
An Android application for
crowdsourcing 3G user

experience

Ingenieŕıa en Informática
Universitat Politècnica de València

Author:
Miquel Mart́ınez Raga

Supervisor:
Dr. Juan Carlos Ruiz Garćıa

September, 2011

Abstract

This report is composed by a project splited in two parts, a practical part
and a research one. The first part of the project was done in Valencia (Spain)
under the supervision of the company NUBESIS. We developed an Android
application that is the mobile application for a website developed by the
same company.

We describe the problems we had while developing the application and the
way we solved them. We will explain the different processes that take place
in the application and how these processes are integrated in the application’s
functionality, we also talk about the user’s interaction with the different
screens and their behavior.

The second part of the project is planned as a research project to improve the
connectivity problem that can appear in the first application. This part was
done in Sydney (Australia) in cooperation with the University of New South
Wales (UNSW) and under the supervision of Professor Mahbub Hassan.

In this part we discuss the design and implementation of Android based
3G/HSDPA network bandwidth measurement mobile application. This ap-
plication acts as a mobile sensor in a crowd sourcing system.

We use a network link bandwidth estimation technique called packet pair
probing, which can easily be implemented on a mobile platform and we also
justify why we have chose the specific methodology after reviewing the re-
lated literature. We also propose a measurement initiation process with the
Measurement Server which allows the packet pair probing technique to re-
flect an accurate download bandwidth on the measurement.

We have calibrated and fine-tune the measurement tool so it can contribute
optimally to the crowd sourcing system by addressing issues such as usabil-
ity, data consumption and power consumption. We include geo tags in each

I

measurement we take and discuss the implementation issues addressed in the
project. Finally, we introduce an algorithm which measures the download
bandwidth in a timely fashion.

We study the behaviour of the measurements by changing parameters such
as packet size and packet train length. The results obtained were evaluated
by comparing them to a reliable commercial bandwidth estimation tool un-
der the same environment. Given these results we conducted a number of
hypothesis tests where we used the T-statistic as the test statistic under the
null hypothesis.

II

Acknowledgments

It has been a great experience for me to write part of my final project at the
Universidad Politécnica de Valencia (UPV) while doing a work placement
for the company NUBESIS, and of course it has been amazing to write the
other part at the School of Computer Science and Engineering (CSE) at the
University of New Sout Wales (UNSW). I would not have been able to com-
plete this project without the support and encouragement of many people. I
would like to take this chance to thank all of them.

I would like to thank in first place the company NUBESIS for giving me
such a great opportunity of working with them, specially to Javier de la
Cueva Orts for all the meetings and all the support and comprehension that
he offered me since I know him. I think he is a great person and a really
hard worker.

In second place I would like express my gratitude to Juan Carlos Ruiz Garćıa,
my supervisor at the UPV. Juan Carlos has been very supportive and he in-
spired me to go to Australia to do part of my final project. He is an incredible
mentor and an extraordinary person, without him none of this would have
ever been possible, he is a role model to me.

I would like to thank Professor Mahbub Hassan too, he gave me the oppor-
tunity to collaborate in his project and also for all the resources he provided
me. Mahbub has given me insightful advice, constant support, patient guid-
ance and inspiring ideas on the way to proceed in my project. He is a great
man and an even greater mentor. His influence has been key to seeing out
the successful completion of this project.

And of course, I would like to thank my co-supervisor Dr. Salil S. Kanhere
for being so helpful and patient with me. Salil offered me good guidance and
support through insightful suggestions and at times contructive critism that
opened new avenues to explore and streamlining my research throught. He

III

has shared with me his knowledge and ideas and for this I am greatful. Salil
is a great person and I’m very happy to have had the chance to colaborate
with him.

I would like to thank also to my colleague Thilanka Panthie who is colaborat-
ing with me on this project. Thilanka has been very supportive and patient
with me during the duration of this project. His knowledge and willingness to
help have proved to be instrumental in the timely completion of this project.

Last but not least, I am very thankful to my family for their support and
their unconditional love. Without their constant support and encouragement
on many a night when the goal did not seem attainable, I would not have
been able to complete this project. This report is dedicated to my parents,
Miguel Mart́ınez and Elvira Raga, they have been very helpful and they have
always beleived in me. Thank you very much. I also would like to thank my
girlfriend, Miriam Panero, who has made such tremendous efforts during
these months and has given me a lot of strength to keep working in hard
times. Miriam, I’m very lucky to have you in my life.

IV

Contents

Abstract I

Acknowledgements III

1 Introduction 1
1.1 Report Description . 1
1.2 Android . 2

1.2.1 Justifying the system 2
1.2.2 Android system . 3
1.2.3 Android Activity . 5

1.3 Cloud Computing . 6
1.3.1 Description . 6
1.3.2 History . 7

1.4 Report organization . 7

2 Related work 10
2.1 Introduction . 10

2.1.1 Pathrate . 10
2.1.2 Cap Probe . 11

2.2 Mobile applications . 12
2.2.1 Speedtest.net mobile 12

2.3 What we have learn from the Related Work 13

3 PideCita Application 14
3.1 Introduction . 14
3.2 Certificates and security . 14

3.2.1 Definition of the problem 14
3.2.2 Preparing the certificate 15
3.2.3 Authenticating the request 17

3.3 Methods and classes . 20
3.3.1 Classes . 20

V

3.3.2 Methods . 22
3.4 Google Maps use . 23

3.4.1 Integrating Google Maps in the application 23
3.4.2 Interacting with the map 24

3.5 Facebook . 29
3.6 Functionality . 30

3.6.1 Introduction . 30
3.6.2 Main screen . 30
3.6.3 List and Map screen 31
3.6.4 Company File screen 33
3.6.5 Services screen . 34
3.6.6 Agendas screen . 35
3.6.7 Booking confirmation 36
3.6.8 Log in process and user screens 37

4 Connectivity issues 40
4.1 Background of the problem . 40
4.2 How this problem affects our application 41
4.3 A solution for the problem . 42

5 Bandwidth Measurement 43
5.1 Introduction . 43
5.2 Measurement technique . 43

5.2.1 Server part . 43
5.2.2 Client part . 46

5.3 Conducted tests . 51
5.3.1 Results . 51
5.3.2 Hypothesys Tests . 53

6 Smartphone application 56
6.1 Introduction . 56
6.2 Information collected by the application 56

6.2.1 Measurements . 56
6.2.2 Measurements file . 58

6.3 Device components . 60
6.3.1 Location information 60
6.3.2 Device details . 61
6.3.3 Network provider information 61
6.3.4 Network connection information 62

6.4 Issues . 62
6.4.1 GPS accuracy . 63

VI

6.4.2 Data consumption . 66
6.5 Application work . 69

6.5.1 Interface . 69
6.5.2 Functions . 71
6.5.3 Uploading . 73

6.6 Full process . 75

7 Conclusions 78

Bibliography 80

VII

Chapter 1

Introduction

1.1 Report Description

This report is structured basically in two parts, as mentioned in the Abstract
this project has been made in two different places. The first part is the prac-
ticall part, while the second is more based on researching to improve the first
one. In the first part we talk about the Android application we developed
for the company NUBESIS, PideCita. In this part we describe application’s
web based features along a full dedicated chapter, we focus on the code and
on the visual parts of the application. The most significant feature of the
application is that is a cloud computing application, this feature is explained
in more detail in chapter 2.

The issues found when developing a web based application made us think
about the second part. In this second part we design and develop an Android
application to collect mobile networks information and upload this informa-
tion to a server, all the collected information stores the geolocation where the
measurements where taken, letting the server stablish patterns and identify
areas with lower signals. During the report we will show the relation between
both parts.

In the next section we justify our decision of choosing Android over other
operating systems and we introduce the Android operating system, so the
reader won’t get lost with some terminology used in this report. After that
we explain how the report is organized chapter by chapter.

1

CHAPTER 1. INTRODUCTION 2

1.2 Android

1.2.1 Justifying the system

When thinking about which system to choose, we had to think about which
are the most popular in order to secure a large customer base. Nowadays the
three top mobile systems are: Android, iOS and Windows Phone. Although
RIM still has a considerable presence, its market share has been plunging.
Our application is very concrete, it has access to location information, device
information and network information. We envisage this application being dis-
tributed primarly amoungst students, we also hope that it would generate
sufficient interest outside of this group in the general population. This fact
(distribution), was one of the most significant in the choice of Android over
the other systems. We now give a brief outline on how non-market applica-
tions are distributed.

iOS In order to develop for iOS, you at least need a machine running Snow
Leopard. The software and the iOS SDK are available to download from
the website and developers can test their applications in an emulator.
When it comes to running the applications for testing with real devices,
you are required to become a member of the iOS Developer Program.
This has a total cost of US$ 99 per year and it allows you to register
the device you will test your application with. It also allows you to
create groups of people for testing, but if you want other people to test
your application, you need to register their devices into your accounts.

Windows Phone When developing for Windows Phone, it’s necessary to
use Visual Studio 2010 Express for Windows Phone. App Hub is the
website where developers register for membership as a Windows Phone
developer. It is a mandatory requirement for those wishing to develop
Windows Phone applications and will be the starting point for develop-
ers. Developers can begin by signing up for a Windows Live ID. Next,
they can sign up to obtain the Windows Phone Developer Tools and
associated licensing materials for developing applications using Visual
Studio and Expression Blend. To register with App Hub you can use
one of three methods: as a company, as an individual or as a student.
With the first two you have to pay a membership fee of US$ 99 per
year. Students don’t have to pay a fee but they have to register with
Microsoft DreamSpark and they must submit identification documen-
tation. If developers want to test their applications with real devices,
they must register these devices into their account.

CHAPTER 1. INTRODUCTION 3

Android Android provides an open development platform. Android appli-
cations can be developed using different integrated development envi-
ronments (IDEs). Through their official website they recommend the
use of Eclipse, which everyone can be downloaded for free. Android
developers don’t need to pay a fee to register for developing applica-
tions. This means that they don’t need to register any device to test
their applications, developers can use any Android device to test their
applications, the only thing they need to do is modify one option in the
phone’s settings (Settings ->Applications ->Development ->USB de-
bugging). This option allows the developer to debug their applications
using a real device.

As we can see, when it comes to distributing our application without upload-
ing it to an applications market (which comes with an economical charge) or
registering users’ phones in a website, Android makes it easy as these are not
required. The only thing we need to do is send our application to users, so
that they can install it in their phones. Another fact is that we don’t need
to spend money to get a developer’s license. This does not mean that crowd
sourcing is not possible with the other systems, here we are simply referring
to the distribution of the application without the need to uploading it to a
market.

1.2.2 Android system

Android is a software stack for mobile devices that includes an operating
system, middleware and key applications. Android is an open source system.
Consider figure 1.1 with technical features of the Android OS.

Applications framework Android provides an open development platform,
which offers the developers the chance to build very rich and innova-
tive applications. Developers have full access to the same framework
APIs used by the core applications (all written in Java programming
language), so they can take advantage of the device hardware, access
location information, run background services, set alarms, add notifica-
tions to the status bar, etc. The application architecture is designed to
simplify the reuse of components, and any application can publish its
capabilities, so any other application may then make use of those ca-
pabilities (subject to security constraints enforced by the framework).
This means that any application can allow other applications to access
its data, which is not a common feature with commercial applications.

CHAPTER 1. INTRODUCTION 4

Libraries Android includes a set of C/C++ libraries used by various com-
ponents of the Android system. These capabilities are exposed to de-
velopers through the Android application framework.

Android RunTime Android consists of Java applications running on a
Java-based, object-oriented application framework on top of Java core
libraries running on a Dalvik virtual machine (DVM). The DVM is
register-based, and runs classes compiled by a Java language compiler
that have been transformed into the .dex (Dalvik Executable, which
is optimized for minimal memory footprint) format by the included
”dx” tool. It has been written so that the device can run multiple
VMs efficiently. The DVM relies on the Linux kernel for underlying
functionality such as threading and low-level memory management.

Linux Kernel Android relies on Linux version 2.6 for core system services
such as security, memory management, process management, network
stack and driver model. The kernel also acts as an abstraction layer
between the hardware and the rest of the software stack.

Figure 1.1: Android’s system architecture

CHAPTER 1. INTRODUCTION 5

1.2.3 Android Activity

We introduce briefly the Android class because we will refer to it later in
the project. For further information about this application’s class the reader
should refer to [1].

Figure 1.2: Activity lifecycle

An Activity is an application component that provides a screen with which
users can interact in order to do something. Each activity is given a window
in which to draw its user interface. The window typically fills the screen, but
may be smaller than the screen and float on top of other windows. An appli-
cation usually consists of multiple activities that are loosely bound to each
other. Typically, one activity in an application is specified as the ”main”

CHAPTER 1. INTRODUCTION 6

activity, which is presented to the user when launching the application for
the first time.

Activities’ changes are notified through the activity’s lifecycle callback meth-
ods. There are several callback methods that an activity might receive, due to
a change in its state—whether the system is creating it, stopping it, resuming
it, or destroying it—and each callback provides the developer the opportu-
nity to perform specific work that’s appropriate to that state change. This
lifecycle is shown in figure 1.2, our main class in the application is a subclass
(extends) of the Activity class.

1.3 Cloud Computing

1.3.1 Description

Cloud computing (CC) is a new way of computing that has its bases on the
Internet.Through the Internet the shared resources are provided to computers
and other devices as services. CC is a change in the programming paradigm
where the information is stored permanently in servers and accessed by tem-
porary clients through the Internet.

