” criterion. 
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The three classifiers worked similarly and the results were comparable. 
However, it is important to mention that SVM classifier provided higher AUC values 
than RF when classifying lung cancer BMs from breast cancer BMs (1% AUC increase) 
and melanoma BM (0.9% AUC increase). However, when distinguishing breast cancer 
BMs from melanoma BMs, the results obtained with the SVM model were considerably 
worse (9.3% AUC decrease). The KNN results were better than the RF results for the 
classification of lung cancer BMs and breast cancer BMs (1% AUC increase), but worse 
when classifying melanoma BMs from lung cancer BMs (0.2% AUC decrease) and 
breast cancer BMs (4.9% AUC decrease). Based on these results, RF model would be 
the optimal choice because it provided the most balanced results. However, as mentioned 
before, poor results were achieved for discriminating BMs from breast cancer and 
melanoma, so none of the three classifiers would be still valid to classify those types of 
BMs reliably. 

Regarding the top ranked features, Table 6.6 shows that the ranking of features 
provided by the multiclass strategy mostly coincided with the rankings computed to 
classify lung cancer BM from breast cancer and melanoma BM. Furthermore, the top ten 
features of both rankings showed significant average p-values (10-7 < p < 10-2). However, 
none of the features showed significant average p-value (p > 0.2) when classifying BMs 
from breast cancer and melanoma. Finally, it is relevant to mention that features derived 
from GLCM, GLRLM and GLSZM were useful to classify these types of BMs but 
features derived from the histogram and the NGTDM had no influence on the final 
results. 
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Table 6.6. Top ten features of the best dataset (3D features, NGL = 32 gray levels) ranked according 
to their average p-value computed with the MWW test in the one-versus-one analysis. 

Lung Cancer vs. 
Breast Cancer 

Lung Cancer vs. 
Melanoma 

Breast Cancer vs. 
Melanoma 

Feature Average 
p-value Feature Average 

p-value Feature Average  
p-value 

Sum Average < 10-6 
Small Zone Low 

Gray-level 
Emphasis 

< 10-5 Gray-level Non-
uniformity b 0.19556 

Variance a < 10-6 Variance a < 10-5 Variance a 0,21753 

Low Gray-level 
Zone Emphasis 0.00001 Low Gray-level 

Zone Emphasis < 10-5 Small Zone 
Emphasis 0,34021 

Small Zone Low 
Gray-level 
Emphasis 

0.00001 
Short Run Low 

Gray-level 
Emphasis 

< 10-5 Zone-Size Non-
uniformity 0,34021 

High Gray-level 
Zone Emphasis 0.00005 Low Gray-level 

Run Emphasis 0.00001 
Small Zone Low 

Gray-level 
Emphasis 

0,32071 

Autocorrelation 0.00007 Sum Average 0.00003 Sum Average 0,36852 

High Gray-level 
Run Emphasis  0,00014 High Gray-level 

Run Emphasis 0.00028 Autocorrelation 0,37284 

Short Run Low 
Gray-level 
Emphasis 

0,00035 High Gray-level 
Zone Emphasis 0,00035 Low Gray-level 

Zone Emphasis 0,36283 

Low Gray-level 
Run Emphasis 0,00119 

Long Run Low 
Gray-level 
Emphasis 

0,00054 Entropy 0,39376 

Long Run Low 
Gray-level 
Emphasis 

0,00294 Gray-level Non-
uniformity b 0,00081 Dissimilarity 0,47033 

* The features in bold are in accordance with those features ranked in the multiclass analysis. 
a These features are computed from the GLCM (Gray-level co-occurrence matrix) 
b These features are computed from the GLSZM (Gray-level size zone matrix) 
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6.4. Discussion 
Determining the origin of a BM in those patients where the primary cancer is 

unknown without invasive, exhaustive and time-consuming procedures is still a 
challenging task. To this end, in this work, we proposed a novel radiomics methodology 
based on 2D and 3D texture analysis on structural MRI and machine learning approaches 
to test the feasibility of texture descriptors to identify correctly the primary site of origin 
of the BMs. The radiomics approach used in this study showed that 3D texture features 
were more suitable than 2D features for classifying lung cancer BMs from breast cancer 
and melanoma BMs, achieving an average AUC > 0.9 in both cases. Several 
classification models were tested (KNN, RF and SVM) and all of them provided similar 
results, but RF classifier provided more balanced results for classifying the three types 
of BMs under study. Furthermore, the results improved when limiting the number of 
features with a feature selection scheme. 

Our work is not the first attempt to differentiate BMs by its primary site of origin 
using texture features. Béresová et al. [230] studied the statistical significance of 2D and 
3D texture features from the histogram and the GLCM to identify the differences 
between lung and breast cancer BM. Our work enhances this study by exploring more 
texture features, including melanoma patients and considering a machine learning 
approach. With our results, we support the conclusions of Béresová et al. that texture 
analysis may help in the discrimination of BM from different primary tumors. 

We based our work on other similar studies that showed the potential of MRI 
texture features combined with machine learning techniques to classify different brain 
lesions, including BMs. Larroza et al. [106] used texture features to distinguish between 
BM and radiation necrosis using a LGOCV structure and support vector machine 
classifier (AUC > 0.9). Li et al. [107] used texture features to differentiate BMs from 
different pathological types of lung cancers using K-nearest neighbors and back-
propagation artificial neural network classifiers in a one-versus-one approach (AUC ≥ 
0.9 when differentiating small cell lung carcinoma from other types of lung cancers). 
Both studies showed promising result and were very influential to our work. However, 
we tried to go beyond by including 3D texture features and taking into account rotation 
invariance for extracting the features. 

Several studies have addressed the problem of classifying different brain tumor 
types by analyzing the potential of 3D MRI texture features in comparison with 2D 
features [102], [103], [105]. These studies showed an improvement in classification 
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accuracy when using 3D texture analysis. The conclusions in these works are clear: 3D 
texture descriptors capture more information about the lesion heterogeneity than 2D 
descriptors. In particular, the study of Fetit et al. [103] is very conclusive on this matter. 
This study mainly compares 2D and 3D texture features with several predictive models 
to classify different childhood brain tumors. All the models worked better with 3D 
features: for example, the neural network classifier showed 12% improvement in AUC 
and 19% in overall accuracy when using 3D texture analysis instead of 2D analysis. 
Nevertheless, 3D texture analysis presents some drawbacks. Firstly, the 3D segmentation 
of the lesion can be more complex and time-consuming than the segmentation of a single 
slice. Additionally, 3D texture analysis requires MRI scans as isotropic as possible to 
reduce the effect of the image interpolation, and the acquisition process of these scans 
can be very slow. 

The influence of the NGL used in the quantization of MRI has been analyzed in 
some studies with mixed results. No difference was reported by several studies [73], [76] 
when comparing the effect of changing NGL on the texture outcome. However, other 
studies showed that the discriminative power of texture-based features were affected by 
the gray-level quantization. Chen et al. [61] found that the optimal results for 
characterizing breast lesions were achieved for NGL = 32. Leite et al. [77] observed that 
quantizing with NGL = 16 allowed identifying the etiology of brain white matter lesions 
more accurately. Mahmoud-Ghoneim et al. [75] analyzed the impact of varying NGL on 
GLCM features of brain white matter: they concluded that their classification results 
were influenced significantly by the NGL chosen and they obtained better results with 
NGL = 128 for both 2D and 3D texture analysis. Our results support the fact that the 
NGL should be optimized for each specific application because it can lead to better 
classification results. 

One major concern in this work is related to the exclusion of possible significant 
variables like sex or age in the model building. In our study, the age of the patients was 
not a significant parameter; we performed an MWW test for independent samples and 
the results were not significant (breast cancer vs lung cancer: p-value = 0.779; breast 
cancer vs melanoma: p-value = 0.227; lung cancer vs melanoma: p-value = 0.052). In 
the case of sex, we conducted a chi-squared test of independence and the results were 
not significant when comparing lung cancer and melanoma patients (p-value = 1). 
However, we found statistical differences when comparing breast cancer patients with 
melanoma and lung cancer patients (p-value < 0.05). This occurs because our set of 
patients was not entirely balanced, and all our breast cancer patients were women (male 
breast cancer is rare, but it does exist). However, our purpose was to analyze exclusively 
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the potential of texture analysis to discriminate between BMs from different primary 
sites of origin, so the evaluation of the sex and age for classifying BMs went beyond our 
main purpose, as these variables do not affect the heterogeneity properties of the BMs. 

Our study showed other important limitations. The main limitation was the 
reduced set of BMs; more samples would be needed to build and test a final predictive 
model. In addition, we only considered metastases derived from the most common 
primary sites of origin; other types of BMs like those from renal or colorectal cancer 
should be considered in further analyses because it is necessary to consider all possible 
sites of origin to build a reliable final predictive model. Moreover, we only included MR 
images acquired with the same scanner and imaging parameters since texture analysis 
can be affected by differences in scan parameters; a multicenter study on this specific 
application should be performed to evaluate this limitation. Finally, our study failed to 
classify breast cancer and melanoma BMs, so further investigation will be conducted by 
exploring other texture methods like Local Binary Patterns or transform methods 
(Wavelets, Gabor filters…) or other MRI sequences that could capture differences 
between BMs from different primary sites of origin. To our knowledge, a genetic or 
pathologic link between breast cancer and melanoma that could be related to these 
texture analysis results is unclear at this point, and the study of this association goes 
beyond the objective of this work. 

6.5. Conclusion 
Our results show that texture analysis on T1-weighted MRI in combination with 

a RF classifier allows differentiating accurately BMs of lung cancer origin from those of 
breast cancer and melanoma origin when the proper features are chosen with a feature 
selection scheme. Although we only included the three more common BM origins, we 
established a robust methodology to perform a multiclass classification that could be 
extended to other primary sites of origin. Our promising results reveal that, with further 
research, texture analysis could help in the identification of the primary site of origin in 
patients with BMs from an unknown primary cancer. In addition, patients with two 
known primary tumors could benefit from this methodology to find which tumor has 
metastasize to the brain. These results support the conclusions derived from other studies 
to encourage radiologists to use texture analysis as a new tool to improve precision in 
diagnosis. 
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7.1. Introduction and Motivation 
In 2011, it was estimated that 35.6 million people around the world suffered 

from dementia, whereas, in 2015, this figure amounted to 46.8 billion. At this rate, it is 
expected that this figure will almost double by 2030 and more than treble by 2050 [25], 
[231]. Alzheimer’s Disease (AD) represents the most common type of dementia, 
accounting for an estimated 60 to 80 percent of cases. This neurodegenerative disorder 
is characterized by the presence of a progressive deterioration of the cognitive and 
behavioral functions, mainly in the old age [27].  

The diagnosis of AD remains nowadays fundamentally clinical, which means 
that it cannot be diagnosed until the first symptoms appear, or even later, because these 
early symptoms are usually associated with consequences due to aging [25]. Definitive 
diagnosis can only be made with histopathological confirmation of amyloid plaques and 
neurofibrillary tangles, usually at autopsy [30]. This is the main reason behind exploring 
new biomarkers that allow an early detection of AD, as patients could benefit from more 
efficient treatments if the AD is diagnosed in its first stages, or even before the first 
symptoms appear. In the past years many studies have focused on the analysis of mild 
cognitive impairment (MCI) to this end, as it is considered as a prodromal stage of the 
disease or a transitional phase between normal ageing and AD, although not all patients 
with MCI develop AD [29], [232], [233]. Furthermore, several studies have proposed 
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the existence of a preclinical stage prior to the appearance of symptoms, during which 
neuropathological typical changes of AD already occur [32], [234], [235]. This pre-
symptomatic phase is still under research. 

