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 A new heterogeneous integration method allows the integration of a microfluidic platform and a multi-

channel quartz crystal (150 MHz ) microbalance array on a printed circuit board (PCB). 

  Dry adhesive bonding method is used. 

  The microfluidic platform is replica molded using a UV-curable OSTEMER 322 Crystal Clear polymer.  

 The resulting bond interface is shown to be completely homogeneous and void free. 

 The package quality is tested to a differential pressure of up to 4 bars.  

 The leak test of the cartridge is tested by pressurizing a microfluidic channel with an aqueous solution 

using an external peristaltic pump for more than 4 hours.  

 The cartridge performance is evaluated by the electrical characterization.  

 

 

Abstract 

A new heterogeneous integration method is presented that allows the integration of a microfluidic platform and a multi-channel 

quartz crystal microbalance array on a printed circuit board (PCB) using a dry adhesive bonding method. In this work, the 

microfluidic platform is a replica molded using a UV-curable OSTEMER 322 Crystal Clear polymer. The OSTEMER acts 

both as a final package for the cartridge and as a functional material for hosting molded microfluidic channels, the input 

reservoirs and the waste reservoir. The method is demonstrated by the integration of an array of 24 of a 150 MHz high 

fundamental frequency quartz crystal microbalance (HFF-QCM) to the OSTEMER microfluidic packaging. The resulting bond 

interface is shown to be completely homogeneous and void free, and the package is tested to a differential pressure of up to 4 

bars. The leak test of the cartridge is performed by pressurizing a microfluidic channel with an aqueous solution using an 

external peristaltic pump for more than 4 hours. The cartridge performance is evaluated by the electrical characterization. Q-

factor values of 9507 and of 650 are achieved in air and DI water, respectively. Results show that this simple integration method 

of the HFF-QCM is a promising way to integrate microfluidics into the more complex heterogeneous system. 

 

Keywords: Microfluidic platform; Printed Circuit Board; Adhesive bonding; OSTEMER Crystal Clear polymer; HFF-QCM. 
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1 Introduction  

The microfluidics field has the potential to enable new capabilities and applications in the areas of biology, chemistry and 

medicine, through the manifestation of the concepts of ”Lab on a Chip” and ”Micro Total Analysis System”[1]. Owing to their 

attractive advantages such as a large scale fabrication and a compact size, the great majority of microfluidic devices is based 

on polymers. Polymers such as polymethylmethacrylate (PMMA) [2], Polydimethylsiloxane (PDMS) [3], polyesters (Ps) [4], 

polycarbonate (PC) [5], and cyclic olefin copolymer (COC) [6] have been investigated for the microfluidics fabrication by 

using various processing techniques including cast molding [3], hot embossing [7], injection molding [8] and laser ablation [9]. 

The printed circuit board (PCB) is the standard platform for building most of the electronic systems today. The PCB technology 

for manufacturing, developed and driven by the consumer electronics industry for more than 60 years, has reached a high level 

of maturity and precision, enabling a large-scale integration of the electronic functions on a small package [10]. Therefore, 

microfluidic systems have also benefited from their integration in PCBs to produce highly functional and small sized integrated 

microfluidic devices [10-14]. However, it might be very complex and costly to integrate such components, as the manufacturing 

technologies and the materials used for each part are different, which makes the hybrid integration quite rare in microfluidics. 

In recent years, several researchers have reported different hybrid integration strategies to assemble both electronic and fluidic 

onto one common PCB [15, 16]. One promising strategy is to fabricate microchannels directly on the PCB chip and then to 

integrate a driving part and sensors into the PCB chip to obtain small and portable microfluidic devices [17]. The second one 

is to bond the microsensor onto the PCB and then to add the microfluidic part [18]. For both strategies, a strong and tight 

cohesion is necessary between the integrated parts. Wu et al. [18] have presented a modular integration approach to combine 

microfluidics with standard electronic components onto a PCB by using an epoxy bonding technique. The epoxy has been 

dispensed and pulled into the cavity between the in targeted circuit and the PCB by capillary forces, leaving the centre area 

open for direct exposure of the chip to the fluid. A glass microfluidic part has then been bonded onto the assembly part using 

a PDMS adhesive. Li et al. [19] have fabricated a USB-driven microfluidic device in which the microelectrodes of the sensors 

and the microchannels have been integrated directly into the copper sheet on a PCB. To seal the copper microchannels, the 

fabricated PCB has been covered by a glass side using a UV-curable adhesive. Babikian et al. [20] have presented a packaging 

architecture for fluidic surface mount components in a microfluidic PCB using a dry film photoresist. The lamination technique 

has been used to make the different photoresist layers used for the linearized layer and for the microfluidic layer. 

