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Abstract

The foreseeable outcomes of the transition towards low-carbon economies are

multiple and affect in different ways policy-makers, world regions, firms and

consumers. It has long been acknowledged that at the core of this transition

stand environmental innovations which are developed to enhance the long-term

sustainability of economic growth.

The main pillars of this study are two. First, environmental challenges are

different, and so are the responses that are needed to tackle them. The

main consequence of this is that the current focus on green technology as a

homogeneous block of undifferentiated entities is misleading.

Second, the adaptation of production and distribution systems is ultimately car-

ried through by human labour and analysing the transition to environmentally

sustainable societies requires a thorough understanding of how work activities
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Chapter 0. Abstract

are designed, implemented and changed to accommodate new policy imperatives

and/or new technological opportunities.

Empirical evidence on either of these two pillars is scant or fragmented. The

present thesis seeks to fill these gaps through the development of a database on

green innovations, of a measure of the life cycle of green technologies, and of the

corresponding explorations to scrutinize the relation between green technology

production, the territories’ characteristics and skills’ base of labour market over

time and space.

The dataset is created identifying green patent in PATSTAT 2016a database

using ENV-TECH classification (OECD, 2016) and geolocalizing their inventors.

The result is a database covering green innovation worldwide from the 19th

century to 2015, even if the period studied is smaller: 1970-2010.

This dataset permits a first overview of green technologies evolution over time

and space, where we can see differences in terms of country evolution and

among technologies in terms of complexity, maybe related with the presence of

an heteregeneous body of emerging and mature technologies.

To explore further this hypothesis, we develop a methodology to measure tech-

nology life cycle stages, and we apply it to understand the patterns of evolution

of green technology production at country level. We find that capabilities are

more important than wealth to diversify in green innovation, and mature green

technologies are positively associated with specialization.

We continue the exploration of the relation between local capabilities, life cycle

and patent activity in US federal states where we discover that green innovation
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is more associated than innovation in general with the recombination of distant

knowledge, especially in early phases of the life cycle.

Finally, we investigate at US commuting zones level the effects of public

procurement on green innovation, taking into account local capabilities again,

but using labour market skills instead of knowledge recombination variety. We

find that green public procurement has a positive and significant effect, in

particular in territories with an important share of abstract skills in labour

population.
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Resumen

Los resultados previsibles de la transición hacia economías con bajas emisiones

de carbono son múltiples y afectan de diferentes maneras a los responsables del

diseño y la gestión de las políticas públicas, las regiones del mundo, las empresas

y los consumidores. Se ha reconocido que en el centro de esta transición están las

innovaciones medioambientales que se desarrollan para mejorar la sostenibilidad

a largo plazo del crecimiento económico.

Los principales pilares de esta tesis son dos. En primer lugar, los desafíos

ambientales son diversos, al igual que las respuestas que se necesitan para

afrontarlos. La consecuencia principal de esto es que el enfoque actual en la

tecnología verde como un bloque homogéneo de entidades indiferenciadas es

engañoso. En segundo lugar, el trabajo humano es lo que en última instancia

lleva a cabo la adaptación de los sistemas de producción y distribución. En

consecuencia, analizar la transición hacia sociedades sostenibles desde un punto
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Chapter 0. Resumen

de vista medioambiental exige una comprensión profunda de cómo se diseñan,

implementan y cambian las actividades laborales para acomodarse a nuevos

imperativos políticos y / o nuevas oportunidades tecnológicas.

Las evidencias empíricas sobre uno o ambos pilares son escasas o fragmentadas.

La presente tesis trata de llenar estas lagunas desarrollando una base de datos

global sobre “patentes verdes”, una medida del ciclo de vida de las tecnologías y

las consiguientes investigaciones para analizar la relación entre la producción de

tecnologías verdes, las características del territorio y la base de competencias

de la mano de obra en el tiempo y el espacio.

El primer paso es la identificación de patentes verdes en PATSTAT 2016a

utilizando la clasificación ENV-TECH (OECD, 2016) y geolocalizando sus

inventores. El resultado es una base de datos que cubre la innovación mundial

desde el siglo XIX hasta 2015, aunque el periodo estudiado es menor: 1970-2010.

Este conjunto de datos permite una primera aproximación a la evolución de las

tecnologías verdes en el tiempo y el espacio, donde podemos apreciar diferencias

en la evolución de los países y entre las tecnologías desde el punto de vista de

la complejidad, quizás relacionadas con la presencia de un cuerpo heterogéneo

de tecnologías emergentes y maduras.

Para entrar más a fondo en esta hipótesis, desarrollamos una metodología para

medir las etapas del ciclo de vida de las tecnologías, y la utilizamos para entender

los patrones de producción de tecnologías verdes a nivel de países. Encontramos

que las capacidades son más importantes que la riqueza para diversificarse en
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innovación verde, y que las tecnologías maduras están positivamente asociadas

con la especialización en estas tecnologías.

Continuamos la exploración de la relación entre las capacidades locales, el

ciclo de vida y la producción de patentes en los estados federales de Estados

Unidos donde descubrimos que la innovación verde esta más asociada con la

recombinación de conocimientos distantes, en particular al principio del ciclo

de vida.

Finalmente, investigamos los efectos de las compras públicas sobre la innovación

verde al nivel de las “commuting zones” (áreas urbanas funcionales) de Estados

Unidos, tomando en cuenta de nuevo las capacidades locales, pero esta vez

utilizando las competencias del mercado laboral en lugar de la variedad de la

recombinación del conocimiento. Descubrimos que la compra pública verde

tiene un efecto positivo y significativo, en particular en territorios con una parte

importante de competencias abstractas en la población activa.
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Resum

Els resultats previsibles de la transició cap a economies baixes en emissions

de carboni són múltiples i afecten de diferents maneres als responsables del

disseny i la gestió de les polítiques públiques, les regions del món, les empreses

i els consumidors. S’ha reconegut que en el centre d’aquesta transició estan les

innovacions mediambientals que es desenvolupen per a millorar la sostenibilitat

a llarg termini del creixement econòmic.

Els principals pilars d’aquesta tesi són dos. En primer lloc, els desafiaments

ambientals són diversos, igual que les respostes que es necessiten per a afrontar-

los. La conseqüència principal d’això és que l’enfocament actual en la tecnologia

verda com un bloc homogeni d’entitats indiferenciades és enganyós. En segon

lloc, el treball humà és el que en última instància porta a terme l’adaptació

dels sistemes de producció i distribució. En conseqüència, analitzar la transició

cap a societats sostenibles des d’un punt de vista mediambiental exigeix una
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comprensió profunda de com es dissenyen, implementen i canvien les activitats

laborals per a acomodar-se a nous imperatius polítics i / o noves oportunitats

tecnològiques.