Imaging has played an important role in the study of AD over the past decades. 
Diagnostically, imaging has moved from a minor role to a central position. In particular, 
structural magnetic resonance imaging (MRI) has gain more attention than other imaging 
techniques because it allows visualizing in life the progressive cerebral atrophy that 
characterize the neurodegenerative process of dementia, thus contributing to improve 
diagnostic accuracy [30], [236], [237]. This progressive cerebral atrophy firstly affects 
the medial temporal lobe [238], being the entorhinal cortex the earliest site of atrophy, 
closely followed by the hippocampus, amygdala, and parahippocampal gyrus. 
Consequently, new biomarkers for early diagnosis of AD could be defined by processing 
and studying structural MRI of these brain structures [239], [240]. 

In general, the features extracted from MRI typically used as biomarkers of AD 
are related to volume and/or shape changes of specific brain structures, thus only taking 
into account macroscopic apparent alterations that occur when neurodegeneration has 
already taken place [241]–[243]. However, in the past years, texture analysis has been 
considered as a source of imaging biomarkers for characterizing AD. In particular, 
several studies tried to differentiate AD patients from cognitive normal (CN) and MCI 
patients using 2D or 3D texture features extracted from T1-weighted MRI and focusing 
on the hippocampus [58], [244], [245], other brain regions or structures [119], [246], 
[247], or even the whole brain [248]–[251]. Most of these studies proved that AD 
patients could be differentiated from CN and MCI patients using texture features with 
good accuracy (by means of statistical analyses or machine learning techniques), but the 
predictive capacity of the texture features was reduced when comparing CN and MCI 
patients. These shared results reinforce the necessity of exploring new texture 
biomarkers to identify image differences in the early stages of AD, when patients 
transition from cognitive normal to prodromal stage [252]. 

The main objective of the present study consisted on the analysis of new 
potential biomarkers for AD through the acquisition of image parameters using 2D and 
3D texture analysis on MRI. For this purpose, 3D T1-weighted MRI from three different 
populations were used: AD patients, MCI patients and CN subjects. The analysis was 
performed mainly in the hippocampal region using circular and spherical regions of 
interest (ROIs). The texture features were analyzed by means of statistical analysis and 
machine learning and several approaches were tested to obtain the optimal results. 
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7.2. Material and Methods 

7.2.1. Patients and Imaging Protocol 

The images used in this study were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu) [253]. The ADNI 
was launched in 2003 as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 
MRI, positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of MCI and 
early AD. For up-to-date information, see www.adni-info.org. 

In this study we evaluated T1-weigthed MRI brain images of a total of 150 
subjects from the ADNI2 database, comprising 50 AD patients, 50 CN patients and 50 
MCI patients ranging from 57 to 91 years (74.71 ± 7.97 years, mean ± SD) who 
underwent MRI between January 2013 and December 2014. In the ADNI2 database, the 
MCI patients are subdivided in late MCI (LMCI) and early MCI (EMCI) according to 
the performance of the age-, sex- and education-adjusted normative mean in a 
standardized test for evaluating cognitive impairment [254]. In LMCI, impairment is 
identified using the original definition of MCI (performance of 1.5 standard deviations 
below the normative mean on a standardized test), whereas in EMCI, impairment is 
defined as performance between 1.0 and 1.5 standard deviations below the normative 
mean [255]. For our study, all 50 MCI patients were chosen from the EMCI group in 
order to take into account earlier stages of AD, closer to the pre-symptomatic phase. The 
specific characteristics of the study group divided according to the type of subject are 
displayed in Table 7.1. 

 

 

Table 7.1. Baseline characteristics of the study group 

 CN EMCI AD Total 

Number of samples 
per group 50 50 50 150 

Age* (years) 78.34 ± 6.90 70.35 ± 6.15 75.37 ± 8.62 74.71 ± 7.97 

Sex (Male/Female) 27 M / 23 F 33 M / 17 F 31 M / 19 F 91 M / 59 F 

* Continuous variables are expressed as mean ± SD 

https://adni.loni.usc.edu/
http://www.adni-info.org/
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The T1-weighted MRI images were acquired using 3T Siemens MRI scanners 
(Siemens Medical Solutions, Erlangen, Germany) with the following protocol: 3D 
magnetization prepared rapid gradient echo (MP-RAGE) sequence, repetition time/echo 
time (TR/TE) of 2300/2.98 ms, tilt angle of 9º, sagittal acquisition plane, in-plane 
resolution of 1×1 mm2, slice thickness of 1.2 mm, scan matrix 256×256 and field of view 
of 256 mm. The different image files were downloaded in NIfTI format, a format used 
for storing volumetric MRI data. An example of the T1-weighted MRI brain images used 
in our study is shown in Figure 7.1. The difference in the brain atrophy (and specifically 
the hippocampus) between AD, EMCI and CN patients can be seen in this figure. 

 

 

 

 
Figure 7.1. Examples of T1-weighted coronal MRI scans of three different subjects from the three 
groups of patients considered in this study: a) cognitive normal (CN), b) early mild cognitive 
impairment (EMCI) and c) Alzheimer’s disease (AD). The progressive atrophy in the hippocampal 
region through the different stages of the disease can be observed. 
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7.2.2. Regions of Interest 

In the present study, we decided to evaluate the right and left hippocampi of AD, 
EMCI and CN patients as the regions of interest (ROIs). The segmentation of the T1-
weighted MRI images was carried out on the coronal slices since this plane allows 
imaging the hippocampus more appropriately, thus being the preferred plane for manual 
tracing of hippocampal borders in most of the studies [256]. Due to the complexity of 
finding the hippocampal borders and the difficulty of segmenting manually the 
hippocampus (especially in AD patients, where this structure has already been affected 
by atrophy) [256], circular and spherical segmentation was performed for defining the 
2D and 3D ROIs respectively. For each hippocampus (right and left), three concentric 
circles and spheres with different radii were drawn. The center of each circle or sphere 
was defined manually by clicking on the center of the right and left hippocampi in the 
coronal slice where both hippocampi showed a larger area. The radii used were of 3, 5 
and 8 pixels, for both 2D and 3D segmentation. This way, the smallest ROI (ROI1, r = 
3 pixels) contained only hippocampal tissue and the middle ROI (ROI2, r = 5 pixels) and 
biggest ROI (ROI3, r = 8 pixels) contained tissue from the hippocampus and from 
surrounding structures like the entorhinal cortex. At the end, a total of 6 ROIs were 
defined on each hippocampus, 3 circular ROIs (2D) and 3 spherical ROIs (3D). 

Before conducting texture analysis, some preprocessing techniques were 
applied to the image ROIs. Firstly, the image ROIs were normalized using the μ ± 3σ (µ 
is the mean value of the gray levels and σ is the SD) to enhance the differences between 
groups, as proposed by Collewet et al. [72]. This method adjusts the histogram of the 
image ROI to µ ± 3σ by rejecting the pixels with intensities out of this range. 
Quantization of gray levels was also applied to the image ROIs to improve the signal-to-
noise (SNR) ratio of the texture outcome and to reduce the computation time of the 
matrix-based texture features [74]. This process refers to the reduction of levels of gray 
used to represent the image, which is originally represented by 4096 gray levels (12 bits 
per pixel). In this case, image ROIs were quantized to 32 gray levels (5 bits per pixel). 
However, other number of gray levels (NGL) were used to quantize the image ROIs (8, 
16, 64 and 128) to test the influence of this parameter in the performance results. 

The process of selecting the ROIs in the MR images was performed using a 
software tool developed specifically for this study in MATLAB (R2015b; The 
MathWorks Inc., Natick, MA, USA). 
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7.2.3. Feature Extraction 

Texture analysis was conducted on each of the 12 preprocessed image ROIs (6 
circular and 6 spherical) defined for every subject with the Radiomics MATLAB 
package implemented by Vallieres et al. [73]. A total of 46 statistical texture features 
were computed per ROI. According to the type of relationship between pixels/voxels 
quantified by each feature, three groups of parameters were established: global, local and 
regional [257]. The global parameters describe the whole gray-level distribution of the 
image ROI, and they were obtained from the intensity histogram of the ROI with 100 
bins (6 features). The local parameters (14 features) describe the spatial relationship 
between pairs of pixels, and they were extracted from the gray-level co-occurrence 
matrix (GLCM) (9 features) and the neighborhood gray-tone difference matrix 
(NGTDM) (5 features). The regional parameters (26 features) measure the distribution 
of groups of connected pixels with the same gray-level values, and they were calculated 
from the gray-level run-length matrix (GLRLM) (13 features) and the gray-level size-
zone matrix (GLSZM) (13 features). Table 7.2 shows the list of parameters evaluated in 
this work. All features were standardized to zero mean and unit variance. 

Originally, GLCM and GLRLM features are dependent on direction, so different 
values may be obtained if the image is rotated. For texture characterization on MRI this 
fact is unacceptable since images from different patients may have different orientations. 
Additionally, GLCM and NGTDM features are dependent on the distance, meaning that 
different feature values are obtained depending on the distance of the set of neighboring 
pixels/voxels to the center pixel/voxel chosen to compute the matrices. To solve these 
problems, the Radiomics package only computes one GLCM, GLRLM and NGTDM per 
image region by considering only the neighboring connected pixels (according to [87], 
distance d = 1) and by summing the matrices computed over all directions, thus achieving 
rotation invariant features. Consequently, for 2D texture analysis, 8 pixel-connectivity 
was applied and the neighboring properties of the pixels in the 4 directions of the 2D 
space (0, 45, 90 and 135°) were summed. For 3D texture analysis, 26 voxel-connectivity 
was applied and the neighboring properties of the voxels in the 13 directions of the 3D 
space were summed. To account for discretization length differences, neighbors at a 
distance of √3 voxels around a center voxel incremented the texture matrix by a value 
of √3 (only for 3D texture analysis), neighbors at a distance of √2 pixels/voxels around 
a center pixel/voxel incremented the matrix by a value of √2, and neighbors at a distance 
of 1 pixel/voxel around a center pixel/voxel incremented the matrix by a value of 1 [73]. 
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7.2.4. Statistical Analysis 

A preliminary statistical study was carried out to evaluate the discriminative 
power of each feature, that is to say, if it offered a good differentiation between the three 
populations considered in this work: AD, EMCI and CN. The final purpose of this 
analysis was to check the feasibility of these features as biomarkers of AD. 

Table 7.2. List of the 46 texture features used in this study. 

