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Abstract 14 

As microalgae have the ability to simultaneously remove nutrients from 15 

wastewater streams while producing valuable biomass, microalgae-based 16 

wastewater treatment is a win-win strategy. Although recent advances have 17 

been made in this field in lab conditions, the transition to outdoor conditions on 18 

an industrial scale must be further investigated. In this work, an outdoor pilot-19 

scale membrane photobioreactor plant was operated for tertiary sewage 20 

treatment. The effect of different parameters on microalgae performance were 21 

studied, including: temperature, light irradiance (solar and artificial irradiance), 22 

hydraulic retention time (HRT), biomass retention time (BRT), air sparging 23 

system, and influent nutrient concentration. In addition, the competition between 24 



microalgae and ammonium oxidising bacteria for ammonium was also 1 

evaluated. Maximum nitrogen and phosphorus removal rates of 12.5 ± 4.2 2 

mgN·L-1·d-1 and 1.5 ± 0.4 mgP·L-1·d-1, respectively, were achieved at a BRT of 3 

4.5 days and HRT of 2.5 days, while a maximum biomass productivity of 78 ± 4 

13 mgVSS·L-1·d-1 was reached. While the results obtained so far are promising, 5 

they need to be improved to make the transition to industrial scale operations 6 

feasible. 7 

 8 

Keywords: flat-panel; membrane photobioreactor; microalgae; outdoor; pilot 9 

plant; wastewater treatment. 10 

 11 

Introduction 12 

Microalgae are microorganisms that carry out photosynthesis and thus require 13 

inorganic carbon and light (energy source) to grow. They also require nutrients 14 

(mainly nitrogen and phosphorus), which can be obtained from wastewater 15 

streams (Ledda et al. 2015), avoiding eutrophication of natural water bodies. 16 

Algae based wastewater treatment has some interesting advantages over other 17 

classical technologies: i) it produces valuable biomass; ii) reduces chemicals, 18 

and iii) reduces sludge production (Gao et al. 2016). Green microalgae seem to 19 

be more appropriate for wastewater treatment than other types of microalgae 20 

such as cyanobacteria (Arias et al. 2017). In this respect, green algae Chlorella 21 

and Scenedesmus have been extensively reported as ideal for wastewater 22 

treatment because of their adaptability to such media (Xu et al. 2015; Wu et al. 23 

2017).  24 



Many authors have studied pure microalgae cultures in highly controlled lab 1 

conditions looking for fast-growth strains. However, single-genus cultures are 2 

difficult to maintain on a large scale under outdoor conditions. On the other 3 

hand, polycultures can increase microalgae performance, since they are more 4 

robust before contamination by other microorganisms (Gouveia et al. 2016).  5 

Microalgae can be used to treat different types of wastewater streams: urban 6 

(raw wastewater, primary and secondary effluents, centrate), aquaculture, etc. 7 

Each type has different characteristics which can affect microalgae growth 8 

positively or negatively. In this regard, Ledda et al. (2015) reported that the 9 

organic matter was the main factor affecting microalgae growth, as it was 10 

directly related with turbidity and that nutrient content did not affect the 11 

microalgae process, while Gao et al. (2016) found that high nutrient 12 

concentrations are needed to maintain high microalgae growth rates. 13 

There are two main groups of microalgae cultivation systems: open ponds and 14 

closed photobioreactors (PBRs). Open ponds allow CO2 uptake by microalgae 15 

directly from the atmosphere, but CO2 can also be supplied by an aerator. 16 

Although they have lower investment and operational costs than PBRs, they 17 

also have disadvantages: large surface areas are required; contamination by 18 

predators; high CO2 diffusion to the atmosphere; ineffective light distribution 19 

from the surface to the bottom of the reactor and high evaporative losses. PBRs 20 

are designed to improve photosynthesis efficiency by increasing the light 21 

available to the microalgae culture. While they are perfectly mixed to avoid wall 22 

fouling and enable light and nutrient homogenisation, their investment and 23 

maintenance costs are high. Moreover, photoinhibition, overheating, biofouling 24 

and oxygen accumulation can cause microalgae growth inhibition (Arbib et al. 25 



2013). Table 1 summarises the results of different microalgae cultivation 1 

systems which treated wastewater under outdoor conditions.  2 

Table 1. Results of algae based wastewater treatment studies under outdoor 3 

conditions. 4 

Type of 
PBR 

Type of 
wastewater 

HRT (d) N-Feed 
(mgN·L-1)  

P-Feed 
(mgP·L-1) 

Productivity 
(mgVSS·L-1·d-1) 

NRE 
(%) 

PRE 
(%) Reference 

Vertical 
PBR 

Primary 
effluent 13(1) 133 8.3 100 84 95 Gouveia et 

al. 2016 

HRAP Secondary 
effluent 8 25.7 2.2 30 56.3 86.5 Arbib et al. 