Cloud computing describes a new supplement, consumption, and delivery
model for IT (information technologies) services based on Internet protocols,
and it typically involves provisioning of dynamically scalable and often vir-
tualized resources.

Cloud computing allows to develope applications based in services allocated
externally, on the web. This way of computing provides ubicuity, the infor-
mation can be accessed from anywhere with an Internet connection. The
ubicuity of the information makes things easy for end-users, they can access
the same information from any device such as a computer or a smartphone
because it is centralized.

CHAPTER 1. INTRODUCTION 7

1.3.2 History

The term “cloud” is used as a metaphor for the Internet, based on the cloud
drawing used in the past to represent the telephone network, and later to
depict the Internet in computer network diagrams as an abstraction of the
underlying infrastructure it represents.

The concept of CC started with big scale Internet services providers like:
Google, Amazon AWS and others that build up their own infraestructure.
Among them a new architecture appeared: a system with distributed hori-
zontally resources and introduced as IT virtual services massivelly scalated
and managed as combined and configured resources in a continuous way.
Amazon played a key role in the development of cloud computing by mod-
ernizing their data centers, which like most computer networks, were using
as little as 10% of their capacity at any one time, just to leave room for occa-
sional spikes. Amazon initiated a new product development effort to provide
cloud computing to external customers, and launched Amazon Web Service
(AWS) on a utility computing basis in 2006.

This architecture model was inmortalized by George Gilder in his article for
the Wired magazine in 2006, The Information Factories (available on line
in here: http://www.wired.com/wired/archive/14.10/cloudware.html).
The servers farm he wrote about had a similar architecture to the “grid” pro-
cessing, but this new model based on the cloud was aplyed to the Internet
services.

In early 2008, Eucalyptus became the first open-source, AWS API-compatible
platform for deploying private clouds. In early 2008, OpenNebula, enhanced
in the RESERVOIR European Commission-funded project, became the first
open-source software for deploying private and hybrid clouds, and for the
federation of clouds. In the same year, efforts were focused on providing QoS
guarantees (as required by real-time interactive applications) to cloud-based
infrastructures, in the framework of the IRMOS European Commission-
funded project.

1.4 Report organization

In this section we present a chapter by chapter overview of the rest of the
report.

CHAPTER 1. INTRODUCTION 8

In Chapter 2, we discuss the related work we used as a reference for our
work. We discuss the studies based on techniques to estimate the connection
bandwidth, which we used to develop our Bandwidth Measurement tool. We
introduce a commercial tool used to tests our results and we conclude argu-
ing the ideas we got from the related work.

Chapter 3 is related with the Android application we have developed in
the first part of the project. In this chapter we talk in detail about the se-
curity problems we found when authenticating with the PideCita website.
We explain the main methods and classes used in the application, we also
discuss the integration of different APIs to our project, Google Maps and
Facebook. And we conclude the chapter showing in detail the functionality
of the application.

Chapter 4 introduce the problem found with the PideCita application that
lead us to work on the second part. This chapter introduce the problem we
found with the mobile networks and explain how this problem affects the
developed application. The chapter conclude with a section that introduce
the solution developed and studied during the second part of the project.

In Chapter 5, we discuss the measurement tool we developed for the sec-
ond part of the project. We first give an introduction about the tool and its
components. Then we talk about its different components, client and server,
focusing on what they do and how they operate. At the end we present some
performed tests and we discuss the obtained results.

Chapter 6 is related with the Android application we have developed in the
second part. In this chapter we explain all the parts that compose the ap-
plication. We start talking about the way we store the information obtained
with the application. We explain the different components and functional-
ities we need to obtain from the device, and how we get them. We discuss
about the issues we had to face while developing the application. We finish
talking about the main functions that we developed to achieve our needs,
focusing on their individual and group behavior.

Chapter 7 is an attempt to complete the jigsaw puzzle by connecting the
dots between the techniques used in the second part of the project and the
final outcome of the same, and also talking about the benefits of integrating
these techniques into the first part of the project. We discuss the main aims
of this whole project, briefly outlining why we choose Pair Packet probing
over other techniques. We also make reference to our main findings and

CHAPTER 1. INTRODUCTION 9

finally conclude by remarking on the future direction of our research.

Chapter 2

Related work

2.1 Introduction

In this chapter we talk about the related work we make reference to in this
report. We discuss studies about techniques to estimate the connection band-
width which we used to develop our Bandwidth Measurement tool. We also
introduce a commercial mobile application that has significant features re-
lated to our work. Packet pair probing techniques are introduced as network
path capacity estimation methodologies ([3], [4]) using dispersion of two back
to back packets [2]. These same techniques can be used to estimate the net-
work narrowest link throughput which is the link between the base station
and the network end user in our case.

2.1.1 Pathrate

Pathrate was introduced by Dovrolis et.al [3] as a tool which is based on
packet pair dispersion techniques. Pathrate uses UDP probe packets to mea-
sure the narrowest link capacity. In order to initiate a measurement process
it uses a TCP connection as the control channel. Authors have justified their
choice of UDP probes as the probing packets instead of TCP based probes
such as ICMP and TCP-FIN packets, saying that employing such packets
will affect the bandwidth measurements because the reply probes are for-
warded on the reverse path from receiver to sender. Successive packet pair
probes used in the Pathrate tool have at least RTT difference between them
to isolate each packet pair on the way from sender to receiver.

Accuracy of Pathrate compared to CapProbe is limited due to its inaccu-
rate readings in high bandwidth paths with narrow links between 640Mbps
to 1000Mbps due to dispersion measurement noise at the receiver. Authors

10

CHAPTER 2. RELATED WORK 11

pinpoint that such noises occurs due to application layer time stamping when
the bandwidth is much larger than mentioned above. And authors suggest
that a machine with higher time resolution (much faster processor) or OS
level time stamping could avoid such noises at the receiver by precision time
stamps. Also, Pathrate provides inaccurate readings in highly congested or
loaded paths because of the large probing packets it employs, it also encoun-
ters additional dispersion due to network cross traffic.

2.1.2 Cap Probe

CapProbe is a link capacity estimation tool for wired and wireless links.
Introduced by Kapoort et.al [4], which is based on packet dispersion tech-
niques as described in section 2.1.1, and combined with an error filtering
technique/parameter called minimum delay sum. Minimum delay sum is the
the minimum time dispersion between any packet pair out of all the packet
pairs and the authors argued that such packet pair is not distorted by cross
traffic induced queuing and reflects accurate narrowest link capacity esti-
mates under the assumption that in a packet train there will be at least one
such packet pair. Authors have used a modified version of the ping utility
(IPUtils open source software) which can send a packet pair instead of one
packet. During the capacity calculation stage the program waits for ICMP
replies (packet pair) to calculate the narrowest link capacity.

Figure 2.1 shows the CapProbe’s packet dispersion technique for calculat-
ing narrowest link capacity. It is based on the idea that if two consecutive
packets are the same size then the transmission delays are the same for both
packets within a link.

Figure 2.1: Packet Pair Dispersion Technique Used in CapProbe [4]

CHAPTER 2. RELATED WORK 12

Authors argued that a dispersion of a packet pair from source to destination
would be compressed or expanded due to cross traffic and hence they provide
inaccurate capacity estimations (figure 2.2). The minimum delay sum from
at least one packet pair would be enough to measure the capacity of the
narrowest link.

(a) (b)

Figure 2.2: (a) Over estimation and (b) under estimation of capacity [5]

2.2 Mobile applications

2.2.1 Speedtest.net mobile

Speedtest.net mobile (ST) is a commercial application developed for Android
and iOS devices. This application is the native Android version of a very
popular broadband speed test on the internet [6]. It operates using a large
global infrastructure to minimize the impact of internet congestion and la-
tency. This application according to the Android Market has been installed
by one to five millions users. It is one of Android’s top free applications in
the Tools section.

Once you begin a test with this application, it tries to get your GPS in-
formation via the location service on the device, in case it is unable, it uses
the GeoIP information provided by MaxMind. MaxMind provides its geo
location technology through the GeoIP brand. They have a GeoIP database
which can be accessed from different OS.

The tests performed in this application consists in three parts:

1. Latency test

CHAPTER 2. RELATED WORK 13

2. Download bandwidth

3. Upload bandwidth

We only focus on the “Download bandwidth” part to compare it with our
data. While doing a test, the user can visualize a real-time graphs of through-
put during the tests. The data collected from the tests can be exported to
CV S format and sent by email so users can use the results, which makes it
very helpful to compare results.

2.3 What we have learn from the Related

Work

Below we endeavour to explain why application such as ST or measurement
tools like CapProbe and Pathrate can not be used for crowd sourcing.

The user should actively participate in order to take measurements from
the ST application which consumes valuable time. From our observations a
typical ST test will take between eight to twelve seconds depending on the
network parameters at the time of the measurement.

CapProbe uses ICMP packets and such TCP based measurements would
not reflect the same bandwidth measurements suitable for streaming media.

On the other hand Pathrate uses UDP packet sizes between 550 bytes and
1500 bytes with 500 to 1000 packet pairs for each individual test which could
sink the mobile data plans of contributors demotivating them.

For example, ST provides us the service of network bandwidth measure-
ment and users can contribute to the ST’s measurements archive which ST
uses for commercial purposes such as sharing bandwidth measurements with
network providers and related services.

As discussed with regard to Pathrate, in order to timestamp received packets
accurately we have to reduce the overhead at the receiver. During the Mea-
surement tool development stage we have identified that our receiver program
is burdened with high computational overhead leading to inaccurate times-
tamps and resulting in large variations of throughput measurements. The
packet pair probing technique could underestimate or overestimate due to
network path queuing. This may result in higher or lower measurements of
the actual rate.

Chapter 3

PideCita Application

3.1 Introduction

This application is a cloud computing client developed for Android. This
application is the mobile version of the cloud computing service offered in
this website, http://www.pidecita.com. The application has been developed
under the supervision of NUBESIS S.L. (owners and developers of the pre-
vious website). This website allows the users to apply for an appointment
in any company registered in the system. The companies belong to different
areas in the industry, the user’s can choose from medical companies to hair-
dressers. This website allows users to book for an appointment without the
need to contact the company because all companies provide their available
timetables, so a user can choose between several companies the one that fits
better to his/her schedule.

The aim of the application is to make easy and nice the interaction of the
users with the system through their mobile phones. In this chapter we ex-
plain the different parts of the application and their interaction with the
main system. We also talk about the issues we’ve found in the development
process and how we solved them.

3.2 Certificates and security

3.2.1 Definition of the problem

Due to the fact that this application is based on a cloud computing environ-
ment we need to access to the information stored in the server. To obtain
the information we need to do GET requests through HTTP to the server

14

CHAPTER 3. PIDECITA APPLICATION 15

https://docs.nubesis.com/bookitit android/. The information is structured in
XML files.

The main problem resides in the fact that the application needs to accept the
server certificate as a trusted certificate. Every request to the server has to
contain authentication fields to avoid malicious attacks but Android’s HTTP
libraries are the 4.x version of the Apache libraries, meanwhile Java usually
uses the 3.x version. The new version of the libraries has some modifications
that complicated a little bit the work, we explain all the problems in next
sections.

3.2.2 Preparing the certificate

The certificate is a document with an electronic signature from an entity
allowing anyone to recognize the entity and avoiding impersonations.

Keytools allows us to administer our keys and certificates to use them when
necessary to authenticate in servers. We can create a “keystore” (KS) where
we can store our certificates as trusted certificates, they are considered as
trusted because a public key is attached to this cert and it can be verified
anytime needed.

...

#

List of providers and their preference orders (see above):

#

security.provider.1=sun.security.provider.Sun

security.provider.2=sun.security.rsa.SunRsaSign

security.provider.3=com.sun.net.ssl.internal.ssl.Provider

security.provider.4=com.sun.crypto.provider.SunJCE

security.provider.5=sun.security.jgss.SunProvider

security.provider.6=com.sun.security.sasl.Provider

security.provider.7=org.jcp.xml.dsig.internal.dom.XMLDSigRI

security.provider.8=sun.security.smartcardio.SunPCSC

security.provider.9=sun.security.mscapi.SunMSCAPI

security.provider.10=org.bouncycastle.jce.provider.BouncyCastleProvider

#

...

Code 3.1: List of providers

When adding our certificate to our KS Java uses JKS (Java Keystore) by
default and that is a problem when using the KS in Android. Android uses
by default BC (Bouncy Castle) as its KS provider, so the easiest way to solve

CHAPTER 3. PIDECITA APPLICATION 16

this problem was to use the same KS provider when storing our certificate
in our KS when using the Keytools tool.

The only thing needed is to download the .jar file with the required libraries
and modify the “java.security” file that can be found in our Java folder (in
Windows XP: Program Files\Java\jre\lib\security\) and add the provider
to the providers list, it would look like figure 3.1.