Scale Method Features Number of 
features 

Global Histogram Mean, Variance, Skewness, Kurtosis, Energy and Entropy 6 

Local 
GLCM Energy, Contrast, Correlation, Homogeneity, Variance, 

Entropy, Sum Average, Dissimilarity and Autocorrelation 9 

NGTDM Coarseness, Contrast, Busyness, Complexity and Strength 5 

Regional 

GLRLM 

 

Short Run Emphasis (SRE), Long Run Emphasis (LRE), 
Gray-level Non-uniformity (GLN), Run-Length Non-
uniformity (RLN), Run Percentage (RP), Low Gray-level Run 
Emphasis (LGRE), High Gray-level Run Emphasis (HGRE), 
Short Run Low Gray-level Emphasis (SRLGE), Short Run 
High Gray-level Emphasis (SRHGE), Long Run Low Gray-
level Emphasis (LRLGE), Long Run High Gray-level 
Emphasis (LRHGE), Gray-level Variance (GLV) and 
Run-Length Variance (RLV) 
 

13 

GLSZM 

 

Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), 
Gray-level Non-uniformity (GLN), Zone-Size Non-
uniformity (ZSN), Zone Percentage (ZP), Low Gray-level 
Zone Emphasis (LGZE), High Gray-level Zone Emphasis 
(HGZE), Small Zone Low Gray-level Emphasis (SZLGE), 
Small Zone High Gray-level Emphasis (SZHGE), Large Zone 
Low Gray-level Emphasis (LZLGE), Large Zone High Gray-
level Emphasis (LZHGE), Gray-level Variance (GLV) and 
Zone-Size Variance (ZSV) 
 

13 
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To compare the distributions of the texture parameters for the three classes, a 
statistical test was applied to each feature in order to evaluate the difference between 
individual groups. Specifically, the Mann-Whitney-Wilcoxon (MWW) test, also called 
Mann-Whitney U test or Wilcoxon rank sum test, was used to compare the populations 
in pairs. This non-parametric test, analog to the independent samples t-test, does not 
require the normality assumption of the t-test and it is recommended when the sample 
sizes are relatively small [258]. 

In statistics, when the number of statistical tests performed increases, the 
contrast test became more permissive, rejecting the void hypothesis more easily and 
increasing this way the number of false positives by rising the probability of obtaining 
randomly a significant result [258]. This problem is usually referred as the multiple 
comparisons problem. To counter this effect, we decided to apply two multiple 
comparisons correction methods before determining which features were statistically 
significant. The first method applied was the Bonferroni correction, which controls the 
family-wise error rate. This method compensates the type I error (incorrectly rejecting 
the null hypothesis) and attempts to limit the probability of even one false discovery, so 
it is relatively strong (conservative) and, in some cases, it may lead to a very high rate of 
false negatives, thus increasing the type II error (accepting the null hypothesis when the 
alternative is true). The second method used was the Benjamini-Hochberg (BH) 
procedure, which controls the false discovery rate. This method attempts to control the 
expected proportion of false discoveries, that is, the proportion of discoveries (significant 
results) that are actually false positives, thus being less sensitive than the Bonferroni 
correction. 

7.2.5. Machine Learning Analysis 

In this work, three classes of subjects were considered (CN, EMCI and AD), so 
for our study a multiclass classification approach was necessary. Since we wanted to 
evaluate the difference between individual groups, we decided to apply directly a one-
versus-one approach. To this end, three different predictive models from different 
families of classifiers were tested: random forest (RF), support vector machine (SVM) 
with linear kernel and multilayer perceptron (MLP). These models were chosen due to 
their well-known performance in application to other datasets [144]. The following 
hyperparameters were evaluated for each classifier: 
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 RF: the number of trees (ntree) was set to ntree = 250 and the number of 
random variables used as candidates at each split (mtry) was chosen from 
mtry ∈ {2, 3, 4, ..., 11, 12} in the parameter tuning process. 

 SVM: a linear kernel was evaluated and the cost parameter (C) was chosen 
from C ∈ {2-3, ... ,20, ... ,23} in the parameter tuning process. 

 MLP: a single hidden layer was chosen and the number of neurons or nodes 
in the hidden layer (size) was selected from size ∈ {3, 6, 9, 12, 15} in the 
parameter tuning process. 

To evaluate these predictive models, we decided to implement a nested cross-
validation (CV) scheme. The outer loop was used to evaluate the optimal number of 
features and the inner loop was used to evaluate the hyperparameters of each model. The 
structure of the nested CV approach chosen for this analysis is the same as the structure 
implemented in Chapter 5 (Figure 5.2). 

A 5-fold CV approach was implemented in the outer loop. This resampling 
method randomly partitions each texture dataset into five equally sized subsets of 
samples or folds, maintaining a balanced amount of both classes in each fold. Then, five 
models are trained and tested so that each of the five folds is used once as the test set, 
while the four remaining folds are used to train the model. This process was repeated 10 
times to reduce the variance of the cross validation results and to avoid possible bias in 
the random separation of the folds [173]. At the end, 50 models (5 test folds × 10 
repetitions) were built using different sets of patients for training and testing each time. 

The optimal number of features was evaluated in the outer loop by means of a 
filter feature selection approach based on the ReliefF algorithm. This feature selection 
step was included within the model-building process to avoid overfitting [176]. The 
hyperparameter tuning process was implemented in the inner loop and a 10-fold CV 
without repetitions was applied in this inner loop. 

The classification performance was evaluated using the average area under the 
curve (AUC) of the receiver operating characteristic (ROC) that resulted from averaging 
the AUC values obtained from the 50 iterations (mean ± SD), as previously indicated in 
Equation 5.1. Good estimates of the model performance can be obtained using the 
validation data when the sample size is not large [173]. 

The entire classification process was implemented with the Caret package [143] 
in R language, version 3.2.5 (R Development Core Team, Vienna, Austria). 
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7.3. Results 

7.3.1. Results from the Statistical Analysis 

The number of statistically significant parameters (p < 0.05) varied notably 
depending on the type and dimensionality of the ROI. Based on the results shown in 
Figure 7.2, texture parameters seem to be appropriate for differentiating AD patients 
from CN and EMCI subjects as many features turned out to be significant when 
comparing these groups for both circular and spherical ROIs. However, texture analysis 
did not seem to be useful for comparing CN and EMCI since only three features in total 
for both corrections turned out to be statistically significant and with borderline 
significance (p ≈ 0.05). 

For both right and left hippocampus, the spherical ROIs provided more 
significant parameters, and both ROI2 and ROI3 appeared to be effective ROIs regarding 
the size. In contrast, features extracted from ROI1 had a low or null significance, thus 
indicating that, in this case, small ROIs comprising only hippocampal tissue in MRI are 
not appropriate for analyzing differences between different stages of the disease with 
textures. Regarding the analysis of right and left hippocampus, the results were not very 
conclusive since the number of significant parameters was similar for both cases. 

Of all the features extracted from the circular ROIs that turned out to be 
statistically significant (p < 0.05), four can be outlined: Correlation and Autocorrelation 
from the GLCM, and Strength and Busyness from the NGTDM. These local parameters 
were statistically significant after applying Bonferroni correction (more restrictive) for 
ROI2 and ROI3 and for right and left hippocampi when distinguishing AD from CN and 
EMCI. In general, in 2D ROIs local parameters were more statistically significant for all 
cases and regional parameters showed low or null significance. 

Regarding the analysis of the spherical ROIs, the features that can be highlighted 
are the following: Variance and Entropy from the histogram; Contrast, Correlation, 
Dissimilarity, Autocorrelation and Homogeneity from the GLCM; Contrast, Busyness, 
Coarseness, Strength and Complexity from the NGTDM; and ZP from the GLSZM. 
These features were all statistically significant (p-value < 0.05) after applying Bonferroni 
correction when differentiating AD from CN and EMCI for ROI2 and ROI3 and for both 
hippocampi. In general, in 3D ROIs local parameters were also more statistically 
significant for all cases and it is important to mention that all NGTDM features were 
statistically significant for all the cases. 
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Figure 7.2. Number of significant parameters (p < 0.05) for each ROI with Bonferroni and the BH 
corrections. ROI1, ROI2 and ROI3 refer to the ROIs with r = 3, 5 and 8 pixels respectively. The suffixes 
“R” and “L” correspond to those ROIs placed on the right and left hippocampus respectively. The 
suffixes “2D” and “3D” refer to circular and spherical ROIs respectively. 
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Although the statistical analysis identified several texture parameters that were 
useful for distinguishing AD patients, we decided to apply a machine learning approach 
with the 3D features to confirm the statistical results and to prove if the proper 
combination of features allowed classifying these subjects correctly. 

7.3.2. Results from the Machine Learning Analysis 

The results provided by the machine learning analysis confirmed that AD 
patients can be classified accurately from CN and EMCI subjects by using a combination 
of 3D texture features using non-small ROIs in both hippocampi (AUC > 0.75 in all of 
the cases). However, unsatisfactory results were achieved when combining texture 
parameters for classifying CN and EMCI subjects (AUC < 0.75 in all of the cases). Table 
7.3 shows the AUC results obtained for each dataset with the three classifiers (RF, SVM 
and MLP). 

Regarding the ROI size, parameters extracted from ROI1 were not useful to 
classify the groups under analysis, thus confirming the results achieved with the 
statistical analysis. The combination of features extracted from both ROI2 and ROI3 
produced notable results. Regarding the side of the hippocampus, both right and left 
hippocampi produced similar results, but, in general, features extracted from the right 
hippocampus produced better results for ROI2 and features extracted from the left 
hippocampus produced better results for ROI3. 

The best classification approach for distinguishing EMCI and AD subject was 
achieved for the RF classifier with 41 features from the ROI2 on the right hippocampus 
(AUC = 0.823 ± 0.080), but good results were also achieved for SVM (AUC = 0.819 ± 
0.086, 13 features) and MLP (AUC = 0.816 ± 0.089, 7 features) classifiers using fewer 
features from the ROI3 on the left hippocampus. When classifying CN from AD subject, 
the best classification results were also obtained for features extracted from the ROI3 on 
the left hippocampus with SVM (AUC = 0.869 ± 0.071, 7 features) and MLP (AUC = 
0.865 ± 0.072, 8 features) classifiers. Considering these results, a combination of features 
extracted from the ROI3 on the left hippocampus and an SVM or an MLP classifier is 
the best option for differentiating AD patients from both CN and EMCI subjects. 
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Table 7.3. AUC values obtained in the one-versus-one analysis using the RF, SVM and MLP models 
on the datasets of 3D features 

Classifier RF SVM MLP 
CN vs. EMCI    

ROI 1 – Right Hippocampus < 0.6 < 0.6 < 0.6 

ROI 1 – Left Hippocampus < 0.5 < 0.5 < 0.5 

ROI 2 – Right Hippocampus < 0.7 0.710 ± 0.105 
(46 features) < 0.7 

ROI 2 – Left Hippocampus < 0.7 < 0.6 < 0.6 

ROI 3 – Right Hippocampus < 0.5 < 0.5 < 0.5 

ROI 3 – Left Hippocampus < 0.6 < 0.6 < 0.7 

EMCI vs. AD    

ROI 1 – Right Hippocampus < 0.7 < 0.6 < 0.6 

ROI 1 – Left Hippocampus < 0.7 < 0.6 < 0.7 

ROI 2 – Right Hippocampus 0.823 ± 0.080 
(41 features) 

0.802 ± 0.084 
(7 features) 

0.787 ± 0.090 
(4 features) 

ROI 2 – Left Hippocampus 0.794 ± 0.104 
(45 features) 

0.793 ± 0.099 
(17 features) 

0.779 ± 0.102 
(4 features) 

ROI 3 – Right Hippocampus 0.759 ± 0.101 
(44 features) 

0.778 ± 0.096 
(13 features) 

0.776 ± 0.105 
(40 features) 

ROI 3 – Left Hippocampus 0.780 ± 0.101 
(5 features) 

0.819 ± 0.086 
(13 features) 

0.816 ± 0.089 
(7 features) 

CN vs. AD    

ROI 1 – Right Hippocampus < 0.7 < 0.7 < 0.7 

ROI 1 – Left Hippocampus < 0.6 < 0.6 < 0.6 

ROI 2 – Right Hippocampus 0.820 ± 0.091 
(38 features) 

0.836 ± 0.102 
(34 features) 

0.834 ± 0.102 
(23 features) 

ROI 2 – Left Hippocampus 0.807 ± 0.087 
(22 features) 

0.804 ± 0.098 
(10 features) 

0.799 ± 0.098 
(3 features) 

ROI 3 – Right Hippocampus 0.807 ± 0.101 
(44 features) 

0.863 ± 0.080 
(44 features) 

0.843 ± 0.086 
(45 features) 

ROI 3 – Left Hippocampus 0.829 ± 0.091 
(41 features) 

0.869 ± 0.071 
(7 features) 

0.865 ± 0.072 
(8 features) 

* Values are shown as mean ± SD as a result over groups’ estimates. 
* Values of AUC < 0.7 were not expressed in the “mean ± SD” form since we considered that they are 
unsatisfactory and irrelevant for the conclusions of the work. 
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When analyzing different levels of quantization, we found that in some cases 
quantizing the regions with other number of gray levels improved the classification 
results achieved for regions quantized with NGL = 32 gray levels. In particular, we 
focused on the regions that produced the best classification results (ROI3 on the left 
hippocampus) and quantized them with other NGL (8, 16, 64 and 128 gray levels). 

