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ABSTRACT Most of the road transportation currently depends on fossil fuels, which result in significant
environmental and health issues. This is being addressed with the deployment of electric vehicles. However,
a massive penetration will lead to new technical and economic challenges for power systems. This paper
proposes a novel way to account for the effect of this new load and to minimize the negative impacts by
providing new tools for the agent responsible of managing the EV charge in some area (EV aggregator).
The proposed method allows EV charging at the lowest cost while complying with technical constraints
required by Distribution System Operator (DSO) and Transmission System Operator (TSO). Moreover, EV
users are able to choose among different customer choice products (CCPs) that meets their needs in terms
of charging time. A case study in the city of Quito (Ecuador) is analyzed in the paper where the advantages
of the proposed coordinated charging method are quantified. The model presents cost benefits compared
to uncoordinated charging while complying with technical constraints. Additionally, the savings using the
presented model are at least 5% higher than uncoordinated charging, and can reach more than 50% at best.

INDEX TERMS Electric Vehicle, Smart Grid, Smart Charging, User Preference, Flexibility

Nomenclature
Indices
i EV user index
k Time step
x CCP index: G for green, B for blue, R for red
y Scenario
Parameters
η EV charging efficiency (%)
P res Maximum residential load (kW)
PEV,O
k Operator load constraint at step k (kW)
πk Cost of electricity at the step k ($/kWh)
Ereq Minimum required energy (kWh)
Bci Nominal battery capacity of vehicle i (kWh)
D Number of time intervals in a day
Ereq

i Energy required from EV i (kWh)
Nx Number of EVs participating in x CCP
P cri Critical Power (kW)
P x,av Average charging power for x CCP (kW)
Pk,i Load of an EV i at step k (kW)
sti Starting charging time of EV i

Sets
T Set of time intervals in a day
Ui Set of time intervals of a vehicle i that corresponds

to charging period
Variables
∆Ei Energy variation between each step time of EV i

(kWh)
∆Sx

y−3 Daily cost difference percentage for x CCP from y
scenario to third scenario ($)

P ch Maximum charging power rate for an EV (kW)
PEV,tot
k Maximum EV Power Constraint at step k (kW)
Cx Daily Cost of all x CCP EV users ($)
CEV Daily costs for all EV users ($)
Cx,y Daily Cost of x CCP in scenario y ($)
Cp Penalty cost if the aggregator overpass operator

charging pattern ($)
Ek,i Energy stored in the EV battery at the step k (kWh)
P x,av Average power consumption for a x CCP (kW)
P x
k Total power consumed by cars participating in x

CCP at step k (kW)
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PEV
k Total EV load at step k (kW)
P res,tot
k Total residential load at step k (kW)
SOCk,i State of charge of vehicle i at step k (%)
T x
i Duration of charge for vehicle i participating in x

CCP (h)

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND

CONCERNS about global warming, depletion of fossil
fuel reserves, and health issues have pushed govern-

ments to think about new alternatives in the conventional
transportation sector. Over the past years, electric vehicles
(EVs) have been promoted to address some of these issues.
EVs are less noisy, more efficient and generates lower CO2

emissions than internal combustion engine propelled vehicles
[1].

There are three EV power level types [2]. Levels 1 and 2,
often called "slow charging", usually correspond to residen-
tial use and Level 3 for commercial use. Car manufacturers
recommend Level 3 use only as "urgent charging" because
this method of charging reduces the battery life [3]. In fact,
Level 3 operates at high power, which results in higher stress
and more mechanical damage to the active material inside
the battery. As such, Level 3 charging leads to faster battery
performance degradation [4], [5]. Hence, EV users mostly
use slow charging levels.

The share of EVs in the car fleet is nowadays minimal,
but it is expected that it will significantly increase due to the
promotion of EVs, such as governments incentives. Never-
theless, a massive introduction of EVs into the electric grid
could cause many problems, which include distribution sys-
tem losses [6], [7], placement of charging infrastructures [8],
important increment of distribution network investments [9],
power transformers’ loss of life [10], and peak load increase
[11]. These problems result from uncoordinated charging.

Thus, some works have been proposed for the coordinated
charging of EVs, which have different objectives that include
minimization of distribution losses [6], [12], peak shaving
and valley filling [13], [14], ancillary services [15], [16],
smart charger applications [17], [18], EV integration in Smart
Homes [19], and EV charging stations allocation [20]. So far,
fewer works have studied charging costs minimization.

To manage geographically dispersed EVs and to allevi-
ate distribution and transmission operator functions, a new
electricity entity is proposed: the EV Aggregator. In [21], it
is presented the contribution of a vehicle aggregation that
consists of a consolidation of the batteries of the EVs as
an appropriate size load and provides an interface with the
independent system operator or regional transmission orga-
nization. Several authors have considered this new player as
the focus of their works [22]–[26].