Les evidències empíriques sobre un o ambdós pilars són escasses o fragmentades.

La present tesi tracta d’omplir aquests buits desenvolupant una base de dades

global sobre “patents verdes”, una mesura del cicle de vida de les tecnologies i

les consegüents investigacions per a analitzar la relació entre la producció de

tecnologies verdes, les característiques del territori i la base de competències de

la mà d’obra en el temps i l’espai.

El primer pas és la identificació de patents verdes en PATSTAT 2016a utilitzant

la classificació ENV-TECH (OECD, 2016) i la geolocalització dels seus inventors.

El resultat és una base de dades que cobreix la innovació mundial des del segle

XIX fins a 2015, encara que el període estudiat és menor: 1970-2010.

Aquest conjunt de dades permet una primera aproximació a l’evolució de

les tecnologies verdes en el temps i l’espai, on podem apreciar diferències

en l’evolució dels països i entre les tecnologies des del punt de vista de la

complexitat, probablement relacionades amb la presència d’un cos heterogeni

de tecnologies emergents i madures.

Per a entrar més a fons en aquesta hipòtesi, desenvolupem una metodologia

per a mesurar les etapes del cicle de vida de les tecnologies, i la utilitzem per

a entendre els patrons de producció de tecnologies verdes a nivell de països.

Trobem que les capacitats són més importants que la riquesa per a diversificar-se
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en innovació verda, i que les tecnologies madures estan positivament associades

amb l’especialització en aquestes tecnologies.

També explorem la relació entre les capacitats locals, el cicle de vida i la

producció de patents en els estats federals dels Estats Units on descobrim que

la innovació verda està més associada amb la recombinació de coneixements

distants, en particular al principi del cicle de vida.

Finalment, investiguem els efectes de les compres públiques sobre la innovació

verda al nivell de les “commuting zones” (àrees urbanes funcionals) dels Estats

Units, prenent en compte de nou les capacitats locals, però aquesta vegada

utilitzant les competències del mercat laboral en lloc de la varietat de la

recombinació del coneixement. Descobrim que la compra pública verda té un

efecte positiu i significatiu, en particular en territoris amb una part important

de competències abstractes en la població laboral.
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Résumé

Les résultats prévisibles de la transition vers des économies sobres en carbone

sont multiples et affectent de différentes façons les décideurs politiques, les

régions du monde, les entreprises et les consommateurs. Il est reconnu depuis une

quarantaine d’années qu’au centre de cette transition se situent les innovations

environnementales qui émergent pour améliorer la durabilité de la croissance

économique sur le long terme.

Les principaux piliers de cette thèse sont au nombre de deux. Premièrement, les

différents enjeux environnementaux ne sont pas homogènes, ils sont constitués

de phénomènes ayant un impact local ou global, à court ou moyen terme,

ce qui amène des réponses variées. Par conséquent, le principe qui consiste

à analyser les technologies vertes comme un bloc homogène est trompeur.

Deuxièmement, ce sont les travailleurs qui réalisent in fine l’adaptation des

systèmes de production et de distribution. Ainsi, étudier la transition vers des
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sociétés durables d’un point de vue environnemental requiert de comprendre

la manière de concevoir, implémenter et changer les activités professionnelles

en réponse aux nouveaux impératifs politiques, économiques, réglementaires et

normatif et/ou aux nouvelles opportunités technologiques.

Les données empiriques sur l’un ou l’autre de ces piliers sont éparses ou fragmen-

tées. La présente thèse cherche à combler ces lacunes grâce au développement

d’une base de données sur les technologies vertes, d’une identification des phases

de leur cycle de vie, et des explorations correspondantes pour analyser la relation

entre la production de brevets de ces technologies vertes, les caractéristiques

du territoire et la base de compétence du marché du travail dans le temps et

dans l’espace.

Le jeu de données est créé en identifiant les brevets “verts” dans la base

PATSTAT 2016a grâce à la classification ENV-TECH (OCDE, 2016) et en

géolocalisant leurs inventeurs. Il couvre ainsi l’innovation verte mondiale depuis

le XIXe siècle jusqu’à 2015, bien que la période étudiée soit plus courte :

1970-2010. On considère une technologie produite dans un pays lorsque des

brevets de cette technologie y sont déposés, l’intensité de cette production étant

mesurée grâce au nombre de familles de brevet définies selon INPADOC.

Cette base de données permet une première approximation de l’évolution des

technologies vertes dans le temps et l’espace, qui met en lumière des différences

en matière d’évolution des pays et entre les technologies du point de vue de la

complexité, peut-être dues à la présence d’un groupe hétérogène de technologies

émergentes et arrivées à maturité.

xx



L’approfondissement de cette hypothèse, à partir de la méthodologie développée

pour identifier les étapes du cycle de vie des technologies, et de la compréhension

des profils de production de technologies vertes au niveau des pays, aboutit

au résultat que les compétences sont plus importantes que la richesse pour se

diversifier dans ces technologies, et que la spécialisation dans ces technologies

se fait statistiquement plus dans des technologies arrivées à maturité.

Nous continuons l’exploration de la relation entre les compétences locales, le

cycle de vie et la production de brevets dans les États fédéraux des États-Unis

au cours de laquelle nous trouvons que l’innovation verte est davantage associée

à la recombinaison de blocs de connaissance sans lien entre eux que l’innovation

en général, particulièrement au début du cycle de vie.

Enfin, nous investiguons les effets des achats publics sur l’innovation verte au

niveau des aires urbaines fonctionnelles (“commuting zones”) des États-Unis, en

prenant en compte les compétences locales, mais en utilisant les compétences

du marché du travail au lieu de la variété de la recombinaison des blocs de

connaissance. Nous découvrons que l’achat public vert a un effet positif et

significatif sur l’innovation verte, en particulier dans les territoires ayant une

partie importante de compétences tacites dans la population active.
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Chapter 1

Introduction

Since the second half of the 20th century, there has been an increasing concern

among academics, policy makers and the general population about climate

change and disappearing biodiversity. In 1992, the United Nations Conference

on Environment and Development (also known as the Rio de Janeiro Earth

Summit) finalized an agreement signed by more than 150 countries, called the

United Nations Framework Convention on Climate Change (UNFCCC), with

the goal of “stabilizing greenhouse gas concentrations in the atmosphere at a

level that would prevent dangerous anthropogenic interference with the climate

system”1. This was the beginning of a series of political treaties in order to

achieve a sustainable transition, the last of these agreements being the “Paris
1available at http://unfccc.int
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Chapter 1. Introduction

Agreement”, signed by 196 countries at the 21st Conference of the Parties of

the UNFCCC in 2015. The “Paris Agreement” main objective is to enhance the

global response to the threat of climate change by keeping a global temperature

rise below 2oC above pre-industrial levels before the end of this century.