When using the SVM classifier, 3D textures extracted from NGL = 128 regions 
provided better results (AUC = 0.890 ± 0.069 with 26 features) than 3D textures from 
NGL = 32 regions with statistical significance (paired t-test, p = 0.002) when classifying 
CN from AD subjects. When classifying EMCI from AD patients with SVM, the AUC 
values were similar for all NGL, with no statistical significance (paired t-test, p > 0.05). 
When using the MLP, 3D textures extracted from NGL = 8 and NGL = 16 regions 
provided better results (AUC = 0.852 ± 0.074 with 46 features and AUC = 0.851 ± 0.082 
with 46 features respectively) than 3D textures from NGL = 32 regions with statistical 
significance (paired t-test, p = 0.001 for both cases) when classifying EMCI from AD 
subjects. When classifying CN from AD patients with MLP, the AUC values were 
similar for all NGL, with no statistical significance (paired t-test, p > 0.05). Figure 7.3 
shows the influence of the quantization process in the classification performance. 

These results indicate that the number of gray levels used to quantize the ROIs 
may influence in the texture outcome and in the classification performance. However, 
despite this improvement, these higher AUC values were achieved by using a higher 
number of texture features. 
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Figure 7.3. Comparison between the classification results obtained for different the number of gray 
levels when using SVM and MLP models in combination with 3D features extracted from ROI3 on the 
left hippocampus for differentiating AD patients from CN and EMCI subjects. The numbers on the 
curves indicate the number of features used to achieve the maximum AUC. 
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7.4. Discussion 
Due to difficulties in accessing the brain, the diagnosis of AD is based mainly 

on clinical and neuropsychological tests. However, structural changes within the brain 
occur years before the first clinical symptoms appear and consequently the brain tissue 
may be damaged by the time the patient is diagnosed with AD. Therefore, there is a need 
to find new biomarkers of AD in its early stages and texture analysis applied on MRI 
may be a good approach. For this purpose, in the present study we studied the statistical 
significance of 2D and 3D texture features extracted from the hippocampus of T1-
weighted images for differentiating between three stages of the AD: pre-symptomatic 
(CN), prodromal (EMCI), and advanced (AD) stages. We also evaluated with a machine 
learning approach if the combination of these parameters could be useful to generate 
classification models to distinguish between these three groups. 

In the light of the obtained preliminary results, we can affirm that texture 
analysis is a very powerful tool that could supplement and improve AD diagnosis to a 
great extent. A large number of the features obtained through 2D and 3D texture analysis 
resulted to be statistically significant to differentiate between subjects suffering from AD 
and subjects from the other two populations (CN and EMCI). However, the number of 
significant parameters was much higher for 3D texture features. When combining these 
3D texture features with machine learning techniques, good accuracy results (AUC > 
0.75) were obtained. These results indicate that texture features could be helpful for 
detecting AD presence. However, few statistically significant parameters and poor 
accuracy results (AUC < 0.75) were obtained to differentiate between CN and EMCI 
subjects, so, with the features evaluated in this study, this first stage of the illness could 
not be identified. This last result is shared with most of the studies that applied machine 
learning to neuroimaging for detecting AD, so more efforts in this field are still needed 
[252]. The results also indicate that the size of the ROI has a big relevance when 
analyzing textures, obtaining worse results for small ROIs only including hippocampal 
tissue because the region is too small to capture texture differences. Finally, the number 
of gray levels used to quantize the ROIs also influenced in the results. 

Several studies have addressed the problem of identifying the presence of early 
AD in MRI scans by studying texture analysis. Although some studies have focused on 
studying brain structures like the corpus callosum and thalamus [119], brain regions like 
white or gray matter [246], [251] or even the whole brain [248], most of the analyses 
coincide on selecting the hippocampus as the brain structure of interest. In particular, 
Simões et al. proposed a method to identify and localize early-stage AD in 3D MRI 
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volumes with a classification scheme based on Local Binary Patterns 3D patches [249] 
and local feature maps voxels [250]. In both studies they observed that the patches and 
voxels located at the hippocampi region were highly discriminative when detecting mild 
AD, specifically at the left hippocampus. On the contrary, Martínez-Murcia et al. [247] 
applied texture analysis to 90 cortical and subcortical regions in order to differentiate 
AD and CN patients, and they concluded that the texture measures from the right 
hippocampus provided higher classification results. In our study, a definitive conclusion 
about which hippocampus is better for classification cannot be clearly stated, since both 
hippocampi provided good results depending on the ROI size. However, we considered 
that the best results were achieved for the left hippocampus when selecting the biggest 
ROI (ROI3). Differences in the performance of texture analysis for both hippocampi can 
be explained since some studies point out that AD patients present hippocampal 
asymmetry, with the left hippocampus deteriorating at a higher rate, so this asymmetry 
may imply an early sign of the presence of AD [259], [260]. 

When comparing our work with related similar studies that apply texture 
analysis to the hippocampal region in T1-weighted MRI images, our results are in 
accordance with those provided by these studies. In Zhang et al. [58] they studied the 
differentiation between 17 AD and 17 CN patients with a classification approach based 
on histogram, gradient, GLCM and GLRLM features extracted from spherical regions 
situated in the hippocampi and entorhinal cortex. They determined that too small ROIs 
offered worse results than those of major size, a conclusion supported by the results 
obtained in the present work. Additionally, although the texture features tested by us and 
by them were not exactly the same, they highlighted four GLCM features (Difference 
entropy, Contrast, Homogeneity and Dissimilarity) as important features. In our case, for 
spherical ROIs, we highlighted thirteen features as important, and ten of them were local 
features (five features extracted from the GLCM and five from the NGTDM). Therefore, 
local heterogeneity information of the hippocampal region may play an important role 
for characterizing AD. Although their results were very promising, we tried to go beyond 
their study by increasing the number of subjects per group, including EMCI patients, 
comparing 2D and 3D ROIs and considering rotation invariance when computing the 
textures. Furthermore, we tested a more sophisticated machine learning approach, with 
a nested CV scheme to ensure that the results were more reliable. 
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In Li et al. [244], the hippocampi of 12 CN, 12 EMCI and 12 AD patients were 
segmented manually in 3D and four rotation invariant features (two GLCM features and 
two GLRLM features) were extracted from these ROIs. By means of statistical tests, 
they determined that the features RLN and GLN extracted from the right hippocampus 
were statistically significant (p < 0.05) for distinguishing between the three populations, 
although they speculated that their results might be biased due to the limited sample size. 
Additionally, they did not apply any multiple comparisons correction the p-value results. 
In our study, we increased the number of patients and we applied Bonferroni and BH 
corrections to the p-value results in order to reduce the number false positives, and this 
is probably the main reason why they found differences between CN and EMCI groups 
and we did not, thus being our analysis more accurate. Additionally, the number of 
extracted parameters in our work increased to 46. 

One major concern about this work is related to the ROI definition. In this study, 
we decided to work with circular and spherical ROIs instead of segmenting manually or 
automatically the whole hippocampal region. We decided to analyze only textures 
extracted from circular and spherical ROIs because segmenting the hippocampus is a 
problematic, challenging task that could result in imprecise hippocampal borders, 
especially in 3D [256]. Moreover, delineating manual ROIs in all the patients for both 
hippocampi could result in a difficult, time-consuming process, not translatable to the 
clinical practice. In future analyses, automatic segmentation techniques for segmenting 
brain structures (atlas-based segmentation, for example) in a fast and accurate way 
should be explored. This approach would be of interest because some studies report that 
analyzing the whole region tissue without including surrounding structures may offer 
better texture characterization of the tissue. However, for small regions like the 
hippocampus that may present different sizes between groups of patients, geometric 
regions of a predefined size are recommended too. It is important to take into account 
that the ROI size should be sufficiently large to capture the texture information and that 
several texture features may be dependent on the ROI size, thus probably leading to false 
results due to the differences in the ROI sizes between groups [13]. 

Another methodological issue consisted on the lack of a spatial normalization 
process before defining the ROIs. As reported by Kovalev et al. [261], when working in 
the characterization or discrimination of small, equal-sized ROIs, spatial normalization 
can be omitted. Additionally, in the study of Zhang et al. [58], where they also used 
spherical ROIs for defining the hippocampal region, the authors stated that normalization 
might distort the ROIs of the MR images and destroy the texture properties of the tissue. 
According to these reports, we decided to keep the brain MR images in their own space 
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and we did not register them to the standard brain for spatial normalization because our 
ROIs were small in comparison to the whole brain and in order to preserve the original 
texture properties. In future analyses, we intend to incorporate a spatial normalization 
process in our pipeline to perform a registration to the standard brain and then apply an 
atlas-based segmentation for extracting only the hippocampal tissue. However, before 
including this functionality, we will have to study how to integrate this process in our 
MATLAB-based pipeline so that the segmentation of patients does not become a time-
consuming process and we will have to analyze the impact of the spatial normalization 
process on the hippocampal ROI distortion and the texture outcome.   

Our work showed other limitations or issues. Firstly, our study failed to find 
individual texture features or predictive models based on a combination of these features 
that were useful to classify CN and EMCI patients, meaning that a solution to accurately 
identify the first structural changes of the AD in the hippocampal region was not found. 
Further analyses should be carried out by including a wider range of texture analysis 
methods (Local Binary Patterns or Wavelet and Gabor transforms, for example) or by 
analyzing other MRI modalities in order to look for reliable texture biomarkers for the 
early detection of AD. Also, more patients should be included to empower the analysis. 

