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 Average costs of €0.047 (UWW) and €0.067 per m
3
 (UWW and FW) were obtained  

 Energy costs accounted for 59.6% and 69.0% of the total costs respectively 

 Average reversible fouling removal downtimes were 0.4% and 1.6% respectively 

 Control strategy efficiently minimized filtration costs for both substrates 
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Abstract 13 

This study describes a model-based method for real-time optimization of the key filtration 14 

parameters in a submerged anaerobic membrane bioreactor (AnMBR) treating urban 15 

wastewater (UWW) and UWW mixed with domestic food waste (FW). The method consists 16 

of an initial screening to find out adequate filtration conditions and a real-time optimizer 17 

applied to a periodically calibrated filtration model for minimizing the operating costs. The 18 

initial screening consists of two statistical analyses: (1) Morris screening method to identify 19 

the key filtration parameters; (2) Monte Carlo method to establish suitable initial control 20 

inputs values. The operating filtration cost after implementing the control methodology was 21 

€0.047 per m
3
 (59.6% corresponding to energy costs) when treating UWW and €0.067 per m

3
 22 

when adding FW due to higher fouling rates. However, FW increased the biogas 23 

productivities, reducing the total costs to €0.035 per m
3
. Average downtimes for reversible 24 
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fouling removal of 0.4% and 1.6% were obtained, respectively. The results confirm the 25 

capability of the proposed control system for optimizing the AnMBR performance when 26 

treating both substrates. 27 

 28 
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1. Introduction 33 

Submerged anaerobic membrane bioreactors (AnMBRs) are amongst the most promising 34 

technologies for treatment of urban wastewater (UWW) (Ben and Semmens, 2002). When 35 

compared with traditional processes, such as conventional activated sludge system, AnMBRs 36 

offer several advantages (Judd and Judd, 2011; Raskin, 2012): (i) decoupling of hydraulic 37 

retention time (HRT) and solids retention time (SRT), (ii) improvement of organic matter 38 

removal efficiency, (iii) reduction of the environmental footprint of the treatment process, (iv) 39 

production of a solids-free purified effluent, (v) smaller amounts of sludge produced due to 40 

the low biomass yield of anaerobic microorganisms, (vi) lower energy demands (no aeration 41 

needed), and (vii) energy recovery by biogas production. In addition, the co-digestion in 42 

AnMBRs of UWW with domestic food waste (FW) is a very interesting option which may 43 

serve to enhance the biogas productivities (i.e. by increasing the organic loading rate and the 44 

influent COD/SO4
2-

 ratio), thus improving the general economics of the treatment process 45 

(Becker et al., 2017). Moreover, this approach creates an opportunity for recycling energy and 46 

nutrients from both wastes (Kibler et al., 2018). This strategy also allows the valorization of 47 

domestic FW, whose anaerobic mono-digestion is known to be associated with several 48 

complications, such as accumulation of NH3 and volatile fatty acids (VFAs) (Capson-Tojo et 49 
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al., 2017, 2016). 50 

However, a key issue exists that affects the economics of membrane filtration processes and 51 

therefore its industrial applicability: membrane fouling (Deng et al., 2016; Sheets et al., 52 

2015). Fouling reduces the permeability of the membrane, which leads to an increase in the 53 

operating and maintenance costs, jeopardizing the global performance (Judd and Judd, 2011). 54 

Moreover, previous studies have suggested that fouling issues tend to get worse if adding FW 55 

to the UWW (Pretel et al., 2016). Thus, if AnMBRs are to be a competitive alternative for 56 

UWW treatment from an economical point of view, minimizing the impact of membrane 57 

fouling is of critical importance. Therefore, one of the main challenges of this technology is to 58 

optimize the treatment performance (keeping high treatment flow rates) and the energy 59 

consumption (small physical cleaning intensities and periods) whilst minimizing the fouling 60 

effect. Particularly, avoiding irreversible fouling, which must be removed chemically and 61 

eventually determines the lifespan of the membranes, is of critical importance (Drews et al., 62 

2009; Judd and Judd, 2011). Moreover, as the physical cleaning of the membranes can 63 

account for more than 75 % of the energetic consumption in AnMBRs (Verrecht et al., 2010), 64 

this step must also be optimized, reducing as much as possible its frequency. 65 

In this respect, the development of advanced control systems is crucial for a successful 66 

optimization of the process performance in AnMBRs (Jimenez et al., 2015; Nguyen et al., 67 

2015). Different studies have assessed theoretically (and sometimes validated experimentally) 68 

the energy and economical savings resulting from the implementation of different types of 69 

advanced control systems in aerobic membrane reactors (MBRs) (Drews et al., 2007; 70 

Huyskens et al., 2011). Mannina and Cosenza (2013) applied Monte Carlo simulations to 71 

compare the energy requirements, the effluent quality and the economic costs of five different 72 

scenarios based on an MBR model. Also, an ad-hoc platform constructed over the 73 

COST/Benchmark Simulation Model No. 1 (BSM1) (Coop, 2002) was applied to evaluate 74 
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different control strategies in MBRs, using the energy requirements to assess the 75 

performances (Maere et al., 2011). Gabarron et al. (2014) compared different optimization 76 

strategies applied to MBRs, reducing significantly the energy needs and the membrane 77 

fouling. Moreover, Ferrero et al. (2011a, 2011b, 2011c) reduced significant the energy 78 

requirements due to membrane scouring (up to 21%) by applying a knowledge-based control 79 

system based on a supervisory controller. Focusing on model-based control, Drews et al. 80 

(2009, 2007) created a control system based on a mathematical model that successfully 81 

improved the filtration efficiency. In addition, Busch et al. (2007) developed a run-to-run 82 

control system to optimize the filtration performance by adjusting the filtration variables after 83 

each filtration cycle. Recently, computational fluid dynamics simulations have also been 84 

applied to optimize membrane scouring and the hydrodynamics in airlift external circulation 85 

MBRs (Yang et al., 2017, 2016). These studies allowed a significant reduction of reversible 86 

fouling due to cake formation, thus maximizing the MBR performance.  87 

However, so far few control strategies have been developed and validated to optimize the 88 

performance of AnMBRs for the treatment of UWW (Robles et al., 2013a). In Robles et al. 89 

(2013a), an upper layer fuzzy-logic controller efficiently kept low fouling rates, improving the 90 

process performance. In addition, a model-based optimization method has also been applied 91 

to improve the performance of AnMBRs treating UWW (Robles et al., 2014a). This method 92 

was effectively used for optimization of an advanced control system (consisting of an upper-93 

layer fuzzy-logic controller), obtaining energy savings of up to 25 %. Nevertheless, to 94 

improve the economic viability of these systems, it is necessary to develop new control 95 

strategies that allow the filtration system to work under optimal conditions. These new 96 

strategies should be easy to handle and computational-cost effective to facilitate plant 97 

engineers to optimize the process performance. 98 

Among the different options that exist, the use of model-based control systems is of interest, 99 
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not only to control the process performance, but also to predict it, allowing eventually its 100 

optimization from an energetic and/or economical approach (Batstone et al., 2015; Gernaey et 101 

al., 2004; Martin and Vanrolleghem, 2014). Nonetheless, the predictions based on models are 102 

never totally free of uncertainty because models are always a conceptual representation of 103 

reality and are based on assumptions. Moreover, models need to be calibrated, a process that 104 

can be arduous. In this context, sensitivity analysis is a powerful tool that can be used for two 105 

main purposes: (i) quantifying the effects of the inputs on the outputs of the model and (ii) 106 

identifying the most relevant factors and those that can be disregarded, thus simplifying the 107 

calibration process (Pianosi et al., 2016).  108 

Therefore, the objective of this study was to develop a model-based control strategy for real-109 

time optimization of the performance of AnMBRs fed with UWW and a mixture of UWW 110 

and FW. This strategy aimed at optimizing the operating mode of the filtration process in an 111 