The materials and techniques used to assemble the different parts of the microfluidic system onto the PCB have their advantages 

in terms of cost, biocompatibility, and manufacturing procedures. However, each integration strategy is established for a 

specific electronic chip. In addition, the manufacturing procedures proposed previously consist of a high number of parts and 

require several fabrication steps. In addition, the fabrication techniques used could fragilise the electrical components during 

the integration steps, and could then lead to a non-functional final device. Furthermore, the core material of a PCB stack is E-

glass reinforced epoxy laminate (FR4 for Flame Resistant-4), an intrinsically hydrophobic material [21], which requires a 

surface treatment before the assembly steps, in order to improve the cohesion for the effective sealing of the microfluidic part 

and the PCB electronic platform. 

In this work, we present an easy method for a quick, reproducible, and robust assembly technique designed for the fabrication 

of a polymer microfluidic cartridge on the PCB. We report the use of the thermoset OSTEMER polymer that could be ready 

used to rapidly fabricate, in parallel, the linearized layer, which provides a flat, biocompatible surface for the microfluidic part, 

and to fabricate the microfluidic system. The OSTEMER parts have been manufactured by a replica molding technique once 

the desired mold was fabricated, and then bonded to the electronic interface onto the PCB.  

The main strengths of the thermostat OSTEMER are the biocompatible, robust and direct covalent bonding of different 

heterogeneous materials without surface treatment [22]. The OSTEMER polymer exhibits many similarities with PDMS, such 

as rapid prototyping and uncomplicated processing, However, PDMS comes along with several limitations, including high 

compliance resulting in channel deformation, high water vapour permeability leading to bubble propagation, the incompatibility 

with organic solvents, high permeability for small hydrophilic molecules as well as the presence of uncured polymer oligomers 

affecting the cellular physiology. 

 In order to validate our assembly technique, a multichannel monolithic quartz crystal microbalance (MQCM) has been used. 

Firstly, the fabrication technique of the different OSTEMER microfluidic parts has been described. Secondly, a detailed 

description of the assembly procedure steps for the fabrication of a microfluidic cartridge on PCB has been presented. The 

bonding quality of the different OSTEMER parts has been evaluated by using a leak test, pressurizing the microfluidic channels 

with an aqueous solution using a peristaltic pump and a pressure test. The performance of the cartridge has been evaluated by 

the electrical characterization oh the microsensor array with and without deionized (DI) water. 

2 Materials and Fabrication 

2.1 Conceptual approach 

Our approach focuses on the integration of the microfluidic system on the bonded HFF-QCM microsensor array onto the PCB. 

The acoustic wave microsensor array is composed of 24 microsensors per array. To provide a flat surface between the 

microfluidic system and the assembled ”PCB + Microsensor array”, a leveling layer is required. This layer is composed of six 
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microchannels, which surround the multi-channel quartz crystal microbalance. The microfluidic part is composed of six 

channels per microsensor array in such a way that each channel will be composed of four microsensors that can be used for 

different analysis sample assays. All the channels have the same length, so that the length has no effect on the flow pressure. 

In addition, six input reservoirs and one waste reservoir with an outlet hole are added to the design of the microfluidic part. 

The waste reservoir is connected to a peristaltic pump (Fig. 1).  

The integration approach involves three steps, as depicted in Fig. 2. Firstly, the microsensor array has been mounted on the 

PCB. After the OSTEMER fabrication of the leveling layer and the microfluidic part, both parts have been bonded together to 

obtain a closed microfluidic system. Finally the closed microfluidic system has directly been aligned and bonded over the 

assembled ”PCB + Microsensor array”. 