After that we have to navigate to the Java folder where the keytool pro-
gram is (this is only necessary in Windows) and execute in the terminal the
following code:

> keytool -importcert -v -trustcacerts -file \path_to_cert\certificate.crt"

-alias \Alias for the cert" -keystore "keystore_path\myKeystore.bks"

-provider org.bouncycastle.jce.provider.BouncyCastleProvider -providerpath

"path_to_jar/bcprov-jdk16-145.jar" -storetype BKS -storepass mysecret

Code 3.2: Storing the certificate

If the KS does not exist the program create a new one in the specified
path “keystore path\myKeystore.bks”. The -storepass refers to the pass-
word that is going to be used for the KS and that we will need to access it.
The instructions in 3.3 let us check the information contained in our KS.

keytool -list -keystore "keystore_path\myKeystore.bks" -provider

org.bouncycastle.jce.provider.BouncyCastleProvider -providerpath

"path_to_jar/bcprov-jdk16-145.jar" -storetype BKS -storepass mysecret

Code 3.3: Storing the certificate

Once the KS is created we import it to our Android project, the right path
to import it is inside our raw folder, in this case would be res\ raw\ doc-
snubesis.bks. The extension of the KS (bks) makes reference to the provider
used in the creation.

CHAPTER 3. PIDECITA APPLICATION 17

Figure 3.1: Keystore in raw folder

Now that the KS has been created and is in our project, we have to access
it to create a HTTPS socket that we will associate to our HTTP client.

...

DefaultHttpClient httpclient = new DefaultHttpClient();

KeyStore trustStore = KeyStore.getInstance(KeyStore.getDefaultType());

InputStream in =

this.getResources().openRawResource(R.raw.docsnubesis);

try {

trustStore.load(in, "nubesis".toCharArray());

} finally {

in.close();

}

SSLSocketFactory socketFactory = new SSLSocketFactory(trustStore);

Scheme sch = new Scheme("https", socketFactory, 443);

httpclient.getConnectionManager().getSchemeRegistry().register(sch);

...

Code 3.4: Use of the certificate to create the socket

3.2.3 Authenticating the request

When doing a request to the server we need to authenticate the request by
attaching the authentication code of the request in a header. The message
authentication code (MAC) is obtained by using Hash-based Message Au-
thentication Code (HMAC), which is an specific construction to calculate

CHAPTER 3. PIDECITA APPLICATION 18

the MAC in combination with a cryptographic has function and a secret key.
The cryptographic hash function used is MD5 (Message-Digest Algorithm 5)
that is a widely used. It produces a 128-bit (16-byte) hash value and tipically
expressed as 32-digit hexadecimal number. The resultant algorithm is called
HMAC-MD5 and it allows the server to verify the integrity and authenticity
of the message.

The different HTTP libraries that Android uses compared with other Java
programs turned out to be a problem at the beginning. The password request
from the server is obtained by applying the HMAC-MD5 algorithm to the
address we want to access at the server, for example, if we access to https://

docs.nubesis.com/bookitit_android/api/companiestag/dentistas/11/

20, our password will be the result of calculating the HMAC-MD5 to “compa-
niestag/dentistas/11/20” with our secret key. The way to obtain the correct
32-digit hexadecimal number differs a little bit when doing it in Android, in
Code 3.5 we can see how it’s done.

public String HMAC(String values, String myKeyString) throws

InvalidAlgorithmParameterException, NoSuchProviderException {

String output = "";

try {

byte[] key = myKeyString.getBytes();

byte[] sms = values.getBytes();

SecretKey skey = new SecretKeySpec(key,"HMAC-MD5");

Mac mac = Mac.getInstance("HMAC-MD5","BC");

mac.init(skey);

mac.reset();

mac.update(sms, 0, sms.length);

byte[] digest = mac.doFinal();

// convert the digest into a string

int size = digest.length;

StringBuffer h = new StringBuffer(size);

for (int i = 0; i < size; i++) {

int u = digest[i] & 255; // unsigned conversion

if (u < 16) {

h.append("0" + Integer.toHexString(u));//$NON-NLS-1$

} else {

h.append(Integer.toHexString(u));

}

}

CHAPTER 3. PIDECITA APPLICATION 19

output += h.toString();

} catch (InvalidKeyException e) {}

catch (NoSuchAlgorithmException e) {}

return output;

}

Code 3.5: HMAC-MD5

In values we have the address we want to access and in myKeyString we
have our secret key. So we declare an object of the class SecretKey (skey)
using our secret key and indicating the used algorithm. We define a MAC
object (mac) with the HMAC-MD5 algorithm and the BC provider. Af-
ter initializing the mac variable with the skey, we add the message we want
to calculate the hash for. With mac.doFinal() we obtain the resultant 16-
bytes array and then we convert it into a 32-digit hexadecimal number string.

The server we are trying to access uses a RESTful architecture and a BA-
SIC authentication scheme, with the HTTP libraries Android is using the
definition of the classes and the way to add the user and the password to
the request is different from how it is done in the Apache 3.x libraries. The
confusion about this topic seemed to be quite big after reading through a lot
of forums dedicated to Android topics, some people even adopt the position
to import the old libraries to their projects to make it work as expected. The
proper way to do it in Android is configuring the authentication scheme of
the request, as it can be seen in Code 3.6 what we do is obtain the authen-
tication scheme of type “basic” from the parameters set for the request and
add the credentials that contain the user and the password as a header to
the GET request.

CHAPTER 3. PIDECITA APPLICATION 20

HttpParams params = new BasicHttpParams();

HttpProtocolParams.setVersion(params, HttpVersion.HTTP_1_1);

HttpProtocolParams.setContentCharset(params,

HTTP.DEFAULT_CONTENT_CHARSET);

HttpProtocolParams.setUseExpectContinue(params, true);

HttpClientParams.setAuthenticating(params, true);

Credentials cred = new UsernamePasswordCredentials(username, password);

DefaultHttpClient httpclient = new DefaultHttpClient();

...

/** Missing code**/

...

HttpGet httpget = new HttpGet("https://docs.nubesis.com/"+

"bookitit_android/api/companiestag/dentistas/11/20");

httpget.addHeader("Accept", "application/xml");

AuthSchemeRegistry aut = httpclient.getAuthSchemes();

AuthScheme basic = aut.getAuthScheme("basic", params);

httpget.addHeader(basic.authenticate(cred, httpget));

try {

ResponseHandler<String> responseHandler=new BasicResponseHandler();

String responseBody=httpclient.execute(httpget,responseHandler);

return responseBody;

}

catch(Exception e){

Toast.makeText(this, "Request Failed: "+e.getMessage(),

Toast.LENGTH_LONG).show();

}finally {

// When HttpClient instance is no longer needed,

// shut down the connection manager to ensure

// immediate deallocation of all system resources

httpclient.getConnectionManager().shutdown();

}

return "";

}

Code 3.6: BASIC authentication in a RESTful server

3.3 Methods and classes

3.3.1 Classes

The information about the companies and the users are not stored locally on
the device, the way to acces this is information stored in the cloud must be
accessed through the Internet. The requested information can refer to five

CHAPTER 3. PIDECITA APPLICATION 21

different kinds of objects: User, Company, Service, Agenda and Booking.
Every class name is representative for each object, here we explain briefly
the use of each one of these classes.

CCompany This class contains all the information about a company like:
name, address, geographic location, description, etc . . .

CUser The information related to users makes reference to all the details
in their profiles.

CService When applying for an appointment is necessary to choose the
service we need. For example, when applying for a dentist, we need
to specify if it is a mouth cleaning or a simple visit. Each service has
contains information about the kind of service and its duration.

CAgenda In some companies there will be more that one professional that
can do a service, an agenda represents the times during a day a profes-
sional is available to receive a client.

CBookings When users are logged in they can check their incoming ap-
pointments or they old ones, this class stores the information for one
appointment: company name, professional, kind of service and date of
the appointment.

The class CConections contains all the methods performed to obtain the re-
quired information from the cloud. The information requested is received in
XML format and parsed into objects of the previous mentioned classes to
show it to the user. All the implemented methods follow the same pattern,
the function showed in Code 3.7 represents the method “get Services”, all
the methods are explained in next section.

Every method receives the required parameters to build the url. This url, the
client and the parameters of the client are the input parameters of the make-
call function. This function calculates the hash code for the url as shown
in Code 3.6, prepare the request and execute it, the result of the request is
returned and passed as a parameter to the parse function. Each method has
its own parse function that returns the information tho the main program.

There are more classes in the project, some of them are explained in fur-
ther sections, the rest are not mentioned for space reasons.

CHAPTER 3. PIDECITA APPLICATION 22

public ArrayList<CService> get_Services(String p_sClientId,

int p_sCompanieId, DefaultHttpClient client, HttpParams params) {

String requestToHash = "getservices/" + p_sClientId + "/"

+ p_sCompanieId;

try {

return parseServices(makeCall(client, params, requestToHash));

} catch (Exception e) {

e.getMessage();

}

return null;

}

Code 3.7: Web method example: get Services

3.3.2 Methods

In this section we describe the methods defined in the server and used by the
application to obtain and modify the information in the server. Table 3.1
shows for each method its name, the input parameters, a brief description of
its function and the output.

Method Input parameters Description Output
getfavorites user id list of companies that have

been selected by the user as
favorite companies

if the user doesn’t have
favorite companies returns
null, otherwise the favorite
companies

delfavorites user id and company
id

removes the company from
the favorites list of the user

if the parameters are correct
it will return true, otherwise
false

addfavorites user id and company
id

add a company to the user’s
favorite companies list

returns true if everything is
correct

getslots user id, company id,
day and duration of
the service

obtains the agendas with
the availability of the pro-
fessionals in a company in a
certain day

returns all the agendas if ev-
erything is correct, if not,
returns an empty list

getbookshistory user id obtains the user’s appoint-
ments historic

returns previous bookings
if there is any, otherwise
empty list

getbookspending user id obtains the future appoint-
ments for a user

returns the upcoming book-
ings if there is any, other-
wise empty list

getservices user id and company
id

obtains the different ser-
vices offered by a company

if the company has services
returns a list of services, if
not returns an empty list

user user id obtains user’s personal data returns an xml with the
data of the user

uservalidate user’s email and pass-
word

validates the user in the sys-
tem

if correct returns the user id,
if not returns null

CHAPTER 3. PIDECITA APPLICATION 23

createevent user id, agenda id, ser-
vice id, starting day of
the appointment, end-
ing day of the appoint-
ment, starting time,
ending time, name of
the service and ap-
pointment description

creates an appointment if correct returns true, if not
returns false

companiestag company type, lati-
tude, longitude and
ratio

obtains a list of the specified
type of companies that are
in the specified ratio of me-
ters from the user’s position
indicated with the latitude
and longitude

if correct, returns a list of
companies, if not returns an
empty list

validatefacebookuser name, phone, face-
book id and e-mail

obtains the PideCita user id
linked to that facebook ac-
count

returns true and the user id

Table 3.1: Web methods

3.4 Google Maps use

3.4.1 Integrating Google Maps in the application

To use Google Maps in our application we need to follow three steps, this
steps are focused for the use of Eclipse as our IDE (Integrated Development
Environment), the first step may change for a different IDE.

In first place we select the correct API when creating our project. When
using the ADT (Android Development Tools) plugin for Eclipse all the avail-
able API levels of Android has at least two versions, one with and one without
the Google Maps API. We need to choose the one with the GM API.

In second place we must create a class that extends MapActivity, this
is the Activity that contains the map. The layout of this Activity must in-
clude a view of the type “MapView”, this view is the map onject and it can
only be handled by a MapActivity. The way to do this is shown in Code 3.8.

<com.google.android.maps.MapView

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:apiKey="Api Key" />

Code 3.8: MapView for the MapActivity layout

CHAPTER 3. PIDECITA APPLICATION 24

The last thing we have to do is to obtain the Android Maps API key for
our application, otherwise the MapView will not work properly. A single
Maps API key is valid for all applications signed by a single certificate,
so in the debugging state we use the Android debug certificate, this cer-
tificate is found in the SDK folder. The way to obtain the Maps API
key is by registering the MD5 fingerprint of the certificate in this web-
site http://code.google.com/android/maps-api-signup.html. To ob-
tain the fingerprint we need to use keytool and the debug.keystore that we
will find in the Android folder, Code 3.9 shows how it needs to be done.

$ keytool -list -keystore ~/.android/debug.keystore

...

Certificate fingerprint (MD5):

94:1E:43:49:87:73:BB:E6:A6:88:D7:20:F1:8E:B5:98

Code 3.9: Obtaining the certificate fingerprint

After introduce the fingerprint and accept the terms and conditions we get
our Maps API key for that certificate and we have to copy it in the field
“android:apiKey” in out MapView object in the layout. If we change the
certificate then the map will not work, that means that when publishing an
application in the market, a private suitable key needs to be obtained and
we can no longer use the debug key when publishing the application, so we
need to obtain a new Maps API key in that situation.

3.4.2 Interacting with the map

Once the map is integrated into our application we need to use it, between
the information received about a company we also get a latitude and a longi-
tude. In this section we explain how we managed to place in the map all the
companies that a user gets when he performs a search, we first talk about
the graphical part and show how it looks, and then we focus on the code.
The purpose of the map in the application is to let the users inspect the real
position of the companies in relation to their position.

When a user looks for a group of companies in a concrete field in the indus-
try the application shows a list of those that are inside the specified distance
ratio. The method that performs this action is “companiestag”, explained
in section 3.3.2. Figure 3.2 shows the resultant list in a search, this is the
result of a request prepared for testing, so some companies are fake and their
coordinates are random. Those companies with the yellow star are the ones

CHAPTER 3. PIDECITA APPLICATION 25

Figure 3.2: List of companies

chosen by the user as favorite companies, for this reason there are two icons
to distinguish between companies on the map screen, one to represent the
favorite companies and the other one for the rest. If the user is not logged
in then all the companies appear as not favorite.