7.5. Conclusion 
In conclusion, our preliminary results show that 3D texture features are effective 

for detecting the presence of the advance stage of the AD. With further research and 
validation, 3D texture features could be used as biomarkers to complement the 
identification of the presence of AD and the specific stage of the disease in a fast and 
reliable way. 
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Chapter 8.                  
Characterization of 

ischemic stroke 
 

 

 

 

8.1. Introduction and Motivation 
In brain magnetic resonance imaging (MRI) of patients with small vessel disease 

(SVD) and older individuals, the presence of pathological attributes of similar imaging 
characteristics hampers the accuracy of algorithms developed to differentially assess 
them [262]–[264]. For example, stroke lesions (either acute or old, symptomatic or 
asymptomatic) in MRI can present signal intensities similar to those presented by white 
matter hyperintensities (WMHs), which are radiological findings of abnormal change in 
appearance of white matter that become more common with advancing age, and are 
thought to have diverse etiologies such as ischemic or demyelinating [77], [265]. Both 
stroke lesions and WMHs show up as areas of increased brightness when visualized by 
T2-weighted and fluid-attenuated inversion recovery (FLAIR) MRI sequences (Figure 
8.1), so, therefore, stroke lesions may be accidentally considered as WMHs by image 
processing methods. Distinguishing them to disentangle the effect that each of them have 
in cognitive and health indicators is crucial for individual prognosis of stroke outcomes 
and for understanding the pathophysiology of stroke and ageing. For example, brain 
tissue atrophy and stroke lesion volume, but not WMH volume, have been cited as 
neuroimaging determinants of poststroke cognitive performance [266], and there is 
evidence that WMH and not old stroke lesion volume is associated with brain atrophy 
and cognitive decline in normal ageing [267], [268]. 
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Routine clinical stroke neuroimaging protocols usually incorporate diffusion-
weighted imaging (DWI) as it facilitates the identification and differentiation of SVD 
and stroke lesions. However, it has been reported that this technique does not identify 
the presence of the stroke on approximately a third of patients seen in clinics with a non-
disabling stroke [269]. Additionally, DWI is an advanced MRI technique that is not part 
of the neuroimaging protocols for studies of other related processes such as ageing and 
dementia. Therefore, an approach for capturing the differences between the imaging 
profiles of different SVD related lesions and other normal ageing processes on more 
conventional MRI sequences would be of interest. In this work we hypothesize that 
texture analysis may be helpful for this purpose. 

Focusing on the study of SVD and stroke lesions, several studies have 
successfully applied texture analysis to different tasks using MRI [77], [98], [122], [123], 
[270]. In particular, a recent study that used texture analysis to investigate SVD found 
evidences that texture features in normal-appearing tissues were able to stratify patients 
according to their SVD and WMH burden and to differentiate patients that had a lacunar 
stroke from those that had a cortical stroke, which are both subtypes of ischemic stroke 
[123]. Subtyping ischemic strokes is still a challenge since lacunar strokes (small infarcts 
resulting from the occlusion of one of the small penetrating arteries that supply the 
subcortical regions of the brain) can be clinically confused with cortical ischemic strokes 
(strokes affecting the cortical regions of the cerebral cortex). This differentiation is 
clinically important because the etiology and clinical management of these types of 
strokes may differ [35], [271], [272]. 

Given the effect that a stroke is known to be present not only in the affected 
region, but also in unaffected tissue, the main purpose of this project was to investigate 
the feasibility of using texture analysis in normal-appearing tissues to identify the 
presence or absence of a previous stroke on conventional brain MRI (T1-weighted, T2-
weighted and FLAIR images). Moreover, as WMHs (i.e., a confound for the automatic 
identification of ischemic stroke lesions) have been defined as having mainly a vascular 
origin [273], we also analyzed whether texture in WMHs can help increasing the 
likelihood of accurately identifying the presence of a major and more sudden ischemic 
lesion. The main hypothesis of this project was that a proper trained classifier based on 
texture features in WMH or normal-appearing tissues could discriminate the brain MRI 
of individuals that had a stroke from those who had not, although the type of stroke (i.e., 
cortical versus lacunar) might be difficult to be ascertained. Specifically, our research 
questions were: 1) Can a texture-based automatic classifier discriminate a routine clinical 
structural brain MRI scan of a patient with a recent stroke of type lacunar from another 
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brain MRI scan but from a patient with a recent mild cortical stroke? and 2) Can a 
texture-based automatic classifier discriminate a structural brain MRI scan from an 
individual who had a previous stroke from another structural MRI scan from an 
individual of similar age who never had a stroke? 

8.2. Material and Methods 

8.2.1. Patients and Imaging Protocol 

All studies that provided data and involved human participants were conducted 
in accordance with the 1964 Helsinki declaration and its later amendments, with 
protocols and ethical standards approved by the following Scottish Research Ethics 
Committees: Lothian Research Ethics Committee (09/S1101/54, LREC/2003/2/29, REC 
09/81101/54), the NHS Lothian R+D Office (2009/W/NEU/14), and the Multi-Centre 
Research Ethics Committee for Scotland (MREC/01/0/56) [274], [275]. 

To answer our two research questions we used MRI data from individuals 
enrolled in two different prospective studies: one study of stroke mechanisms [275] and 
one study of cognitive ageing [276]. The dataset extracted from the first study included 
MRI data from 100 patients (54 women and 46 men, mean age 65.3 years old, SD 11 
years) which had a lacunar (50 patients) or mild cortical (50 patients) ischemic stroke 
less than 2 weeks prior to the MRI scan (i.e., post-acute stage). The dataset from the 
second study included MRI data from 100 individuals from a year-of-birth cohort (53 
women and 47 men, mean age 73.2 years old, SD 0.6 years) who were either stroke free 
(50 subjects) or had a prior ischemic stroke in the non-acute phase identifiable on 
imaging (50 subjects). The data selection was conducted randomly and fully 
automatically, only taking into account that the subgroups were equal sized. The final 
four subgroups were: 1) recent lacunar stroke, 2) recent cortical stroke, 3) no stroke and 
4) old stroke (Figure 8.1). To evaluate the influence of age in the classification into 
having a stroke or not, we used brain MRI data from 36 individuals from another year-
of-birth cohort also enrolled in a study of cognitive ageing [277] (20 women and 16 men, 
mean age 91, SD 0.5 years), from which 22 never had a stroke, at least identifiable in 
imaging, and 14 had a previous stroke. 



Chapter 8. Characterization of ischemic stroke 

 

 

152 

 

All brain MRI data were acquired on a 1.5T MRI clinical scanner (Signa LX; 
GE Medical Systems, Milwaukee, WI, USA General Electric) equipped with a self-
shielding gradient set and manufacturer supplied eight-channel-phased array heal coil. 
The MRI acquisition protocols of the studies that provided data for these analyses were 
different. The MRI sequences considered in this work were 3D T1-weighted (T1W) 
inversion recovery spoiled gradient echo (IR-SPGR), axial 2D T2-weighted (T2W) and 
axial 2D FLAIR brain images. For the stroke study the T1W sequence had repetition 
time/echo time (TR/TE) of 7.3/2.9 ms, flip angle of 8°, field of view of 33×21.5 cm2, 
acquisition matrix of 256×146 and slice thickness of 1.8 mm; the T2W sequence had 
TR/TE of 6000/90 ms, field of view of 24×24 cm2, acquisition matrix of 384×384 and 
slice thickness of 5 mm; and the FLAIR sequence had TR/TE of 9000/153 ms, field of 
view of 24×24 cm2, acquisition matrix of 384×224 and slice thickness of 5 mm. Both 
year-of-birth cohort (normal ageing) studies had the same MRI acquisition protocol: 
T1W had TR/TE of 9.7/3.984 ms, field of view of 25.6×25.6 cm2, acquisition matrix of 
192×192 and slice thickness of 1.3 mm; T2W had TR/TE of 11320/102 ms, field of view 
of 25.6×25.6 cm2, acquisition matrix of 256×256 and slice thickness of 2 mm; and 
FLAIR had TR/TE of 9000/140 ms, field of view of 25.6×25.6 cm2, acquisition matrix 
of 256×192 and slice thickness of 4 mm. 

 

 
 

Figure 8.1. Examples of FLAIR MRI axial scans showing the brain white matter of four different 
subjects from the four groups of patients considered in this study: recent cortical stroke and recent 
lacunar stroke from the first dataset, and old stroke and no stroke from the second dataset. The four 
scans present areas of abnormal increased brightness, which may correspond to stroke lesions or to 
WMHs of a different nature. 
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8.2.2. Image Processing and Segmentation 

The segmentation of the brain tissues and structures was performed following 
the protocol described by Valdés-Hernández et al. [274]. Briefly, binary masks of normal 
appearing white matter (NAWM) and WMH were obtained using a multispectral 
segmentation method [278] followed by manual editing to correct for possible errors. 
The structures of the basal ganglia and thalami were fully automatically extracted using 
a combination of three tools from the FMRIB software library (FSL) [279]: Smallest 
Univalue Segment Assimilating Nucleus (SUSAN), FMRIB’s Linear Image Registration 
Tool (FLIRT) and a model-based segmentation/registration tool (FIRST), combined on 
an automatic pipeline developed in-house, and also manually corrected if necessary. 
Binary masks of NAWM, WMH and subcortical structures (SS) were mapped into the 
T1W, T2W and FLAIR sequences as illustrated in Figure 8.2. 

 

 
 

Figure 8.2. Set of images obtained for each patient after defining the regions of interest. In this 
representative case, T1-weighted (T1W), T2-weighted (T2W) and fluid-attenuated inversion recovery 
(FLAIR) brain images of normal appearing white matter (NAWM), white matter hyperintensities 
(WMH) and subcortical structures (SS) of a lacunar stroke patient are presented 
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8.2.3. 3D Texture Analysis 

A total of 18 different sets of MR images (2 prospective studies × 3 MRI 
sequences × 3 brain tissues/structures) were processed with texture analysis. A simple 
approach to capture the volumetric information of each 3D image was implemented: we 
first extracted the 2D texture features from each slice of each 3D image, and then the 3D 
texture features of the image were obtained by computing the median of the values of all 
the slices. This process is illustrated in Figure 8.3. Using this approach, the gray-level 
distributions in the third dimension are not considered; however, it has been shown that 
features computed with this 2D averaging method are more discriminative than features 
extracted from a single slice [13]. Additionally, all features were standardized to zero 
mean and unit variance to improve numerical stability in the model training process. 
Also, zero-variance and near-zero-variance predictors were removed for the same reason 
[205]. Finally, some features failed to give a valid numeric value for some patients (e.g., 
while attempting to be calculated on very small WMH clusters), so these features were 
also removed to avoid computational problems in the training process. 

The feature extraction process was performed in MATLAB (R2015b; The 
MathWorks Inc., Natick, MA, USA) taking as a reference the code implemented by 
Alegre et al. [97]. 

 

 

 
Figure 8.3. Process followed to extract the 3D features of a FLAIR image of the NAWM. The same 
process is applied to all the image of each MRI modality (FLAIR, T1W and T2W) and of each 
tissue/structure (NAWM, WMH and SS) 
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8.2.4. Texture Descriptors 

A total of 114 features were extracted from each of the 1800 MR images (18 
sets of MR images × 100 subjects enrolled in this project), and grouped into five different 
sets of textural features according to the texture analysis method employed: gray-level 
co-occurrence matrix features (GLCM: 13 parameters), gray-level run-length matrix 
features (GLRLM: 11 parameters), local binary patterns features (LBP: 40 parameters), 
wavelet statistical features (WSF: 26 parameters) and wavelet co-occurrence features 
(WCF: 24 parameters). Table 8.1 shows all textural features extracted from each method. 

 

Table 8.1. List of the 114 texture features used in this study. 