 

2.2 Materials 

The commercially available UV-thermally cured OSTEMER crystal clear 322 [23] (Mercene Labs, Sweden) is used to 
manufacture the leveling layer and the microfluidic part. This polymer is based on the off-stoichiometry thiol-ene-epoxies and 
features a two-step curing process. It is initially shaped by using the UV-casting and it is then hardened and bonded to itself or 
other materials using a second thermal cure [24]. The OSTEMER can be molded by the casting technique using microstructured 
molds, such as photolithographically defined SU-8 / or KMPR structures on silicon wafers with Teflon coating, and a 
polydimethylsiloxane (PDMS) mold [22]. The injection molding technique can also be used for a quick and mass manufacturing 
[25]. In our case, the casting technique is chosen to manufacture the microfluidic part by using a PDMS mold (Sylgard 184, 
Dow Corning). An acoustic wave inverted mesa resonator microsensor array with a fundamental resonance frequency of 150 
MHz MQCM (Advanced Wave Sensors S. L., Paterna, Valencia, Spain) have been used to validate our integrated approach. 
The microsensor array has been mounted over a custom PCB using a conductive epoxy (AADUCT 905, silver based). The 
PCB has been designed to provide mechanical stability to the resonator array and to act as a robust electrical interface between 
the sensors and the network analyzer. Bonding the QCM microsensor array on the PCB substrate improves robustness and 
handing. Since the wafer thickness is 66 µm (10 µm in the inverted-mesa regions), the array is very fragile and difficult to 
handle. Once it is bonded to the PCB, end –users can manipulate the array directly with their hands. Furthermore, the electrical 
interface connection between the array and the measurement system becomes simple, because it takes advantage of the PCB 
substrate to provide an easy and robust plug-and-play mechanism to the user based on a set of spring contacts. 

The PCB has been made up of 2 conducting layers and using FR4 as substrate material. Reference marks have been included 
in the PCB legend for the alignment of the microfluidic setup. The PCB is rectangular, with dimensions 36 mm * 52mm * 
2mm. In Fig. 3, the resulting assembled” PCB + Microsensor array” is shown. The average of the fundamental frequency of 
the 24 microsensors onto the array in the air is 149.1 MHz.  

2.3 Fabrication process 

Before starting the fabrication process to manufacture the OSTEMER leveling layer and the microfluidic part, two Al molds 

have been fabricated using the micromilling technique. The first mold, for the OSTEMER leveling layer, is made of a 3 mm 

thick Al and composed of a six-microchannels groove (1 mm deep and 1 mm wide) and one circular groove for the outlet hole 

(2.5 cm diameter). The second mold, for the OSTEMER microfluidic part, is made of a 10 mm thick Al and composed of a six 

input circular reservoirs groove (3.7 mm diameter; 6 mm deep) and one waste rectangular reservoir groove (6 mm wide, 15 

mm long; 4 mm deep) and a six-microchannels groove (0.1 mm deep and 1 mm wide). Both Al molds have been used to 

manufacture two other PDMS molds, which will be used to replicate the OSTEMER leveling layer and the microfluidic part. 

Prior to the fabrication of the PDMS molds, the Al inserts have been cleaned and dried. The PDMS precursor and a curing 

agent have been mixed at a ratio of 10 to 1, based on weight, and degassed in a vacuum desiccator. After removal of the bubbles, 

the polymer mixture has been cast in the Al cavity molds. The last step was the thermal curing of the PDMS in an oven with 

the ambient gas at 65 C for 2 hours, followed by peeling off the PDMS from the Al molds. Fig. 4 shows the PDMS molds for 

both the layers and the Al cavity inserts for each one. 

The fabrication steps of the OSTEMER leveling layer and the microfluidic part using the casting technique and the direct 

bonding onto the assembled ”PCB + Microsensor array” have been performed according to the fabrication scheme illustrated 

in Fig. 5. 

At room temperature, the OSTEMER 322 Crystal clear component A (hardener) and component B (base) have been mixed at 

a ratio of 1.09 to 1, based on weight, and degassed in a vacuum desiccator for one hour, prior to pouring the mixture into the 

PDMS mold (Fig. 5-1). Afterwards, both PDMS molds with the OSTEMER have been exposed to 365 nm UV light at 260 W 

during 60 s to ensure a minimum thiol epoxy reaction due to the heat generated by an excessive UV irradiation (Fig. 5-2). After 

that, the OSTEMER microfluidic part has been easily peeled off from the PDMS mold, and then manually aligned to the 

leveling layer (Fig. 5-3). The intermediately polymerized closed OSTEMER microfluidic system has been aligned manually 

and brought in direct contact with the assembled ”PCB + Microsensor array”. The alignment accuracy is about 1 mm.   