2013 

Rectangular 
PBR 

Municipal 
wastewater 15(1) 30.5 2.6 - 96 99 Woertz et al. 

2009 

Rectangular 
PBR 

ADAS(2) + 
Secondary 

effluent 
21(1) 259.7 42.6 109 73.3 66.5 Tan et al. 

2016 

Flat-panel 
PBR 

AnMBR 
effluent 8 44.7 5.2 23.4 41.6 36.1 Viruela et al. 

2016 

Flat-panel 
PBR 

AnMBR 
effluent 14 81.5 9.2 13.8 50.9 50.9 

Viruela et al. 
2016 

(1) Batch operation. HRT indicates the length of the study; (2) ADAS: Anaerobically digested 5 

activated sludge. 6 

 7 

Generally, closed PBRs obtained high nitrogen (NRE) and phosphorus removal 8 

efficiencies (PRE) (around 80-100%), while open ponds are less efficient. 9 

Moreover, Table 1 shows that the highest productivities and nutrient removal 10 

efficiencies were obtained in batch experiments. However, both batch and high 11 

HRT operations would imply considerably high surface areas to treat 12 

wastewater at industrial scale. Thus, algae based wastewater treatment 13 

technologies must operate at minimum HRT. In this respect, membrane 14 

photobioreactors (MPBR), which are the combination of PBRs and membrane 15 

technology, appear as an ideal solution for microalgae cultivation to treat 16 

wastewater. Membranes separate the microalgae biomass from the water 17 



effluent, so that high nutrient loads can be maintained while microalgae 1 

biomass wash-out is avoided (Gao et al. 2016).  2 

This paper summarises the results obtained from an outdoor MPBR pilot plant 3 

under different environmental, design, and operating conditions. This plant was 4 

fed by the effluent of an anaerobic membrane bioreactor (AnMBR) treating 5 

sewage. The aim of the MPBR plant was to simultaneously reduce the nutrient 6 

load in the AnMBR effluent and to produce microalgae biomass.  7 

 8 

Material and methods 9 

The substrate 10 

The microalgae substrate consisted of the nutrient-rich effluent from an AnMBR 11 

plant that treated real sewage (Giménez et al. 2011). Its nutrient concentration 12 

varied in the range of 40-80 mgN·L-1 and 4-10 mgP·L-1 due to variations on 13 

wastewater characteristics and AnMBR performance. The substrate also 14 

contained large amounts of sulphide (around 100-120 mgS·L-1), which inhibit 15 

microalgae growth (González-Camejo et al. 2017). The substrate was therefore 16 

aerated before feeding the PBRs to oxidise the sulphide to sulphate (González-17 

Camejo et al. 2017). Moreover, the AnMBR effluent presented a COD 18 

concentration of 72 ± 37 mgCOD·L-1 (mostly non-biodegradable) and an 19 

alkalinity of 370 ± 67 CaCO3·L-1.  20 

 21 

Pilot plant  22 

The MPBR pilot plant was located in the Carraixet WWTP (Valencia, Spain), 23 

and consisted of two outdoor flat-panel PBRs connected to a filtration system. 24 



Each PBR had a working volume of 550 L: 2.00 m long x 1.10 m high x 0.25 m 1 

wide. The aeration system consisted of two perforated pipes (5 mm diameter) 2 

placed on the bottom of the PBRs, which continuously introduced air at a flow 3 

rate of 0.09 vvm. This way, microalgae settling and wall fouling were minimised. 4 

Whenever the pH value of the culture was over 7.5 (set point), pure CO2 5 

(99.9%) was introduced into the air system, reaching a maximum percentage of 6 

CO2 in the air flow of 4%. This way, phenomena such as ammonia volatilisation 7 

and phosphorus precipitation were considered negligible (Whitton et al., 2016).  8 

Both PBRs had twelve white LED lamps (Unique Led IP65 WS-TP4S-40W-ME) 9 

installed at the back, offering a continuous light irradiance of 300 μE·m-2·s-1 10 