On the scientific side, the Intergovernmental Panel on Climate Change (IPCC)

was established in 1988 by the World Meteorological Organization (WMO)

and the United Nations Environment Programme (UNEP) to cover “scientific,

technical and socio-economic information relevant to understand the scientific

basis of risk of human-induced climate change, its potential impacts and options

for adaptation and mitigation.” (Principles Governing IPCC Work, 20102).

The special report of this body, published in October 2018, explains that

consequences of an increase of the global temperature by 1.5oC are worse than

expected, and that humanity needs to implement massive and urgent policies

to accelerate the transition toward sustainable economies by the next few years,

in order to remain under an increase of 2oC (Leahy, 2018).

The prospective costs of non-action are high considering that, for example,

air and water pollution pose serious threats to human health, or that loss of

biodiversity and depletion of agricultural resources imperil the global supply of

food (see i.e. Haines and Patz, 2004; Patz et al., 2005; McMichael, Woodruff,

and Hales, 2006). What’s more, these risks are interconnected in ways that

could trigger a chain of events with potentially higher social and economic

costs – for example, water scarcity and temperatures rise may induce large-scale

involuntary migration. Scholars and policy-makers agree that multilateral
2https://www.ipcc.ch/
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and multilevel responses are required to contain the degradation of the global

environment and prevent further risks. As Ayres and Bergh (2005) [p. 116] put

it, “economic growth must be accompanied by structural change, which implies

continuous introduction of new products and new production technologies, and

changes in [energy] efficiency and de-materialization”.

Far from ignoring the limitations and the intrinsic difficulties of a ‘technological

fix’ (Sarewitz and Richard Nelson, 2008), accelerating the development and

diffusion of new low-carbon technologies remains a staple of any strategy aimed

at dealing with climate change (Stern, 2007; Johnstone et al., 2012). Successful

policy would call upon a broad portfolio of technologies and of competences,

due to the wide range of activities and sectors that generate greenhouse-gas

(GHG) emissions.

The analysis of the nature, the sources and the diffusion of eco-innovation is

at the centre of an intense debate among academics and policy makers alike.

The broad consensus is that accelerating the development of new low-carbon

technologies and promoting their global application are crucial steps, albeit

not the only ones, towards containing and preventing GHG emissions (OECD,

2011). As a vast literature shows, policies for green innovation confront a

diverse array of barriers. The first is that uncertainty on the appropriability

of the prospective environmental benefits (A. B. Jaffe, R. G. Newell, and

R. N. Stavins, 2005; R G Newell, 2010) due to clean technologies adds to the

classic underinvestment due to free riding on R&D (Arrow, 1962; Nelson, 1959),

thus creating a “double externality”. Other barriers to the diffusion of green

technology may arise from systemic failures – such as i.e. lack of skills, weak

3
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institutions – that hinder knowledge flows and, thus, the efficiency of R&D and

innovation efforts (OECD, 2003).

Spatial features also matters for the innovation process. It has long been

established that the generation and diffusion of knowledge, prime engines

of innovation, stem from the recombination of existing ideas (Romer, 1994;

Weitzman, 1998) among agents that have limited access to information, and

imperfect capacity to absorb, process, and respond to new information (W.

Cohen and Levinthal, 1990). A key point is that economic development builds

on existing local capabilities to generate distinctive technological and industrial

profiles (D. L. Rigby and Essletzbichler, 1997), and such a distinctiveness is

shaped by the composition of knowledge, that is, the number of underlying

inputs and the interdependence between them (Frenken and Ron A Boschma,

2007; Neffke, Henning, R. Boschma, et al., 2011). The greater and more

diverse the spectrum of know-how, the more complex the domains to which this

knowledge is applied, be they products (Hidalgo and Hausmann, 2009; Cristelli,

Gabrielli, et al., 2013), industries or technologies (Balland and D. Rigby, 2017).

As a consequence, information exchange confronts costs that increase with the

diversity of the attendant knowledge base. Put otherwise, higher coherence

between activities facilitate the growth of knowledge and increase the likelihood

of innovation (Atkinson and Stiglitz, 1969; Chatterjee and Wernerfelt, 1991).

These characteristics point to potential weaknesses and systemic failures in the

growth and diffusion of knowledge, especially when mismatches in the incentives

of private and public research organisations become barriers to the diffusion of

necessary competences.

4



The dynamics of local knowledge mirror, of course, those of physical technology.

The literature has analysed the latter through the lenses of the life cycle

heuristic proposed by William J Abernathy and J. M. Utterback (1978) and

further refined by S. Klepper (1996) and J. Utterback (1994). At early stages,

variety is highest and each prototype technology carries a set of characteristics

whose effectiveness cannot be judged ex-ante because, at least in evolutionary

accounts of the story, the selection environment co-evolves together with the

contestants (Adner and Kapoor, 2015; Barbieri, Marzucchi, and Rizzo, 2018).

As technology moves towards maturity, the inferior variants are selected out,

industry structures consolidate and the knowledge base acquires a configuration

based primarily on routine activities to the detriment of explorative ones.

Underlying the dynamics of the knowledge base stands the adaptation of

supporting institutional structures in the form of new training and research,

regulatory regimes, government infrastructure (Nelson, 1994; Vona and Consoli,

2015).

As the comprehensive review by Barbieri, Ghisetti, et al. (2016) shows, existing

literature falls short in at least one of these dimensions. Prior efforts at

comprehensively mapping the spatial distribution of inventive activities in

environmental technologies are limited to most advanced economies (i.e. Jean

Olson Lanjouw and Mody, 1996; Veugelers, 2012; Costantini and Mazzanti,

2012; Fankhauser et al., 2013; Calel and Dechezleprêtre, 2016) and disregard

the influence of country-specific characteristics. Other scholarly work focuses

on either individual countries (Calel and Dechezleprêtre, 2016; Marin, 2014;

Gagliardi, Marin, and Miriello, 2016) or on specific technological domains –
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predominantly energy (David Popp, 2002; Fischer and Richard G Newell, 2008;

Nesta, Vona, and Nicolli, 2014). In our view, the lack of engagement with

issues concerning how countries build green innovation capabilities, and how

such a capacity differs along the gradient of economic development, is a major

shortcoming for both policy and scholarly debates. There is a gap in the

development of green technologies over time and over space as well as in the

relative state of development of each of the attending subdomains. These gaps

are in part due to insufficient data availability about their evolution over time

and space, including precise geographical information.

The first goal of this dissertation is to create a dataset on green technologies.

Chapter 2 develops a structured database using PATSTAT (European Patent

Office data set for statistical analysis) and the ENV-TECH classification of

environmental related technologies. This database contains an exhaustive

list of green patents published worldwide since the 19th century as well as

the geolocalisation of inventors, which can be projected to different level of

geographical agglomeration depending on the domain of interest (countries,

regions, urban areas, cities, etc.).