AnMBR system by dynamic simulations using a previously validated filtration model.. 112 

Specifically, the new model-based control strategy consists of an initial screening to find out 113 

the adequate filtration conditions and a real-time optimizer of the filtration operation mode. 114 

As for the initial screening, two sequential statistical methods were applied only once as a 115 

prior step: (i) a sensitivity analysis to find an identifiable input subset for the filtration process 116 

(Morris screening method) (Morris, 1991) using the trajectory-based random sampling 117 

technique, and (ii) a Monte Carlo procedure to find adequate initial conditions. This initial 118 

screening was based on an approach previously used for optimizing the input parameters of an 119 

advanced control system for filtration in AnMBRs (Robles et al., 2014a). Regarding the real-120 

time optimizer, an optimization algorithm applied to a filtration model is run to obtain the 121 

optimum values of the identifiable subset for the filtration process that minimize the operating 122 

costs of the system. This new-model-based controller is more straight-forward when 123 

compared to the previous control strategy (Robles et al, 2014b) based on coupling model-124 
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based control systems with fuzzy-logic advanced supervisory control, since only a model 125 

must be calibrated.  126 

 127 

2. Materials and methods 128 

To accomplish the besought goal the first approach of the process, which is carried out only 129 

once as a prior step, consisted of: (i) a sensitivity analysis that considers the different 130 

parameters that are likely to be optimized in a previously chosen model (Robles et al., 2013c, 131 

2013d), thus selecting highly-influential parameters conforming the identifiable input subset 132 

to be optimized and (ii) the selection of adequate initial conditions (those leading to local 133 

minimal operational costs) of the identifiable input subset was performed via the Monte Carlo 134 

method. Knowing these values, the real-time optimization of the highly-influential operational 135 

parameters was carried out. With this purpose, an optimization algorithm was defined. This 136 

real-time optimizer stablished, at every control time (CT), the set points for the operational 137 

parameters leading to the lowest costs of the filtration process. Finally, the reduction of the 138 

total costs of the filtration process after the implementation of the control system was assessed 139 

(with and without FW in the substrate). 140 

2.1. Description of the AnMBR plant  141 

The data used in this study to calibrate and validate the filtration model was obtained from an 142 

AnMBR that mainly consisted of an anaerobic reactor with a working volume of 0.9 m
3
 143 

connected to two membrane tanks. Each membrane tank had a working volume of 0.6 m
3
 and 144 

included one ultrafiltration hollow-fiber membrane commercial system (PURON
®
, Koch 145 

Membrane Systems, 0.03 µm pore size, 31 m
2
 total filtering area and outside-in filtration). 146 

The plant was fully automated and monitored online in real-time. In addition, the anaerobic 147 

sludge was sampled once a day to assess the filtration performance. The concentration of 148 

mixed liquor total solids (MLTS) was determined according to the Standard Methods (APHA, 149 
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2005). A more precise description of the plant and its instrumentation (as well as the 150 

corresponding flow diagrams) can be found elsewhere (Robles et al., 2015, 2013b). 151 

2.1.1. Lower-layer controllers 152 

The lower-layer controllers implemented in the system that interact with the proposed 153 

optimization method are: (i) three proportional-integral-derivative (PID) controllers that 154 

adjust the rotating speed of the sludge recycling pump, the permeate pump and the biogas 155 

recycling blower used for membrane scouring by gas sparging, in order to keep the desired 156 

flow-rate set-points; and (ii) one on–off controller that regulates the membrane operating 157 

stage by changing the position of the respective on–off valves and the flux direction of the 158 

permeate pump. A more precise description of the plant control system can be found 159 

elsewhere (Robles et al., 2015). 160 

2.2. Characteristics of the substrates 161 

As aforementioned, the proposed model-based optimization strategy was validated for an 162 

AnMBR treating UWW and a mixture of UWW and FW. To this aim, a filtration model was 163 

calibrated and validated using data from an AnMBR system that treated UWW and a mixture 164 

of UWW and FW. The UWW was the effluent from the pre-treatment step of the Carraixet 165 

WWTP (Valencia, Spain) and the FW was collected from canteens in the university (Moñino 166 

et al., 2016). The UWW was characterized by a low COD/SO4-S ratio and the mixture of 167 

UWW and FW was set to different penetration factors (PF, defined as the percentage of the 168 

population having a kitchen disposer). The COD/SO4-S ratio of the UWW was around 6.6 kg 169 

COD·kg
-1

 SO4-S while the COD/SO4-S ratio of the UWW was around 9.6 kg COD·kg
-1

 SO4-170 

S. The FW was grinded by an experimental set-up simulating a household grinding system. 171 

This set-up consisted on a grinded InSinkErator, model Evolution 100. Afterwards, the FW 172 

was pre-filtered using a mesh of 0.5 mm, similar to the one used for the UWW. Further details 173 

can be found elsewhere (Moñino et al., 2017).   174 
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2.3. Description of the filtration model 175 

The filtration model used in this study is a semi-empirical model based on a classical 176 

resistance-in-series model (Robles et al., 2013c). This model is able to represent the dynamic 177 

evolution of the transmembrane pressure (TMP) by equations 1 and 2. 178 

Tpnet RJtTMP ··)(   (Eq. 1) 

Where, TMP (t) is the TMP at time t, µp is the dynamic viscosity of the permeate and RT is 179 

the total filtration resistance. 180 

IICCMICMT RRRRR  ·· 
  

(Eq. 2) 

Where, RM is the resistance intrinsic to the membrane, RC is the resistance of the cake that is 181 

formed on the surface of the membrane due to solid deposition, RI is the added resistance due 182 

to irreversible membrane fouling, ωC is the mass of solids deposited on the membrane per 183 

membrane area, αC is the average specific resistance of the cake created, ωI is the mass of 184 

irreversible fouling normalized per membrane area and αI is the average specific resistance of 185 

the irreversible fouling. 186 

The dynamics of ωC and ωI were modelled using a black-box approach. With this purpose, 187 

three different components were defined: XTS (MLTS), XmC (cake dry mass in the membrane 188 

surface), and XmI (irreversible fouling dry mass on the membrane surface). In addition, four 189 

kinetic physical processes were included in the model: (i) cake layer formation during 190 

filtration, (ii) cake layer removal by biogas sparging for membrane scouring, (iii) cake layer 191 

removal by back-flushing and (iv) irreversible fouling formation. A more precise description 192 

of the structure of the filtration model can be found elsewhere (Robles et al., 2014a). 193 