(a) Company (b) Favorite company

Figure 3.3: Company icons

Those companies that are considered as favorite by the user are displayed on
the map with the icon 3.3b and the others with icon 3.3a. On the map screen
when the user taps over an icon a bubble with the name of the company ap-
pears, a second tap on the bubble takes the user to the description screen of
the company, if the second tap is in an area where there is no company then
the bubble hides. In figures 3.4a and 3.4b we can see the representation of
the companies on the list over the map. As mentioned before, these compa-
nies (their locations and data) are made up.

CHAPTER 3. PIDECITA APPLICATION 26

(a) Zoom in (b) Zoom out

Figure 3.4: Companies displayed on the map

To interact with the MapView we need to use a class named Overlay. The
Overlay class is the class that place the items on the map. We have three
classes involving the maps use: CMapChoices, MyOverlay and MyLocation.
CMapChoices is the main Activity that displays the map and the top bar
with the four buttons that let us choose if we want to display only those
companies that has offers, those which are favorites for the user, or both of
them. The other two buttons are one to the companies list and the other to
change the distance ratio for the companies to be shown. The CMapChoices
class extends the Activity class and it is the only one that can access to the
resources of the project. To control the map we have an instance of MapView
and another one for MyOverlay (mapview and overlay respectively). There
is also a List of MyLocation, mapLocations, that allow us to obtain from
a company only its name, location and know if it is a favorite company.
The class CMapChoices is the one that receives the companies list when it
is called, so we defined a function called getMyLocations() that iterates the
array that contains all the companies and creates for each one a MyLocation
object with the required information to fill mapLocations. In code 3.10 we
can see how this function works.

CHAPTER 3. PIDECITA APPLICATION 27

public List<MyLocation> getMyLocations() {

/**

* We fill the array of locations from the information of

* the companies we have in the array @someCompanies, where

* we store the given companies from our previous screen.

**/

if (mapLocations == null) {

mapLocations = new ArrayList<MyLocation>();

for (int i = 0; i < someCompanies.size(); i++) {

mapLocations.add(new MyLocation(someCompanies.get(i)

.get_sName(), someCompanies.get(i).get_dLatitude(),

someCompanies.get(i).get_dLongitude(), someFavoriteNames

.contains(someCompanies.get(i).get_sName())));

}

}

return mapLocations;

}

Code 3.10: Function getMyLocations

When the CMapChoices Activity is onCreate the last thing we do is prepare
the variable overlay to place all the companies on the map. To do this
only two functions need to be used, one to create a new object of the class
MyOverlay and the other to add the overlay to the map.

• overlay = new MyOverlay(this)

• mapview.getOverlays().add(overlay)

All the process to place the items on the map is defined in the MyOverlay
class. When we create a new MyOverlay object we pass as parameter the
reference to the CMapChoices Activity, doing so we can access the project’s
resources like images and views, that means we can have a reference to the
MapView, because we will need to modify it and place the items over it.
When the instruction “mapview.getOverlays().add(overlay)” is executed in
CMapChoices then the function draw is called for the overlay variable. We
override this function and define two new functions that will be called from
this one: drawMyLocations and drawInfoWindow. The first one is the func-
tion that place all the companies on the map and the second one is the
responsible of drawing the pop up bubble with the name of the company
when the user taps over the icon. Next we explain the code of the function

CHAPTER 3. PIDECITA APPLICATION 28

drawMyLocations because its significance for the map, in code 3.11 we
can see the code.

private void drawMyLocations(Canvas canvas, MapView mapView,

boolean shadow) {

/** We draw the locations in the map, we also consider if

* the location belongs to a favorite company or not to

* choose the image we want to draw. **/

Iterator<MyLocation> iterator =

mapLocationViewer.getMyLocations().iterator();

Point screenCoords = new Point();

while (iterator.hasNext()) {

MyLocation location = iterator.next();

mapView.getProjection().toPixels(

location.getPoint(), screenCoords);

if (location.isFav()) {

canvas.drawBitmap(favoriteIcon,

screenCoords.x - favoriteIcon.getWidth() / 2,

screenCoords.y - favoriteIcon.getHeight(), null);

} else {

canvas.drawBitmap(bubbleIcon,

screenCoords.x - bubbleIcon.getWidth() / 2,

screenCoords.y - bubbleIcon.getHeight(), null);

}

}

}

Code 3.11: Function drawMyLocations

What we are doing is creating an iterator for the list of companies we want
to place on the screen, each company is stored in a MyLocation object that
makes reference to the company and its coordinates are stored as a GeoPoint,
which is a class that represents a pair of latitude and longitude. We need
to convert this coordinates to onscreen pixel coordinates, for that we use
the function “mapView.getProjection().toPixels(location.getPoint(), screen-
Coords)”, it needs two parameters, a GeoPoint, which contains the coordi-
nates we want to convert and a pre-existing object of the class Point for
the output, where the onscreen pixel coordinates will be stored. The object
screenCoords contains the coordinates we need, the problem is that if we try
to place an image using that point, that point would be the reference for the
top left corner of the image, so we need to modify the coordinates to place
the image as we want. The if else condition is to check whether to draw the

CHAPTER 3. PIDECITA APPLICATION 29

favorite or the regular icon for the company.

When the user interacts with the top buttons (Distance, Favorites and Of-
fers) the set of companies can change, maybe we need to display only those
with an offer, or only the favorite ones, or simply the set changes because
the distance ratio has changed and there are new companies on the list. In
all this situations what we do is to modify the main ArrayList that contains
all the companies and call the function “redraw()”, this function is the re-
sponsible of redrawing the canvas, so all the new companies will replace the
previous ones.

3.5 Facebook

In the web version of the application, the user can log in using a Facebook
account, so there is no need to register on the website and have a specific
user and password for the website http://www.pidecita.com. The applica-
tion pretends to offer the same facilities to the user, so we integrated a way
to log in through Facebook. To use Facebook in our application we need
an application id for Facebook, because the application is the same as the
website both have the same application id. We let the user choose between
log in with Facebook or with PideCita from the Login screen (Figure 3.5).
When the user logs in with Facebook then we can access to the user’s per-
sonal information necessary to validate the user against the user’s database,
we use the method validatefacebookuser(Table 3.1) to obtain the PideCita
user’s id linked to this account, if the user does not exist then a new user is
created and the user’s id is returned.

When the user log in correctly on Facebook then we proceed to obtain the
information by doing requests using the Facebook API. The methods used
are called synchronously and they will block the UI, so instead of that we use
a class provided by the Facebook SDK called AsyncFacebookRunner, which
perform asynchronous calls that do not block the UI. The method returns a
JSON object that we need to parse in order to obtain the Facebook id of the
user and the name, we will also need the phone number when using validate-
facebookuser, but due to the fact that not everybody have a phone number in
their Facebook account, what we do is obtaining the device’s phone number
if any, if the phone number can’t be obtained then we set a default number.
The default number is useful when creating a new PideCita user linked to

CHAPTER 3. PIDECITA APPLICATION 30

this Facebook account, but later on the user will need to change it because it
is necessary that the users provide a real phone number in case the companies
need to contact them.

Figure 3.5: List of companies

3.6 Functionality

3.6.1 Introduction

In this section we describe the transitions between the application’s screens.
There are several differences between the available options a user can use
depending whether the user is logged in or not, because of that we only
consider when a user is already logged in to explain the screen transitions but
pointing out when necessary what a not logged in user can not do. We explain
the process of applying for an appointment from beginning to end going
through all the possible screens. After this we explain the authentication
process for a user and the accessible screens related to the user’s account. The
data used for the application’s screen captures showed during next sections
is fake data prepared for test purposes.

3.6.2 Main screen

In this screen we have the icons (tags from now on) of the type of compa-
nies the user can search for. This screen contains four default tags: Sports,

CHAPTER 3. PIDECITA APPLICATION 31

Cosmetic, Health and Add. The first three make reference to a type of com-
panies, with the last one the user can add more tags to the main screen,
by doing this the user can do faster a search for a type of companies. In
figure 3.6 we can see the process the user has to do to add the tag “Layers”
to the main screen.

Figure 3.6: Add a tag to the main screen

These new tags added to the main screen can be deleted easily, the user only
needs to press and hold over the tag and a pop up will appear with one
question and two answers to choose, Q:“Do you want to delete the tag?”, A:
“Yes” and “No”. When a tag is added to the screen then it is removed from
the list of available tags, and when it is removed from the screen then it is
added back to the list.

When a tag is pressed the application executes a request to the server to
obtain the list of companies that match with the type indicated by the tag.
This request is processed and the information is shown in a new screen called
“Listchoices”.

3.6.3 List and Map screen

The user is able to check the resultant companies either in a list form or in
a map. Both screens have a top buttons bar with for buttons, three of them
do not change between screens (Distance, Discounts and Favorites) but the
other one does, the left button is used to change between these two screens.
Here we explain the functionality of these buttons:

CHAPTER 3. PIDECITA APPLICATION 32

Figure 3.7: Performing a search

Distance
This button is used to change the distance limit from our position.
When this distance changes a new request is performed with the new
distance.

Discounts
Its function is to show only those companies that has an offer.

Favorites
When pressed it shows only those companies among the list that are
favorites for the user. This button is not enabled when the user is not
logged in.

In figure 3.7 is visible the kind of information the user can see from a com-
pany in the list: name, address, distance from user, if it has a discount, if it
is a favorite company and the company picture. The last one is represented
in the test data as a green round ball with a white confirmation mark inside.
If the user is not logged in then all the stars appear in grey.

For the next example we used a small group of companies that contains
all the different possibilities, it is easier to see the difference on the map
when a button is pressed with a reduced group. Figure 3.8 and figure 3.9
show the different transitions in each screen when the user press the buttons
Discount or Favorites.

A user can see the detailed information of a company by clicking on it,

CHAPTER 3. PIDECITA APPLICATION 33

Figure 3.8: List screen transitions

Figure 3.9: Map screen transitions

at the list screen the user only need to tap over the company row but in the
map the user need to tap the icon of a company, after that the way to access
to the information is by taping over the pop up that shows up right after
the first tap. All the information is displayed in a new screen called “Ficha
Técnica” (Company File).

3.6.4 Company File screen

This screen shows the information related to the selected company and also
about the offer they have in case there is any. The user can check the details
and decide whether to choose or not this company. A logged user can add

CHAPTER 3. PIDECITA APPLICATION 34

or remove the company to/from favorites by tapping the star next to the
name, when the star is yellow the company belongs to the user’s favorite
companies group. A not logged user can’t do it because there’s no account
to add or remove companies. When the user chooses a company then the
booking button must be pressed to proceed.

Figure 3.10: Company File screen

3.6.5 Services screen

At this point, the user has selected the company for an appointment. Most
of companies can offer a number of different services, for example, if we want
to do an appointment in a hairdresser we can choose between many different
services we can receive: hair cut, do highlights, dye the hair, etc. In this
screen we list all the services offered by a company, the user can scroll the
list to check all of them if there are more services that do not fit on the screen.
When the user tap over the service then this row will appear as marked, as
we can see in figure 3.11, so when the service has been selected the only thing
left to do is to press the button “Siguiente” (Next), this button will take us
to the next screen, “Agendas”.

CHAPTER 3. PIDECITA APPLICATION 35

Figure 3.11: Services screen

3.6.6 Agendas screen

When the user selects a service then we perfom a request to obtain the
agendas of the professionals. Each agenda received belongs to a professional
and it contains his/her name and the available times on a day that this
professional has to do the service. In this screen the user can navigate through
the days using the grey arrows situated next to the date, every time the user
wants to check a different day a new request takes place to obtain the agendas
of the previous or next day. To select a day and a time for the appointment,
the user only needs to navigate to the desired day and then tap over the
wanted time, doing this we move forward to the last screen in this process,
“Confirmación de la reserva” (Booking confirmation). In figure 3.12 we can
see the transition.

CHAPTER 3. PIDECITA APPLICATION 36

Figure 3.12: Selecting a date

3.6.7 Booking confirmation

This screen lets the user check all the information about the appointment
before the confirmation. In this screen there are two main parts, one with
all the details referring to the appointment and a second part with the user’s
details. If a user is not logged then this second part remains empty, if a
user wants to confirm an appointment then he/she needs to be logged in,
otherwise there is no other way to do it. In the situation a user is not
logged in and tries to confirm an appointment, the user will be asked for
identification and sent to the “Login” screen. In figure 3.13 we can see the
example of a logged user that does not have a phone number registered in
the account, this is a problem because all users that want to confirm an
appointment with a company need to have a registered phone number in
case the companies need to contact them. As can be seen when the user tries
to confirm a pop up window appears requesting a phone number, right after
the user introduce the number then he/she can confirm the appointment, if
everything is correct and there are no problems during the confirmation, the
request returns true and the application goes back to the main screen.

CHAPTER 3. PIDECITA APPLICATION 37

Figure 3.13: Booking confirmation

3.6.8 Log in process and user screens

As mentioned in previous section, when a user wants to make an appointment
with a company using the PideCita application needs to have an account with
the same website (http://www.pidecita.com). The users can have an ac-
count linked to their Facebook account as explained in section 3.5, or they
can have their PideCita account, to do this they can register themselves
through the website or with the application.

The log in option is present on the application menu, this menu is an emer-
gent menu attached to the “Menu” button on the device, when this button is
pressed once the menu appears, the second times disappear. The log in and
log out options are represented by the icons in figure 3.14, this icons change
in the menu depending if the user is logged in or not.