(Light:Dark cycle of 24:0 h). 11 

Both PBRs were connected to a filtration system, which mainly consisted of two 12 

membrane tanks which included industrial hollow-fibre ultrafiltration membrane 13 

units (PURON® Koch Membrane Systems (PUR-PSH31), 0.03 µm pore size), 14 

with a working volume of 38 L and filtering area of 6.8 m2. They were stirred by 15 

the same CO2-enriched air flow as the PBRs to reduce cake formation and 16 

avoid undesirable phenomena.  17 

During the experiments with inhibition of nitrification, a concentration of 5 mg·L-1 18 

of allylthiourea (ATU) was maintained in the PBRs to inhibit AOB growth (Table 19 

2).  20 

 21 

Experimental periods 22 

Before each operating period, the MPBR plant went through a start-up phase, 23 

consisting of: i) adding 10% of the working volume with microalgae biomass 24 

(300-500 mgVSS·L-1; mainly Scenedesmus and Chlorella; although bacteria 25 



and cyanobacteria were also present) and 90% of the working volume with the 1 

aforementioned substrate; ii) batch mode until reaching a biomass 2 

concentration of around 250-400 mgVSS·L-1 (data not shown); and iii) 3 

continuous feeding maintaining the desired BRT and HRT. 4 

The experimental set-up consisted of 4 periods in which the MPBR was 5 

operated under different environmental (temperature, solar irradiance and 6 

influent nutrient concentration), operating (BRT and HRT) and design (bubble 7 

size of the air sparging system and operating the MPBR plant without 8 

membrane filtration, i.e. as a PBR system) conditions. Moreover, artificial light 9 

and ATU addition were also modified (Table 2). 10 

Period 1 was operated without microalgae biomass filtration so that BRT was 11 

equal to HRT (PBR system). No additional artificial light source was used. It 12 

was divided into 4 sub-periods: 1) 1A was operated at HRT of 8 days and ATU 13 

was continuously added; 2) 1B was operated at the same HRT without ATU; 3) 14 

in sub-period 1C, HRT was increased to 14 days without ATU. 4) In 1D, an 15 

initial ATU dose of 5 mg·L-1 was added. The rest of the sub-period was operated 16 

at HRT of 14 days without further ATU addition. 17 

In period 2, the pilot plant was also operated as a PBR system (without 18 

membranes), maintaining HRT (i.e. BRT) at 8 days. A neoprene diffuser with 19 

0.5 mm pore size was installed in PBR1. In PBR2, the same air sparging 20 

system (5 mm pore size) was maintained. The rest of the operating and outdoor 21 

conditions were the same for both PBRs. Thus, only in this period, PBR1 and 22 

PBR2 were operated separately in order to compare the effect of different 23 

bubble size of the air sparging system.  24 



In period 3, the plant was operated as an MPBR system at BRT of 4.5 days and 1 

variable HRT: 2.5, 2 and 3 days, for sub-periods 3A, 3B and 3C, respectively. 2 

Period 4 was operated as an MPBR system at a BRT and HRT of 4.5 days and 3 

2.5 days, respectively, but the period started with a microalgae biomass 4 

concentration of 160 mgVSS·L-1 (lower than the other periods). 5 

 6 

Table 2. Operation and outdoor conditions of each period.  7 

Sub-
period 

Days of 
operation 

Daily 
average 

solar PAR 

(µE·m-2·s-1) 

Average 

artificial 
PAR 

(µE·m-2·s-1) 

Temperature 

(ºC) 

BRT 
(d) 

HRT 
(d) 

NLR(1) 
(gN·d-1) 

PLR(1) 
(gP·d-1) 

ATU 
(mg·L-1) 

1A 17 171 ± 55 0 28.0 ± 1.5 8 8 2.5 ± 0.2 0.3 ± 0.0 5 

1B 13 164 ± 34 0 25.4 ± 1.9 8 8 3.0 ± 0.2 0.4 ± 0.0 0 

1C 21 294 ± 100 0 24.4 ± 2.2 14 14 1.7 ± 0.3 0.2 ± 0.0 0 

1D 33 249 ± 111 0 16.8 ± 2.3 14 14 2.2 ± 0.5 0.3 ± 0.1 5(2) 