Once the dataset is created, we draw a first global mapping of the evolution of

green technologies (chapter 3). In this chapter, we use the Economic Fitness

Complexity (EFC) approach to analyse the complexity evolution of green

technologies and inventor’s countries. In terms of geography, as expected

developed countries are the main contributors to green innovation, but we also

observe a rise of some Asian and west European countries. On the technology

side, an important versatility of complexity ranking evolution is detected,

6



maybe due to an heterogeneity among technologies in term of maturity. We

also gain a first insight about mid-income countries’ capacity in green innovation

production: countries exporting complex products are able to produce complex

green technologies, meaning that wealth is not necessarily a barrier to green

innovation.

A shortcoming of the specialized literature is that all green technologies are

treated as a homogeneous body. This is a major obstacle to be able to appreciate

their relative stage of development, especially for what concerns policy. Chapter

4 fills this gap by elaborating an identification of the life cycle stages. This is

based on the heuristic proposed by William J Abernathy and J. M. Utterback

(1978) and further refined by S. Klepper (1996) and J. Utterback (1994). The

first part of the chapter focuses on the recombination of the knowledge base

of green technologies using network analysis, to develop in a the second part

a methodology to identify life cycle stages based on patenting activity and

geographical ubiquity. In the following chapters, we build on this methodology

and analyse the patterns of diversification and specialisation in green innovation

in relation to the technology life cycle (chapter 5) and the variety of the

knowledge base associated with it (chapter 6).

More precisely, Chapter 5 fills a gap in the literature concerning the relation

between green technology and capabilities of countries. There are already

studies about environmental technologies and the characteristics of territories,

we still miss a systematic analysis of all the green technologies and countries’

contributions. Therefore, this chapter investigates country characteristics

associated with the development of green technologies along the technology

7
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life cycle. It elaborates an empirical analysis of temporal and geographical

distribution of green innovation, replicating the methodology proposed by

Petralia, Balland, and Morrison (2017) and extending it to green technology, by

identifying firstly patterns of specialization and diversification in environmental

related technologies, and secondly adding to the model the life cycle stage of

green innovation produced. The analysis confirms one of the results obtained in

chapter 3: wealth is less a barrier for countries to diversify in green technologies

than not having competencies in neighbouring technologies. This is coherent

with previous literature, although our result differs from Petralia, Balland,

and Morrison (2017): they found that diversification is strongly associated

with development stage of countries, while we found a strong association with

technology maturity. We also find that countries move along cumulative paths

of specialization, and toward more complex technologies.

After the discover of a significant and positive effect of existing capabilities

in neighbouring technologies to the diversification in green technologies, we

investigate in chapter 6 the intrinsic regional capabilities using the recombination

knowledge variety. This approach has already been used by Carolina Castaldi,

Frenken, and Los (2015) at US federal states level but not specifically for green

innovation. Therefore, the objective of this chapter is to analyse whether and

to what extent regional related and unrelated knowledge variety matter for

the development of technology, and whether their influence differs along the

various stages of the technology life-cycle. To address these questions, we

frame the analysis in the context of economic geography under the premise that

climate change is a global phenomenon with markedly local manifestations,

8



and that regions and countries differ significantly both in their exposure to

climate events as well as in their ability to respond to them. In a first step, we

compare the association between the variety of the knowledge base (Frenken and

Ron A Boschma, 2007; Carolina Castaldi, Frenken, and Los, 2015) and green

innovation versus all innovations. In a second step, we explore this association

alongside the life cycle of green technologies. This analysis yields two main

findings: green patent production is more associated with unrelated variety of

the knowledge base than the production of all the patents, and emerging stages

of technology are more correlated with unrelated variety than maturity, which

is more associated with related variety.

Finally, in chapter 7, we explore the effects of public policies on green innovation

taking into account local capabilities, but rather than using the variety of the

knowledge recombination, we employ a typology of skills that are relevant

in the labour market. Green technologies are a specific sort of innovations

that are featured by the well-known double externality problem (Rennings,

2000). Like any other kind innovation, one source of externalities is related

to the non-appropriability and non-exclusivity of technological knowledge. In

addition, green technologies are expected to yield social gains due to their

positive impact on the environment. This represents a positive externality

for which firms are not expecting to be paid. In such a framework, public

intervention may play a crucial role to prevent sub-optimal investments in green

innovation to take place. For this reason, most of the empirical literature on the

determinants of eco-innovations focuses on how policymakers can influence their

generation and adoption, with specific attention to the design of regulatory
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frameworks setting binding constraints for polluting firms. According to the

inducement hypothesis, firms decide to introduce eco-innovations to comply

with stringent regulatory frameworks, to save the costs that they should incur

to keep on polluting (Johnstone et al., 2012). This mechanism is known in the

literature as “regulatory push/pull” effect, because regulation can stimulate the

demand for green technologies (pull effect), and hence make investments in

their generation profitable (push effect). Advancements in the green knowledge

base in upstream sectors are a key condition for the demand by firms in

downstream sectors to be satisfied. To date, nobody has explored explicitly

the connection between green policies and the skill structure of the attending

labour market. This is relevant to understand whether and to what extent

the local endowment of knowledge magnifies or not the positive impulse of

policy. Technology push and demand pull deployment policies are therefore

strictly intertwined (Requate, 2005; Horbach, 2008; Ghisetti and Quatraro,

2013; Costantini, Crespi, et al., 2015). Using data of public procurement in

the US, we explore the effects of green public procurement on green innovation

in US commuting zones. In a second phase, we characterize human capital in

these territories using a framework developed by (Autor, Levy, and Murnane,

2003) which use occupational-task data to check whenever public procurement

effect is affected by the type of task performed. We find that green public

procurement exerts a significant and positive impact on green innovation, in

particular when public procurement is aimed at services. We also find that the

prevalence of high-level skills (i.e. management, engineering, social interaction)

in the territory is positively associated to the generation of green innovation,

compared to routine or manual skills.

10



Summing up, the thesis identifies the following gaps and addresses them as

follows:

• the lack of complete and transversal information about green innovation

in chapter 2

• the missing global mapping of the evolution of green technologies in

chapter 3

• the differentiation of green technologies using life cycle stages in chapter 4

• how countries build their green innovation capabilities in chapter 5

• which local capabilities are associated with green technologies production

along the life cycle is addressed in chapter 6

• the effect of public procurement on green innovation according to local

skills is finally addressed in chapter 7.

While it is acknowledged that the topic is complex and no single piece of

work can address the possible issues at hand, the present thesis makes a novel

contribution to knowledge by investigating the determinants of the evolution of

green innovation. It first provides an overview of green technologies evolution

over space and time, then proposes a measure of the technology life cycle to

analyse patterns of diversification and specialisation and the knowledge base

associated, in order to identify appropriate territory configurations to foster

green innovation taking into account its heterogeneous nature. Finally, it

explores if public procurement can promote environment-related technologies

according to the characteristic of the labour market.
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Chapter 2

Building a dataset on Green

Technologies

2.1 Introduction

The analysis of green technologies requires a method to measure their evolution.