All these methodologies for the EV integration into the
grid could result efficient in the grid performance. Never-
theless, the EV charging management is mostly based on
schedules or EV load shifting, which can discourage the car
users to buy EVs instead of internal combustion vehicles.

As indicated in [27], users can have strong reactions to
technologies and inhibit their implementation. It is crucial
to offer EV users different alternatives for the EV charging,
considering their preferences. Hence, this is one goal of this
work.

B. RELATED WORK
Related work of this paper is divided into two parts. In the
first part, an overview of the main works related to charging
cost minimization is described. Then, some of the works that
have considered user preferences are described.

1) Charging cost Minimization
The following works have addressed the problem of defining
methodologies for minimizing the EV charging costs.

In [29], it was proposed that an EV aggregator mini-
mizes a time-varying electricity price, based on the case
of the Netherlands. The authors of [30] presented optimal-
cost scheduling of EV charging stations, considering the
uncertainties of renewable energy generation; however, they
consider the problem of a charging station and not a main
grid. In [31], a hierarchical model for coordinated charging is
presented, which consists of three levels, and it was applied
to case studies in China. The authors of [32] proposed four
charging methods to maximize battery charging speed while
minimizing electricity cost. In [33], a decentralized charging
control is studied, where a load aggregator optimizes the
charging of a plug-in EV fleet, considering price-based sig-
nals. The authors of [34] have modeled the charging problem
as a Markov decision process to reduce the charging costs;
however, the approach does not consider the participation of
an EV aggregator, which can interact with the DSO and TSO
taking into account their technical constraints.

These methodologies are useful to minimize charging
costs, but users’ preferences are not significantly considered,
which can create a barrier for users to adopt EVs.

2) EV users’ Preferences
Only a few works have considered the EV users’ preferences
in their methodologies, which are shown below.

In [35], a charging methodology is presented that jointly
optimizes pricing, scheduling, and admission control of an
EV charging station, based on a multi-sub-process admission
control scheme. This work considers to reduce the excessive
waiting time (time between the arrival and that the EV
receives service) for EV users; however, even if this waiting
time is minimal, it can negatively impact on EV user expe-
rience, and this work only considers the case of a charging
station.

The authors of [36] proposed an EV charging tariff to
incentivize EV users’ provision of load flexibilities; but,
these tariffs only considered the flexibilities for load-shifting
techniques.

In [37], a decentralized PEV charging selection algorithm
was studied to maximize user convenience, while respecting
predefined circuit-level load limits. The authors of [38] have
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proposed a distributed algorithm to coordinate charging of
PEVs, maximizing user convenience subject to the con-
straints imposed by the power utility. In [39] an interactive
charging management system for EV charging is investi-
gated, guarantying EV users’ preferences. Although user
convenience was maximized, these works did not consider
the EV charging costs. To overcome this drawback, reference
[40] presented a bi-objective optimization based on charging
costs minimization and maximizing user convenience; how-
ever, the problem was only addressed in a microgrid scale
and considered that all the EV users have the same waiting
behavior.

C. MAIN CONTRIBUTIONS AND OUTLINE
The aim of this paper is to present a novel methodology for
an EV aggregator, which will adjust slow charging power
to fulfill technical constraints imposed by network operators
while EVs are charged at the lowest cost. In this vein, EV
users could select among different customer choice products
(CCPs) depending on their time flexibility. This paper is
an extension of an earlier conference [28], which has been
significantly refined. The innovative contributions of the pro-
posed method are highlighted as follows:

• EV users would have the possibility of selecting a CCP
(before starting the charging process) depending on
their time flexibility, and this will avoid some typical
management problems such as unexpected interruptions
of the charging process or waiting for a long time before
driving. The charging method consists of modulating
the charging power rate, which will be remotely con-
trolled by an EV aggregator taking into account the
electricity prices and technical constraints.

• An interaction is proposed between the EV aggregator
and the Distribution System Operator (DSO) and the
Transmission System Operator (TSO), which will avoid
technical problems in the electricity network while the
charging costs are optimized.

• Different user behaviors will be considered to simulate
their charging patterns provided by EV chargers when
an EV is plugged such as State of Charge (SOC),
starting charging time and waiting time. This model can
be adjusted to any electricity network, independently
of the country in which it may be located, and even
if the demand conditions, electricity prices, and users
behavior are different from the case study presented in
this paper.

The rest of the paper is organized as follows: Section
II discusses the smart charging methodology considering
EV users’ preferences. Then, the case study is presented in
Section III. Section IV validates the methodology, based on
the results and discussion. Finally, Section V highlights the
main conclusions and contributions of the paper.