2(3) 24 119 ± 32 300 23.0 ± 1.1 8 8 3.9 ± 0.3 0.4 ± 0.1 5 

3A 20 234 ± 19 300 23.5 ± 0.3 4.5 2.5 9.7 ± 2.3 1.3 ± 0.2 5 

3B 22 259 ± 43 300 26.9 ± 4.0 4.5 2 14.4 ± 1.8 1.8 ± 0.1 5 

3C 47 283 ± 75 300 24.8 ± 1.3 4.5 3 8.4 ± 1.1 1.1 ± 0.2 5 

4 40 357 ± 105 300 23.2 ± 2.1 4.5 2.5 13.6 ± 2.0 1.4 ± 0.2 5 

(1) Nutrient loading rate to each PBR; (2) single ATU dosage; (3) Smaller bubble size in PBR1 8 

than PBR2. 9 

 10 

Analytical Methods  11 

Grab samples were collected in duplicate from the influent and effluent streams 12 

of the MPBR pilot plant three times a week. Ammonium, nitrite, nitrate, and 13 

phosphate were analysed in a Smartchem 200 automatic analyser (Westco 14 



Scientific Instruments), according to Standard Methods (APHA et al. 2005).VSS 1 

was also analysed following APHA et al. (2005). 2 

50 µL of sample were measured twice a week according to Pachés et al. (2012) 3 

to count (in duplicate) the total eukaryotic cells (TEC).  4 

 5 

Calculations 6 

Biomass productivity (mgVSS·L-1·d-1), nitrogen removal rate (NRR) (mgN·L-1·d-7 

1), phosphorus removal rate (PRR) (mgP·L-1·d-1), nitrogen removal efficiency 8 

(NRE) (%) and phosphorus removal efficiency (PRE) (%) were calculated by the 9 

equations 1, 2, 3, 4, and 5, respectively:  10 

Biomass productivity = XVSS
BRT

  (Eq. 1) 11 

NRR = 𝑄𝑄·(𝑁𝑁𝑖𝑖−𝑁𝑁𝑒𝑒)
V𝑃𝑃𝑃𝑃𝑃𝑃

    (Eq. 2) 12 

PRR = 𝑄𝑄·(𝑃𝑃𝑖𝑖−𝑃𝑃𝑒𝑒)
V𝑃𝑃𝑃𝑃𝑃𝑃

    (Eq. 3) 13 

NRE = (𝑁𝑁𝑖𝑖−𝑁𝑁𝑒𝑒)
𝑁𝑁𝑖𝑖

· 100    (Eq. 4) 14 

PRE = (𝑃𝑃𝑖𝑖−𝑃𝑃𝑒𝑒)
P𝑖𝑖

· 100    (Eq. 5) 15 

where XVSS (mg VSS·L-1) is the volatile suspended solids concentration in the 16 

PBRs, BRT is the biomass retention time (d), Q is the wastewater flow rate (L·d-17 

1), Ni is the nitrogen concentration of the influent (mgN·L-1), Ne is the nitrogen 18 

concentration of the effluent (mgN·L-1), Pi is the phosphorus concentration of 19 

the influent (mgP·L-1), Pe is the phosphorus concentration of the effluent 20 

(mgP·L-1) and VPBR is the total volume of the PBRs (L). 21 

In order to compare different operating periods with variations in solar 22 

irradiances, the NRR:light irradiance ratio (NRR:I) (mgN·mol photons-1), and 23 



PRR:light irradiance ratio (PRR:I) (mgP·mol photons-1) were calculated by 1 

equations 6 and 7, respectively: 2 

𝑁𝑁𝑁𝑁𝑁𝑁: 𝐼𝐼 = 𝑁𝑁𝑁𝑁𝑁𝑁·𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃·106

𝐼𝐼·𝑆𝑆·24·3600
   (Eq. 6) 3 

𝑃𝑃𝑁𝑁𝑁𝑁: 𝐼𝐼 = 𝑃𝑃𝑁𝑁𝑁𝑁·𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃·106

𝐼𝐼·𝑆𝑆·24·3600
   (Eq. 7) 4 

where I is the total light PAR irradiance on the PBR surface, i.e. the 24-hour 5 

average solar irradiance plus the light from the LED lamps (µmol photons·m-2·s-6 

1) and S is the illuminated PBR surface (m2). 7 

 8 

Results 9 

Period 1 10 

In this period, in which Scenedesmus remained the main microalgae genus 11 

(>99% of TEC), the effect of different BRT (i.e. HRT) under different 12 

environmental conditions and the competition of microalgae and ammonium 13 

oxidising bacteria (AOB) for ammonium was evaluated. 14 

In sub-period 1A, AOB growth was inhibited by ATU addition, so that nitrite and 15 

nitrate concentration remained at negligible values, although ammonium and 16 

phosphate stayed at high values during the entire sub-period (Figure 1a). 17 

In sub-period 1B, ATU was not added, but nitrite and nitrate concentrations 18 

remained at negligible concentrations, which suggested that no nitrifying 19 

bacteria proliferation occurred. Biomass concentration dropped from 301 ± 15 20 

mgVSS·L-1in sub-period 1A to 213 ± 28 mgVSS·L-1 in 1B. Since temperature 21 

has been shown to have a direct effect on biomass productivity (Viruela et al. 22 