The selected filtration model was calibrated and validated using experimental data from the 194 

above-introduced AnMBR plant when treating UWW and a mixture of UWW and FW. 195 

2.4. Model-based optimization 196 



9 

 

As aforementioned, the first stage of the model-based control strategy is the selection of the 197 

operational parameters associated with the filtration process that are likely to be optimized 198 

dynamically. These variables are the biogas recycling flow-rate for membrane cleaning 199 

(BRF), the sludge recycling flow-rate into the membrane tanks (SRF), the duration of the 200 

filtration, relaxation and back-flushing stages (tF, tR and tBF respectively) and the initiation 201 

frequency and transmembrane flow of the back-flushing stage (fBF, JBF). It must be 202 

commented that the transmembrane flow during filtration (JF) has not been considered for the 203 

optimization. The reason is that this value will be fixed by the influent flow-rate to the 204 

system.  205 

Considering these selected variables, the operating mode of the membranes can be 206 

represented by Figure 1A. As this figure shows, an alternation is established between the 207 

relaxation and the back-flushing stages. More precisely, if the number of filtration cycles (f) is 208 

lower than fBF, the system will alternate between filtration and relaxation cycles. However, if 209 

fBF is equal or overpasses f, the corresponding relaxation stage will be substituted by a back-210 

flushing stage. Figure 1B shows a schematic representation of the model-based control 211 

strategy applied in this study, which is divided in an initial screening and a real-time 212 

optimizer of the filtration operation mode. The initial screening is based on a procedure 213 

described in Robles et al., (2014a) for screening the input parameters of an advanced control 214 

system for filtration in AnMBRs and the real-time optimizer uses the previously introduced 215 

filtration model for calculations (Robles et al., 2013c). First of all, the Morris screening 216 

method (Morris, 1991) was used to perform a global sensitivity analysis (GSA) of the selected 217 

filtration model (step a) to identify the operational parameters with high influence on the cost 218 

of the filtration process (step b). Once these parameters were identified, the Monte Carlo 219 

procedure (see for instance Saltelli et al. (2000) was applied to determine the optimal initial 220 

values of the evaluated parameters (step c). These values are used to update the initial set-221 
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points of the operational parameters (step d), which are transferred to the process (step e). 222 

After the transmission of the initial set-points, every CT the optimization algorithm is started. 223 

In this work CT has been set to 1 hour. This real-time optimizer, calculates the new optimal 224 

set-points for the highly-influential operational parameters at each CT (step f), running the 225 

periodically calibrated filtration model, and transmits them (step g) to update again the set-226 

points of the process (steps d and e). To this aim, a cost objective function was used. 227 

2.4.1. Description of the costs objective function 228 

To determine the costs related to energy consumption, the energy requirement of each process 229 

was calculated and multiplied by the cost of energy (ECOST; € per kWh). In this study ECOST 230 

was set to €0.138 per kWh, which corresponded to average electricity prices in Spain.  231 

The energy requirements of the blower (WBRF) (adiabatic compression), sludge recycling 232 

pump (WSRF) and permeate pump for filtration (Wfiltration) or back-flushing (Wback-flusing) were 233 

calculated as shown in Robles et al. (2014a). 234 

The total energetic costs were lumped in a single variable (CW), which was calculated as the 235 

sum of CBRF, CSRF and CSTAGE, as shown in Equation 3: 236 

COSTSTAGECOSTSRFCOSTBRFSTAGESRFBRFW EWEWEWCCCC ···    (Eq. 3) 

Where, CW is the total energetic cost, CBRF is the operating cost of membrane scouring by 237 

biogas sparging, CSRF is the operating cost of pumping the sludge, CSTAGE is the operating cost 238 

of pumping permeate during the respective operating stage (i.e. filtration or back-flushing). 239 

Finally, in order to determine the combination of operational set-points that lead to the 240 

minimal value of the total operating costs (CTOTAL; € per m
3
), Equation 4 was applied.  241 

LIFESPANREAGENTSWTOTAL CCCC    (Eq. 4) 

Where, CW is the total energetic cost, CREAGENTS is the proportional cost of reagents needed to 242 

clean the irreversible fouling produced during filtration and CLIFESPAN is the cost of membrane 243 
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replacement due to irreversible fouling. CREAGENTS and CLIFESPAN were calculated as shown in 244 

Robles et al. (2014a). 245 

2.4.2. Global sensitivity analysis: Morris screening method 246 

In this study the Morris screening method (Morris, 1991) has been applied to perform the 247 

GSA. This method is a one-factor-at-a-time process based on the generation of representative 248 

matrices of the combinations of values of the parameters to evaluate through a random 249 

sampling. In this study, the trajectory-based sampling strategy proposed in Ruano et al. (2012) 250 

was applied. From the matrices, it determines the distribution of scaled elementary effects 251 

(SEEi) of each input factor on the model output. Finally, the SEEi distribution (Fi) for each 252 

input factor is analyzed to determine the relative importance of the input factors and obtain a 253 

good approximation of a GSA.   254 

The selected statistical parameters to evaluate these distributions were: the standard deviation 255 

(σ) and the absolute mean (μ
*
) (see for instance Saltelli et al. (2000) and Campolongo et al. 256 

(2007)).  257 

In order to elucidate which operational parameters are the most influential on the total 258 

filtration cost, the output variable for the GSA in this study was CTOTAL (Eq. 4). 259 

A more precise description of the GSA applied in this study can be found elsewhere (Robles 260 

et al., 2014b). 261 

2.4.3. Initial values of the operational parameters: Monte Carlo method 262 

The Monte Carlo method was used for the selection of initial values of the operational 263 

parameters close to the minimum (locally) of the function to minimize. This has two main 264 

benefits: (i) it improves the results of the dynamical optimization given by the controller and 265 

(ii) it gives optimal values of the non-influential parameters, further improving the 266 

minimization of CTOTAL. Therefore, the Monte Carlo method was applied as a previous step 267 

before the dynamic optimization. The Monte Carlo method consisting on trajectory-based 268 
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random sampling was used in this study. Hence, the combination of the operational 269 

parameters giving the minimum operating cost (Eq. 4) was selected as the initial values of the 270 

real-time optimizer. 271 

2.4.4. Simulation strategy and model calibration 272 

MATLAB
®
 was used to simulate the filtration process using the previously-introduced model. 273 

The Runge-Kutta method (ode45 function in MATLAB®) was used as integration method for 274 

solving the differential equations in the model. The model was calibrated using experimental 275 

results from operation with both substrates.  276 

2.4.5. Simulations for real-time dynamic optimization of the filtration process 277 

The dynamic optimization of the filtration process was carried out using the costs equation 278 

(Eq. 4) as objective function. The optimization algorithm was applied by using the trust 279 

region approach (Coleman and Li, 1996), based on the Newton method (LSQNONLIN 280 

function in MATLAB
®
) and the Runge-Kutta method (ode45 function in MATLAB

®
). 281 

2.4.6. Implementation of the Morris and Monte Carlo methods 282 

In order to obtain results that could be extrapolated to different situations, MLTS 283 

concentrations in the entrance of the membrane tanks was ranged from 10 to 20 g∙l
-1

 during 284 

simulation. In addition, to take into account the typical fluctuations of the flow rate entering a 285 