(a) Log out (b) Log in

Figure 3.14: Log icons in the menu

In figure 3.15 we illustrate the process of authentication or registration of a
user, this process can be started from all the screens explained in previous
sections. If the user logs in or create a new account successfully the applica-
tion takes the user to the screen where the process started.

CHAPTER 3. PIDECITA APPLICATION 38

Figure 3.15: Login process

The menu has other icons, four of these icons are only accessible for logged
users: “Mi perfil” (My profile), “Favoritos” (Favorites), “Reservas pendi-
entes” (Upcoming appointments) and “Historial” (Old appointments). The
other two are “Inicio” (Home) and the Log in/out button, the Home button
let the user go back to the main screen at any moment, with the back but-
ton the user navigates to the previous screen, so with the Home button it
is not necessary to keep pressing the back button to reach the main screen
from an advance screen. The Favorites button take us to a screen similar to
Listchoices but in this one all the companies listed are only those chosen by
the user as favorite. This screen has the same top bar than Listchoices and
Mapchoices screen but changing the Favorites icon for a Home icon. In this
list the companies are more detailed than in a normal search and every com-
pany can be removed from the favorites list using the Delete button under
the company’s picture. The user can access to the map to see the location of
the companies like in a normal search, from this map and from the favorites
list the user can start the process of applying for an appointment too. The
name for the other three options are self explanatory of what we are going
to see. In figure 3.16 we can see the transitions for all the different menu
options, of course as we need to be logged to access the options in the menu
the “Log out” button is present.

CHAPTER 3. PIDECITA APPLICATION 39

Figure 3.16: Menu transitions

Chapter 4

Connectivity issues

4.1 Background of the problem

During this last decade, the area of mobile phone devices has experienced a
significant evolution. Mobile Networks (MN) have improved by leaps and
bounds. The way current devices make use of MN has opened the doors to a
new generation of interaction between users and their phones. This progress
in MN has made the number of mobile devices increase very rapidly in the
past few years. That lead us to a situation where there is a large number of
users using their devices to access the Internet.

MN operators have tried to adapt to the constant evolution of mobile tech-
nologies in order to guarantee a higher customer satisfaction, sometimes this
is not possible and users experience connection problems, which causes dis-
satisfaction. The lack of consistency in MN is due to environmental and
technological limitations such as load variations, the number of cell towers,
your surrounding environment etc. We are aware that these problems are
more significant in some areas than in others. So users can not expect a
good and consistent network coverage all the time. Inconsistent network be-
havior greatly affects users’ Quality of Service (QoS), especially when they
use applications that require a high use of data such as multimedia streaming
services.

Network coverage is not always consistent due to the problems mentioned
before. The number of cell towers in an area can vary significantly from one
area to another. For example. mobile phone providers do not have equal
coverage in the same country. This is influenced by how young a mobile
provider is in a particular country and by the population in that area. Also,

40

CHAPTER 4. CONNECTIVITY ISSUES 41

some companies do not invest money in areas with a small population. For
example, in Australia, the main cities have signal for every provider, however
this is not the case in some small towns. The situation will likely continue
unless companies decide to expand their presence uniformly throughout a
region. So, considering an area with signal of a certain provider, when mov-
ing through that area, the signal reception can vary due to the problems
we afore-mentioned. These problems affect the MN, particularly web based
applications through users’ QoS. This is due to the fact that applications
can’t know in advance these changes, so they can’t prevent the consequences
related to them.

4.2 How this problem affects our application

The Android application developed for NUBESIS, PideCita, is an applica-
tion with cloud computing features, and for that reason one essential feature
on the phone that must work properly is the Internet connection. In our
application all the information is stored in a server and accessed from the
device through HTTP requests, that makes things more comfortable for the
user because all the information is available from anywhere and the risk of
loosing something does not exist. The users can check all the appointments,
modify their favorite companies or apply for new appointments either from
the phone or from the computer.

When the users use their applications on the phone they expect them to
be fluent and solid, if the it is not a web based application that depends
only about the phone features, then the fluency between screens or the fact
that something works wrong may depend only on the phone’s hardware, and
there’s nothing we can do about that. But when it comes to applications
with a continuous use of the Internet, then a bad connection can affect to
the QoS the user expects from the application. In our case all the informa-
tion displayed on every screen is obtained through requests to the server, and
the time this request needs to obtain the information can be the difference
between a fluent screens transitions or a slow one.

If we talk about the PideCita application, these problems can cause un-
expected behavior on the application, for example, if the user wants to apply
for an appointment and after several minutes thinking about which company
to choose, the day and the time, if the connection is down when the user
wants to confirm the date then this will not happen. In this kind of situ-
ations the users do not know if the problem is due to the application, the

CHAPTER 4. CONNECTIVITY ISSUES 42

server or just because the connection is down at the moment, the only thing
the user cares about is about the time lost on applying for an appointment
and the upraising frustration from not achieving the result. That kind of
things can make users do not want to use the application, and this is not
good for business.

4.3 A solution for the problem

We know our problem depend on the cell phones coverage, and that’s some-
thing we can not change. What we can do is try to study them and prevent
this lack of coverage in some areas, and this take us to the second part of the
project. Applications can’t find out by themselves the quality of the device’s
connection in advance, so our idea is to build a server that will contain infor-
mation related to the MN signal for different providers in a certain location.
This allows applications like multimedia streaming to take advantage of this
information by preventing a lack of signal in the area the user is moving
towards, thus they can adjust their data flow in order to minimize a loss in
the QoS. All the information obtained is stored in a database at the server
and applications will access this information through HTTP requests.

In order to collect this data, we have developed an Android application.
The advantages of doing so is that we can use crowd sourcing to collect the
data. By spreading the application, we can get a large number of users con-
tributing to the database by collecting information about the MN signal in
their respective areas. This application makes use of the GPS and several
phone features that help us to collect all the information about the MN in
a certain location. We built a server that we use to estimate the available
bandwidth of the phone. During next chapters we focus on this application,
how it works and explain its behavior.

Chapter 5

Bandwidth Measurement

5.1 Introduction

One of the main aims of this project is to be able to measure the down-
load bandwidth (DBdw) in a certain location. Android doesn’t provide any
class to do so for a 3G connection, so we have developed a server in Java
that supplies the client with packet trains of data which we will use to mea-
sure the download bandwidth that the user can get. In this next section we
discuss how this server/client works and we talk about the techniques used
to measure the bandwidth and the tests we performed to interpret our results.

A thing to consider when measuring the DBdw, is that the user is attached
to a data plan. So one of our main consideration was the data consumption
when trying to measure the DBdw because we want the users to use the
application with minimal affect to much their data plan.

5.2 Measurement technique

5.2.1 Server part

The server will have to supply requests from different users, so we developed
a multi thread server. The behavior of the server is shown in figure 5.1.

In the server we have a main thread that is always running and listening
for new requests. In this main thread we open a DatagramSocket that lis-
tens through port “5555”. The DatagramSocket class is for using UDP
socket connections. Even though TCP is a more reliable protocol, when try-
ing to establish a pure TCP connection with the Socket class from Java and

43

CHAPTER 5. BANDWIDTH MEASUREMENT 44

using 3G in the device, we saw that the connection was never establish in 3G
although it was in Wifi. This is caused by the providers’ NAT (Network Ad-
dress Translation). Many mobile carriers use NAT and related technologies,
so there is no guaranteed way to make a direct socket connection between
two devices or a device and a PC.

Figure 5.1: Multi thread server

As mentioned earlier, the server is requested to send a packet train of a cer-
tain size to the client and each packet with a specific size. The values for the
possible number of packets in a train are 10, 20, 50, 100 and 200. The packet
size is expressed in bytes and the possible values are 50, 100, 300, 500 and
1400. These values are stored in two different arrays, npckts for the number
of packets in a train and size for the different packet sizes. The requests from
client to server are send in UDP packets. When a new request arrives, we
extract the data from the packet. The data contained in the request consist
in two numbers, these numbers are indexes for the previous arrays. The first
index is the position of the desired packet size and the second index refers to
the train size.

To serve the clients requests we have implemented a runnable class called
Handler. To create an instance of this class we need to pass it some param-
eters. The way this is done from the main thread is shown next.

CHAPTER 5. BANDWIDTH MEASUREMENT 45

DatagramSocket udpsocket = null;

try {

udpsocket = new DatagramSocket(obtainport());

} catch (Exception e) {

e.printStackTrace();

System.out.println("Problems creating socket");

}

new Thread(new Handler(udpsocket,npckts[p],size[s],

packet.getAddress(),data.substring(0, size[s]))).run();

Code 5.1: Handling clients requests

The parameters are described as follows:

DatagramSocket socket The socket created to send packets through a
different port number than the main socket.

int packets The number of packets that we need to send (train size).

int size The size of each packet in bytes.

InetAddress address The IP address of the client. This address is ob-
tained from the packet received in the request.

String data The data of the packets we are sending. In the client this data
is not treated so this string is full of blanks. The number of blanks is
the same than the number of bytes the packet’s data must have.

As we can see in Code 5.1, we first create the socket in a port given by
the function obtainport(), which gives an unused port between “3000” and
“3300”. The number of packets and the packet size is obtained from the
arrays mentioned before, npckts[p] and size[s]. In s and p are stored the
numbers obtained from the client’s request packet. From that packet we ob-
tain the client’s IP address with packet.getAddress(). The data for sending
the packets is obtained from the variable data. This is a string created with
a number of blanks equal to the maximum packet size possible, in our case
this is 1400 bytes, hence it contains 1400 blanks. We use the “substring”
function to pass a string that contains only the required size.

The function run() in the Handler class is responsible to perform the func-
tion of sending the packet train to the client. We only create one packet
and we send it as many times as the train size. We don’t need to create
new packets because as mentioned before and as we explain in next section,

CHAPTER 5. BANDWIDTH MEASUREMENT 46

the client does not need to treat the data from the packet. The process for
sending the packets is as follows.

public void run() {

try {

byte[] bufer = new byte[size];

bufer = data.getBytes();

DatagramPacket packet2 = new DatagramPacket(bufer, bufer.length,

address, 5555);

for (int i = 0; i < packets; i++) {

udpsocket.send(packet2);

}

} catch (Exception e) {

System.err.println("Error sending the train");

}finally{

udpsocket.close();

udpsocket.disconnect();

}

}

Code 5.2: run() function in Handler class

5.2.2 Client part

The client is developed in Java and is developed for running on an Android
system. As we did with the server, we are using Java network classes to
define client’s behavior. This method is implemented in a class called Band-
widthMeasure and it implements the Runnable interface. Now we explain
how it works and what it does.

When the DBdw is calculated, the client creates a thread passing a new
object of the BandwidthMeasure class which is created with three parame-
ters. The first parameter refers to the number of packets we want to receive
in a train of packets (train size), the second parameter refers to the size of
each packet in the packet train and the last parameter is a reference to the
application’s main Activity that called the thread. As we mentioned before,
the first two parameters are the values that we attach to the packet we send
in our request, the server then services our request by sending a packet train
with the train size we want with the requested size for every packet. The
third parameter is used in order to access public functions defined in the main
Activity. This particular function is called addbdw(float bdw), its purpose is

CHAPTER 5. BANDWIDTH MEASUREMENT 47

to receive the estimated DBdw in the thread and store it in a global variable
called estimation, this last variable will contain the estimated DBdw. This
functions will be explained in next chapter.

We use the same arrays that the server uses (size and npckts) in order
to know the size of the packet and the number of packets we are expecting.
When the function run() is called, the first thing we do is initialize all the
positions of received times array to “-1” and all the positions of ports array
to “0”. The received times array is of type “long” (because the arriving time
is stored in nanoseconds, so we need long numbers) and it’s used to register
the arriving time of each packet, so with this information we calculate the
delays between packets. The ports array is of type “int” and it’s used to
store the number of the sending port of each received packet. Their size is
the same as the number of packets we are expecting to receive. Thereafter,
we create and send the request to the server then we wait for the response.
In Code 5.3 we can see the procedure to wait for the response.

We first set a timeout value for the socket of “time” milliseconds (this value
is by default setted to 1 second). The reception of the first packet may take
a long time due to the traffic, that is why the timeout for the first packet is
higher than for the rest. After the first packet arrives, we change the timeout
value to half a second, that value is established considering the delay between
packets we would experience in a situation with a very low bandwidth. We
initialize the three variables that we will use as conditions for the while loop.
In goodpackets we count the packets we have received, later, we will need it
inorder to calculate the bandwidth as can be seen in Code 5.4. The variable
init is used to store the initial time of the request and timeout to record if
the timeout occured. The conditions for the while loop to iterate are:

1. The number of received packets is lower than the expected. We stop
looping when we achieve as many packets as we expected. This value
is stored in npckts and numofpac is the value of the parameter we
received in the object’s constructor and it refers to the train size.

2. When the timeout occurs, we set the timeout variable to true and we
stop looping.

3. Knowing the initial time we can make sure that we are not receiving
packets for longer than the specified time. So if the difference between
the last packet received and the initial time is higher than ten seconds
(109 nanoseconds) we stop receiving.