2016), the biomass reduction was assumed to be due to the temperature 23 

dropping from 28.0 ± 1.5 ºC in sub-period 1A to 25.4 ± 1.9 ºC in 1B. This 24 



temperature reduction could have also favoured microalgae over AOB 1 

(González-Camejo et al. 2018).  2 

In sub-period 1C, the HRT (i.e. BRT) was raised from 8 to 14 days. In 3 

consequence, VSS concentration achieved a maximum concentration of 304 4 

mgVSS·L-1 (Figure 1b). However, this increased biomass concentration could 5 

also have been related to a solar PAR increase from 164 ± 34 µmol·m-2·s-1 in 6 

sub-period 1B to 294 ± 100 µmol·m-2·s-1 in 1C. On the other hand, by the end of 7 

sub-period 1C, nitrite concentration reached a maximum value of 18.5 mgN·L-1 8 

(Figure 1a), which indicated that an AOB proliferation occurred.  9 

Lastly, a single ATU dose was added at the beginning of sub-period 1D to 10 

inhibit AOB growth. Consequently, nitrite concentration dropped due to the 11 

nitrate oxidising bacteria (NOB) proliferation, which oxidised nitrite to nitrate 12 

(Figure 1a). When the nitrite was exhausted, the NOB could no longer grow and 13 

nitrate concentration declined due to wash-out.  14 

In terms of microalgae biomass, sub-period 1D started with a concentration of 15 

360 mgVSS·L-1, but steadily decreased mainly due to a significant reduction in 16 

the culture temperature (Figure 1b). 17 

It is worth mentioning that HRT was not directly related to nutrient loading rates 18 

due to both WWTP intake dynamics and AnMBR plant performance. For 19 

instance, sub-period 1A (HRT of 8 days) had a similar NLR and PLR to 1D 20 

(HRT of 14 days) (Table 2). Hence, NLR and PLR must also be considered as 21 

controlling parameter.  22 

In this period, the highest biomass productivities were achieved in sub-periods 23 

1A and 1B (Table 3), probably because the temperature was higher (Table 2). 24 

Similar results were obtained by Viruela et al. (2016). Moreover, the nutrient 25 



removal rates in terms of NRR:I and PRR:I were also higher in sub-periods 1A 1 

and 1B, although the solar irradiances were considerably lower than in periods 2 

1C and 1D (Table 2). Since nutrient removal rates have been reported to be 3 

directly related to light irradiance (Viruela et al., 2016), these results suggested 4 

that the culture could have been nutrient-limited in during sub-periods 1C and 5 

1D. In fact, the ammonium concentration remained under 10 mgN·L-1 during 6 

days 49-63; i.e., in sub-periods 1C and 1D (Figure 1a). In this respect, 7 

ammonium values below 10 mgN·L-1 have been reported to limit ammonium 8 

absorption by microalgae (Ruiz-Martinez et al., 2014). This low ammonium 9 

concentration in sub-periods 1C and 1D was mainly due to an AOB 10 

proliferation, which competed with microalgae for ammonium (González-11 

Camejo et al., 2018). Hence, the proliferation of AOB did not seem to be 12 

desirable, as the system can get nutrient-limited. Further research in this topic 13 

must be developed in order to better understand the operating conditions which 14 

favour microalgae growth over AOB.  15 

When the system was non-nutrient-limited, the effluent nutrient concentration 16 

followed approximately the same trend as the influent (Figure 1a). This 17 

tendency was in agreement with Arbib et al. (2013), who reported higher 18 

effluent nutrient concentrations at higher influent nutrient concentrations in 19 

outdoor microalgae cultivation.  20 



 1 

Figure 1. Evolution during Period 1 of: a) Effluent concentration of: ammonium 2 

(NH4); nitrite (NO2); nitrate (NO3) and soluble phosphorus (P); and feed 3 

concentration of nitrogen (N-feed) and phosphorus (P-Feed); b) VSS 4 

concentration, solar PAR and culture temperature. 5 

 6 



Period 2 1 

The effect of the bubble size of the air sparging system was studied in this 2 

period. Bubble diameter in PBR1 was reduced to 0.5 mm, while it remained at 5 3 

mm in PBR2. PBR1 and PBR2 showed similar behaviour (Figure 2), reaching 4 

no significant differences between nutrient removal rates and biomass 5 

productivity (Table 3). 6 



 1 

Figure 2. Evolution during Period 2 in PBR1 and PBR2 of: a) Effluent 2 

concentration of: soluble nitrogen (Nt) and soluble phosphorus (P); and feed 3 

concentration of nitrogen (N-feed) and phosphorus (P-feed); b) solar PAR, 4 

culture temperature and VSS concentration.  5 

 6 



However, the genera distribution in the cultures was different; PBR1 had 40 % 1 

Scenedesmus and 55 % Chlorella, while PBR2 had 85 % Scenedesmus and 2 

10% Chlorella. Moreover, by the end of period, the phosphorus concentration in 3 

PBR2 was slightly lower than in PBR1.These differences could have been 4 

related to a cyanobacteria proliferation observed in PBR1 at the end of period 2 5 