WWTP, the net transmembrane flow (Jnet) was also varied. For each concentrations of MLTS, 286 

Jnet was modified from 4 to 12 LMH  (l·h
-1

·m
-2

), following the influent pattern from the model 287 

BSM1 (Jeppsson et al., 2006). 288 

The average values of the operational parameters evaluated in this study are shown in Table 1. 289 

In addition, the uncertainty considered for the sensitivity analysis (minimum and maximum 290 

values) is also presented. The range of values for the set-points of these parameters was 291 

established according to a uniform distribution. Finally, the results of the Monte Carlo 292 

procedure (which will be discussed afterwards) are also shown in Table 1. 293 
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2.4.7. Optimization algorithm 294 

Using both substrates, the performance of the controller (based on the optimization algorithm) 295 

was evaluated by simulation using the filtration model described above. The simulation 296 

accounted for 24 h of continuous operation and was carried out at four different MLTS 297 

concentrations entering the membrane tanks for both feeding strategies (i.e. UWW and 298 

mixture of UWW and FW): 11, 13, 15 and 17 g·l
-1

.  299 

To simulate the important variations of the influent flow rate that occur in WWTPs, the 300 

dynamic of BSM1 influent (Jeppsson et al., 2006) was used in this simulation study, 301 

commonly accepted for evaluation of control algorithms in WWTPs (Maere et al., 2011, 302 

Rojas et al., 2012; Martin and Vanrolleghem, 2014; Foscoliano et al., 2016). Thus, during the 303 

simulations Jnet varied according to the dynamic of BSM1 influent  (see e-supplementary 304 

data). 305 

As aforementioned, the CT was set to 1 hour. The computational cost for optimizing 306 

dynamically the process was between 1 to 3 minutes (using a PC Intel
®
 CORE

TM
 i5 with 8 307 

GBytes of RAM).  308 

3. Results and discussion 309 

3.1. Overall performance of the AnMBR plant 310 

The AnMBR plant, treating either UWW or UWW mixed with domestic FW, was operated 311 

for a long period within a wide range of operating conditions regarding both biological and 312 

filtration processes (Robles et al., 2013c; Giménez et al., 2011, Pretel et al., 2016; Moñino et 313 

al., 2017).  314 

Generally, COD removal efficiencies above 90 % were obtained, while effluent COD 315 

concentration ranged between 23 and 54 mg·l
-1

. The VFA in the reactor showed an average 316 

value of 30 mg HAc·l
−1

, which is significantly lower than the common concentrations found 317 

in other anaerobic digestion processes. Methane production increased significantly when 318 
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operating at high SRT and/or when adding domestic FW to the substrate. For instance, 30 and 319 

56 lCH4·m
-3

 were obtained when treating UWW at SRTs of 40 and 70, respectively. These 320 

values are not so high due to the significant sulfate concentration in the influent, thus, a 321 

considerable amount of influent COD was consumed by sulfate reducing bacteria. 322 

Nonetheless, methane production increased up to 119 lCH4·m
-3

 when treating a mixture of 323 

UWW and FW with a penetration factor of 80 % and 70 days of SRT. 324 

As for sludge production, lower amounts of wasted sludge were produced when operating at 325 

high SRT and/or feeding UWW mixed with domestic FW. The obtained 0.37 kg TSS·kg
-1

 326 

CODREMOVED of wasted sludge at a SRT of 70 days for UWW treatment was reduced up to 327 

0.21 kg TSS·kg
-1

 CODREMOVED when treating a mixture of UWW and FW with a penetration 328 

factor of 80 % at the same SRT. 329 

Concerning the filtration process, the fouling rates were mainly governed by the MLTS and 330 

the specific demands of gas per square meter of membrane (SGDm) levels. However other 331 

factors should also be considered, such as the characteristics of the sludge (i.e. SMP, EPS, 332 

biomass). Mostly, for similar SGDm values, as MLTS levels surged the fouling rates 333 

increased. It is important to note that low values of the fouling rates were observed (below 10 334 

mbar·min
-1

 for negligible levels of irreversible fouling) when treating UWW at an SGDm of 335 

0.23 Nm
3
·h

-1
·m

-2
 (equivalent to a BRF of 7.1 m

3
∙h

-1
) and MLTS levels below 25 g·l

-1
 (ranging 336 

from 8 to 32 g·l
-1

). Above 25 g·l
-1 

of
 
MLTS, the membrane fouling surged sharply (around 337 

100 mbar·min
-1

) for similar SGDm values. Nonetheless, these fouling rates were reduced 338 

when the SGDm levels raised up to non-prohibitive levels (from 0.23 to 0.5 Nm
3
·h

-1
·m

-2
,
 

339 

equivalent to BRFs of 7.1-15.5 m
3
∙h

-1
), taking into account that the effect of the gas sparging 340 

intensity was reduced as the irreversible fouling increased. The results obtained during long-341 

term operation of membranes reinforced the need for optimizing the membrane scouring at 342 

each operating condition. 343 
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When treating UWW and domestic FW, fouling rates surged as the penetration factor in the 344 

mixture increased. For instance, a permeability loss of 0.14 LMH bar
-1

·m
-3

 was obtained 345 

when treating UWW at MLTS of 17 g∙l
-1

. In contrast, permeability losses of up to 0.38 LMH 346 

bar
-1

·m
-3 

were obtained when feeding a mixture of UWW and FW with a penetration factor of 347 

80 %. 348 

3.2. Calibration of the model 349 

Before the application of the model, it was previously calibrated and validated based on the 350 

data obtained in the AnMBR plant treating both UWW and a mixture of UWW and FW. More 351 

precisely, the model was validated for different concentrations of MLTS entering the 352 

membrane tanks (10-30 g∙l
-1

), different Jnet (4-6 LMH) and different SDGm (0.1-0.5 m
3
∙h

-1
∙m

-
353 

2
, equivalent to BRFs of 3.1-15.5 m

3
∙h

-1
). The model was able to predict precisely the 354 

behavior of the membrane during the studied operational conditions (R of 0.989). It is 355 

important to note that a recalibration of the filtration model must be done periodically to take 356 

into account possible fluctuations such as influent load dynamics (i.e. heterogeneity of FW 357 

and UWW).  358 

3.3. Sensitivity analysis 359 

3.3.1. Treating urban wastewater 360 

The rankings for the operational parameters according to the sensitivity measurements 361 

obtained (µ
*
 and σ) are presented in Table 2. Only the results for the optimized number of 362 

evaluated trajectories (ropt) are shown. 363 

Hierarchical clustering analysis (HCA; R software version 3.2.5.) of the µ
*
 presented in Table 364 

2 and the ones obtained during ropt determination resulted in three differentiated clusters 365 

formed according to the influence of the studied parameters on the model output (see e-366 

supplementary data): (i) BRF, with a much higher value of µ
*
 when compared with the other 367 

parameters, indicating its great importance for the process costs; (ii) fBF, tBF, tF and SRF, with 368 
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values of µ
*
 that indicate a significant relative influence on the process costs; and (iii) tR and 369 

JBF, with a low relative importance. According to these results, 5 parameters were identified 370 

as highly influential on the process costs: (i) BRF (µ
*
 = 1.253 and σ = 1.856); (ii) fBF (µ