Because patent is a legal protection form of inventions recognized by a large

majority in the world, patent data is a well-known proxy to study technology

development, taking into account its limitations (see e.g., Griliches, 1990; Jean

O Lanjouw, Pakes, and Putnam, 1998; Arts, Appio, and Van Looy, 2013).
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A patent is, as defined by the United States Patent and Trademarks Office

(USPTO), “... the right to exclude others from making, using, offering for

sale, selling or importing the invention”. The applicant receives this right in

exchange to publish information about its invention. In so doing, the inventor

has an exclusivity right during enough time to make its invention profitable

and he contributes to the spread of new ideas. This disclosure has been used

by academics to understand the evolution of technologies.

This source of information carries benefits and shortcomings. Patents provide

highly disaggregated details of each invention, in particular the location of

the inventor and the characteristics of the invention which are essential to

the analysis proposed here. In addition, prior research has pointed out that

patents provide a good indicator of research and development activities, as

applications are usually filed early in the research process (Griliches, 1990). In

this study, we use groups of patent, or families, on related inventions that have

been filed in various countries to track diffusion of knowledge across countries

(e.g. Jean Olson Lanjouw and Mody, 1996). While we acknowledge that not all

inventions are patented, the characteristics of intellectual property rights (IPR)

regimes underlying patenting activities are likely to have a significant effect

on the propensity to search and develop inventions (W. M. Cohen, Richard R

Nelson, and Walsh, 2000; Ginarte and Park, 1997). Further, compared to

other domains, the regulatory framework plays a particularly important role in

the case of environmental technologies (Adam B Jaffe, Richard G Newell, and

Robert N Stavins, 2002; D. Popp, R. Newell, and A. Jaffe, 2010).
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Although information on patents is freely available, there is no database with

precise geographic information about inventors’ locations that specifically tar-

gets green technologies. Some organizations provide free datasets like USPTO,

the National Bureau of Economic Research (NBER) or the Organisation for

Economic Cooperation and Development (OECD), but they are restricted to

some countries or to some kind of patents. To create our dataset about green

technologies, we use PATSTAT 2016a, a database produced by the European

Patent Office (EPO) which contains bibliographical patent data from over 90

countries. In this database, we use ENV-TECH classification (OECD, 2016)

to identify green patent applications (see section 2.2) through the IPC/CPC

classification. Then, we improve and geocode inventor’s location of these green

patents (see section 2.4).

Finally, in the last section of this chapter, we will explore possible time frame

and data aggregation to use in the analysis developed along the following

chapters, and then we will realise a first description of green technologies using

network analysis.

2.2 The ENV-TECH Classification

Patents are considered as environment-related according to the ENV-TECH

classification developed by the Organisation for Economic Co-operation and De-

velopment (OECD) (Haščič and Migotto, 2015)1. The ENV-TECH classification,

based on the International Patent Classification (IPC) and the Collaborative

Patent Classification (CPC), features eight environmental families, separated
1ENV-TECH list is available in the appendix, section 9.2
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in 3 different areas: environmental management (1), water-related adaptation

technologies (2), and climate change mitigation technologies (from 4 to 9).

Even if “Biodiversity protection and ecosystem health” (3) is mentioned in the

classification, its patent search strategy is not available yet.

ENV-TECH is a hierarchical classification, families cited above are the first

level of aggregation (1 digit). Each family is divided in groups (2 digits) and

sub-groups (3 digits). Not all the groups are divided sub-groups, and 3 sub-

groups include a lower level (4.6.1, 8.2.5 and 9.1.2). Table 2.1 presents the list

of ENV-TECH families and groups.
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Code 1-Digit Class Description 2-Digit Class Description

1 Environmental Management

1.1 Air pollution abatement
1.2 Water pollution abatement
1.3 Waste management
1.4 Soil remediation
1.5 Environmental monitoring

2 Water-related adaptation technologies

2.1 Demand-side technologies (water conservation)
2.2 Supply side technologies (water availability)

4 CCMTs related to energy generation,
transmission or distribution

4.1 Renewable energy generation
4.2 Energy generation from fuels of non-fossil origin
4.3 Combustion technologies with mitigation potential

(e.g., Using fossil fuels, biomass, waste, etc.)
4.4 Nuclear energy
4.5 Efficiency in electrical power generation, transmis-

sion or distribution
4.6 Enabling technologies in energy sector
4.7 Other energy conversion or management systems

reducing GHG emissions

5 Capture, storage, sequestration or dis-
posal of greenhouse gases

5.1 CO2 capture or storage (CCS)
5.2 Capture or disposal of greenhouse gases other than

carbon dioxide (N2O, CH4, PFC, HFC, SF6)

6 CCMTs related to transportation

6.1 Road transport
6.2 Rail transport
6.3 Air transport
6.4 Maritime or waterways transport
6.5 Enabling technologies in transport

7 CCMTs related to buildings

7.1 Integration of renewable energy sources in buildings
7.2 Energy efficiency in buildings
7.3 Architectural or constructional elements improving

the thermal performance of buildings
7.4 Enabling technologies in buildings

8 CCMTs related to waste water treatment
or waste management

8.1 Wastewater treatment
8.2 Solid waste management
8.3 Enabling technologies or technologies with a poten-

tial or indirect contribution to GHG mitigation

9 CCMTs in the production or processing
of goods

9.1 Technologies related to metal processing
9.2 Technologies relating to chemical industry
9.3 Technologies relating to oil refining and petrochem-

ical industry
9.4 Technologies relating to the processing of minerals
9.5 Technologies relating to agriculture, livestock or

agroalimentary industries
9.6 Technologies in the production process for final in-

dustrial or consumer products
9.7 Climate change mitigation technologies for sector-

wide applications
9.8 Enabling technologies with a potential contribution

to GHG emissions mitigation

Table 2.1: 1 & 2-digit ENV-TECH codes and labels. Groups without sub-groups are
mentioned in italic type.
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In this dissertation, ENV-TECH is the key element to define green technologies.

We discuss later in this chapter (section 2.5) what is the most accurate level (1,

2 or 3 digits) to use in order to carry out this research.