After that, a slight pressure has been applied by hand onto the bonded layer to evacuate the air trapped between the OSTEMER 

layers and the PCB. After a full polymerization step in the oven at 75 C for 3 hours, a small microtube piece (0.7 mm ID, 2.3 

mm OD; TYGON silicone tubing) was fixed manually in the outlet hole also using OSTEMER as a glue. 

The bonded cartridge is presented in Fig. 6. The result reveals that the leveling layer defines perfectly the microchannels on 

the microsensor array, and that the microfluidic part is well bonded onto the leveling layer. No air gaps were are observed 

between 

the leveling layer and the assembled ”PCB + Microsensor array”. 
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The key step in our integration approach is not only the application of the OSTEMER leveling layer to have a flat surface 

between the PCB and the microfluidic system, but also the bonding step order of the different OSTEMER parts. The application 

of the OSTEMER leveling layer followed by the microfluidic part reveals a bonding problem between both layers, though an 

air gap appears between the leveling layer and the assembled ”PCB + Microsensor array”. The source of the problem is the gap 

between the microsensor array and the top side of the PCB surface. This gap is due to the microsensor array thickness, and to 

the conductive epoxy glue used during the bonding step of the microsensor onto the PCB. So that the use of the OSTEMER 

closed microfluidic part (leveling layer + microfluidic part) provides a flat surface over the assembled ”PCB + Microsensor 

array”, since the closed OSTEMER microfluidic system is bonded perfectly onto the leveling layer even if an air gap could be 

present between the microsensor array and the leveling layer. 

3.  Characterization of the integrated cartridge 

For microfluidic systems, the bond interface could be considered as a lifetime limiting factor, which directly affects the 

reliability of the devices. Depending on the bonding parameters, an intensive analysis of the bond interface is required to ensure 

the functionality of these systems. In our case, the bonding quality of the OSTEMER leveling layer and the microfluidic part 

is evaluated by using a pressure, and a leak test. 

The device performance of a fabricated cartridge, including a resonance frequency and a quality factor are evaluated by using 

a network analysis with and without DI water. 

3.1 Pressure test 

In order to evaluate the bonding quality of the assembled layers and to examine the maximum pressure that our system could 

withstand, a pressure test was performed. Firstly between the OSTEMER leveling layer and the assembled PCB + Microsensor 

array, and then between the OSTEMER leveling layer and the OSTEMER microfluidic part. To this end, the PCB samples (1.5 

cm * 1.5 cm), the quartz samples (1.5 cm * 1.5 cm), and the OSTEMER samples (1.5 cm * 1.5 cm) have been directly bonded 

on different OSTEMER samples (4 cm * 4 cm, sample with the hole in the centre: entrance of pressurized air). Prior to the 

bonding step, the PCB and the quartz substrates have been washed in an acetone bath for 5 min and rinsed with Di water, then 

dried at ambient temperature. A hole was drilled in the centre of the OSTEMER sample so that a high pressure could be applied 

to break the sample at the bonding surface. Fig. 7 illustrates the experimental setup for the pressure test. 

The pressure has slowly been increased until gas leaked out, or the pressure limit (4 bar) of the setup was reached. To ensure 

the adequate bond performance, the pressure test has been carried out by using 10 bonded samples for each bonding parameter. 

The bonding parameters (temperature and time17) and the failure pressure of the bonding interface created between the 

OSTEMER and the OSTEMER or PCB or quartz bonded samples are shown in Table 1. 

 

Independently of the bonding parameters used to bond the different samples, the results revealed a bond burst pressure in excess 

of four bars. With such a pressure value, our bonded system could be used as a microfluidic system for our application, because 

the typical pressure encountered in a microfluidic Lab-on-Chip is about 1-2 bar [26]. 

 

3.2 Leakage test 

The assembly ” PCB + Microsensor Array + leveling layer +microfluidic part ” (as shown in Fig. 6) has been connected to a 

peristaltic pump (Miniplus 3 Gilsons) using the connector outlet tube (2.5 cm diameter) as shown in Fig. In our case, the pump 

provides a positive pressure. 