II. SMART CHARGING METHODOLOGY CONSIDERING
EV USERS’ PREFERENCES

A. EV AGGREGATOR FOR SYSTEM OPERATION
DSO and TSO may have troubles in the future due to the
presence of EVs uncoordinated charging. In addition, resi-
dential load patterns could have significant changes from day
to day. DSO and TSO have to manage all these problems
using all the available resources. The EV aggregator becomes
a mandatory partner that provides technical services to the
DSO and TSO. The EV aggregator will act as an intermediate
agent among operators, who will probably use market mech-
anisms to get the necessary resources and EVs consumers.

This agent will provide flexible demand packages that
can be offered to grid managers and other interested agents.
This flexible potential will be provided by the EV users by
charging power modulation facilities. The EV aggregator will
offer its services to TSO and DSO for grid operations and
possibly to other electricity partners to optimize their buying
energy portfolio.

In a future scenario, TSO and DSO will probably have,
in their operation area besides the EV aggregators, Demand
Response aggregators that will manage flexible load from
residential, commercial and industrial customers. In this
paper, this load will be considered as a non-flexible load,
and TSO and DSO will interact with this new EV aggre-
gator and with other aggregators to solve daily technical
problems as peak or valley loads. This EV aggregator will
compensate this non-flexible load with the EV charging load
when flexible. Consequently, the aggregator will modulate
the EV charging curve in order not to exceed the maximum
available power for EV charging at any moment of the day
determined by network operating requirements (Distribution
and Transmission). The EV aggregator will be economically
benefited in case it complies (not overpass) this “Maximum
EV Load Profile”.

It is assumed in the proposed methodology that system
operators will provide the EV aggregator with this profile as
well as the associated economic conditions.

B. EV USERS OPTIONS
As stated before, people may hesitate to adopt the previous
EV charging strategies because charging conditions are not
in accordance with their time flexibility. It is clear from
EV aggregator’s point of view that it is better to charge the
EVs when the price is cheapest, but it is not in accordance
with user preferences. It is assumed that the EV aggregator
will use charging power modulation, between 0 kW and the
maximum charging power from EV charger in slow charging
mode. Moreover, some users could wait for a long time
before having their EV completely charged and others would
need their EV quickly charged if they pay an extra fee.
Some of the works presented before considered that all users
have the same charging behavior. In that way, it is crucial to
consider all these different EV charging preferences. Hence,
in this methodology, customer choice products (CCPs) are
proposed for charging EVs. They are defined as different
electricity pricing for charging EVs, which will be coordi-
nated by the EV aggregator. They differ from a tariff because
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it is the EV aggregator which fix the pricing and not the
electricity regulator. For the methodology, three CCPs are
proposed, but this number could be modified depending on
users and grid conditions. The CCPs are associated with an
average charging power rate related to the total duration of
charging. In this case, the EV user must select one CCP be-
fore starting the charging process. The number of CCPs and
their characteristics (e.g., average charging power rate) could
be modified according to user’s preferences from different
countries where they are applied. For this methodology, it
is considered that there will be installed smart chargers that
allow EV users to know the end time of a specific charging.
The Smart Chargers are currently in research development,
but it is expected that they will have a screen for showing
various pieces of information to users such as energy deliv-
ered, remaining time, charging power rate. They will be able
to communicate this information to the utilities and the EV
aggregator. The EV aggregator will be able to make decisions
concerning the charging of all the EVs in an area, so remote
controlling is also needed. When a user plugs its EV, the
duration for each CCP will be calculated and showed in the
display as well as the associated average electricity price.
After that, the EV user will be able to select one of them
according to his needs, but he must consider that if he stops
the charging process before ending the selected charging
period, there is no guarantee to achieve the selected charge
level. The CCPs proposed are defined as green, blue and red.

The CCPs proposed by the authors are defined as:

• Green CCP: it is the cheapest CCP. The user is com-
mitted to let the EV aggregator modulate its charging
power rate, depending on electricity markets conditions.
It means that when the electricity is more expensive,
charging power could be adjusted to zero, but when
the electricity is cheaper, it could be adjusted to the
maximum power rate that is 7.2 kW. Its charging du-
ration will be the longest because the average charging
power will be the lowest. For an EV user i who selects
this CCP, his charging duration T i

G will depend on his
energy required Ei

req and the average charging power
rate PG,av from the green CCP.

• Blue CCP: it is a more expensive CCP than the green.
In the same way, the user is committed to let the EV
aggregator modulate its charging power rate. Its dura-
tion time T i

B will be shorter than the green because its
average charging power PB,av will be higher.

• Red CCP: it is the most expensive CCP. The user will
have to pay the highest price for the energy required,
but he can constantly charge at the maximum charging
power that is established in 7.2 kW. This CCP is de-
signed for users that need their cars ready as soon as
possible and are willing to pay a high price for that.
These users will prefer to charge at work or home in
order not to charge in a fast charging station.