2.3 Exploring IPC and CPC Classification

International Patent Classification (IPC) and Cooperative Patent Classification

(CPC) are two widespread technology classification systems employed by patent

offices to classify the patent documents based on the technological areas in

which they claim to be novel. Both systems exhibit a hierarchical structure

that describes the technical content of the patents in progressively finer detail

at lower levels of aggregation. IPC was defined by the Strasbourg Agreement in

1971 to be used by the World International Patent Organization (WIPO). CPC

is a collaborative effort between the European Patent Office (EPO) and the

United States Patent and Trademark Office (USPTO), based on the European

Classification System (ECLA), which was based, in turn, on IPC, and used

since 2013 by EPO and USPTO. IPC and CPC shares a lot of sections, but

CPC is more detailed in certain domains.

ENV-TECH associates each green technology with a series of IPC and CPC

codes, although it does not provide an exhaustive list of codes. For example,

ENV-TECH 4.1.1 “Wind energy” is associated with CPC codes “Y02E10/70-

766”, thus we need to explore the CPC classification to retrieve all the codes

beneath and between Y02E10/70 and Y02E10/766. Moreover, as shown in

figure 2.1, CPC classification is not straightforward: not all the numbers
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Figure 2.1: Example of the CPC classification for range Y02E10/70-766

exist in CPC between 70 and 766, only 72, 74, and 76, and some of these

codes have “children codes”, which are not only even numbers. In the same

example, Y02E10/72 have 7 subclasses: 721, 722, 723, 725, 726, 727,728. IPC

classification is ordered in a similar manner with less ramifications.

The first task to enable the identification of green patents in PATSTAT is

to create an exhaustive list of all the IPC and CPC codes from ENV-TECH.

We developed a Python script to explore an API (Application Programming

Interface) that provides information about IPC and CPC codes, in particular

about their “children” and “parent” codes, and was created by National ICT

Australia Ltd (NICTA) in 2013 (available at https://github.com/NICTA/

t3as-pat-clas) and adapted to the 2016 edition of these classifications by a

github user called cambialens (https://github.com/cambialens)2. This script
2This setup was later used by the CORTEXT team to build patent descriptions from IPC.

Details are available at https://github.com/cortext/patstat/tree/master/nomenclatures/ipc_
descriptions#setting-up-the-virtual-machine
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gives us the entire list of IPC and CPC codes associated with ENV-TECH

codes.

Since ENV-TECH exploits both IPC and CPC codes3 we convert IPC codes

into CPC codes according to the concordance table proposed by EPO and

USPTO4. Hence, we exploit information contained in patent documents and

extract CPC codes classifying patented technologies from PATSTAT 2016a.

Finally, we assign patents to ENV-TECH codes accordingly.

In this dissertation, we use INPADOC patent families as our unit of analysis

(B. H. Hall and Helmers, 2013). Patent families are collections of patents that

can be linked to one or more common ‘ancestor’ patent documents. These

collections typically contain documents relating to the multiple applications

involved in protecting the same invention, or variant of this invention, in

multiple countries. This results in a series of equivalent filings that patent

examiners and attorneys can cite indifferently. Simple patent families are quite

restrictive sets of equivalents, all sharing the same priority (an original filing

at one or another patent once, before extension elsewhere). For a complete

discussion about the opportunity of correcting citations for patent families, see

Martinez (2010).

The overall green patenting trend by ENV-TECH families is reported in Figure

2.2. Therein we observe that patenting in most green technologies was almost

non-existent during the 19th century and the first half of the 20th century

(except for Environmental Management technologies), experience a first increase
3Almost all the IPC codes are present in the CPC classification but not the other way around.
4http://www.cooperativepatentclassification.org/cpcConcordances.html
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2.3 Exploring IPC and CPC Classification

Figure 2.2: Evolution of the number of green patent families by ENV-TECH families, 1850
- 2015. The sharp decrease at the end of the series is an artefact of the database, as discussed
later in section 2.5.
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Figure 2.3: Evolution of the indexed number of green patent families by ENV-TECH
families, 1850 - 2015. Base year for the indexation is 1970.

after 1970 and an acceleration after 2000. Technologies that improve the

sustainability of the energy and building sector lead the trend, followed by

green products and processes and transportation. The number of patent families

related to water-related and carbon capture and storage technologies is relatively

smaller compared to other green technologies. However, the latter increases at

a faster pace compared to 1970 levels, as showed in Figure 2.3. Patenting on

transportation and energy efficiency buildings experiences a sharp increase after

2005. Conversely, environmental management and water-related technologies

exhibit lower growth rates over the period.
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2.4 Geolocalisation of Inventors

Our goal of developing a worldwide analysis calls for accurate geographical

localisation of inventive activities. To this end, we use information on inventors’

addresses to geocode each patent family at city level. Information on the

location of inventors from PATSTAT is parsed through GeoNames5 and Google

Maps API.

The procedure entails 5 steps. First, we rely on the Institut Francilien Recherche

Innovation Société (IFRIS) version of PATSTAT. IFRIS recovers missing ad-

dresses combining several external patent sources (REGPAT, National Patent

Databases, etc). Second, we geo-localise patent families by identifying the

postal codes within the address string and searching in GeoNames. Third,

for patent families in which the postal code information is missing, or for

which it is not possible to detect the geographical coordinates, we identify

the city name in the address using the city table of the GeoNames database

(limiting the search to cities with at least 5000 inhabitants in order to reduce

potential noises) and we manually check the results. Fourth, for the remaining

addresses without geographical coordinates, we use the Google Maps API, a

programmable interface to the geographical database developed by Google since

2005 which allows obtaining for an address its coordinates and the administra-

tive entities it belongs to. Finally, we propagate inventors’ coordinates inside

patent families when inventors appear several times. For example, we can find
5GeoNames is a geographical database available under a Creative Commons attribution license

which contains over 10 million geographical names corresponding to over 9 million unique features
whereof 2.8 million populated places and 5.5 million alternate names. A feature can be physical
(mountain, lake?), political (country, territory?), a human settlement (city, village...), etc. See
http://www.geonames.org for more information.
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in the same patent family two inventors with different IDs, the first one with a

complete address, the second one with a missing one: "Gehri, Martin Christian

Adrian" and "GEHRI, MARTIN, CHRISTIAN, ADRIAN". As the levenshtein

distance between the two names is less than 3 when both strings are converted

to uppercase, we assume it is the same person and we use the complete address

to fill the missing one.

This procedure allows us to geolocalize 929,829 patent families (with at least

1 inventor geolocalized - 57.2% patent families have more than half of their

inventors geolocalized), in 146 countries. Patent families without geo-localised

inventor (either because inventor information is missing or because address is not

found) have been dropped from the dataset. Variations of the geo-localisation

rate across ENV-TECH families and patent offices are very small: the standard

deviation is 0.089 in the first case and 0.118 in the second case, when taken into

account the top 10 patent offices (accounting for 93% of all the patent families),

thus we can conclude that the bias introduced by dropping non geo-localised

inventors is negligible.

The precise geolocalization of inventors allows us to work on different levels

of geographical aggregation: countries in chapter 3 and 5, US federal states in

chapter 6 and US commuting zones in chapter 7.