*
 = 371 

0.770 and σ = 2.220); (iii) tF (µ
*
 = 0.724 and σ = 1.921); (iv) tBF (µ

*
 = 0.574 and σ = 1.210); 372 

and (v) SRF (µ
*
 = 0.464 and σ = 1.584). To allow a visual identification of these parameters, a 373 

graphical representation of the results of the sensitivity parameters (µ
*
 and σ) at ropt can be 374 

found in the Electronic Annex. Both the clustering and the graphical results suggest a high 375 

influence of BRF, SRF, tF, tBF and fBF on the cost of the process. Therefore, in this study they 376 

have been optimized dynamically as a function of the operational conditions. On the other 377 

hand, as tR and JBF present low values of µ
*
 and σ, it can be considered that their influence on 378 

the total costs is low. Thus, their set-points were considered to be constant, keeping the initial 379 

values given by the Monte Carlo method. In addition, the GSA results allow evaluating the 380 

mathematical relationship between each parameter and the total costs. Due to their relative 381 

high values of both µ
*
 and σ, the effects of BRF, SRF, tF, tBF and fBF can be classified as non-382 

linear. 383 

The huge influence of BRF was related to the high energy consumption of this process. Thus, 384 

while an adequate value of BRF allows minimizing the solid cake formation, the irreversible 385 

fouling rates, and the costs associated with biogas recirculation, too high values increase 386 

greatly the total costs of the filtration process. Concerning SRF, this parameter affects, not 387 

only the costs associated with sludge pumping, but also MLTSMT at a given Jnet. It is 388 

important to consider that changes of the MLTSMT modify also the BRF requirements. In 389 

addition, tF affects the amount of solids that are deposited onto the surface of the membranes. 390 

tF also influences the net water treatment flow, thus determining the normalized profitability 391 

of the process (expressed in € per m
3
). Finally, tBF and fBF modify the extent of permeability 392 

recovery of the membranes. This is related to a partial or total removal of the solid cake. 393 
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However, it must also be considered that high values of tBF and fBF decrease Jnet and increase 394 

the non-filtration period of the AnMBR. 395 

3.3.2. Treating urban wastewater and food waste 396 

The values of the sensitivity measurements (µ
*
 and σ) obtained for the optimized number of 397 

evaluated trajectories (ropt = 40) when using UWW and FW as substrates are presented in 398 

Table 2. The corresponding HCA (see e-supplementary data) resulted in very similar clusters 399 

when compared to the process treating only UWW. In this case, 5 main clusters were 400 

obtained: (i) BRF, again with a much higher value of µ
*
 when compared with the other 401 

parameters; (ii) fBF, with higher relative values when compared to treatment of only UWW; 402 

(iii) tBF and tF, also with values of µ
*
 that indicate a significant relative influence; (iv) SRF 403 

and tR, with a low relative influence; and (v) JBF, with a very low relative importance. The 404 

similar responses of the systems fed with UWW and the mixture of UWW and FW confirm 405 

the applicability of the optimization methodology evaluated in this study to both substrates. In 406 

order to allow an un-biased comparison of the performances of the controller using both 407 

substrates, the same five operational parameters were identified as influential: BRF, fBF, tBF, tF 408 

and SRF. However, it must be considered that the clustering results suggest that in this case 409 

SRF could also be kept constant, reducing even more the computational costs. As for the case 410 

using UWW as substrate, a graphical representation of the obtained sensitivity rankings 411 

treating the UWW and FW mixture is presented in the Electronic Annex. 412 

3.4. Initial parameter estimation via the Monte Carlo method 413 

As aforementioned, the Monte Carlo method was used to estimate the initial values of the 414 

different operational parameters object of study when applying both feeding strategies (i.e. 415 

UWW and mixture of UWW and FW). The total filtration cost varied greatly, with values 416 

ranging between €0.04 per m
3
 and €0.40 per m

3
. Therefore, it can be concluded that the total 417 

costs can be effectively minimized by selecting the proper set-points of the selected 418 



18 

 

operational parameters. 419 

The obtained results, which correspond to the combination leading to minimum local costs, 420 

are presented in Table 1 (column Monte Carlo Results). However, it is important to highlight 421 

that the Monte Carlo method cannot give an optimal combination of the operational 422 

parameters. This occurs because of the discrete variation of the values of the evaluated 423 

parameters chosen to carry out the simulations. Nevertheless, as the used sampling procedure 424 

aims at covering all the domain of variation of the parameters, the cost is locally minimized. 425 

Starting from the initial combination given by the Monte Carlo method, the selected 426 

parameters were optimized dynamically throughout the operational period. 427 

3.5. Performance of the real-time optimizer 428 

3.5.1. Treating urban wastewater 429 

Figure 2 shows the values of BRF, SRF, tF and tBF optimized by the controller during the 430 

simulations performed with a MLTS concentration entering the membrane tank of 17 g∙l
-1

 and 431 

the transmembrane fluxes shown in the e-supplementary data. This condition is presented 432 

because it is the worst-case scenario, meaning that in reality the performance should be 433 

improved, with less fouling and lower filtration costs when reducing MLTSMT. 434 

As shown in Figure 2A, the value of BRF followed a very similar pattern when compared to 435 

Jnet. This occurred because the controller established higher values of BRF in the periods 436 

when the treatment flow rate was the highest (10-13 hours). During those flow peaks, the 437 

velocity of solid deposition on the surface of the membrane was much higher than at regular 438 

operation and therefore the controller had to increase considerably BRF to keep the TMP at 439 

appropriate values. In addition, Figure 2A also shows that the value of BRF was reduced 440 

when the treatment flow decreased, reaching even the minimum BRF value allowed in the 441 

AnMBR plant (4 m
3
∙h

-1
). These conditions corresponded to the minimal membrane fouling 442 

propensity, but were also associated with low agitation of the sludge in the membrane tanks, 443 
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leading to a reduction in the efficiency of the process of physical cleaning by biogas sparging. 444 

A correlation matrix including the optimized parameters, MLTSMT, Jnet, TMP, the energy 445 

requirements and the filtration costs with UWW as substrate (see e-supplementary data; R 446 

software version 3.2.5.) verified the positive correlation observed between Jnet, TMP and 447 

BRF. 448 

Regarding SRF, Figure 2A shows a similar behavior to that observed for BRF. The controller 449 

increased SRF at higher Jnet to keep MLTSMT at adequate levels. Again, the correlation matrix 450 

verified the correlation existing between BRF and SRF. 451 

Concerning tF and tBF, it can be observed in Figure 2B that in this case these variables did not 452 

follow a pattern similar to that of Jnet. However, a variation of these parameters occurred 453 

through the operational period studied. Interestingly, the periods when tF and tBF varied the 454 

most were those when BRF and SRF showed their lowest values (i.e. 5-9 h and 19-24 h). This 455 

indicates that, when the controller could not further optimize BRF and SRF, it modified the 456 

parameters with lower influence (i.e. tF and tBF) to further minimize the total filtration costs. 457 

No linear correlations were observed between tF and tBF and any other studied 458 

parameter/variable (see e-supplementary data). The last parameter to be discussed (fBF) 459 

remained relatively constant, around 1 BF every 10 F cycles (see Figure 3). 460 

Figure 3 represents the evolution of the TMP and the sequence of operational stages (F, R and 461 