Method Features Number of 
features 

GLCM 

Energy, Contrast, Correlation, Homogeneity, Variance, Entropy, 
Sum average, Sum variance, Sum entropy, Difference variance, 
Difference entropy, First information measure of correlation (FIMC), 
Second information measure of correlation (SIMC) 

13 

GLRLM 

 

Short Run Emphasis (SRE), Long Run Emphasis (LRE), 
Gray-level Non-uniformity (GLN), Run-Length Non-uniformity (RLN), 
Run Percentage (RP), Low Gray-level Run Emphasis (LGRE), 
High Gray-level Run Emphasis (HGRE), Short Run Low Gray-level 
Emphasis (SRLGE), Short Run High Gray-level Emphasis (SRHGE), 
Long Run Low Gray-level Emphasis (LRLGE) and Long Run High 
Gray-level Emphasis (LRHGE) 
 

11 

WSF 

 

Mean_OI, SD_OI (OI: Original image) 
Mean_LLi, Mean_LHi, Mean_HLi and Mean_HHi, for i = 1, 2, 3 
SD_LLi, SD_LHi, SD_HLi and SD_HHi, for i = 1, 2, 3 
 

26 

WCF 

Energy_LL1, Contrast_LL1, Correlation_LL1, Homogeneity_LL1, 
Entropy_LL1, Variance_LL1 
Energy_LH1, Contrast_LH1, Correlation_LH1, Homogeneity_LH1, 
Entropy_LH1, Variance_LH1 
Energy_HL1, Contrast_HL1, Correlation_HL1, Homogeneity_HL1, 
Entropy_HL1, Variance_HL1 
Energy_HH1, Contrast_HH1, Correlation_HH1, Homogeneity_HH1, 
Entropy_HH1, Variance_HH1 

24 

LBP LBP histogram bins: LBP1, LBP2, LBP3, … , LBP36 
LBP image statistics: Mean, Variance, Skewness, Kurtosis 40 
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The GLCM quantifies the local relationship between gray levels in an image by 
counting the pairs of pixels separated by a predefined distance (d) and direction (θ) that 
have the same distribution of gray-level values. Each pixel of the resulting matrix 
represents the number of times that the gray level of a reference pixel and the gray level 
of the neighbor pixel in the predefined distance d and direction θ are seen in the image. 
In this study, images were uniformly quantized to 32 gray levels to reduce the 
computational cost of the feature extraction process and to improve the signal-to-noise 
(SNR) ratio [74]. A distance of d = 1 pixel was chosen to enhance mainly the local 
properties when computing the GLCM. To achieve rotation invariance, the features 
extracted from the GLCMs in the four directions of the 2D space (θ = 0°, 45°, 90° and 
135°) were averaged. Rotation invariance is important in the context of our work because 
some texture methods like GLCM are dependent on the direction and different texture 
values could be obtained if the image is rotated, thus affecting the results when images 
from different patients have different orientations [13]. 

The GLRLM describes regional heterogeneity information by examining the 
times that each gray level value is seen consecutively in an image in a predefined 
direction. The GLRLM is constructed by detecting and counting the runs (sequences of 
consecutive pixels with the same gray level) of different gray levels and lengths in the 
image. To compute the GLRLMs, images were previously quantized to 32 gray levels as 
in the case of GLCMs. The GLRLM features are also affected by the orientation of the 
image, so features extracted from the GLCMs in the four directions of the 2D space (θ = 
0°, 45°, 90° and 135°) were averaged to achieve rotation invariance. 

The LBP method labels each pixel of the image under analysis by comparing its 
gray level with the gray levels of the surrounding pixels and then assigning a specific 
binary number. This binary number for each pixel is obtained by allocating a value of 1 
to those surrounding pixels with a greater gray level value and a 0 to those surrounding 
pixels with a lower gray level value. Originally, LBP was defined for patches of 3×3 
pixels, but it was later extended for blocks of P surrounding pixels separated by a 
distance R. In this work, the original LBP operator (patches of 3 × 3 pixels: P = 8, R = 
1) was employed to preserve the texture analysis as local as possible because regions like 
WMH are not very large. Rotation invariance was achieved by performing a circular bit-
wise right shift operation (rotating the neighbor pixel set clockwise) and assigning the 
smallest LBP binary number [83]. Using this approach, 36 unique rotation invariant 
histogram-based LBP features were obtained, as only 36 LBP binary numbers can occur 
for P = 8. Additionally, 4 statistics derived directly from the LBP image (mean, variance, 
skewness and kurtosis) were added to the LBP features set. The MR images were not 
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quantized to compute the LBP texture feature since the rotation invariant LBP approach 
is robust to intensity variations [94]. 

The DWT examines the spatial frequency patterns of an image within different 
scales and frequency directions, considering that frequency is directly proportional to 
gray level variations in an image. The DWT applied to an image produces four matrices 
of coefficients (subimages) that represent the approximations or low frequencies (LL: 
low-low) and the details or high frequencies in the vertical (LH: low-high), horizontal 
(HL: high-low) and diagonal (HH: high-high) directions. An example of this matrices is 
shown in Figure 8.4. The DWT can be repeated consecutively to achieve a major image 
decomposition: the first level of decomposition (LL1, LH1, HL1 and HH1) is applied to 
the original image as mentioned before and the subsequent levels are applied to the 
matrix of approximations of the previous level (LLi, LHi, HLi and HHi, where i is the 
level of decomposition). In this work we examined two groups of texture features derived 
from the DWT. The first group was the Wavelet statistical features (WSF), consisting of 
26 descriptors that are the mean and SD of the histograms of the original image and the 
subimages yielded after three levels of decomposition. The second group was the 
Wavelet co-occurrence features (WCF), consisting of 24 descriptors that are obtained by 
extracting six of the GLCM features (energy, contrast, correlation, homogeneity, entropy 
and variance) from the subimages yielded after the first DWT decomposition. The Haar 
family of wavelets was used to perform the DWT decomposition. 

 

 

 
 

Figure 8.4. First DWT level of decomposition of a FLAIR image of the white matter tissue (NAWM 
and WMH) of a single brain slice. 
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8.2.5. Statistical Analysis 

Prior to the evaluation of the texture features using machine learning techniques, 
a preliminary statistical analysis was conducted to evaluate the discriminative power of 
each feature independently between populations. Its final purpose was to assess the 
feasibility of these features individually as biomarkers of stroke. To compare the 
distributions of each textural feature for each of the classes, the Mann-Whitney-
Wilcoxon (MWW) test, also called Mann-Whitney U test, was applied. This non-
parametric test is equivalent to the independent samples t-test but without the 
requirement of the normality assumption and is recommended for relatively small 
sample sizes [258]. As the number of statistical tests performed increases, the contrast 
test becomes more permissive, thus rejecting the null hypothesis more easily and 
increasing the number of false positives [258]. To counter this effect, usually known as 
the multiple comparisons problem, we decided to apply the Holm-Bonferroni correction 
before assuming the statistical significance of the features. This relatively strong 
(conservative) method controls the family-wise error rate, thus compensating the Type I 
error (incorrectly rejecting the null hypothesis) and attempting to limit the probability of 
even one false discovery. 

8.2.6. Classification Approach 

Two well-known conventional classifiers were trained and evaluated in this 
work: Support Vector Machine with linear kernel and Random Forest. The Support 
Vector Machine (SVM) classifier, in a binary classification task like ours, tries to 
maximize the margin distance between the classification boundary (i.e., hyperplane) and 
the closest samples of both classes by adjusting internal parameters in the training 
process. One of these parameters is the cost C, which controls the trade-off between 
misclassification of the training data and the size of the margins. Values of C = 2-3, 2-2, 
2-1, 1, 2, 22 and 23 were tuned to obtain the optimal classification results. We used a linear 
kernel after an initial evaluation where non-linear kernels did not produce notably better 
results even after a lengthy training process. The Random Forest (RF) classifier 
combines the results of a multitude of independent and decorrelated decision trees in the 
training process, thus improving generalization of the model and robustness against 
overfitting especially in small sample sizes problems like ours. The parameter mtry, 
which identifies the number of random variables used in each tree, controls the strength 
(how accurate the individual trees are) and the correlation (the dependence between 
trees) of the RF model. Another tuning parameter is the number of trees to be built. In 
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this work, values of mtry = 2, 4, 6, 8, 10 and 12 were evaluated and the number of trees 
was set to 250, as higher values of this parameter did no produce notably better results 
on a preliminary evaluation. 

For evaluating the efficiency of the classification models, we employed a 5-fold 
cross-validation (CV) approach. This resampling method randomly partitions each 
texture dataset into five equally sized subsets of samples or folds, maintaining a balanced 
amount of both classes in each fold. Then, five models are trained and tested so that each 
of the five folds is used once as the test set, while the four remaining folds are used to 
train the model. This process was repeated ten times to reduce the variance of the cross 
validation results and to avoid possible bias in the random separation of the folds [173], 
so at the end 50 models (5 test folds × 10 repetitions) were built using different sets of 
patients for training and testing each time. The classification performance was evaluated 
using the averaged area under the curve (AUC) of the receiver operating characteristic 
(ROC) that resulted from averaging the AUC values obtained from the 50 iterations 
(mean ± SD). Good estimates of the model performance can be obtained using the 
validation data when the sample size is not large [173]. Other metrics like sensitivity, 
specificity and accuracy were also obtained to validate the results. 

A total of 90 texture dataset (18 sets of MR images × 5 texture analysis methods) 
were firstly examined with the classifiers without excluding any texture feature. 
However, the texture combinations that provided the highest AUC values were analyzed 
again using the same cross validation structure with a feature selection step included 
within the model-building process to avoid overfitting [176]. This way, we could test if 
reducing the number of features improved the classification results. Two filter feature 
selection methods were applied to obtain rankings of features based on the discriminative 
power of each feature independently without analyzing the relation between features and 
without involving any predictive model [162]. The first method used the p-value 
provided by the MWW test for independent groups of samples. The second method used 
the Maximal Information Coefficient (MIC), which measures the strength of the linear 
or non-linear association between two variables. 

The model evaluation process was implemented with the Caret package [143] 
in R language, version 3.2.5 (R Development Core Team, Vienna, Austria). The structure 
of the classification approach chosen for this analysis is the same as the one 
schematically represented in Chapter 5 (Figure 5.2). 
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8.3. Results 

8.3.1. Discrimination between cortical and lacunar stroke patients 

The first analysis consisted on finding differences between patients diagnosed 
with recent cortical stroke and lacunar stroke. Firstly, a basic statistical analysis was 
carried out before applying the machine learning approach to estimate the discrimination 
power of the features individually. Texture features did not seem to be useful to 
discriminate between recent cortical and lacunar stroke patients individually for any MRI 
sequence and any brain tissue or structure. Sixty-one texture features of a total of 1026 
features (114 features × 3 MRI sequences × 3 brain tissues/structures) were statistically 
significant (p < 0.05) when applying an MWW test for independent groups of samples, 
but only two features derived from the GLCM (FIMC and SIMC, with p = 0.0218 and p 
= 0.0096 respectively) were significant after applying a Holm-Bonferroni correction for 
multiple comparisons. Table 8.2 shows the distribution of significant features according 
to the MRI sequence and the brain tissue/structure. Based on the data presented in this 
table, T1W images seem to be the images where texture information allows 
discriminating cortical and lacunar stroke patients more accurately, especially when 
analyzing the brain SS. Nevertheless, the texture data extracted from these images and 
these brain tissues/structures did not seem to have enough discriminative power to 
classify precisely cortical and lacunar stroke patients in general. 

 

 

Table 8.2. Number of significant features (p < 0.05) for discriminating CS vs LS patients before 
(numerator) and after (denominator) Holm-Bonferroni correction for multiple comparisons per MRI 

sequence and brain region (tissue or structure). 