The charging duration of an EV i from each xCCP is defined:

T x
i =

Ereq
i

P x,av
(1)

Figure 1 represents the architecture scheme associated
with the proposed methodology.

FIGURE 1: Methodology System Architecture.

C. EV USERS REQUIREMENTS
EV users have different behaviors, so it is hard to forecast the
daily EV load curve. These behaviors depends on different
parameters such as starting charging time, end charging time,
charging power rate, vehicle’s battery type, and SOC, among
others. To address these uncertainties, the EV aggregator
needs to know the different data related to the charging
process of all EVs. For this purpose, it is crucial that the EV
users, or parking lots, that participate in the proposed energy
management program install smart meters to communicate
this data with the EV aggregator, such as the one presented
in [41]. In this paper, the data is assumed to be gathered in
real time. Moreover, the EV aggregator has to predict the
overall EV load curve each day, based on techniques such
as presented in [42], [43].

On a day, it is considered D discrete time intervals (15
minutes). The set of time intervals are defined:

T = {1, 2, ... . . , D} (2)

For each EV i, it is considered a plug time Ui ∈ T , which
is the set of sample times between starting charging time and
the time at which the charging process is completed.

The power consumed by all EVs and managed by the EV
aggregator at each step time k PEV

k is, the sum of the overall
power consumed by EV users of green CCP PG

k , blue CCP
PB
k and red CCP PR

k :

PEV
k = PG

k + PB
k + PR

k ,∀k ∈ T (3)

Moreover, the total load corresponding to the charging of
EVs from each x CCP are defined:

P x
k =

Nx∑
i=1

P x
k,i (4)
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Thus:

PEV
k =

NG∑
i=1

PG
k,i +

NB∑
i=1

PB
k,i +

NR∑
i=1

PR
k,i,∀k ∈ T (5)

The energy stored in a EV battery i will depend on the last
value and on the power delivered Pk,i on each step time ∆T .
It is calculated as:

Ek+1,i = Ek,i + η.Pk,i.∆T = Ek,i + ∆Ei (6)

The total energy dispatched in a day to all EVs participat-
ing in an x CCP is defined as:

Ex,tot =
D∑

k=1

P x
k .∆T (7)

The total energy dispatched in a day to all EVs is defined
as:

EEV,tot =
k=D∑
k=1

(PG
k + PB

k + PR
k ).∆T (8)

The SOC (%) also depends on the last value and on the
difference between the energy ∆Ei and the capacity of the
battery Bci. It is calculated as:

SOCk+1,i = SOCk,i +
∆Ei

Bci
(9)

D. EV AGGREGATOR COSTS
The EV aggregator has to pay the electricity that it supplies to
their customers (EV users). Additionally, the EV aggregator
has a compromise to respect DSO and TSO conditions. In
case it is not possible, for example for the excess demand of
EV users, the EV aggregator has to pay a penalty cost that is
assumed as five times the price, as per [44].

In that way, the EV aggregator costs can be defined as:

CEV = Cp +
k=D∑
k=1

πk.(P
G
k + PB

k + PR
k ) (10)

The first term corresponds to the possible penalty cost and
the second to the electricity price.

E. PROBLEM FORMULATION
The interest for the EV aggregator is to minimize the charg-
ing costs.

Let’s suppose PG
k , PB

k , and PR
k the vectors of decision

variables for green, blue and red CCPs, at a step k they are
defined based on the number of EV users they have.

PG
k =


PG
k,1

PG
k,2

...
PG
k,NG



PB
k =


PB
k,1

PB
k,2

...
PB
k,NB



PR
k =


PR
k,1

PR
k,2

...
PR
k,NR


In this way, the problem is formulated as:

min CEV = min(Cp +
D∑

k=1

π[k].(PG
k + PB

k + PR
k ) (11)

The problem depends on the next constraints:
• Minimum and Maximum Power: The charging power

rate from each user will vary from zero to a maximum
value in slow charging, which is 7.2 kW, depending on
grid conditions. This constraint is defined as:

0 < Pk,i < P ch ∀k ∈ T (12)

• When a user plugs its EV i to the charger, he selects
the energy required for its EV Ereq

i (depending if he
wants to fully charge or partly charge his battery). It
is assumed that the charger will indicate the SOC. The
EV aggregator has to dispatch all this energy needed.
Prior to this, the EV user has to select a CCP, and he
will receive the information about the charging duration
as specified in equation (1). It is necessary that the
user leaves its EV plugged the time Ui. More than
one charging a day could be considered for a user, for
example at work and home, but in every case, EV users
have to specify the energy they need. This constraint is
defined as:

Ereq
i =

D∑
k=1

Pk,i.∆T ∀k ∈ Ui (13)