BF) performed during the simulation at 17 g∙l
-1

 MLTS entering the membrane tanks.  462 

As it can be observed, the operational mode varied according to the duration of the stages (tF 463 

and tBF). In addition, by increasing SRF and BRF (Figure 2A) during the periods most prone 464 

to fouling (hours 10-12), the real-time optimizer was able to keep the TMP under the 465 

maximum limits established by the provider (i.e. 0.6 bars). 466 

3.5.2. Treating urban wastewater and food waste 467 

Figure 4 shows the values of BRF, SRF, tF and tBF optimized by the  model-based controller 468 



20 

 

when treated UWW and FW. As for the operation with UWW as substrate (Figure 2A), the 469 

values of BRF and SRF varied according to the variations in Jnet (see e-supplementary data). 470 

As previously, the controller established higher values of both parameters at the points of 471 

highest Jnet (10-13 hours). This period corresponded to the greatest rates of solids deposition 472 

onto the membranes. Therefore, the controller increased BRF to reduce the fouling rate and 473 

increased also SRF to minimize MLTSMT. 474 

In addition, it can be observed in Figure 4B that the values of tF are lower than those obtained 475 

with UWW as substrate (Figure 2B). Interestingly, the opposite occurred for tBF, whose length 476 

was higher with the mixture of UWW and FW. This was related to a more intense fouling 477 

caused by the FW, which led to longer BF periods to remove the cake layer from the 478 

membrane surface. Moreover, fBF increased from 1 BF every 10 F cycles to 1 BF every 4 F 479 

cycles (data not shown). Longer tBF and higher fBF with FW led to an increase of the 480 

downtime for reversible fouling removal. The average downtime for reversible fouling 481 

removal increased from 0.4 % (UWW) to 1.6 % (UWW and FW) of the total operational 482 

period. Nevertheless, it must be considered that these are low values which were achieved as a 483 

result of the controller action. As example, previous studies have reported minimum values of 484 

2.4 % of downtime when treating UWW in an automatically-tuned advanced control system 485 

for AnMBRs (Robles et al., 2014a).    486 

It must be mentioned that the corresponding correlation matrix (see e-supplementary data) 487 

was very similar to that obtained for UWW as substrate, verifying that the controller 488 

responded in a similar manner for both substrates. Also, as the evolution of the TMP and the 489 

different stages simulated using the substrate mixture were similar to that of UWW treatment 490 

(Figure 3), these values are not presented. 491 

3.6. Total energy consumption 492 

Figure 5A shows the evolution of the energy requirements of the filtration process after the 493 
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implementation of the controller at 17 g∙l
-1

 MLTS entering the membrane tank with UWW as 494 

substrate. As it can be observed, the main contributor to the energy consumption of the system 495 

was WBRF, accounting in average for 80 % of the total energy requirements and up to 87 % at 496 

the highest Jnet. In addition, WBRF (thus WTOTAL) shows a similar pattern to that observed for 497 

Jnet. In fact, both variables were strongly correlated (see e-supplementary data). While during 498 

the periods of low inflow to the plant (i.e. hours 2-9) WTOTAL reached 0.13 kWh∙m
-3

 (with 499 

WBRF accounting for 67 %), this value increased up to 0.34 kWh∙m
-3

 (with WBRF accounting 500 

for 87 %) at high Jnet (i.e. hours 9-12). At this point it must be mentioned that the results 501 

shown in this study were obtained with a model calibrated using considerably dirty 502 

membranes (i.e. the membranes were already strongly irreversibly fouled). Therefore, the 503 

energy requirements presented correspond to a very unfavorable scenario and it can be 504 

expected that their values will be considerably lower when operating with clean membranes. 505 

Nevertheless, the proposed control strategy allowed keeping the WBRF within low values 506 

(around 0.18 kWh∙m
-3

). More precisely, the control system led to savings of around 50 % of 507 

the energy required for membrane scouring when compared to non-optimized cyclic operation 508 

of the same AnMBR plant (0.36 kWh∙m
-3

) (Robles et al., 2013a). By coupling model-based 509 

control systems with fuzzy-logic advanced supervisory control, consumptions of 0.15 kWh∙m
-

510 

3
 (Robles et al., 2013a) and 0.12 kWh∙m

-3
 (Robles et al., 2014a) were achieved. The value 511 

obtained in this study was slightly higher (0.18 kWh∙m
-3

). However, it must be considered 512 

that in this case only a model must be calibrated, which can be continuously optimized by 513 

retrofitting. In addition, if the model is properly calibrated this control strategy is more 514 

straight-forward and the control action is faster when compared to the previous control 515 

strategies, which require more computational capacity. 516 

When paying attention to the average energy requirements of the AnMBR after the 517 

implementation of the control system (Table 3), it can be observed that from the total 518 
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consumption of 0.20 kWh∙m
-3

 (operating at 17 g∙l
-1

 MLTS entering the membrane tanks), 79.7 519 

% corresponded to WBRF, 16.9 kWh∙m
-3

 to WSRF, 9.53 % to Wback-flushing and 4.77 % to 520 

Wfiltration.  521 

The results presented in Figure 5 and Table 3 show that the energy required to clean 522 

physically the membranes by biogas sparging (WBRF) represents the main consumption of 523 

energy in AnMBRs. Thus, there is a clear need to optimize this particular process. 524 

Figure 5B and Table 3 also show the energy consumption of the filtration process treating 525 

UWW and FW. In this case, the average total requirement was 0.34 kWh∙m
-3

, with a 526 

maximum value of 0.58 kWh∙m
-3

. The average proportion of WBRF accounted for 88.5 %, 527 

indicating the need of optimizing BRF for each specific process. 528 

The higher average WTOTAL when adding FW (0.34 vs. 0.20 kWh∙m
-3

) was related to the 529 

aforementioned increase of the fouling rate in the membranes, which implied longer non-530 

filtration periods, thus reducing the net volume of water treated per unit of membrane surface.  531 

However, it must be considered that the addition of FW also led to a higher energy recovery 532 

due to an increase of the biogas production. With a SRT of 70 days at a temperature of 27 ºC, 533 

the volumetric methane production was up to 72 lCH4·m
-3

 using UWW as substrate (Pretel et 534 

al., 2016). When adding FW, this value increased up to 147 lCH4·m
-3

 which, assuming a 535 

percentage of methane recovery of 80 %, was translated into an increase of the energy 536 

recovery of 0.20 kWh∙m
-3

. Taking this value into account, the energy requirements of the 537 

filtration process are lowered from 0.34 kWh∙m
-3

 to 0.14 kWh∙m
-3

, even when operating with 538 

strongly fouled membranes. Thus, the addition of FW led to a global energy saving of 30 % 539 

when compared to the treatment of UWW as sole substrate because of the increased 540 

volumetric methane production The energy requirements of the filtration process with the 541 

controller operating at 11, 13, 15 and 17 g·l
-1

 for both feeding strategies are summarized in 542 

the e-supplementary data. 543 
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3.7. Total costs 544 