REGION 
 

SEQUENCE 
NAWM SS WMH 

FLAIR 0 / 0 16 / 0 1 / 0 

T2W 3 / 0 9 / 0 1 / 0 

T1W 11 / 0 19 / 2 1 / 0 
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The classification results confirmed the assumption provided by the previous 
statistical analysis: the texture features tested in this study are not useful to discriminate 
between cortical and lacunar stroke patients. Table 8.3 shows the averaged AUC (mean 
± SD) computed from the 50 iterations when examining all the texture datasets with the 
two models under analysis (SVM with linear kernel and RF), and for all the MRI 
sequences and brain tissues/structures. A relevant AUC value could not be obtained 
(AUC < 0.7) in any case. The best result was obtained using the GLCM parameters in 
the T2W images of the NAWM region using SVM with linear kernel (AUC = 0.667 ± 
0.117), but this value was not accurate enough to determine that a good classification 
can be achieved using these data. 

8.3.2. Discrimination between patients with and without stroke 

The second analysis consisted on finding differences between patients who 
presented an old stroke and patients who had not suffer a stroke at the time of the imaging 
evaluation. A basic statistical analysis was also performed before applying the machine 
learning approach to estimate the discrimination power of the features individually. 
Many texture features showed capability for discriminating between “no stroke” and 
“old stroke” patients. In this case, 349 texture features out of 1026 features (114 features 
× 3 MRI sequences × 3 brain tissues/structures) were statistically significant (p < 0.05) 
when applying an MWW test for independent groups of samples, and 235 features 
remained significant after applying a Holm-Bonferroni correction for multiple 
comparisons. Table 8.4 shows the distribution of significant features according to the 
MRI sequence and the brain tissue/structure. The information collected in this table 
indicates that the texture features extracted from the brain SS are more effective in 
discriminating between “no stroke” and “old stroke” patients, regardless of the MRI 
sequence is used. 
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Table 8.3. Results of the classification analysis for cortical and lacunar stroke patients. The AUC 
values are shown for the two models and for all the MRI sequences and brain tissues/structures when 

using the texture features extracted from the 5 texture analysis methods. 

AUC: 
Mean (SD) 

FLAIR T2W T1W 
RF SVM RF SVM RF SVM 

 NAWM <0.6 <0.6 <0.6 <0.5 <0.5 <0.5 

GLRLM SS <0.6 <0.6 <0.6 0.622 
(0.125) <0.5 <0.5 

 WMH <0.6 <0.5 <0.6 <0.6 <0.5 <0.6 

 NAWM <0.6 <0.5 <0.6 0.667 
(0.117) <0.6 <0.6 

GLCM SS <0.6 <0.6 0.611 
(0.121) <0.5 <0.6 0.637 

(0.140) 

 WMH <0.6 <0.5 <0.5 <0.5 <0.6 <0.6 

 NAWM <0.5 <0.6 <0.5 <0.6 <0.6 <0.6 

LBP SS <0.6 0.604 
(0.121) <0.5 <0.5 <0.6 <0.6 

 WMH <0.6 <0.6 0.616 
(0.107) <0.6 <0.5 0.616 

(0.092) 

 NAWM <0.5 <0.6 <0.5 <0.6 <0.6 <0.6 

WCF SS 0.600 
(0.118) <0.5 <0.6 0.604 

(0.129) <0.6 <0.5 

 WMH <0.5 <0.5 <0.6 <0.6 <0.5 <0.5 

 NAWM <0.5 <0.6 <0.4 0.621 
(0.140) 

0.650 
(0.114) 

0.618 
(0.128) 

WSF SS <0.5 <0.5 0.605 
(0.117) <0.6 <0.6 <0.5 

 WMH <0.5 <0.5 <0.4 0.661 
(0.132) <0.5 <0.6 

* Values are shown as mean ± SD as a result of averaging the results of the validation data. 
* Values in bold indicate the three best AUC results (AUC > 0.65). 
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The classification results were more optimistic in this analysis: according to the 
AUC values obtained, we can state that certain groups of textures allowed “no stroke” 
and “old stroke” patients to be classified with a good degree of precision. Table 8.5 
shows the averaged AUC (mean ± SD) obtained from the 50 iterations when examining 
all the texture datasets with the two models (SVM with linear kernel and RF), and for all 
the MRI sequences and brain tissues/structures. Good results were not achieved with all 
groups of textures, but in several cases, AUCs higher than 0.75 were obtained. For 
example, LBP features extracted from T2W and FLAIR images of the SS delivered good 
results as expected from the previous statistical analysis. However, other feature datasets 
like GLRLM features extracted from FLAIR images of the WMH or WCF features 
extracted from FLAIR images of the NAWM provided satisfactory results although the 
previous statistical analyses were not very optimistic with features extracted from these 
groups of images. It should be noted that parameters extracted from the T1W images as 
well as parameters derived from the GLCM did not provide relevant AUCs values in any 
case (AUC < 0.7). The predictive model employed for classifying the patients influenced 
the results, but there was not a firm conclusion on which model was better as SVM 
worked better with some texture datasets and RF with others. 

Table 8.4. Number of significant features (p < 0.05) for discerning between “old stroke” and “no 
stroke” patients before (numerator) and after (denominator) Holm-Bonferroni correction for multiple 

comparisons per MRI sequence and brain tissue/structure. 

REGION 
 

SEQUENCE 
NAWM SS WMH 

FLAIR 5 / 1 79 / 71 30 / 9 

T2W 1 / 0 79 / 72 34 / 3 

T1W 20 / 4 71 / 66 30 / 9 
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Table 8.5. Results of the classification analysis for “old stroke” and “no stroke” patients. The AUC 
values are shown for the two models and for all the MRI sequences and brain tissues/structures when 

using the texture features extracted from the 5 texture analysis methods. 

AUC: 
Mean (SD) 

FLAIR T2W T1W 
RF SVM RF SVM RF SVM 

 NAWM <0.6 <0.6 <0.5 0.665 
(0.084) 

0.609 
(0.104) <0.6 

GLRLM SS 0.691 
(0.109) 

0.676 
(0.097) 

0.643 
(0.099) 

0.738 
(0.121) 

0.654 
(0.112) 

0.662 
(0.104) 

 WMH 0.674 
(0.108) 

0.770 
(0.089) <0.6 0.646 

(0.128) <0.6 <0.5 

 NAWM <0.6 <0.5 <0.5 0.601 
(0.138) <0.6 0.642 

(0.126) 

GLCM SS 0.612 
(0.099) 

0.666 
(0.090) 

0.641 
(0.107) 

0.644 
(0.111) 

0.662 
(0.091) <0.6 

 WMH 0.608 
(0.111) 

0.614 
(0.124) 

0.617 
(0.102) <0.5 0.659 

(0.113) <0.5 

 NAWM <0.5 <0.5 <0.5 <0.6 0.667 
(0.125) <0.6 

LBP SS 0.742 
(0.100) 

0.751 
(0.103) 

0.680 
(0.112) 

0.763 
(0.116) 

0.649 
(0.120) 

0.676 
(0.122) 

 WMH <0.6 0.682 
(0.136) 

0.608 
(0.116) 

0.671 
(0.122) 

0.611 
(0.140) 

0.630 
(0.126) 

 NAWM 0.761 
(0.097) 

0.637 
(0.121) <0.5 <0.5 0.624 

(0.105) 
0.628 

(0.143) 

WCF SS 0.647 
(0.099) <0.6 0.680 

(0.097) 
0.608 

(0.157) 
0.682 

(0.109) <0.6 

 WMH 0.702 
(0.108) <0.6 0.752 

(0.097) <0.5 0.664 
(0.115) <0.6 

 NAWM 0.669 
(0.114) 

0.637 
(0.137) <0.5 <0.6 <0.6 <0.6 

WSF SS 0.635 
(0.094) <0.6 0.705 

(0.116) 
0.737 

(0.103) <0.5 <0.5 

 WMH <0.6 <0.6 0.665 
(0.103) 

0.677 
(0.123) <0.6 <0.6 

* Values are shown as mean ± SD as a result of averaging the results of the validation data. 
* Values in bold indicate the five best AUC results (AUC > 0.75). 
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Influence of the feature selection on the classification results 

We applied two filter feature selection methods to the five texture datasets that 
yielded better results in terms of AUC (AUC > 0.75) to see if better classification results 
were achieved when reducing the number of features. Rankings of features based on the 
maximal information coefficient (MIC) and the p-value provided by the MWW test were 
computed from the training folds in each of the 50 iterations of the CV procedure. Table 
8.6 shows the new AUC values obtained when reducing the number of features according 
to the computed rankings in the best texture datasets. In general, better AUC values were 
obtained when reducing the number of features. In particular, it is remarkable the 
substantial improvement achieved for LBP descriptors extracted from T2W images of 
the SS when using the SVM model: a final value of AUC = 0.828 ± 0.075 was obtained 
when only using the 7 more relevant LBP characteristics according to the MIC statistic. 
Figure 8.5 shows the classification performance profile, which reflects the AUC values 
obtained for all possible subsets of features according to the MIC ranking, and the ROC 
curves provided by the model when using all the features and when using the optimal 
number of features. 

 

 

 
Figure 8.5. Results of applying the feature selection method based on MIC to the texture dataset of 
LBP features extracted from T2W images of SS when training the SVM model. The profile of AUC 
values obtained for all possible subsets of features according to the MIC ranking is illustrated in (a). 
The ROC curves provided by the model when using all the features (14 features) and when using the 
optimal number of features (7 features) is shown in (b). 
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Influence of age in the classification results 

To study the influence of age in the performance of the classifier, we introduced 
36 additional datasets of images of older patients (91 years against 73 years of mean age) 
acquired with the same imaging parameters. We added the texture features extracted 
from these patients to the previous texture datasets and repeated the classification 
performance for the best texture datasets to study how these older patients affect the 
results. Table 8.7 shows the results obtained with and without including the texture data 
from the older patients in the texture datasets that performed better in the previous 
analysis. The results show that the classification performance got worse when 
introducing older patients in general, suggesting that the age influence the classification 
results by increasing the misclassification rate, possibly because in older patients the 
SVD is more manifest and the images present more SVD markers. 

Table 8.6. Values of AUC obtained when analyzing the best texture datasets without applying feature 
selection, that is, using all the features of the dataset, and with feature selection, that is, reducing the 

number of features based on two metrics: the p-value and the MIC. 

AUC: Mean (SD) RF SVM 

GLRLM 
FLAIR - WMH  

All features 0.674 (0.108) 0.770 (0.089) 
p-value = 0.773 (0.089) 

MIC = 0.773 (0.093) 

LBP 
FLAIR - SS 

All features 0.742 (0.100) 0.751 (0.103) 
p-value = = 

MIC 0.744 (0.104) 0.759 (0.103) 

LBP 
T2W - SS 

All features 0.680 (0.112) 0.763 (0.116) 
p-value 0.693 (0.101) 0.774 (0.099) 

MIC 0.714 (0.113) 0.828 (0.075) 

WCF 
FLAIR - NAWM 

All features 0.761 (0.097) 0.637 (0.121) 
p-value 0.766 (0.099) 0.713 (0.125) 

MIC 0.766 (0.086) 0.712 (0.112) 

WCF 
T2W - WMH 

All features 0.752 (0.097) <0.5 
p-value = <0.6 

MIC = = 

* Values are shown as mean ± SD as a result of averaging the results of the validation data. 
* The symbol “=” is used when no improvement is obtained by reducing the number of features. 
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Influence of the type of clinical stroke in the classification results 

The patients for which the best models performed well 80% or more of the times 
across the 50 validation iterations were identified. From these best models, the patients 
for which both classifiers (i.e., SVM and RF) performed well 80% or more of the times, 
were also identified. For each patient, we extracted the following data: 1) proportion of 
times the images were correctly (and wrongly) classified, 2) proportion of times in which 
both classifiers correctly (and incorrectly) classified the images using the same 
descriptors, 3) clinical stroke classification into no stroke, large cortical, small cortical 
or lacunar. The pattern of the classification performance of the different stroke subtypes 
was similar irrespective of the classifier used, and when the analysis accounted for 
whether the images were correctly (or incorrectly) classified by both classifiers, “no 
stroke” images achieved the greatest proportion of well classified, followed by 
“lacunar”, “small cortical and “large cortical” (Figure 8.6). 