• Operator charging pattern: total charging power from all
EV users will not have to exceed limits imposed by the
DSO and TSO. This constraint is defined by generation,
transmission and distribution conditions. In case that the
problem has no solution, the EV aggregator will have to
pay a penalty to the DSO and TSO and not disconnect
EV. This is in order to respect EV users’ preferences.
This condition is defined as:

0 < PG
k + PB

k + PR
k < PEV,O

k ∀k ∈ T (14)

This problem can be solved by a linear optimization.
The problem formulation assumed a simplified battery

charging model since the SOC cannot be measured directly.
In real life, the battery charge will have some estimation devi-
ations. Nevertheless, for massive electric vehicle simulations
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in a grid level, the model is able to grant accurate and credible
results. Furthermore, in the future, the EV Aggregator has to
consider advanced SOC estimators to avoid these sensitivity
errors in individual cars, such as presented in [45].

F. IMPLEMENTATION
• One day prior to the scheduled charging, the EV aggre-

gator receives from the electricity market the predictions
related to the electricity prices of that day.

• At the beginning of the day, it has to take into account
all charging processes that are still in progress. This is a
result available from the optimization performed for this
day.

• At the beginning of every time interval, the EV aggre-
gator has to receive real-time information about new
cars plugged in. This will be done through smart meters
installed in the customer facilities, where the EV users
will have the information of the costs from the different
CCPs in real-time. If new cars are plugged, each smart
meter has to send the associated information to the EV
aggregator: SOC and CCP selected. The EV aggregator
will combine this received data with the actual and
short-term EV status, resulting from the last optimiza-
tion periods to calculate the maximum constraint for this
period that can be defined by either the maximum EV
total power required or the operator.

• After the maximum constraints are computed, an op-
timization process is performed to obtain a charging
profile for each EV taking into account the calculated
charging period Ui and the total power needed. As
a result, it will also be known the moment when an
EV will be charged entirely. The optimization process
will determine the new charging according to both the
network constraints and the committed charging in pre-
vious steps.

• This process will be repeated every time interval until
the end of the day. The optimization will consider that
the EV charging will continue in the next day if charging
starts late in the day, but this charging pattern has to
be considered as mentioned at the beginning of the new
day.

III. CASE STUDY
To illustrate this novel methodology for an EV aggregator,
the case study of the Distribution System of Quito, Ecuador
was selected, according to the Ecuadorean government will-
ingness to introduce EVs in the automobile market [46].
Furthermore, Quito was selected by the government as a pilot
city for the introduction of the EVs. The goal of the case
study is to demonstrate the technical and economic improve-
ments in the EV charging process for different scenarios.
The variables that are used in this optimization problem are
described in this section. The area of Quito selected for
the study is called Cristianía. Electricity is distributed by
Empresa Eléctrica Quito (EEQ) in Quito, which belongs to
the Ecuadorian public company CELEC EP. A distribution

feeder of the EEQ has been selected to evaluate the proposed
methodology. This feeder was chosen because it presents
overloading several times a day, so it is suitable to evaluate
the management of a new significant load.

A. CHARGING SCENARIOS
Three scenarios will be considered, considering the type of
charging:

1. Uncoordinated charging at maximum power: this sce-
nario assumes that EV users start charging their EV imme-
diately when plugged in at maximum charging power rate,
for having their EVs charged in the shortest possible time. It
reflects the worst case in term of power demand.

2. Uncoordinated charging at average power: this scenario
assumes that EV users also start charging their EV immedi-
ately when plugged in, but fairly limiting the power demand.
This technique is often used by distribution companies to
mitigate the effects of high power demand from EVs. EV
users will charge their EV at a constant power corresponding
to the value of the average charging power rate from each
CCP. In this case, the EV users are grouped into different
CCPs. Hence, the power Pk,i is constant for each step time
and the energy of an EV i becomes:

Ereq
i =

D∑
k=1

Pk,i.∆T = Px,av.
D∑

k=1

∆T = Px,av.∆T.D

(15)
3. Proposed Smart Charging with charging power rate

modulation: the number of users from each CCP is the same
that previous case, but charging power rate from each user
will vary between zero to 7.2 kW, to optimize power deliv-
ered depending on prices and grid conditions. Nevertheless,
the energy required will be delivered to EV users and at the
same time established that previous scenario. This means
that in these two last scenarios, it will be the same average
charging power, depending on CCP selected.

To address the uncertainties of possible EV penetration
levels, simulations will be performed for each scenario con-
sidering EV penetration levels of 50%, 75%, and 100%.

B. EV INPUT VARIABLES
1) Number of EVs of each CCP
In a previous work [47], it was concluded that the number of
vehicles of this zone was nearly 1000. This value is assumed
as the total number of vehicles.