We repeat this operation for all US inventors (green and non-green patents) to

be able to calculate shares of green patent in chapter 6 and 7.

Figure 2.4 and 2.5 show the inventors’ localisation projected on a world map

for patent families filled respectively before 1991 and after 1990. In both maps,
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Figure 2.4: World map of inventors’ localisation for green patent families filled until 1990.

Figure 2.5: World map of inventors’ position for green patent families filled after 1990.
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we can appreciate that the development of green technologies is localised in

some specific regions: east and west coast of North America (mainly in the

US), central part of Europe, eastern coast of Asia (Japan, Korea and China).

South America and Africa are almost not contributing to green technologies,

except some very specific areas in Brazil and South Africa. Comparing these 2

maps brings out interesting differences: even if there is a general increase of

the number of green patent after 1990, some areas that were practically not

contributing before 1990 have increase there production substantially. This the

case of China, South Korea, India, Portugal, Spain, Brazil, inland areas of the

US and Canada and some former communist countries in the eastern part of

Europe.

This is confirmed if we observe the contribution to green technologies by country

shown in figure 2.6. This chart represents the top 10 biggest contributor to

green technologies, from 1970 to 2015. Even if all countries increase their

contribution over time, the share of China (CHN), South Korea (KOR) and to

a lesser extent Taiwan (TWN) is increasing significantly since 2000.

2.5 Time frame and data aggregation

All the figures available in the previous sections of this chapter (e.g. figure 2.2)

suggest that the time window we study and its length can have a significant

effect on the results of the analysis. For instance, Figure 2.7a shows that the

number of active technology classes (figure 2.7a) and active countries (figure

2.7b) has grown considerably over time, which implies that a clear trade-off
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Figure 2.6: Evolution of the countries’ contribution to green technologies. Only the top 10
biggest contributors are represented, by inventor’s country.
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exists between the length of the time series and the size of the intersection of

the data available in each year.

This is also due to the fact that the the number of applications containing

green technologies has remained quite small until the 1970s (figure 2.2). Notice

that the trade-off is quite sharp also if we move the right extreme of the time

interval too far forward, since there is a sharp drop in the number of filed patent

applications after 2010. This is compatible with the presence of a constant

backlog of applications that have been filed but not yet examined and, for

this reason, not yet added to the databases. The delay between filing and

inclusion into PATSTAT varies depending on the patent office that received

the application. For example, the backlog at the United States Patent and

Trademark Office (USPTO) is estimated at around 40 months on average ; this

implies that the data for 2012 contained in the 2016a edition of the database is

most likely still incomplete.

Based on these considerations, the time frame used in this dissertation is from

1970 to 2010.

On the other hand, as explained in section 2.2, ENV-TECH is a hierarchical

classification with 4 levels (from 1 to 4 digits). To remain comparable between

them, we should use the same level for all the green technologies; we can not

compare a 2-digits ENV-TECH class with a 4-digits one, the latter being much

more specific. 4-digits classes are used only in two cases, they can not be our

choice to define green technologies. On the other side, 1-digit categories are too
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(a) Time series of the number of green classes
and applications.

(b) Time series of the number of active coun-
tries for different time windows.

Figure 2.7: Yearly green classes, applications, and active countries.
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Figure 2.8: Yearly frequency of green technology classes (left:3-digits, right: 2-digits).

broad to capture fine-grained technologies. Then, our preferred ENV-TECH

level should be 2 or 3 digits.

Figure 2.8 shows the year frequency of technology classes for 3 (left panel)

and 2 digits (right panel) over the period 1940–2015. We can see in both

sides “holes” (representing years without any patent families assigned to the

corresponding class) before 1970, which validates the selection of this year as

a starting point. But even after 1970, we can still see a significant portion of

3-digits technology without any observation, in particular in CCMTs related to

waste water treatment or waste management and CCMTs in the production or

processing of goods (ENV-TECH 8 & 9). This observation, combined with the

absence of 3-digits classes in some 2-digits groups, tips the scale in favour of

choosing 2-digits level as our definition for green technologies.
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2.6 Recombination of green technologies

Once we extrapolated the global patterns of green technologies evolution in

section 2.3 and 2.4, it is interesting to identify the structure of the ENV-TECH

database from the functional point of view, to appreciate how related the main

green technologies are.

Each patent identified as “green” can belong to various green technologies,

because its IPC/CPC classes can be associated to several ENV-TECH codes.

Using these patents as ties between green technologies, we can perform a

network analysis and a cluster detection, in order to detect broad bodies of

green innovations and their evolution over time.

To do so, we first create a network using technologies as nodes and association to

the same patent as ties. At this stage, we have a network with an large amount of

ties and nodes, but we can hardly identify components and evolution over time.

To disentangle significant relations, we use a community detection using Louvain

algorithm developped by Blondel et al. (2008) over overlapping time periods of

5 years. This algorithm is implemented by Cortext6, the digital platform of the

Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), a project

launched and sustained by the Institut Francilien Recherche Innovation Société

(IFRIS) and the Institut National de la Recherche Agronomique (INRA).

Figure 2.9 shows the resulting clusters for the first overlapping time period

(1970-1986) and figure 2.10 represents the alluvial diagram of the evolution of
6Available at https://www.cortext.net/
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Figure 2.9: Clusters of green technologies for time period 1970-1986
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Figure 2.10: Evolution of the clusters of green technologies [1970-2010]

these clusters over time, from 1970 to 20107. Each node is a green technology

labelled by ENV-TECH 2 digits code, clusters are represented by the same

color on the network and on the alluvial diagram.

We observe a relative stability over time of the relations among green technolo-

gies, with 4 clusters that last the whole time period, except the teal cluster

(labelled “7.4 & 9.8”), which appears in the 1987-1997 time period and disappears

in 2002-2006.

The most stable cluster is the orange one (labelled “7.1 & 7.2”), it contains green

technologies related to energy production without combustion, in particular

all the climate change mitigation technologies related to energy (4) – except
7An interactive version of this diagram and the high resolution networks are available at http:

//personales.upv.es/franperr/relation_gt/
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4.2 (energy from non-fossil fuels) and 4.3 (mitigated combustion) – and energy

consumption in buildings (7.1, 7.2 and 7.3).

The second important and stable cluster is the blue one (labelled “1.2 & 1.4”).

It brings together technologies related to waste and water management. It only

splits during the time period 1993-2001, where technologies related to waste

management separate from the ones related to water management.

The teal cluster mentioned above appears only during 10 years, and combines

enabling green technologies in buildings (7.4) and in the production or processing

of goods (9.8). This could mean that enabling technologies were important and

singular enough at the end of the 20th century to appear as a distinct cluster

during 4 time periods, while 7.4 was present previously inside the green cluster.