To demonstrate the function of the fabricated cartridge, a red dyed DI water has been sucked through the microchannels at 

varying flows (from 3 ml / min to 20 ml / min in 3 ml step) and examined under an optical microscope (Nikon, Instruments 

Europe B.V). The results obtained are shown in Fig. 9. Even after 4 hours with a flow of 10 ml / min, no solution leakages are 

observed, between the leveling layer (which surrounds the microsensor array) and the OSTEMER microfluidic part (which 

includes the reservoirs and the channels to the microsensor array), which proves that the red dye does not penetrate the 

interfaces. According to these results, the microfluidic part was successfully sealed onto the microsensor array despite the 

presence of bubbles trapped in the reservoir, an issue that could be resolved by modifying the design of the microfluidic 

channels. 

3.3 Electrical characterization of the cartridge 

A network analyzer DG8SAQ VNWA 3 (1 kHz to 1.3 GHz (SDR-Kits, Melksham, Wiltshire, UK) has been used to characterize 

the assembled cartridge performance by measuring the real and the imaginary parts of the electrical admittance spectrum of 

each microsensor on the array. All the sensors integration in the array have their top electrodes grounded, i.e. the ones in contact 

with liquid. Since they are connected to a fixed potential, the sample solution conductivity does not produce any significant 

channel interference.The dielectric constant of the raw materials of our cartridge is summarized in Table 2 . 

 

 Fig. 10 shows an example of a real and imaginary part of one resonator on the array after the assembly approach. All 

microsensors present in the array have the same expected admittance characteristics as shown in Fig. 10.  

In order to evaluate the quality of the OSTEMER microfluidic packaging, the quality factor (Q-factor) of each microsensor 
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was measured before and after the assembly step in air by using the network analyzer. In addition, in order to investigate the 

mechanical and electrical behaviours of the microsensor array in liquid media, DI water has been used. 

For the microsensor measured in Fig. 10, a Q-factor of 17609 had been measured in air of the assembled ” PCB + Microsensor 

array” (without the OSTEMER pakaging), while a Q value of 975.12 was obtained from the same microsensor with the 

OSTEMER microfludic packaging. The Q-factor value fell to 105.6 in DI water solution. 

In air, the Q-factor value decreased dramatically after the assembly steps. It seems that the HFF-QCM microsensor array 

suffered from a lot of mechanical stress due to the bonding of the OSTEMER microfluidic parts. Generally, the degradation is 

unavoidable when the QCM chip is packaged using the standard packaging methods that use the screw mounted clamping, 

which induce stress on the microsensor and dampen the oscillation [27, 28]. It was recently reported by Sandstrom et al [29] 

that the use of the OSTEMER polymer as packaging of the QCM sensor presented less damping in the QCM and a high Q-

factor. The OSTEMER part covalently bonded, i.e. not featuring externally applied clamping forces on the QCM, does not 

induce a lot of stress on the crystal and does not dampen the oscillation [24]. However, according to our results, something 

happened during the bonding steps. As we can see in Fig. 10, the fundamental frequency of the microsensor that is measured 

is slightly shifted (from 150MHz to 148.3 MHz) where can be explained by the fact that the resonance is disturbed by the 

addition of a small mass deposited on the surface of the acoustic resonator.  

Fig. 11 shows a Field Emission Scanning Electron Microscope (FESEM) (ULTRA 55 ZEISS, Germany) characterizations of 

one of the microsensor (gold electrode) on the array before and after the bonding steps. 

The FESEM recompositional analysis is summarized in Table 3. 

 

According to the results, one can see that the gold electrode has been contaminated during the bonding steps (Fig. 11). Error! 

Reference source not found. reveals carbon as well as oxygen contamination adsorbed on the electrode surface. As the 

bonding steps have been provided in the clean room, and as no surface preparation has been used before the bonding steps, the 

results suggest that the contamination comes from the OSTEMER microfluidic part. It seems that during the bonding of the 

OSTEMER microfluidic part on top of the assembled ” PCB + Microsensor array ”, a small and thin OSTEMER wire (appeared 

when the OSTEMER part had been peeled from the PDMS mold) has been adsorbed on the gold surface of the microsensors 

(Fig. 11-middle). After a full polymerization of the OSTEMER polymer, an OSTEMER agglomeration was formed on the gold 

electrode (Fig. 11-bottom). 