For the evaluation of the case study, the portions of the
green, blue and red CCPs are assumed respectively as 60%,
30% and 10% in this study. Table 1 describes the number of
vehicles for each penetration level of EV.

2) Starting charging time
From studies about road traffic in Quito, and working con-
ditions starting charging time is considered by the following
way [48], [49]:
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TABLE 1: Number of vehicles from each CCP depending on
penetration level.

Penetration Level NG NB NR

50% 300 150 50
75% 450 225 75
100% 600 300 100

• 20% of EV users who participate in the program plug
their EV at work between 07h00 and 10h30.

• 40 % of EV users who participate in the program plug
their EV at home, after returning from work between
16h00 and 21h00.

• The rest of EV users who participate in the program plug
their EV in different periods of the day (shops, home,
work, etc).

In order to create starting charging time profiles, uniform
random numbers were generated according to these sched-
ules. For each vehicle, a starting hour sti is assigned. The
histogram corresponding to the starting charging time of EV
users in a day is represented in Figure 2.

FIGURE 2: Histogram of the starting charging time of EV
users in a day in the selected zone in Quito.

3) Daily energy needed from each EV
It is expected that different types of EVs (brands and models)
will soon be seen on roads all over Ecuador. Some of them are
Nissan Leaf, BYD e5, BYD e6 and Kia Soul EV. These EVs
have different battery capacities from 24 kWh to 75 kWh.
Thus, it is more valuable to consider in the calculation the
daily energy consumed by each EV user than the battery
capacities of each EV. According to several studies, it is
considered that near half of the people drive less than 50 km a
day [50], [51]. In [52], it is verified that in ideal circumstances
of traffic EV drivers do 8,19 km/kWh in Quito, which means
0.122 kWh/km. Considering a system energy efficiency of
η=0.85%, it is concluded that 0.144 kWh of grid electricity
will be consumed per kilometer driven. A frequency curve
about electricity consumption for 100 km is shown in [53].
For this study, it is assumed that different levels of energy
are going to follow the pattern of this probability curve, but
considering last average value. Moreover, it is established
that EV users must charge at least 4 kWh to participate in

TABLE 2: Average power for each CCP.

CCP Green Blue Red
Px,av (kW) 1.5 2.5 7.2

this EV aggregator program. It is considered that the more
suitable curve is Weibull density probability, from where
random values will be selected. This curve is defined as:

f(θ; a, b, c) =
b

a
.(
θ + c

a
)b−1.e−( θ+ca )b (16)

The charging needs may vary from 4 kWh to 28 kWh, but
with more values between 6 and 10 kWh, these are the most
common quantity of energy required [51]. This curve allows
having different values of energy required by the user, which
differs significantly. It has to be noted that models such as
BYD e6 have a battery capacity of 60 kWh, but EV users that
require more than 28 kWh are ignored in the simulation. Note
that these parameters are also selected with the conditions
of the case of the behavior of people from Quito, but this
curve could differ importantly in other places. So, the values
for the parameters selected are: a=7,5;b=1,5;c=4. The density
probability curve is depicted in Figure 3.

FIGURE 3: Probability Density Curve of Energy required by
EV user.

The Energy required from EV users Ereq
i is a random

number from this distribution.
From this way, each set of time intervals Ui that corre-

spond to charging period of an EV i is defined by:

Ui =

[
sti; sti +

Ereq
i

P av

]
(17)

C. CCPS AVERAGE CHARGING POWER
Each EV user has to select a CCP depending on the average
charging power defined as in Table 2. As mentioned before,
slow charging can vary from zero to 7.2 kW. Red CCP is
selected as the maximum value, and for the other two CCPs,
small values are selected in order to have a good time to
optimize the charging process.

Observe that EV users who select red CCP will have their
charging power rate constant and established at its maximum
value. There will not be an optimization for this case. Red
CCP users are committed to paying a high price to this end.

VOLUME 4, 2016 7



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872725, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

D. MAXIMUM OPERATOR POWER PATTERN
The function of this constraint can be defined as:

PEV,O
k = P cri − P res,tot

k (18)

It is assumed P cri=P res*1.05.
A critical power P cri is considered that is 5% higher than

the maximum value of the residential load. This considera-
tion was done because the feeder has reactive energy com-
pensation, and the limit of the transformer can be determined
by this active power. The maximum operator power pattern
is represented in Figure 4.

FIGURE 4: Maximum operator power pattern.

Note that in the first hours of the day, the available power
is significant, but is limited in the last hours, when several EV
users plug their EVs.