(Figure 3). This agrees with Kin et al. (2014), who reported that small bubble 6 

size favours cyanobacteria growth over green algae. The proliferation of 7 

cyanobacteria is not desirable, as they have been reported to excrete some 8 

allelopathic substances that can damage green microalgae (Leão et al. 2009).  9 

The results obtained in this period showed that nutrient removal rates and 10 

nutrient removal efficiencies were higher in period 2 than in period 1 (Table 3), 11 

mainly due to an additional light source that had not been used in period 1. 12 

Increasing the light irradiance on the PBRs was therefore considered beneficial 13 

for nutrient removal in outdoor conditions. 14 



1 

 2 
Figure 3. Samples observed under epifluorescence microscope (Leica DM2500/ 3 

DFC420c digital camera, 63x) in period 2 (day 21). a) PBR1: Cyanobacteria and 4 

green algae (mainly Scenedesmus and Chlorella) floc; b) PBR2: Scenedesmus 5 

in four-cell coenobia and a small amount of cyanobacteria. 6 

 7 

Period 3 8 

The use of the membrane system in this period enhanced the treatment 9 

capacity of the MPBR plant: HRT was significantly reduced from 8 (period 2) to 10 

2.5 days (sub-period 3A). This means that nutrient loading rates were 11 

considerably higher during this period (Table 2), which has been reported to 12 

favour microalgae growth (Gao et al. 2016). In consequence, nutrient removal 13 

rates and biomass productivity were considerably higher in period 3 than in the 14 

b) 

a) 



previous periods (Table 3), reaching maximum NRR, PPR and biomass 1 

productivity in sub-period 3A: 12.5 ± 4.2 mgN·L-1·d-1, 1.5 ± 0.4 mgP·L-1·d-1 and 2 

78 ± 13 mgVSS·L-1·d-1, respectively. The light use efficiency of the microalgae 3 

improved in this period (operating as an MPBR system), since NRR:I and PRR:I 4 

values were around 2-fold and 3-fold higher than in the previous periods, in 5 

which the system operated as a PBR (Table 3).  6 

In sub-period 3B nutrient removal rates started at values around 15 mgN·L-1·d-1 7 

and 1.7 mgP·L-1·d-1, but after day 30 they suddenly dropped to 7-10 mgN·L-1·d-1 8 

and 1.0 mgP·L-1·d-1 and did not recover their high initial values (Figure 4c). This 9 

reduced nutrient removal rates could have been due to a significant increase in 10 

the culture temperature from around 25 to 33ºC in days 30-35 (Figure 4b). 11 

These high temperatures could have affected biomass productivity. Indeed, the 12 

biomass concentration dropped from around 400 to 300 mgVSS·L-1. 13 

Consequently, nutrient removal capacity also decreased. 14 

In sub-period 3C, temperature stabilised and NRR was solar PAR-dependent 15 

(Figure 4c), which was in agreement with Viruela et al. (2016). However, NRR 16 

and PRR were lower in sub-period 3C than in sub-periods 3A and 3B, which 17 

could be explained by: i) after the high temperatures in sub-period 3B, the 18 

system took around two weeks to recover the initial microalgae biomass (Figure 19 

4b), so that its nutrients removal capacity was reduced; ii) sub-period 3C had 20 

the lowest nutrient loading rates of period 3 (Table 2). Consequently, effluent 21 

nitrogen concentration (which was mainly ammonium) was reduced to values of 22 

10-15 mgN·L-1 during days 55-68 (Figure 4a). Ruiz-Martinez et al. (2014) 23 

reported that NRR decreased whenever ammonium concentration in the culture 24 

was below 10-13 mgN·L-1. Hence, in sub-period 3C, the culture was considered 25 



to be nutrient-limited; iii) in spite of having received a higher solar PAR in sub-1 

period 3C (Table 3), this irradiance was more variable than in sub-periods 3A 2 

and 3B (Figure 4c). This means that the alternation of very sunny days, in which 3 