Table 8.7. Values of AUC obtained when analyzing the best texture datasets (without feature 
selection) with and without including the textures extracted from the additional older patients. 

AUC: Mean (SD) RF SVM 

GLRLM 
FLAIR - WMH  

WITHOUT older patients 0.674 (0.108) 0.770 (0.089) 

WITH older patients 0.682 (0.089) a 0.736 (0.084) 

LBP 
FLAIR - SS 

WITHOUT older patients 0.742 (0.100) 0.751 (0.103) 

WITH older patients 0.655 (0.098) 0.644 (0.106) 

LBP 
T2W - SS 

WITHOUT older patients 0.680 (0.112) 0.763 (0.116) 

WITH older patients 0.623 (0.078) 0.670 (0.083) 

WCF 
FLAIR - NAWM 

WITHOUT older patients 0.761 (0.097) 0.637 (0.121) 

WITH older patients 0.645 (0.086) 0.580 (0.106) 

WCF 
T2W - WMH 

WITHOUT older patients 0.752 (0.097) <0.5 

WITH older patients 0.678 (0.074) <0.5 

* Values are shown as mean ± SD as a result of averaging the results of the validation data. 
 a Exception where the AUC increased after adding older patients 
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8.4. Discussion 
In this project, the performance of a substantial amount of texture features 

extracted from different brain tissues and structures (i.e., NAWM, WMH and SS) in 
different MRI structural sequences (i.e., FLAIR, T2W and T1W) were analyzed, in two 
conventional machine learning approaches, to identify the presence of stroke in the 
images of post-acute stroke patients and normal ageing individuals. Differentiation of 
post-acute cortical versus lacunar stroke subtypes using texture analysis was examined 
as well as classification of images with and without chronic stroke lesions. We were not 
able to find a proper machine learning approach to discriminate between patients with 
cortical and lacunar stroke with texture features (AUC < 0.7). On the contrary, the 
machine learning scheme used in this study provided promising results for discerning 
between patients presenting an old stroke and normal-ageing patients who never had a 
stroke (AUC > 0.75). The results improved when using a feature selection approach to 
reduce the number and identify those features that may obscure the classification 
performance, especially when evaluating LBP descriptors extracted from T2W images 
of the SS (AUC > 0.8). 

Regarding the classification of cortical and lacunar stroke patients, only two 
textural features from the SS in T1W images resulted with high discriminatory power 
between images from post-acute lacunar vs. cortical stroke in the previous statistical 
analysis. These features were the first and second information measures of correlation 

 
 

Figure 8.6. Pattern of the classification performance of the best models (i.e., for which the accuracy 
was above 80%) per stroke subtype (i.e., no stroke, large cortical, small cortical or lacunar) (left) and 
per stroke occurrence (i.e., had stroke or not) (right). 
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(FIMC and SIMC) derived from the GLCM, which quantify the linear dependency or 
correlation between intensities, thus representing homogeneity but adding some 
desirable properties that are not represented by the original correlation descriptor 
extracted from the GLCM [87]. A previous study by Valdés-Hernández et al. that 
evaluated the use of texture analysis as an alternative for characterizing SVD and 
assessing possible blood brain barrier leakage [123] reported differences in the texture 
outcome of the FLAIR deep gray matter between post-acute lacunar and cortical stroke 
patients, but only with borderline significance. This study reported that the texture 
pattern in the deep gray matter was more homogeneous in patients with recent lacunar 
stroke compared to those who had a cortical type. Statistically significant differences 
between the FLAIR images from both groups of patients were only found in the texture 
features measured in the post-acute stroke lesions. Our motivation was to explore 
whether the texture in normal (as opposed to abnormal) tissues could have enough 
discriminatory power to be used in machine learning schemes to identify the stroke 
subtype and if there was a stroke. Therefore, we did not analyze the texture outcome in 
the stroke lesions exclusively. Our analysis managed to find features with borderline 
statistical significance to discriminate between cortical and lacunar stroke patients in 
T1W MRI data but failed to find a conventional machine learning model to classify these 
patients accurately. The reason behind these results may lie in the fact that both types of 
stroke can be seen simultaneously in many cases, as reported by Xu [280]. 

Regarding the classification of patients with and without stroke evidences, the 
statistical analysis and the classification results indicated that texture features are suitable 
for characterizing the presence of an old stroke lesion in MRI against imaging patterns 
of normal-ageing patients. The inclusion of older patients in the analysis (91 years 
against 73 years of mean age) influenced negatively in the classification, thus suggesting 
that, in patients of advanced age, the imaging patterns for detecting an old stroke may be 
confounded with normal-ageing imaging patterns because of the presence of more SVD 
markers due to age. When evaluating the stroke subtypes, the images from “no stroke” 
patients were, in general, better identified by the classifiers as opposed to the images that 
had “large cortical” chronic stroke lesions, which resulted in them being the less well 
classified, and, instead, were classed as not having any stroke lesion at all. It might result 
paradoxically, given that the images of individuals with chronic lacunar lesions (i.e., 
small lesions mainly in the region crossed by the corticospinal tracts [281], which can 
be confounded by WMH), were the second best classified. However, lacunar, and not 
large cortical, strokes have been associated with blood brain barrier impairment, 
manifested in abnormal extracellular leakage [275]. Also, textural features in normal and 
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abnormal tissues have been reported as being useful in detecting the subtle differences 
that this mechanism causes. Therefore, our results are in-line with the relevant clinical 
literature. 

One methodological limitation of this work was the impossibility of combining 
both datasets to analyze if images showing recent cortical or lacunar strokes could be 
distinguished from images of patients without stroke and patients with an old stroke 
lesion. This is due to the fact that variations in acquisition parameters may result in 
differences in the texture outcome that are not due to the underlying biological 
characteristics of the tissues expressed by the texture patterns [71], [108]. Image 
normalization techniques help reducing these differences in imaging acquisition settings, 
but some residual effects may not be totally suppressed, thus obscuring the true texture 
differences due to the tissue properties only. Therefore, combining texture features 
extracted from both databases in the proposed machine learning pipeline may lead to 
overoptimistic results caused by the differences in imaging acquisition protocols. 

Other limitation of the present work consists on the 3D texture analysis approach 
based on the median of 2D texture features. Although pure 3D texture analysis is usually 
preferred because it allows capturing more heterogeneity information of the tissue under 
analysis, this approach is not always feasible, especially when the slice thickness of the 
images is very large compared to the in-plane resolution [51], as in our case for T2W 
and FLAIR images. In these situations, 2D texture approaches or approaches like the one 
carried out are recommended. 

8.5. Conclusion 
In this work we conducted a very detailed texture analysis study for identifying 

and characterizing ischemic stroke lesions in structural brain MRI data by considering 
several regions or tissues and by testing a large amount of quantitative texture 
descriptors. The number of patients per group was sufficiently large to draw reliable 
conclusions and the machine learning pipeline was designed to avoid overoptimistic and 
overfitted results. We achieved promising preliminary results that suggested that texture 
features may help in the detection of a stroke lesions. 
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Chapter 9.                          
Final conclusions 

 

 

 

 

Radiomics analyses have shown an increased interest in the past years and the 
reasons behind this interest seem obvious. The intrinsic information provided by medical 
images has been missed and omitted for too long, but now, the new and expanding 
advances in technology for acquiring high-quality images and processing the underlying 
information in a rapid and intelligent way have permitted exploiting these “hidden” data, 
thus revolutionizing the field of radiology. In this thesis, we provide four original 
contributions to help clinicians in the evaluation of different brain disorders by means of 
a radiomics approach based on texture analysis in conventional MRI. Our preliminary 
results prove the potential of this practice for defining and characterizing brain lesions 
in a fast, reliable and non-invasive way. It is important to remark that the objective of 
conducting these feasibility projects is not to substitute the radiologic assessment made 
by clinicians but to provide more diagnostic information complementing the work of 
clinicians so as to facilitate the decision-making tasks. 

The question now is clear: are we on the right track or are we wasting our time 
in an endless road? We strongly believe that radiomics analyses are the future of 
radiology and the preliminary results presented in this thesis support this conclusion. 
However, we still have a long way to go since there is still a clear need for standardization 
and validation. The technology necessary for accomplishing radiomics tasks is already 
available, but now we need larger imaging datasets standardized across institutions in 
order to validate the models created for helping in the diagnosis and assessment of 
diseases. Furthermore, the corresponding demographic, clinical, histologic or genomic 
data should be obtained when possible for each imaging evaluation with the purpose of 
correlating and combining these data with the imaging information. The latter would 
increase the reliability of the models and might result in important discoveries about the 
direct connection between parameters that in principle did not seem to show any kind of 
relationship. 
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Regarding the correlation of data of different nature, some studies have 
attempted to reflect on the connection between texture features and histopathologic 
features. The question to answer in these studies is clear: are textural and 
histopathological parameters linked because they measure the same biology in different 
ways? Most of these studies suggest that, whereas a single feature cannot still be directly 
linked to a specific biologic process, it is possible to assume that a combination of 
textural parameters may be closely related to underlying pathophysiologic processes. 
Nevertheless, although several texture features in structural and functional imaging have 
been shown to characterize diseases or lesions, predict treatment response or be 
associated with survival, the biologic correlates of texture features are still largely 
unknown. There is a need to carefully investigate the correlation between texture features 
from different imaging modalities and histopathologic features that may influence image 
texture, either in a preclinical model or in humans for each specific application when 
tissue is available for exhaustive histologic analysis. Based on our results, we only can 
affirm that the texture features tested in each project were able to capture image 
heterogeneity differences between the populations analyzed for each specific task and 
we preferred not to make conclusions about the correlation between our results and the 
histopathologic analysis of the tissues under examination since we did not have all the 
information that an analysis of these dimensions would require. The latter should be 
considered as the next step of radiomics analyses. 

Another important concern that arose during the performance of this thesis is 
related to the implemented machine learning methodology: why using machine learning 
approaches instead of trending deep learning techniques? From 2016 onwards, deep 
learning methods have dominated the advances in the medical image analysis field since 
they provide optimal results without the need for much user interaction. However, we 
preferred to keep using machine learning methods in our analyses mainly for two 
reasons. In first place, the requirement of still expensive hardware and large amounts of 
annotated data limited the applicability of deep learning methods in our studies. In 
second place, deep learning models are seen as “black boxes” where intrinsic quantitative 
features cannot be extracted, thus limiting further studies regarding the pathologic 
meaning of the imaging features, as previously discussed. We consider that texture 
features still have a great deal to offer in the medical imaging field, so we decided to 
stick to our initial plan in this thesis. 
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In conclusion, this thesis shows four different applications in which texture 
analysis applied to MRI is capable of assessing different brain lesions and diseases by 
means of machine learning implementations. Our preliminary results set the stage for a 
possible future scenario where texture features could be used as imaging biomarkers for 
helping in the accurate diagnosis and evaluation of brain diseases like brain tumors, 
Alzheimer’s disease and stroke. 
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“Para empezar, diré que es el final. 

No es un final feliz, tan solo es un final. 

Pero parece ser que ya no hay vuelta atrás” 

 

M-Clan, Miedo, 2004 
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