E. ELECTRICITY PRICE CURVE
In Ecuador, the electricity sector is vertically integrated, so
there is no electricity wholesale market. There is a tariff
for each type of customer. These tariff rates are not linked
to the real costs of electricity generation, transmission, and
distribution in real time. In this way, in previous work [47],
the authors proposed a method to calculate the electricity
prices based on above-mentioned costs of generation, trans-
mission, and distribution. The electricity price curve of the
selected workday in Ecuador is represented in Figure 5. As
it can be observed in Figure 5, this curve has been selected
because it is a critical case where the electricity price curve is
relatively flat, reducing the potential economic savings, and
the cheapest period overlaps the strongest network operator’s
constraints. Observe that that during the first hours of the
morning (e.g., hours 8 to 9) the electricity price is at its
lowest. This is because most of the Ecuadorean are going to
work, so the electricity consumption in homes and offices is
very small. Since the electricity demand is low, the electricity
price is also low.

F. MODEL SIMULATION
The simulations were performed in Matlab R2016a, using the
"Optimization toolbox" for the linear optimizations. In this
way, based on the electricity prices that the EV aggregator
receives and the different EV users parameters, any day could
be simulated.

FIGURE 5: Proposed Electricity Price of June 9th 2014.

IV. RESULTS AND DISCUSSION
In order to demonstrate the performance of the proposed
methodology, the results of the EV load in the daily operation
are shown by comparing with the scenarios of uncoordinated
charging. Then, the EV load trends of each CCP are evalu-
ated. The daily costs of the EV aggregator for each scenario
are also studied.

A. DAILY OPERATION
Figure 6 illustrates the daily load from the different charging
scenarios, with 50 % EV penetration. EV smart charging is
compared to the first two scenarios, which are uncoordinated.
It is observed that scenarios 1 and 2 present a significant
EV load during the hours of the evening, which could create
overloading problems because the operator has not enough
power available for satisfying this load, especially if the
EV penetration level is higher. Furthermore, the EV load is
significant in time periods when the electricity is expensive.
Besides, scenario 2 curve has lower peak loads than scenario
1, which is normal because of the difference of charging
power rate used. Nevertheless, as mentioned before, it is not a
good solution to make the users charge their EV at minimum
charging power rate.

It should be noted that the EV load curve in scenario 3
(smart charging) presents high variations in comparison to
the curves of the two other scenarios, but it allows to flatten
the total load, which may decrease total load variance and
so the distribution losses according to [6]. Moreover, the
EV load significantly decreases when the available operator
power is small.

In Figure 7, the curves for EV charging in scenario 3
for different EV penetration levels are represented. Charging
load presents a high peak between hours 8 and 9, which
corresponds to the time when people charge their EV at work
and when the electricity is less expensive during these hours.
This peak may not create problems for the grid because the
operator constraint shows that the energy availability is high
enough, which means that the residential load is minimal and
so the EV load could flatten the total load curve. Moreover,
between 19h and 21h, the smart EV charging load is under
the minimum of operator constraint. This was not observed
in the previous scenarios with uncoordinated charging. Thus,
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FIGURE 6: EV Load comparison of the three scenarios with
50 % EV penetration.

the smart charging methodology satisfies the technical con-
straints.

FIGURE 7: Scenario 3: EV Load with different EV penetra-
tion levels.

B. CCP LOAD COMPARISON
The EV load corresponding to each CCP for the assumptions
considered is represented in Figure 8. Green CCP is the one
that presents the most critical variations in a day. Note that
a high peak is observed at midnight, which corresponds to a
time when the electricity is cheap. The red CCP presents a
similar pattern than the total EV load of the uncoordinated
scenarios, which could result detrimental for the grid if the
number of users who select this CCP is high.

FIGURE 8: EV load by CCP with 50% EV penetration.

TABLE 3: EV aggregator Costs by CCP and by scenario.

Scenario EV P. (%) CG($) CB($) CR ($) CEV ($)
1 50 241.2 117.79 39.33 398.32
1 75 483.19 282.53 59.93 825.65
1 100 894.16 472.17 76.60 1442.93
2 50 326.12 154.62 39.33 520.08
2 75 578.54 299.69 59.93 938.16
2 100 894.54 479.81 76.60 1450.95
3 50 213.51 111.75 39.33 364.67
3 75 321.03 184.55 59.93 565.51
3 100 427.23 254.78 76.60 758.61

C. EV AGGREGATOR COSTS BY SCENARIO
Daily costs of the aggregator from each scenario are resumed
for the day selected in Table 3. Is it observed that the largest
the EV penetration is, the more significant are the costs
of uncoordinated charging. Besides, two kinds of uncoor-
dinated charging have similar daily costs, which shows the
importance of having a smart charging. Note that the penalty
cost impacts the costs of uncoordinated charging, so the grid
could not be able to satisfy such uncoordinated EV load.

D. WEEK SAVING
To evaluate the methodology in a longer horizon and with
different input parameters (e.g., electricity price), simulations
were implemented for a week. The data of the EEQ from
the Monday, June 9th 2014, to the Friday, June 13th 2014
was used. For this analysis, penalties imposed by network
operators were considered. The weekend was not considered
in this analysis since the DSO and TSO do not present
technical difficulties in their operation because EV users
generally do not work. Note that the electricity price curve
differs from one day to another, as shown in Figure 9.