photoinhibition could have occurred, with photo-limited days could have 4 

negatively affected microalgae growth. 5 

Throughout period 3, Scenedesmus remained as dominant genus (80-95% of 6 

TEC) and Chlorella only reached 5-20 % of TEC. 7 

The best efficiencies of this period (67 ± 11% and 69 ± 9%, for nitrogen and 8 

phosphorus, respectively) were obtained at an HRT of 2.5 days, even though 9 

solar PAR in sub-period 3A was the lowest of the period (Table 2). On the other 10 

hand, in sub-period 3C, with the lowest nutrient loading rates, the culture could 11 

be nutrient-limited and therefore nutrient removal efficiencies were lower than in 12 

3A (Table 3). NLR and PLR thus appear to be key parameters in assessing 13 

MPBR performance.  14 



 1 



Figure 4. Evolution during Period 3 of: a) Effluent concentration of: soluble 1 

nitrogen (Nt) and soluble phosphorus (P); and feed concentration of nitrogen 2 

(N-feed) and phosphorus (P-feed); and feed concentration of nitrogen and 3 

phosphorus; b) culture temperature and VSS concentration; c) solar PAR and 4 

nutrient removal rates. 5 

 6 

Period 4 7 

The same HRT and BRT were used in period 4 as in sub-period 3A, but at 8 

higher nutrient loading rates (Table 2), however the results obtained were 9 

significantly different (Table 3).  10 

As Figure 5b shows, microalgae biomass concentration was under 250 11 

mgVSS·L-1 for the entire period, while in sub-period 3A it always remained over 12 

250 mgVSS·L-1 (Figure 4b), so that the nutrient removal capacity of the system 13 

diminished and nutrient removal rates were not as high as in sub-period 3A 14 

(Table 3). This lower biomass concentration could have been influenced by the 15 

lower initial microalgae concentration in the start-up period: 160 mgVSS·L-1 in 16 

period 4, while sub-period 3A started at 270 mgVSS·L-1. Su et al. (2012) also 17 

obtained higher NRR and PRR in the culture with a higher initial biomass 18 

concentration. Moreover, Feng et al. (2011) reported that cultures with denser 19 

initial biomass concentration achieved higher biomass productivity and adapted 20 

quickly to outdoor conditions. 21 

Solar PAR, in spite of being higher than in sub-period 3A (Table 2), was quite 22 

variable in period 4 (Figure 5c) and, as in Period 3, could have negatively 23 

affected microalgae growth.  24 



Nutrient removal rates could also have been influenced by a shift in the 1 

microalgae culture. In period 4 there was a proliferation of Monoraphidium (45 2 

% TEC) which co-habited with Scenedesmus (50 % TEC). No significant 3 

amount of Chlorella was present.  4 

Table 3. Results obtained in each sub-period.  5 

 6 

Sub-period 

Biomass 

productivity 

(mgVSS·L-1·d-1) 

NRE 

(%) 

PRE 

(%) 

NRR  

(mgN·L-1·d-1) 

PRR  

(mgP·L-1·d-1) 

NRR:I 

(mgN·mol-1) 

PRR:I 

(mgP·mol-1) 

1A 38 ± 2 56 ± 9 46 ± 8 2.8 ± 1.0 0.3 ± 0.1 36.4 ± 9.5 4.0 ± 2.1 

1B 27 ± 4 40 ± 6 38 ± 6 1.9 ± 1.4 0.2 ± 0.1 31.3 ± 25.8 3.8 ± 2.0 

1C 19 ± 3 49 ± 7 52 ± 10 2.3 ± 0.5 0.3 ± 0.1 25.8 ± 12.7 3.5 ± 1.5 

1D 20 ± 3 57 ± 8 60 ± 8 1.6 ± 0.7 0.2 ± 0.1 24.6 ± 13.7 3.6 ± 1.8 

2-PBR1(1) 28 ± 6 57 ± 4 76 ± 7 3.3 ± 2.0 0.3 ± 0.2 37.1 ± 32.2 3.7 ± 2.3 

2-PBR2 28 ± 6 56 ± 7 87 ± 10 3.1 ± 1.2 0.4 ± 0.1 31.7 ± 28.1 4.3 ± 3.4 

3A 72 ± 8 67 ± 11 69 ± 9 12.5 ± 4.2 1.5 ± 0.4 64.2 ± 22.5 12.7 ± 3.4 

3B 69 ± 5 43 ± 11 43 ± 10 11.5 ± 2.9 1.4 ± 0.3 56.4 ± 15.4 11.8 ± 2.9 

3C 78 ± 13 50 ± 15 56 ± 12 7.5 ± 1.8 1.1 ± 0.3 36.3 ± 9.5 9.6 ± 2.5 

4 53 ± 15 33 ± 7 49 ± 12 7.8 ± 2.5 1.2 ± 0.3 33.5 ± 9.9 9.5 ± 2.4 

(1) Bubble diameter: 0.5 mm. 7 

 8 

As happened in period 1, in period 4 the effluent nutrient concentrations 9 

followed the same trend as the influent nutrient concentrations (Figure 5a), 10 

since the system was not nutrient-limited. According to Arbib et al. (2013), in 11 