Figure 6A shows the evolution of the operational and maintenance costs of the filtration 545 

system after the implementation of the model-based control strategy treating UWW at 17 g∙l
-1

 546 

MLTS. As it can be observed, CW represented the main cost of the process, accounting for an 547 

average of 60 % of the total cost. This clearly emphasizes the need to optimize the operational 548 

conditions to minimize the energy demand of the system. However, in the period of peak Jnet 549 

(hours 9-10) the ensemble of CREAGENTS and CLIFESPAN represented up to 90 % of the total 550 

costs. This was related to a more intense irreversible fouling occurring in this period of high-551 

rate filtration, which caused an increase in the amounts of chemicals required to clean the 552 

membranes and lowered the membrane lifespan, raising the associated costs. 553 

Regarding the average costs, the results operating at 17 g∙l
-1

 MLTS entering the membranes 554 

are presented in Table 4. After the implementation of the control system, CTOTAL was €0.047 555 

per m
3
, with CW, CREAGENTS and CLIFESPAN representing the 59.6, 17.0 and 23.4 %, 556 

respectively.  557 

These values corroborate that CW represents the main filtration costs during regular operation. 558 

In addition, as it has been already mentioned, the membranes used in this study were strongly 559 

fouled, and therefore lower costs are expected in real operation. Thus, the values of these 560 

latter costs should be lower in full-scale plants, further reinforcing the great importance of 561 

optimizing the energy requirement in AnMBR plant. 562 

Figure 6B and Table 4 present the costs corresponding to the co-digestion system (UWW and 563 

FW). As shown, the obtained pattern was very similar to that obtained for treatment of UWW. 564 

However, in this case the average filtration cost corresponded to €0.067 per m
3
, with CW 565 

accounting for 69 % of this value. The higher value of CTOTAL when adding FW is again 566 

related to a higher fouling rate in the co-digestion system, which led to higher costs associated 567 

with the mechanical cleaning of the membrane. This is further suggested by the higher CW 568 
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values (€0.046 per m
3
 with FW vs. €0.028 per m

3
 with only UWW). 569 

However, when taking into account the economical profit related to the higher volumetric 570 

methane production when adding FW to the UWW, CTOTAL is reduced to €0.035 per m
3
, 571 

meaning that FW addition led a relative economic saving of 26 % of the filtration costs (when 572 

compared with the AnMBR system treating only UWW). 573 

The average costs of the filtration process with the controller operating at 11, 13, 15 and 17 574 

g·l
-1

 for both feeding strategies are summarized in e-supplementary data. 575 

 576 

4. Conclusions 577 

The proposed methodology enabled identifying the most influential filtration parameters and 578 

selecting proper initial set points for their optimization. The controller allowed a real-time 579 

optimization of these set-points, obtaining an energy demand of 0.20 kWh∙m
-3

 (79.7% WBRF) 580 

and a cost of €0.047 per m
3
 (59.6% CW) when treating UWW. The addition of FW increased 581 

the energy demand and the costs (0.34 kWh∙m
-3

 and €0.067 per m
3
) due to higher fouling 582 

intensity, but also led to the production of more biogas. In this respect, further research must 583 

be focused on enhancing biological process to surge methane production giving the minimum 584 

operating costs, i.e. coupling biological with filtration process control. The obtained results 585 

confirm the applicability of the proposed control system for optimizing the AnMBR 586 

performance when treating both substrates. An automatic recalibration of the filtration model 587 

according to the dynamics of the influent characteristics will be necessary to improve the real-588 

time optimizer. 589 
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Figure captions 733 

Figure 1. (A) Sequence of the different operational stages in the membrane modules during 734 

the alternative operating mode and (B) flow diagram of the proposed optimization 735 

methodology 736 

Figure 2. (A) Values of BRF and SRF and (B) tF and tBF optimized by the model-based 737 

controller. The results were obtained using UWW as substrate 738 

Figure 3. Evolution of the TMPs and different stages simulated. The results were obtained 739 

using UWW as substrate 740 

Figure 4. (A) Values of BRF and SRF and (B) tF and tBF optimized by the model-based 741 

controller. The results were obtained using UWW and FW as substrates 742 

Figure 5. Evolution of the energy requirements of the filtration process with the controller 743 

operating at 17 g∙l
-1

 MLTS entering the membrane tanks. The results for feeding strategies are 744 

shown: (A) UWW and (B) mixture of UWW and FW 745 

Figure 6. Evolution of the costs of the filtration process with the controller operating at 17 g∙l
-

746 

1
 MLTS entering the membrane tanks. The results for feeding strategies are shown: (A) UWW 747 

and (B) mixture of UWW and FW  748 
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Table captions 749 

Table 1. Average values of the operational parameters evaluated in this study. The intervals 750 

of uncertainty, as well as the initial values for the model-based controller (Monte Carlo 751 

results) are also presented 752 

Table 2. Sensitivity rankings for ropt with UWW as substrate (ropt = 60) and the mixture of 753 

UWW and FW (ropt = 40) 754 

Table 3. Average energy requirements of the filtration process with the controller operating at 755 

17 g∙l
-1

 MLTS entering the membrane tanks 756 

Table 4. Average costs of the filtration process with the controller operating at 17 g∙l
-1

 MLTS 757 

entering the membrane tanks  758 
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Supplementary material 759 

Figure S1. Net transmembrane flow (Jnet) applied during the validation of the model-based 760 

controller by simulation. The corresponding values of the MLTS concentrations in the 761 

membrane tanks (MLTSMT) during the co-digestion experiment at 17 g·l
-1

 are also shown 762 

Figure S2. TMP simulated by the model (TMPsim) vs experimental TMP (TMPexp) 763 

Hierarchical clustering analysis based on the absolute means of the selected parameters with 764 

UWW as substrate 765 

Figure S3. Hierarchical clustering analysis based on the absolute means of the selected 766 

parameters obtained (A) with (a) UWW as substrate and (B) with UWW and FW as substrates 767 

Figure S4. Sensitivity measurements (µ
*
 and σ) obtained (A) with UWW as substrate (ropt of 768 

60) and (B) with the mixture of UWW and FW as substrate (ropt of 40)  769 

Figure S5. Correlation matrix (α = 0.05; n = 999) of the optimized parameters, the energy 770 

requirements and the filtration costs obtained (A) with UWW as substrate and (B) with 771 

mixture of UWW and FW as substrate. The MLTSMT, Jnet and TMP are also included 772 

Table S1. Average costs of filtration process and energy requirements with the controller 773 

operating at 11, 13, 15 and 17 g·l
-1 

for both feeding
 
strategies. 774 
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Abbreviation and symbols 784 

AeMBR - Aerobic membrane bioreactor 785 

AnMBR - Submerged anaerobic membrane bioreactor 786 

BRF – Biogas recycling flow-rate 787 

BF – Back-flushing period 788 

CB – Operating cost of membrane scouring by biogas sparging 789 

CLIFESPAN – Cost of membrane replacement due to irreversible fouling. 790 

CREAGENTS – Cost of reagents needed to clean irreversible fouling  791 

CSRF – Operating cost of pumping the sludge 792 

CSTAGE – Operating cost of pumping permeate  793 

CT – Control time 794 

CTOTAL – Total operating costs  795 

CW – Total energetic cost 796 

D – Pipe diameter 797 

ECOST – Cost of energy 798 

EEi – Elemental effects of each input factor on the model output 799 

f – Number of filtration periods 800 

fr – Friction factor 801 

F – Filtration period 802 

fBF – Back-flush frequency 803 

Fi – Scaled elementary effect distribution 804 

g – Acceleration of gravity 805 

GSA – Global sensitivity analysis 806 

HCA – Hierarchical clustering analysis 807 

HRT – Hydraulic retention time 808 
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JBF – Transmembrane flow during back-flush 809 