FIGURE 9: Electricity Price Curve of the days of the studied
week [47].

To evaluate the cost-effectiveness of the methodology, a
daily cost difference percentage was defined for green and
blue CCP, between first and third scenario, and between
second and third scenario. This parameter is evaluated based
on the cost Cx,y of x tariff and y scenario (y=1,2, and 3):

∆Sx
y−3 =

Cx,y − Cx,3

Cx,y
(19)

Figure 10 illustrates the cost difference percentage be-
tween scenario 1 and 3 in a week for different EV penetration
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levels, both for green and blue CCP. Observe that with
100% EV penetration, the maximum value for green CCP is
on Tuesday because on this day the electricity is the most
expensive during an extended period when the users plug
their EVs, as shown in Figure 9. Furthermore, with 100 %
EV penetration, the maximum value for blue CCP is on
Wednesday, because there is a short peak on the electricity
price in a period when several users plug their EV.

FIGURE 10: Cost difference percentage between scenario 1
and 3 (a) for green CCP; (b) for blue CCP

Figure 11 depicts the cost difference percentage between
scenarios 2 and 3 in a week of the for different EV penetration
levels, both for green and blue CCP. Note that with 100 %
EV penetration, the maximum value for green CCP is on
Wednesday, because the electricity price varies significantly
during this day. The maximum value for blue CCP is on
Wednesday because the electricity price also varies signifi-
cantly but in shorter periods.

Comparing to the two first scenarios, the smart charging
always presents more economic savings, even with 50% EV
penetration where there is no penalty cost because uncoor-
dinated charging EV load does not overpass the operator
constraint.

On the other hand, green CCP presents more savings than
the blue CCP, especially with low EV penetration levels.
Hence, it is crucial to consider strategies to incentive EV
users to adopt especially the green CCP.

The savings from scenario 1 and 2 to 3 are quite similar,
which shows that EV aggregator savings does not depend
on a constant power rate, but on its EV load modulation
throughout the day.

Finally, with the increase in EV penetration, savings of
smart charging also increase. This is because uncoordinated
charging overpass during long periods the operator constraint

FIGURE 11: Cost difference percentage between scenario 2
and 3 (a) for green CCP; (b) for blue CCP.

and the penalty costs make most of the price. Thus, the smart
charging methodology presents also economic benefits.

E. DISCUSSION
Particular technical challenges need to be considered to im-
plement the proposed methodology Several smart chargers
have to be installed at user’s homes, offices, and public
places; which creates challenges for research, logistics, and
economics.

Another technical challenge is the communication of all
the corresponding data from the EVs and the grid constraints,
which has to be fast, secure, and reliable. Without this, the EV
aggregator cannot correctly optimize the EVs charging.

Even though, the model presents several advantages re-
garding charging costs and grid technical constraints. Fur-
thermore, since the CCPs meet users’ needs in terms of
charging time, the methodology could be massively adopted.

V. CONCLUSION
A novel methodology of smart charging for EV aggregator
has been presented in this paper. The EV aggregator will
have to optimize power delivered to the EV battery through
charging power rate modulation in slow charging. The nov-
elty lies in consideration of three different CCPs that will be
suitable depending on EV user preferences. EV aggregator
will also consider technical specifications as a maximum
charging pattern given by the DSO and TSO.

Simulations of the proposed smart charging and two cases
of uncoordinated charging were performed under different
EV penetration levels considering data analysis from the city
of Quito, Ecuador. In the cases of uncoordinated charging, it
was considered a constant charging power rate, which was
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fixed at 7.2 kW in the first one (maximum slow charging
power) and the average power of the proposed EV CCPs in
the second one. The input data was taken from working times
and traffic conditions of studies from Quito to obtain proper
results. Moreover, the technical constraints were based on
real and actual data sets from previous studies.

The results show that with the smart charging, the EV
aggregator can have benefits comparing to two cases of un-
coordinated charging while respecting technical conditions.
The savings are at least 5 % and become significant when EV
penetration levels increase because of total EV uncoordinated
charging overpass technical operator constraint.

To address the variations of electricity prices from day to
day, a full week was simulated, comparing the two cases of
uncoordinated charging and smart charging. Results indicate
that an increase of the number of vehicles leads to a sig-
nificant increase of the benefits of the green smart charging
(reaching up to more than 50 % with 100% EV penetration),
which demonstrates the benefit of the methodology when the
penetration of EVs is important compared to the capacity of
the grid. The main drawbacks of this method are the technical
and economic challenges for implementing this methodology
in a real infrastructure.
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