CHAPTER 5. BANDWIDTH MEASUREMENT 48

udpsocket.setSoTimeout(time);

init = System.nanoTime();

goodpackets = 0;

boolean timeout = false;

try {

udpsocket.receive(pac);

received_times[goodpackets] = System.nanoTime();

ports[goodpackets] = pac.getPort();

goodpackets++;

udpsocket.setSoTimeout(500);

} catch (InterruptedIOException e) {

timeout = true;

}

while (goodpackets < npckts[numofpac] - 1 && !timeout

&& (received_times[goodpackets - 1] - init) < 10000000000f) {

try {

udpsocket.receive(pac);

received_times[goodpackets] = System.nanoTime();

ports[goodpackets] = pac.getPort();

goodpackets++;

} catch (InterruptedIOException e) {

timeout = true;

}

}

Code 5.3: Receiving a packet train

What we do is for every packet that arrives to our system we register its
arriving time in received times and the sender’s port number in ports. Ev-
ery arriving time and port number for each packet are stored in the position
of their respective arrays which matches the arriving order of the packets,
considering the first packet number “0”.

When we finish waiting for more packets, we close and disconnect the socket.
Inorder to calculate the bandwidth we check if certain conditions are fulfilled.
If the DBdw is low, the time to receive one hundred packets is very high, so
if we stopped receiving because the ten second condition occured, then we
make sure that all packets belong to the same train and then we calculate
the DBdw. If this is not the case and the number of packets is higher than
eighty (eighty packets give similar values to one hundred), then we calculate
the bandwidth. In both situations when we calculate the DBdw we pass it to

CHAPTER 5. BANDWIDTH MEASUREMENT 49

the main Activity through the function mentioned before. This call uses the
object mainActivity, which is the reference to the main Activity received as
a parameter when the BandwidthMeasure object was created. This call is as
follows:

mainActivity.addbdw(calculateBDW(received times))

The parameter received refers to the array mentioned before, received times,
the parameter ports refers to the array ports and the parameter packets
makes reference to the variable goodpackets, which contains the number of
packets received. Sizeinbits contains the size in bits of one single packet,
we add eight more bytes because it’s a UDP packet and these eight bytes
correspond to its header. In the first main “if” we check whether the first
and the last ports are the same. If they are different, we try to find the index
of the first packet with the same port number as the last packet. We add
one to first because we start calculating the delay between a packet and its
previous one. The second main “if” is used to make sure that if we ended
receiving and the ten second condition is not true, then if we have at least 80
packets we then estimate the DBdw. If the ten second condition is true, we
then consider less packets to measure the DBdw because for lower DBdw the
estimation can be obtained accurately with less packets. If any of the main
“if” conditions is true, then we iterate over the arriving times calculating the
delays between every two packets from begining to end and we accumulate
these delays in the variable delays. We check if delays is “0” or not inorder to
return the estimated DBdw. In dlyinsecs we store the accumulated delay in
seconds and then we use it to return the estimated DBdw in bits per second
(bps).

CHAPTER 5. BANDWIDTH MEASUREMENT 50

public float calculateBDW(long[] received, int[] ports, int packets) {

int first = 1;

int Sizeinbits = (size[packetsize] + 8) * 8;// + 8 bytes UDP

long delays = 0;

if (ports[0] != ports[packets - 1])

for (int p = 0; p < ports[packets]; p++) {

if (ports[p] == ports[packets - 1]) {

first = p + 1;

break;

}

}

if ((packets - first - 1) >= 80 &&

(received[packets-1]-init) < 10000000000f) {

for (int i = first; i < packets; i++)

delays += received[i] - received[i - 1];

}

else if((received[packets-1]-init) > 10000000000f){

for (int i = first; i < packets; i++)

delays += received[i] - received[i - 1];

}

if (delays != 0) {

Double dlyinsecs =

Double.parseDouble(String.valueOf(delays)) / 1000000000;

return (float) ((Sizeinbits * packets) / dlyinsecs);

} else {

return 0f;

}

}

Code 5.4: Bandwidth calculation process

CHAPTER 5. BANDWIDTH MEASUREMENT 51

5.3 Conducted tests

Mobile networks (MN) are changeable and that makes it difficult to find out
whether the results we obtained, were good or not. It turned out that when
using MN, if we measured the DBdw in very short intervals of time (five
seconds difference), we could see a big difference between some results. To
determine how good our results were, we performed some tests comparing
the results obtained with our tool, with the results obtained with the com-
mercial tool Speedtest.net mobile (ST) mentioned in section 2.2.1.

To perform these tests we ran our tool to obtain packet trains of 100 packets.
We ran it three times for every test, each time with a different packet size.
The packet sizes used were 100 bytes, 500 bytes and 1400 bytes. We started
by running the ST tool, straight after it was finished we ran our tool with
the three different packet sizes one after the other following this order:

1. 100 packets of 100 bytes

2. 100 packets of 500 bytes

3. 100 packets of 1400 bytes

In the following sections we introduce and discuss the results obtained. We
compare the results from the different packet sizes with the ones obtained
with ST.

5.3.1 Results

We conducted a total of 35 tests. For some tests the result obtained with
our tool was “0”, which means that the client did not received the expected
packet train. The data obtained from the tests is shown in table 5.2 at the
end of this chapter. We can see the estimated bandwidth (BDW) for the
three variations of our tool and for ST. We can also see the number of re-
ceived packets (#Packets) for each different request using our tool.

Inorder to see the relationship between the results obtained with ST and
our tool, we plot the data for every single variation against the data ob-
tained using ST. Even though we can see that some results are close to the
ST results, we can’t tell which packet size is better only by looking at these
results. To compare the different results obtained with our tool with the
ones obtained with ST we conducted a t-test, in which we concluded that
the results that were closer to the ST results were the results that were ob-
tained with 100 packets of 500 bytes. This is explained in more detail in

CHAPTER 5. BANDWIDTH MEASUREMENT 52

section 5.3.2.

(a) 100 bytes (b) 1400 bytes

Figure 5.2: SpeedTest results vs 100 B and 1400 B

Figure 5.3: 500B packets vs SpeedTest

With 100 packets train of 500 bytes each packet we decided to calculate the
bandwidths in ten packets interval, to see if it was better to use 100 packets
or we could use less instead. With this calculations we observed that use

CHAPTER 5. BANDWIDTH MEASUREMENT 53

less than 100 packets to estimate the DBdw could produce under estimation.
When we are doing more than one request (because we are not receiving the
paquets), when a train arrives sometimes can be seen that the delays between
packets is getting smaller while we receive more packets up to 100 packets.
This produces that if we use less packets to estimate the DBdw, the result
that we get will be much lower than with 100 packets. The difference of the
estimated DBdw with 80 packets is minimum with the one obtained with
100 packets and that’s the reason why we use at least 80 packets to estimate
the DBdw.

5.3.2 Hypothesis Tests for Compare the Measurements
obtained from Measurement Tool and SpeedTest
Readings

Sample P value t statistic 1- α deg. of freedom
data100 vs. SpeedTest 1.1788 × 10-4 -4.0866 1-(0.001) 68
data500 vs. SpeedTest 0.926 -0.0975 1- (0.2) 68
data1400 vs. SpeedTest 0.5539 0.5949 1-(0.59) 68

Table 5.1: Two sided independent sample t-test summary

We have performed hypothesis tests for each data sets against SpeedTest
sample for any significant differences between means. All the hypothesis
tests were conducted under the α = 0.05 (95%Confidence Interval) signifi-
cance level.

Hypothesis Statement:

Null hypothesis is µdata100,500,1400 are same as µSpeedtest.

Alternative hypothesis is µdata100,500,1400 are not equal to µSpeedtest.

H0 : µdata100,500,1400 = µSpeedtest

H1 : µdata100,500,1400 6= µSpeedtest

For data100 sample: The P value (1.1788 × 10-4) is less than 1- α (0.999)
and therefore we have to reject the null hypothesis and accept the alternative
that the mean of data100 sample and ST are significantly different.

For data500 sample: The P value (0.926) is greater than 1- α (0.8) and

CHAPTER 5. BANDWIDTH MEASUREMENT 54

therefore we fail to reject the null hypothesis concluding that there is not
enough evidence to suggest that the two means have a significant difference.

For data1400 sample: The P value (0.5949) is greater than 1- α (0.4) and
therefore we fail to reject the null hypothesis concluding that there is not
enough evidence to suggest that the two means have a significant difference.

Given the test results we accept the null hypothesis of sample data500 and
data1400. From the above three hypothesis in combination with the graphs
from previous section, it is evident that the 500 bytes test probes give similar
results as ST measurements.

CHAPTER 5. BANDWIDTH MEASUREMENT 55

Time interval
100 bytes 500 bytes 1400 bytes Speed Test

BDW #Packets BDW #Packets BDW #Packets BDW
1 481.877 100 656.323 100 761.003 100 743
2 190.978 100 345.415 100 609.638 33 539
3 358.679 100 0 0 1504.68 100 717
4 0 0 197.441 15 417.881 8 852
5 181.708 100 765.691 100 1498.21 100 816
6 246.257 100 822.014 99 1297.03 100 1030
7 465.569 100 799.779 100 375.899 53 525
8 566.557 100 536.994 99 419.244 8 571
9 616.606 100 526.736 15 176.764 8 162
10 0 0 1154.31 100 0 0 1100
11 452.92 100 347.822 100 397.502 62 750
12 276.157 100 463.037 100 239.177 100 1017
13 621.61 100 661.436 100 436.041 46 1216
14 210.497 100 645.423 100 887.291 100 90
15 618.49 100 667.063 100 486.322 100 454
16 322.77 100 888.602 100 302.105 20 322
17 834.979 100 689.49 100 964.677 80 744
18 0 0 934.515 100 751.772 82 500
19 0 0 2170.64 100 375.807 100 446
20 247.417 100 332.575 100 364.945 100 352
21 176.568 100 351.518 100 39.7518 52 726
22 160.163 100 210.903 100 362.183 100 549
23 218.92 100 736.582 100 1213.85 100 457
24 198.412 100 676.028 100 1991.59 100 501
25 1069.4 100 737.846 100 569.45 100 225
26 783.717 100 725.043 100 938.002 99 451
27 233.822 100 252.556 15 283.899 72 409
28 197.238 100 530.396 100 959.316 86 678
29 659.358 100 648.532 100 685.851 99 894
30 268.567 100 647.933 100 891.144 100 276
31 523.636 100 557.831 100 427.6 100 1089
32 184.62 100 751.786 100 460.03 100 456
33 229.096 100 253.103 100 704.591 100 258
34 250.812 99 0 0 426.074 8 851
35 264.453 99 325.543 15 907.874 100 517

Table 5.2: Data

Chapter 6

Smartphone application

6.1 Introduction

In this chapter we describe the application we developed. The contents of
this chapter will go as follows. First, we introduce the different elements we
measure with the application and describe the file we upload to the server.
Afterwards, we describe the different components and information about the
device that we are accessing and their role in the application. Further, we
discuss the main issues we had and how we solved them. In the end we
explain how the application works and its interaction with the users.

6.2 Information collected by the application

In this section we describe the information we are obtaining from the appli-
cation and how we upload it into the database server. We first briefly look
at the different data we store for each measurement one at a time. After-
wards, we discuss in more detail the structure of the file that contains all the
measurements and the uploading process.

6.2.1 Measurements

The application we developed retrieves information related to the device.
This information can be divided into four different groups: device, location,
network provider and network connection. Now we identify and define them.
In later sections we talk about how we obtained them and their role in the
application. We must mention that in addition to this data we also save the
date, starting time and ending time for each measurement but explanations
are left out for simplicity’s sake.

56

CHAPTER 6. SMARTPHONE APPLICATION 57

1. Device

Device identifier This number is the IMEI for GSM and the MEID
or ESN for CDMA phones and is unique for each device.

Phone type Name of the radio type the device uses.

2. Location

Latitude & Longitude These are the coordinates of the device’s GPS
in the moment a measurement is taken.

Accuracy Represents the accuracy in meters of the coordinates re-
ceived from the GPS.

3. Network provider

Operator identifier Known as a ”MCC / MNC tuple”, this num-
ber is a combination of two numbers, the Mobile Country Code
(MCC) and the Mobile Network Code (MNC). The MCC is the
ISO country code of the operator and the MNC makes reference
to the operator in that country (This is explained in more detail
in section 6.3.3).

4. Network connection

Local area code A unique number assigned to a “location area”,
where this “location area” is a set of base stations that are grouped
together to optimise signaling.

Base station identifier Identifier of a base station in a “location
area”.

Signal strength This number represents the signal strength and its
value is between 0-31 or is equal to 99 as defined in TS 27.007 8.5
(3GPP Technical Specification).

Network type Depending on whether the phone is a GSM or a CDMA
phone, this value lets us know what kind of network is in use
(GPRS, EDGE, UMTS, HSDPA, . . .).

Bandwidth Represents the download bandwidth when the measure
took place and it is obtained with the tool mentioned in chapter 5.

Instead of uploading every single measurement that a user makes, what we do
is register each measurement in a Java class we created called Measurement.
This class contains a field for all information required in a measurement and

CHAPTER 6. SMARTPHONE APPLICATION 58

it provides setters and getters to access these values. In the main class we
have declared an ArrayList of Measurement objects (measurementset),
so all the measurements are stored in this array till the file is upload to
the server or till the user exits the application, in that case we write the
measurements into the file. Using an array makes it very easy to add/delete
new measurements and access them. Once the file is uploaded, the array is
cleared to avoid uploading the same measurements twice.

6.2.2 Measurements file

All the measurements taken while the application was running are saved in
an XML file called “UNSWBandwidthData.xml”. This file is stored in the
external memory of the device, in a folder created by the application. So
if the application is removed, then the folder and all its contents are also
removed. The structure of the file and how it is treated by the application
is explained below.