Jnet – Net transmembrane flow 810 

L – Pipe length 811 

Leq – Equivalent pipe length of accidental pressure drops 812 

M – Molar flow rate of biogas 813 

MBR - Membrane bioreactor 814 

MLTS – Mixed liquor total solids 815 

MLTSMT – MLTS concentration in the membrane tanks 816 

OFMSW - Organic fraction of municipal solid waste 817 

P1 – Absolute inlet pressure  818 

P2 – Absolute outlet pressure 819 

q – Volumetric flow rate 820 

R – Relaxation period 821 

Rg – Ideal gas constant  822 

RC – Resistance of the solid cake formed on the surface of the membrane 823 

RI – Resistance due to irreversible fouling of the membrane 824 

RM – Resistance intrinsic to the membrane  825 

ropt – Optimum number of times that the SEEi should be calculated 826 

RT – Total filtration resistance 827 

SEEi – Scaled elementary effect 828 

SDGm – Specific demand of gas per square meter of membrane 829 

SRF – Sludge recycling flow-rate 830 

SRT – Solids retention time 831 

tBF – Duration of the back-flushing stage 832 

tF – Duration of the filtration stage 833 



34 

 

Tgas – Biogas temperature 834 

TMP – Transmembrane pressure 835 

TMPsim – Simulated transmembrane pressure  836 

TMPexp – Experimental transmembrane pressure 837 

TS – Total solids 838 

tR – Duration of the relaxation stage 839 

UWW - Urban wastewater 840 

V – Fluid velocity 841 

VT – Net volume of treated wastewater 842 

Wback-flusing – Energy requirements of the back-flushing pump 843 

WBRF – Energy requirements of the biogas lower 844 

Wfiltration – Energy requirements of the permeate filtration pump 845 

WSRF – Energy requirements of the sludge recycling pump  846 

XmC – Dry mass of cake in the membrane surface 847 

XmI  – Dry mass of irreversible fouling on the membrane surface 848 

XTS – Concentration of total solids in the mixed liquor 849 

Z1-Z2 – difference in height 850 

α – Compression index 851 

αC – Average specific resistance of the solid cake  852 

αI – Average specific resistance of the irreversible fouling 853 

σ – Standard deviation  854 

ρsludge – sludge density 855 

ηblower – Overall mechanical and electrical efficiency of the blower 856 

ηpump – Overall mechanical and electrical efficiency of the pump 857 

μ – Mean  858 
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μ
*
 – Absolute mean (μ

*
) 859 

µp – Dynamic viscosity of the permeate  860 

ωC – Mass of solids settled per membrane area  861 

ωI – Mass of irreversible fouling per membrane area  862 

ΔRI,MAX – Upper threshold of irreversible fouling resistance at which membrane cleaning 863 

starts 864 

 865 
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Table 1. Average values of the operational parameters evaluated in this study. The intervals of 

uncertainty, as well as the initial values for the model-based controller (Monte Carlo results) are 

also presented  

Parameter Units Substrate 
Average 

values 
Minimum Maximum 

Monte Carlo 

results  

BRF m
3
∙h

-1 UWW 12 3 21 13 

UWW +FW 12 3 21 13 

SRF m
3
∙h

-1 UWW 2.1 1.5 2.7 2.0 

UWW +FW 2.1 1.5 2.7 1.8 

tF s 
UWW 400 200 600 600 

UWW +FW 400 200 600 485 

tR s 
UWW 35 10 60 10 

UWW +FW 35 10 60 10 

tBF s 
UWW 35 10 60 17 

UWW +FW 35 10 60 31 

fBF - 
UWW 11 1 21 10 

UWW +FW 11 1 21 4 

JBF LMH 
UWW 15 10 20 16 

UWW +FW 15 10 20 10 

 

Table 1



Table 2. Sensitivity rankings for ropt with UWW as substrate (ropt = 60) and the mixture of UWW 

and FW (ropt = 40) 

UWW UWW + FW 

Parameter µ
*
 σ Parameter µ

*
 σ 

BRF 1.253 1.856 BRF 1.355 2.099 

fBF 0.770 2.220 fBF 0.579 1.418 

tF 0.724 1.921 tBF 0.344 1.059 

tBF 0.574 1.210 tF 0.252 0.710 

SRF 0.464 1.584 SRF 0.163 0.410 

tR 0.057 0.261 tR 0.067 0.138 

JBF 0.057 0.268 JBF 0.005 0.018 

 

Table 2



Table 3. Average energy requirements of the filtration process with the controller operating at 17 

g∙l
-1

 MLTS entering the membrane tanks 

Substrate WTOTAL (kWh∙m
-3

) WBRF (%) WSRF (%) WStage (%) 

UWW 0.20 79.7 16.9 14.3 

UWW + FW 0.34 88.5 9.6 9.8 

 

Table 3



Table 4. Average costs of the filtration process with the controller operating at 17 g∙l
-1

 MLTS 

entering the membrane tanks 

Substrate CTOTAL (€ per m
3
) CW (%) CREAGENTS (%) CLIFESPAN (%) 

UWW 0.047 59.6 17.0 23.4 

UWW + FW 0.067 69.0 13.0 18.0 

 

Table 4



 

Figure 1. (A) Sequence of the different operational stages in the membrane modules during the 

alternative operating mode and (B) flow diagram of the proposed optimization methodology 
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Figure 2. (A) Values of BRF and SRF and (B) tF and tBF optimized by the model-based 

controller. The results were obtained by applying the transmembrane flux shown in Figure S1 

with a MLTS concentration entering the tanks of 17 g∙l
-1

 and using UWW as substrate 

 

Figure 2. (A) Values of BRF and SRF and (B) tF and tBF optimized by the supervisor 
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Figure 3. Evolution of the TMPs and different stages simulated. The results were obtained by 

applying the transmembrane flux shown in Figure S1 with a MLTS concentration entering the 

tanks of 17 g∙l
-1

 and using UWW as substrate 
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Figure 4. (A) Values of BRF and SRF and (B) tF and tBF optimized by the model-based 

controller. The results were obtained by applying the transmembrane flux shown in Figure S1 

with a MLTS concentration entering the tanks of 17 g∙l
-1

 and using UWW and FW as substrates 
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Figure 5. Evolution of the energy requirements of the filtration process with the controller 

operating at 17 g∙l
-1

 MLTS entering the membrane tanks. The results for feeding strategies are 

shown: (A) UWW and (B) mixture of UWW and FW 
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Figure 6. Evolution of the costs of the filtration process with the controller operating at 17 g∙l
-1

 

MLTS entering the membrane tanks. The results for feeding strategies are shown: (A) UWW and 

(B) mixture of UWW and FW 
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