these conditions, microalgae are mainly limited by outdoor conditions.  12 

 13 



 1 



Figure 5. Evolution during Period 4 of: a) Effluent concentration of: soluble 1 

nitrogen (Nt) and soluble phosphorus (P); and feed concentration of nitrogen 2 

(N-feed) and phosphorus (P-feed); and feed concentration of nitrogen and 3 

phosphorus; b) culture temperature and VSS concentration; c) solar PAR and 4 

nutrient removal rates. 5 

 6 

Discussion 7 

The performance of this outdoor MPBR pilot plant treating AnMBR effluent 8 

within a wide range of environmental, design, and operating conditions 9 

produced some interesting results, which deserve to be commented on.  10 

When the plant was operated as a PBR system without membrane filtration 11 

(periods 1 and 2), the highest values in terms of nutrient removal and biomass 12 

productivity were obtained when HRT was 8 days (Table 3). When the plant 13 

was operated as an MPBR system (periods 3 and 4), the best results were 14 

achieved at a BRT and HRT of 4.5 days and 2.5 days, respectively (sub-period 15 

3A, Table 3). In this respect, optimum BRT and HRT must be assessed to 16 

further improve MPBR performance. 17 

Comparing PBR and MPBR performance, nutrient removal rates and biomass 18 

productivity were significantly higher in MPBR as the use of membranes to 19 

separate microalgae from water enabled to operate at lower HRT (i.e. higher 20 

nutrient loading rates), avoiding microalgae wash-out.  21 

Generally, the plant performance was strongly dependent on outdoor 22 

conditions; solar irradiance seemed to be one of the main factors affecting 23 

nutrient removal, while temperature variations had a major impact on biomass 24 

productivity. The plant performance yields were reduced when the culture was 25 



nutrient-limited, which meant that high nutrient loading rates were required to 1 

reach high nutrient removal rates. In this respect, the proliferation of AOB in the 2 

culture can worsen PBR performance since they compete with microalgae for 3 

ammonium consumption.  4 

Increasing the light supply to the microalgae seemed to be beneficial for nutrient 5 

removal as nutrient removal rates were lower in period 1 with no artificial 6 

lighting (Table 3).   7 

Small bubble size (0.5 mm diameter) in the air sparging system was not found 8 

to be suitable, as it favoured the proliferation of filamentous cyanobacteria, 9 

which could hinder green microalgae growth.  10 

The initial biomass concentration appeared to have some influence on the plant 11 

performance, since higher biomass concentrations attained better results at 12 

quite similar operating conditions.  13 

Overall, as the nutrient removal efficiencies achieved in this continuously-14 

operated MPBR under outdoor conditions and using real anaerobically-treated 15 

sewage were not particularly high, some improvements need to be made to 16 

comply with legal requirements. Special efforts should be focused on increasing 17 

the efficiency of the light applied to the PBRs, lowering the plant HRT to further 18 

increase its treatment capacity, controlling BRT (and HRT when treatment 19 

capacity can be variable) to optimise microalgae productivity and nutrient 20 

removal, avoiding AOB growth without using chemical inhibitors, and reducing 21 

operating costs.  22 

 23 

Conclusions 24 



In this study, an MPBR plant was operated outdoors under different conditions: 1 

BRT, HRT, temperature, light irradiance, influent nutrient concentration, ATU 2 

addition, and bubble size of the air sparging system; reaching maximum 3 

biomass productivity and nitrogen and phosphorus removal rates of 78 ± 13 4 

mgVSS·L-1·d-1, 12.5 ± 4.2 mgN·L-1·d-1 and 1.5 ± 0.4 mgP·L-1·d-1, respectively. 5 

Although these values are promising, further research needs to be carried out to 6 

make this technology feasible on an industrial scale. The main challenges to 7 

overcome include: increasing the efficiency of the light supplied to the PBRs, 8 

avoiding AOB growth, improving the plant’s treatment capacity and reducing its 9 

operating costs. 10 
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