The file’s structure is easy to understand now that we know the values it
contains. Here we describe the relationship between the tags and the mea-
surement values. In figure 6.1 we can see an example of a file that contains
two single measurements.

List of tags:

<measurements> Start tag of the document, its attribute “user phone id”
is the device identifier of the phone that uploads the file.

<measure> First tag for each measurement and has two attributes: “date”
that represent the date of the measurement in “dd/mm/yyyy” format
and “time”, which represents the starting time of the measurement in
“HH:mm:ss” format.

<endtime> The time when the DBdw estimation finished in the format
“HH:mm:ss”, which is the ending time of the measurement.

<BaseStationId> The value contained in this tag is the base station iden-
tifier.

<LAC> Local area code of the base station.

<operatorid> The MCC+MNC of the network operator.

<signalstrength> The value of the signal strength when that measurement
was taken.

CHAPTER 6. SMARTPHONE APPLICATION 59

<phonetype> The type of phone, GSM or CDMA.

<networktype> The kind of network connection we have (GPRS, EDGE,
UMTS, HSDPA,. . .).

<lat> The latitude of the coordinate given by the GPS.

<long> The longitude of the coordinate given by the GPS.

<accuracy> The accuracy in meters of the geographical coordinate.

<bdw> The value obtained in kilobits per second from the Measurement
tool (Chapter 5).

When the application is started, it checks if the file exists. If so, that means it
contains measurements from previous runnings, so adding new measurements
would produce a malformed .xml file. We extract the information about the
previous measurements by parsing the file and we store them in the Ar-
rayList<Measurement> we mentioned in previous section (6.2.1). With all
these measurements stored, the application is ready to start obtaining new
data that will be added to the previous array.

Figure 6.1: UNSWBandwidthData.xml

CHAPTER 6. SMARTPHONE APPLICATION 60

When we stop the application, we must save all the measurements we took.
What we do is iterate over the ArrayList and write them in the file as shown
in figure 6.1. When we write the file, it does not matter if the file exists or
not because we are not appending information to it.

At the time the user decides to upload the file, if the upload is successful we
delete it to avoid future conflicts with the data. We explain in section 6.5.3
the uploading process.

6.3 Device components

The application requires access to several pieces of information provided by
the device: location information, device details, network provider information
and network connection information. In this section, we describe them one
by one and we refer to the Java classes used in each case.

6.3.1 Location information

One important thing for us is to know the user’s location, so we can see the
relationship of the obtained data in a certain location. Hence, in the later
phase of the work we will be able to build a map with this data.

When developing a location-aware application for Android, developers can
use GPS and Android’s Network Location Provider to acquire the user loca-
tion. Although GPS is more accurate, it only works outdoors and it consumes
more battery power than others. We are using GPS because it fits better to
our purposes, we also need to be as accurate as possible and GPS gives more
accurate results.

The Java class we are using is LocationManager, this class provides access
to the system location services. These services allow applications to obtain
periodic updates of the device’s geographical location. This updates are ob-
tained by means of callback. We define a LocationListener that we pass
to our LocationManager and this listener must implement several callback
methods. The LocationManager calls these methods when the user location
changes or when the status of the service changes. We get the updated loca-
tion through the method onLocationChanged(Location location) and we get
the new location in the Location parameter. The behavior of our application
when the location is changed is defined in this method.

CHAPTER 6. SMARTPHONE APPLICATION 61

In section 6.4.1 we discuss in more detail the updating time for the GPS
listener and its relationship with the accuracy of the obtained coordinates.

6.3.2 Device details

A way to identify the user’s contribution to our database is establishing a
relationship with a user and its phone. The best way to do that and at the
same time minimize the user’s interaction with the application is by using
the device identifier, which is unique for every device. Storing the relation
between the user’s email and user’s device identifier in the database, we can
know who uploaded the data to the server and how much this user con-
tributed to our database.

The access to information about the telephony services on the device is pro-
vided by the TelephonyManager (TM) class. Once this class is instantiated
to the telephony service of the device, we can easily get this identifier by
calling the method getDeviceId(). This value is part of every measure we
upload to the database and it is a primary key of the data in the database.

6.3.3 Network provider information

We can’t expect that all users use the same network provider, so due to the
fact that there are different network providers, we need to know which one
the user is using when doing the measurements about the network. This
will allow us in later work to classify the obtained data in different sets and
compare the data we collected between the different providers.

To access this information we use the same class we mentioned before, TM .
We get this information by calling the method getNetworkOperator() and
we get the numeric name of the current registered operator. This number
is a combination of two numbers, the Mobile Country Code (MCC) and the
Mobile Network Code (MNC), also known as a ”MCC / MNC tuple”. The
MCC is the ISO country code of the operator and is part of the Interna-
tional Mobile Subscriber Identity (IMSI) number, which uniquely identifies
a particular subscriber and is stored on a (usually) removable SIM card. It
is always three numbers and in our case it’s 505, which is the Australia’s
MCC. The MNC is always used in combination with a MCC and uniquely
identify a mobile phone operator in the country referenced by the MCC. In
our tests we were using a Vodafone AU SIM card and the value of the tuple
is “50503”.

CHAPTER 6. SMARTPHONE APPLICATION 62

6.3.4 Network connection information

We need to collect information related to the phone’s network for our database.
This information is obtained from the network features, such as the sig-
nal strength, the phone type (GSM or CDMA), the network type (CDMA,
UMTS, EDGE, . . .) and also information related to the current base station,
the base station identifier and local area code (LAC). The LAC is a unique
number assigned to a “location area”, where this “location area” is a set of
base stations that are grouped together to optimize signaling.

To get this information we use the TM class to obtain the first features
(signal strength, phone type and network type) and we are using another
class called GsmCellLocation for the other features. Phone type and net-
work type can be obtained by doing a simple call to getPhoneType() and
getNetworkType(), respectively, from our TM object. Signal strength on the
other hand, requires overriding a callback function in PhoneStateListener.
This listener must be registered in our TM object and it is used for monitor-
ing changes in specific telephony states on the device. So, when registered
in our TM object, we pass the listener and a flag indicating which state we
want to monitor (in this case, LISTEN SIGNAL STRENGTHS). Overriding
the onSignalStrengthsChanged(SignalStrength signalStrength) method lets us
control the behavior when the signal strength changes.
To get the information about the base station another callback function needs
to be overridden and another listener flag is required (this time it is LIS-
TEN CELL LOCATION). With this flag we supervise the changes in the
device’s cell location and by overriding onCellLocationChanged(CellLocation
location) we get the related information to the cell location (stored in loca-
tion). Inorder to obtain the information about our current cell location, we
need to cast the CellLocation object into a GsmCellLocation object, so then
we can call two functions (getCid(),getLac()) to obtain that information.

6.4 Issues

While developing the application we found some issues regarding the best
way to get our measurements. Here we identify them and explain how we
managed to solve them. These issues are related to the GPS accuracy and
with the amount of data consumed from the user’s mobile plan.

CHAPTER 6. SMARTPHONE APPLICATION 63

6.4.1 GPS accuracy

The accuracy of the coordinates obtained from the GPS are affected by the
amount of time the GPS signal is alive. The GPS needs a start up time
but this time is not specified anywhere because it may vary from one GPS
to another. So we performed a test to find out how to get a high level of
accuracy without affecting the battery consumption greatly.

The test took place at the UNSW and it consisted of running an appli-
cation to obtain the coordinates give by the GPS and its accuracy. We ran
this application four times and each time with a different updating time for
the location. Our values where 5, 10, 30 and 60 seconds. The test was
run for 14 minutes for 5 and 10 second intervals and for 28 minutes for 30
and 60 second intervals. The length of the data set is different for each
one, this is due to the fact that when the updating time is shorter we get
more GPS coordinates per minute. The graphs shows the results through
the time. First, in figure 6.2 we show the frequency of the results for each
updating time. As can be seen, when the GPS updates its location every 5
seconds, more than 95% of the coordinates obtained are at least 20 meters
accurate and more than 35% are at least 10 meters accurate. For the other
updating times, between 60% and 70% of their results are 20 meters accurate.

If we have a look to figure 6.3a, we can see the variations in the accuracy for
30 and 60 second updating times. Even though we get some accurate results
for 60 seconds it is quite irregular and the same happens for 30 seconds.
This is caused by the behavior of the GPS, it is designed to save battery,
so when the time interval is that long, the GPS gets a location according to
its updating time and then its status is set to “STOP”. When the updating
time passes, it changes its status to “START” because of these changes, the
accuracy of the location obtained is affected and is not always as accurate as
it could be with a shorter time. By looking at figure 6.3b, we see that for 10
seconds there are still large variations but for 5 seconds the values obtained
appear to be more regular.

CHAPTER 6. SMARTPHONE APPLICATION 64

Figure 6.2: Accuracy frequency

(a) 30s vs 60s (b) 5s vs 10s

Figure 6.3: Accuracy comparison

To show the results in figure 6.4 we used the data obtained during the first
14 minutes for 30 and 60 second intervals inorder to compare them with the
results obtained from 5 and 10 second intervals.

CHAPTER 6. SMARTPHONE APPLICATION 65

Figure 6.4: Cross data

We conducted another test with a time interval of 500 milliseconds, as we
expected the results where more accurate than the rest but this time inter-
val has a much higher consumption of battery. In figure 6.5 we can see the
difference with 5 seconds.

Figure 6.5: 5 seconds vs 500 milliseconds

CHAPTER 6. SMARTPHONE APPLICATION 66

6.4.2 Data consumption

In order to talk about the data consumption, we first need to know how
we do the measurements. We are using an abstract Android class called
AsyncTask. This class allows to perform background operations and pub-
lish results on the user’s interface (UI) thread without having to manipulate
threads and/or handlers. We created a class called Bandwidthtask that ex-
tends AsyncTask. In this class we override two methods: doInBackground
and onPostExecute. The first method is responsible for executing the code
we want and the result from this method is received in the second method.
How this task is invoked is explained in section 6.5.2. Now we explain the
behavior of this task in figure 6.6.

Figure 6.6: Task process

When the task is invoked, in the doInBackground function we first initialize
the variables estimationbdw and i and create a thread with a Bandwidth-
Measure object. In estimationbdw we store the DBdw in bits per second
(bps) calculated in the thread as mentioned in section 5.2.2. The variable
i is used to iterate and run up to ten requests. This is done because while
receiving packets, the BandwidthMeasure object can timeout before the first
packet is received, doing so ensures that we will receive at least one packet
train.

CHAPTER 6. SMARTPHONE APPLICATION 67

Next, we run the thread and wait to receive the DBdw estimation. This
value is obtained by the function addbdw(bdw). From the BandwidthMea-
sure object we call this function in the main Activity using the reference
passed when created. This function receives the value as the parameter bdw.
What we do is set the value of estimationbdw to this value. While the
number of requests is less than ten and the DBdw obtained is “0” we keep
requesting. When we finish, we send the value obtained for the DBdw and
the ending time to onPostExecute. In this function we call the function
printmessagebdw in the main Activity. We split the result in bdw and time,
then we check if the DBdw obtained is different from “0”, in this case we
store the DBdw (in kbps) and the ending time in the Measurement object
that was created for this measurement. If it is “0” then we remove this ob-
ject from measurementset (the array that contains the measurements). The
process done in printmessagebdw can be seen in figure 6.7.

Figure 6.7: printmessagebdw function process

So, when estimating the DBdw we are requesting a train of 100 packets,
where the size of each packet is 500 bytes. Thus for every full train that

CHAPTER 6. SMARTPHONE APPLICATION 68

we receive we are consuming 50 kilobytes. Considering that no packets are
lost when we receive a request, we must be aware that for every measure-
ment done, 50 KB is the amount of data consumed from the user’s data plan.

Consider the following scenario regarding data consumption. This scenario
was based on a one hour trip for a user to get from home to university. We
consider this as a reasonable scenario since we are planning to distribute
the application amoungst students. Based on this, the user would be taking
measurements for two hours a day (go and return). Table 6.1 shows the
estimated data consumption (Data) and the number of measurements (#M)
taken for one day, five days (one school week) and a full month (four weeks)
according to different time intervals between measurements. We consider the
measurements between work days (Monday to Friday).

Time interval
Day 5 Days 4 Weeks

#M Data #M Data #M Data
5 1440 72 MB 7200 360 MB 28800 1440 MB
10 720 36 MB 3600 180 MB 14400 720 MB
15 480 24 MB 2400 120 MB 9600 480 MB
20 360 18 MB 1800 90 MB 7200 360 MB
25 288 14.4 MB 1440 72 MB 5760 288 MB
30 240 12 MB 1200 60 MB 4800 240 MB
35 205 10.3 MB 1028 51.4 MB 4114 205.7 MB
40 180 9 MB 900 45 MB 3600 180 MB
45 160 8 MB 800 40 MB 3200 160 MB
50 144 7.2 MB 720 36 MB 2880 144 MB
55 130 6.5 MB 654 32 MB 2618 130.9 MB
60 120 6 MB 600 30 MB 2400 120 MB
120 60 3.MB 300 15MB 1200 60MB

Table 6.1: Relation between data consumption and number of measurements

According to these values, the decision about which time interval to choose
should be based on the number of users contributing to the database. How
much of their monthly data plan they decide to use for contributing to our
database must be considered. This value can be adjusted depending on the
user, so users with higher data plans can contribute more than users with
lower data plans if they want to. To perform our tests we are using a fifteen
second interval because we are using a SIM card with a high data plan.