The contaminated assembly ”PCB + Microsensor array” with the OSTEMER leveling layer has been cleaned by using UV 

Ozone Cleaner (BioForce Nanosciences Inc., Chicago, IL, USA) for 10 min, rinsed with 99 (%) ethanol, rinsed with DI water, 

dried with Nitrogen gas, and then treated for a second time with UV/ozone for 10 min. It is worth noting that the OSTEMER 

is not affected by the use of the UV Ozone cleaner (optical microscope observation). 

A high Q-factor has been recorded using the network analyzer, which is 11 times higher than the Q value before the cleaning 

step. For the microsensor measured in Fig. 10, the Q-factor is 9510 instead of 975.12 before the cleaning. The average Q-factor 

value of the 24 microsensors in the array after cleaning in the air is 9507.21. In DI water, a Q-factor value of 650 was measured 

after the cleaning instead of 105.56 before the cleaning. 

As one can observe, the Q-factor value in DI water is reduced only by a factor of 1.5 (650 in water instead of 9510 in air). This 

fact can be explained if the penetration depth of the acoustic wave in the liquid medium is considered. As the resonance 

frequency becomes higher (150 MHz in our case), the penetration depth decreases together with the energy losses due to the 

liquid [30, 31]. 

Conclusions 

We have successfully demonstrated a heterogeneous and easy integration approach, with a minimal number of parts and 

assembly steps, for the fabrication and the integration of the OSTEMER cartridge part onto the PCBs. A high fundamental 

frequency microsensors array has been used to validate our integrated approach. The resulting cartridges presented a good 

liquid sealing and a high Q-factor value. Q-factor values of 9510 and 650 have been measured by using a network analyser in 

air and water respectively. The results shew that the integrated HFF-QCM microsensors arrays are suitable for chemical, and 

biosensors applications in liquids. Furthermore, our integration approach is a promising way to integrate microfluidics into the 

more complex heterogeneous system. 
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Fig. 1: Top view of the microfluidic cartridge on the PCB. 

 

 

 

 

 

 

 

 

Fig. 2: 3D schematics of the integrated OSTEMER layers on the assembled”PCB + Microsensor array”. 
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Fig. 3: Image of the HFF-QCM microsensor array mounted over the PCB using a conductive epoxy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Photography images of PDMS molds peeling off from the Al mold inserts fabricated using the micromachining technique. Top image: 

Al mold and PDMS mold used to manufacture the leveling layer; Bottom image: Al mold and PDMS mold used to make the microfluidic 

part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Schematic illustration of the process to manufacture the OSTEMER leveling layer and the microfluidic part (1 & 2), and to make the 

complete cartridge trough the bonding of the fluidic assembly (3) into the assembled ”PCB + Microsensor array” (4). 
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Fig. 6: Assembled system including the closed OSTEMER microfluidic system and the assembled”PCB + Microsensor array”. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: The experimental setup of the pressure test. 

 

 

 

 

 

 

 

 

 

Fig. 8: The experimental setup of the leakage test. 
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Fig. 9: Leakage test results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Admittance Spectrum ((real (G) and imaginary (B) parts) of one microsensor in the assembled cartridge in air and DI water. 
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Fig. 11: FESEM Characterization of one microsensor in the cartridge. Top image: microsensor without OSTEMER; Middle image: 

microsensor with OSTEMER part (UV + RT 40h); Bottom image: microsensor with OSTEMER part (UV + 1h at 110 °C). 

 

Table 1: Parameters pressure test and the results. 

T(C) Time (h) Pressure measured (bar) 

R.T 40 

Ostemer/PCB 
4 

Ostemer/Quartz 
4 

Ostemer/Ostemer 
4 

36 - 48 24 

70 3 

110 1 

 

 

Table 2: Dielectric parameters of the cartridge components. 

 PCB Quartz OSTEMER 

Dielectric constant  4.11 3.78 2 2.8 3 

1: https://speedingedge.com/PDF-Files/tutorial.pdf 
2: https://hypertextbook.com/facts/2008/JeffreyWong.shtml 

3: Polymer data handbook 

Table 3: FESEM compositional analysis of microsensor with and without OSTEMER fluidic part 

Image 11 
Element concentration (%) 

Au C O Si 

Top: area 19 97.8 0.72 0.64 0.86 

Middle: area 6 85.42 8 5.1 1.4 

Bottom: area 4 0 16 21 18 
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