CHAPTER 6. SMARTPHONE APPLICATION 69

6.5 Application work

In this section we explain how the application works, we first introduce the
interface, thereafter we explain the main functions that integrate the appli-
cation. We discuss in detail the behavior of the uploading part and then we
show a flow chart for the whole process and explain the interaction between
the functions. We also explain the behavior of the application but we don’t
get deep into the code.

6.5.1 Interface

The application’s interface is very simple, it only contains three buttons:
“Start”, “Stop” and “Upload File”. First of all we focus on what the purpose
of each button is and then we explain the behavior of the application when
these buttons are pressed. The interface is shown in figure 6.8, here we see
that all buttons are enabled but this was only done for illustration purposes.
We will also briefly discuss the interaction between buttons.

Start This button triggers the measurement functions. When pressed, the
network connection is checked and if there is a one active connec-
tion (Mobile Data or Wifi) then the listener for the location is defined
and the device starts monitoring the GPS for location changes. Once
the “Start” button is pressed, it becomes disabled until the “Stop” is
pressed.

Stop After pressing Start, this button gets enabled. When pressed, we check
there is a Bandwidthtask object that is running and if it is, we check
if the DBdw field is still “0”, in that case we remove the object from
measurementset. If any measurements were obtained before pressing
the button then we store them in the file mentioned in section 6.2.2 and
we remove the listener for the location. We then enable the “Start”
button again and disable this button.

Upload File This button is only enabled when the file that contains the
measurements exists and only in the situation that the application is
not taking measurements. When pressed the file is uploaded to the
database’s server through an http POST method. This process runs
in an asynchronous task, so in case it takes some time it won’t block
the interface. When uploading the file some feedback is always given
to the user, so the user can see if it is uploaded correctly or there is a
problem during the process.

CHAPTER 6. SMARTPHONE APPLICATION 70

Figure 6.8: UNSW Crowdsourcing Application

Figure 6.9: Buttons flow

Figure 6.9 shows the flow chart for the buttons between the enabled and
disabled states.

CHAPTER 6. SMARTPHONE APPLICATION 71

6.5.2 Functions

In this section we discuss the behavior and the purpose for some functions.
We explain them one by one and we see flow charts to illustrate the behavior
of more complex functions.

checkNetwork() We need to make sure that there’s a network connection
in order to get the measurements. With this function we avoid any kind
of networking problems for the application. Trying to send or receive
packets to and from the network without an active connection would
produce exceptions, so, what we do is check if there’s a connection and
differentiate between mobile and wifi for our measurements. If there’s
no connection we show a message to the user to inform him/her.

checkFile() As mentioned before, the button to upload the file will be en-
abled only in the case there’s a file to upload. This function makes
sure this happens. This function is used when the application is first
launched and after trying to upload the file. Its behavior is very simple,
it checks the file’s existence inorder to enable the Upload File button. In
the case where the file does not exist, then it clears the Measurement
objects array (measurementset) if it’s not empty, this will only happen
after a successful uploading, if it exists, we call readXML(File f).

readXML(File f) When we first launch the application, a file with previous
measurements can exist. As we are using one single file to store all the
measurements taken through different application runs, we read the file
if it exists (the file given as a parameter f) and parse it. By parsing
the file we store all the measurements recorded in previous launches
in measurementset, so when we start obtaining measurements, the
new measurements will be added to the array and when stopped, all
measurements will be stored in the file, erasing previous information.
This is done because we must preserve the xml structure so we can’t
simply add new measurements to the file.

writeXml(ArrayList<Measurement> measurements) Using the infor-
mation related to the measurements taken, which is stored in the array
mentioned before, we create the xml file mentioned in section 6.2.2.

get3Ginfo(Measurement measure) This function receives aMeasurement
object that has all values to their default value. In this function we get
all the data using the methods explained in section 6.2.1 to fill all the
fields from the Measurement object received but the DBdw and the
ending time, which are stored when the Bandwidthtask object finishes

CHAPTER 6. SMARTPHONE APPLICATION 72

as explained in section 6.4.2. When storing the Network type, we first
check if the network we are connected is mobile or wifi, if it’s wifi then
we set its value to “WIFI”.

onLocationChanged(Location location) This function was explained in
section 6.3.1, but now we’ll see how it works.

Figure 6.10: onLocationChanged(Location location)

The variables current and last are objects from the Calendar class. This
variables store the time, so in time we store the difference between the cur-

CHAPTER 6. SMARTPHONE APPLICATION 73

rent time and the last time we did a measurement. If this time is higher
than 15 seconds and the network connection is available, we proceed to do a
measurement. Then we check the global Bandwidthtask object (band), if it
is still null (it is the first time we try to run it) or it not running, then we do
a measurement. The process to do a measurement can be seen in figure 6.10.
First we create a new Bandwidthtask object and we execute it. Meanwhile
it is running in the background we store the information related to the GPS
(accuracy, latitude and longitude) and we create a new Measurement object,
which we add to measurementset and we store the reference to that object
in measurement, which is a global variable of the class Measurement. Then
we pass this Measurement object to the get3Ginfo(Measurementmeasure)
function to obtain the rest of the required information.

6.5.3 Uploading

For uploading the file we created a class called UploadingTask that extends
AsyncTask (explained in section 6.4.2). In this class we override two meth-
ods: doInBackground and onPostExecute. Now we explain the code used
for uploading the file to the server (Code 6.1).

try {

HttpClient httpClient = new DefaultHttpClient();

HttpPost request = new HttpPost(

new URI("http://129.94.172.130/"));

MultipartEntity entity = new MultipartEntity();

entity.addPart("upfile", new FileBody(Measurements_file));

request.setEntity(entity);

HttpResponse response = httpClient.execute(request);

int status = response.getStatusLine().getStatusCode();

if (status == HttpStatus.SC_OK) {

Measurements_file.delete();

return 1;// "Upload Complete";

} else {

return 2;// "Couldn’t upload, pleas try later...";

}

} catch (Exception e) {

return 3;// "There was a problem while trying to upload";

}

Code 6.1: doInBackground()

What we do is create an HttpClient and prepare the POST request with the

CHAPTER 6. SMARTPHONE APPLICATION 74

server’s IP address. We can’t simply attach the file to our request with the
standard Java libraries for http connections, it is a little bit tricky. Instead,
we are using two third party libraries called “apache-mime4j-0.4.jar” and
“httpmime-4.0-beta1.jar” that implemented methods that already embrace
all the work. These libraries allow us to use the MultipartEntity class and
with this class we can attach the file to our request by setting the request’s
entity to it. After uploading, if the response is “OK” (200), then we delete
the file.

if (checkNetwork()) {

if (!uploadtask.getStatus().equals(Status.RUNNING)) {

if (!uploadtask.isCancelled())

uploadtask.cancel(true);

if (Measurements_file.exists()) {

Toast.makeText(this, "Wait while we upload the file",

Toast.LENGTH_LONG).show();

uploadtask = new UploadingTask();

uploadtask.execute(this);

} else

Toast.makeText(this, "There’s no data to Update",

Toast.LENGTH_SHORT).show();

}

} else

Toast.makeText(this, "You need connection to upload the file",

Toast.LENGTH_SHORT).show();

Code 6.2: Upload File

Code 6.2 shows the behavior when the “Upload File” button is pressed.
When the user press the button we try to upload the file. Before we upload
the file we check that all the conditions for uploading are satisfied. These
conditions refer to the network connection and to the UploadingTask ob-
ject. We check if the network connection is active and then before launching
a new UploadingTask object we make sure there’s not any other object al-
ready running. So, if the file exists, we create a new task and we execute it to
upload the file. We use a global object from this class, uploadtask, by doing
so we can check its status and make sure we don’t start two tasks at the
same time. If the file does not exists or network connection is not available,
we print a message to give some feedback to the user.

CHAPTER 6. SMARTPHONE APPLICATION 75

6.6 Full process

To explain how the application works we first introduce a transition diagram
with the different states of the application. Then we show how the measuring
part works with a flow chart and we explain its behavior.

In the transition diagram the flow is shown from the application launch. Af-
ter we initialize the variables we check if the file UNSWBandwidthData.xml
exists. If so, we can upload or start measuring (“Start or Upload” state), if
it does not exists then we can only start the measuring part (“Start” state).
When we press the “Start” button, it is possible that there’s no connection
or the GPS is disabled, in that situation we reach a state which we will only
leave when both of them are enabled. When everything is enabled and the
“Start” button is pressed, then we reach the “Measuring” state where we col-
lect the data. We stop measuring when the user presses the “Stop” button.
When we stop measuring, if the measurementset array is empty (so there
are no measurements to store in the file), we return to the “Start” state,
otherwise we go to the “Start or Upload” state. When we are in the “Start
or Upload” state and we try to upload the file, if the upload is successful we
move to the “Start” state, if the upload is unsuccessful then we stay in this
state. This behavior is presented in figure 6.11.

Figure 6.11: States Diagram for the application

The behavior of the “Measuring” state is shown in figure 6.12. When the
“Start” button is pressed we check the network connection and if it is active,

CHAPTER 6. SMARTPHONE APPLICATION 76

then we register the LocationListener with a 5 second updating time. If
it is not active then we move to the “No network or No GPS” state and
afterwards we go back to the calling state. Setting the updating time to 5
seconds means that every 5 seconds the GPS updates its location and this
location is received in onLocationChanged(Location location). The behav-
ior of this function is explained in section 6.5.2. When the “Stop” button
is pressed, we then check the array where we store all the measurements
(measurementset), if it is not empty, then we store the measurements in the
xml file UNSWBandwidthData.xml and we go to “Start or Upload” state.
If the array is empty, then we go to the “Start” state. While measuring, if
the GPS is disabled, we check if any measurements have been taken, if so we
store them in the xml file and then we move to the “No network or No GPS”
state. If there are no measurements then we move straight to this state.

CHAPTER 6. SMARTPHONE APPLICATION 77

Figure 6.12: Measuring flow

Chapter 7

Conclusions

Finally, we attempt to complete the jigsaw puzzle. We have noted the me-
teoric rise of mobile smart phones. As a consequence, applications for these
smart phones, particularly those related to multimedia streaming are in huge
demand. This necessitates the need for better and more consistent data
throughput to provide a better user experience. This report is about how
we have designed and implemented a mobile application which collects user’s
perceivable download data bandwidth by acting as a crowd sourcing sensor
on behalf of a geo-intellegent system, and also about how developed a web
based application that would perfectly be able to use these features for itself.

The application developed in second place measures 3G/HSDPA download
data bandwidth actively and automatically thereby reducing user interaction
and data consumption. By integrating this functionality in the PideCita ap-
plication will lead us to more measurement contributors, eventually resulting
in a vast measurement database.

Efficient mobile phone power consumption and the user data consumption
were our two main considerations. This presented an optimization problem.
On the one hand we wanted to maximize GPS accuracy but at the same
time, we also wanted to minimize the power consumption. We therefore
endeavoured to find an optimal balance between GPS accuracy and power
consumption whilst minimizing the consumption from the user’s current data
plan. Adding the measurement functionality to PideCita can make things
easier, as we are using an HTTPS connection for our requests we could use
the same request to measure the bandwidth, avoiding like this an extra con-
nection.

Packet Pair probing is the base technique used in our measurement ap-

78

CHAPTER 7. CONCLUSIONS 79

plication. Packet Pair probing was a convenient choice because of its low
computational overhead. Also, it allows for the ability to reconfigure the
measurement tool at anytime with very little effort and the fact that it is
capable of providing highly accurate results only serves to reinforce this point.

When running our tests for the measurement tool we used measurements
obtained from the commercial mobile application Speedtest.net mobile as a
benchmark. We tested the hypothesis that the results obtained from our ap-
plication are equal to the results obtained from Speed Test using a two-sided
T-test. We conclude that our measurements lie within the 95% confidence
interval around the mean of the results obtained using Speed Test, 80% of
the time.

In the future we hope to be able to implement the PideCita application
on other mobile platforms. This will not only extend our reach in the mar-
ket, merging both applications will also facilitate access to a wider range of
contributors which will serve to enrich the quality and increase the size of
the database.

Concluding, adding these new features to the PideCita application would
imply that the application would be more prepared to handle connection
problems. Users won’t suffer the connection problems as many times as they
do now, this would benefit this application and also other web based ap-
plications. Other future applications developed by NUBESIS could use this
information and become more reliable.

Bibliography

[1] Android Developers, http: // developer. android. com/ index. html .

[2] Constantinos Dovrolis, David Moore, and Parameswaran Ramanathan,
What do packet dispersion techniques measure?

[3] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore,
Packet dispersion techniques and a capacity estimation methodology.

[4] Rohit Kapoor, Ling jyh Chen, Alok Nandan, Mario Gerla, and M. Y.
Sanadidi, Capprobe: A simple and accurate capacity estimation technique
for wired and wireless environments, UCLA Computer Science Departa-
ment, Los Angeles, CA 90095, USA.

[5] Rohit Kapoor, Ling jyh Chen, M. Y. Sanadidi, and Mario Gerla, Accuracy
of link capacity estimates using passive and active approaches with cap-
probe, UCLA Computer Science Departament, Los Angeles, CA 90095,
USA.

[6] SpeedTest.net, http: // speedtest. net/ .

80