Finally, the green cluster is the most dynamic one: it started as 2 different parts,

one related to air pollution and the other related to chemistry. In the 1990s, it

recombines in a small cluster with technologies related to transport – labelled

6.4 & 6.2 – (except 6.1, road transport) and in a bigger cluster containing

technologies related to chemistry and air pollution, including the one produced

by road transport – labelled 1.1 & 5.2. In 2000, it recombines again in 2 parts,

one cluster about chemistry and water (2.1) that last only one time period –

labelled 4.3 & 9.3. The other cluster splits again in 2 during the 2000s, one

around mitigation technologies related to transport and nuclear energy, the

other one containing the remaining technologies.

Summing up, we observe that the structure of green technologies is organized

around 4 broad domains (energy, chemistry, air pollution, water and waste,
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named after the main technologies described previously). Though broadly

stable, they permanently evolve and recombine their inner components over

time, according to the grade of development and the knowledge base of each

technology. This indicate that green technologies is an heterogeneous body

with technologies in different stages of the life cycle. In the next chapter, we

will explore this universe more in detail.
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Chapter 3

Exploratory analysis over time

and space

3.1 Introduction

Economic development builds on existing local capabilities to generate distinc-

tive technological and industrial profiles (D. L. Rigby and Essletzbichler, 1997;

Capello, 2010). A major driver of the distinctiveness of these trajectories is

indeed the composition of knowledge, that is, the number of underlying inputs

and the interdependence between them (Kogut and Zander, 1993; Frenken

and Ron A Boschma, 2007; Neffke, Henning, and R. Boschma, 2011). The
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greater and more diverse the spectrum of know-how, the more complex the

domains to which this knowledge is applied, be they products (Hidalgo, Winger,

et al., 2007; Zaccaria et al., 2014), industries (Vona and Consoli, 2015) or

technologies (Balland and D. Rigby, 2017). Empirical evidence provides clear

indications about these patterns. First, there are significant differences in the

complexity of knowledge produced across geographical locations. Second, only

a few areas exhibit proficiency in complex activities, and this usually correlates

with their long economic development. However, by virtue of path-dependence,

while investing in complex technologies is beneficial in principle, many areas

simply lack the necessary competences and, most fundamentally, their underly-

ing conditions prevent them from creating a new path of development. As a

consequence, and third, these features are dynamically self-reinforcing.

In this chapter, we employ analytic techniques developed within the Economic

Fitness-Complexity (EFC) approach to economic prediction (Tacchella, Cristelli,

et al., 2012) in order to assess the development and geographical distribution of

green technologies between 1970 and 2010. EFC is a data-driven methodology

that originally targeted the relation between the composition of the export

baskets of countries and their potential to become more developed economies.

The idea behind this methodology is that for a country to become competitive

in the production of a given good, it must first acquire the necessary skills.

However, the process leading to the acquisition of new capabilities is by its

very nature cumulative and highly path-dependent, which is consistent with

the fundamental intuition that complex products requiring advanced skills will

be exported mostly, if not only, by high fitness countries that will also be
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competitive in the production and trade of less complex goods. Capabilities are

generally not observable, and can be conceived as a latent intermediate layer

between countries and products in an ideal tri-partite network. Some recent

successful applications of EFC (Cristelli, Tacchella, et al., 2017; Tacchella,

Mazzilli, and Pietronero, 2018) have aimed to extract information about the

effects of accumulated capabilities by studying the bipartite network of coun-

tries and exported goods. These studies have shown that the EFC algorithm

has considerable predictive power of the future development of countries, as

measured by their future per capita GDP. Among its outputs, the algorithm

features a ranking of country fitness values that proxy how advanced the set of

capabilities of each country is, and a ranking of product complexity values that

proxies how advanced are the capabilities required to produce each product.

For this study, we use patent applications identified in the previous chapter

as a proxy of capability. The transliteration of the EFC approach to this

hitherto unexplored empirical context rests on the idea that the criteria for

assigning patent applications to specific domains (i.e., technological classes)

are identifying characteristics of the expertise that is necessary for successful

invention. In particular, the co-occurrence of technological classes in a country

allows us to identify the extent to which inventions and the attending capabilities

are common across countries. Accordingly, a country that has a diversified

portfolio of technologies spanning from the most to the least complex ones will

have higher fitness while, in turn, complex technologies appear almost exclusively

in the portfolio of high-fitness countries. As a consequence, more specialised

(or less diversified) countries operate almost exclusively in less complex sectors.
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In other words, the portfolio of activities of low-fitness countries is (almost)

nested in that of higher-fitness countries.

In particular, the set of indicators proposed here informs a ranking of countries

propensity to create new green technology as well as of the development of these

technologies. While we remain agnostic about the pathways through which

countries develop and apply capabilities to environmental issues, we provide

insights into the extent to which each country contributes to the global network

of technological capabilities, as well as into the extent to which the technologies

grow and develop as a result of distributed inventive efforts. Furthermore, we

expect that a thorough mapping of who is inventing and in what can enrich the

current debate on leaders and laggards in the transition to sustainable societies.

3.2 A Fitness Approach to Green Technology

In this chapter, we focus on the green sector-fitness of countries that host

inventors of green technologies and the complexity of the green technology

classes included in the inventions. Recall that the peculiarity of sector-fitness

lies therein, to compute it, we do not extract information from the whole

technology spectrum (all possible IPC and/or CPC classes) but, rather, we

restrain to a subset of classes that identify the relevant area for the study of

a particular sector of activity, in our case, green technologies. Furthermore,

recall that this approach has already been employed successfully in the study

of country exports to break down the fitness profile into individual industries.

No doubt, applying sector-fitness to technologies does imply some risks. The
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main issue is that the interpretation of the sector fitness might not be as

straightforward for technologies as it is for industries. In fact, defining an

industrial sector from an aggregation of products implies grouping together

objects that are classified unequivocally and generally assigned to only one

sector. The same cannot be said for technologies, since multiple technological

fields, namely the objects that we use to define the technological equivalent of a

sector, usually contribute to the same patent, and these fields tend to be quite

distant within the classification tree. For this reason, studying green technology

classes in isolation neglects a wealth of non-green classes that however are part

of green inventions. Bearing in mind these caveats, we expect that the selection

of the data involved in applying the sector fitness approach to studying green

technologies still yields reasonable results.

Computations involve EFC algorithm wherein inputs are binary matrices of

countries (rows) and classes (columns). The underlying assumption is that each

patent family weights one unit which is shared between (country, class) pairs.

Since patent applications can be unambiguously attributed to their filing year,

it is natural to build a series of yearly weighted matrices W(y), where each

matrix element Wc,t(y) is the sum of the shares of applications filed in year y

that can be traced back to country c and green-technology class t. The EFC

algorithm requires a binary matrix as input, thus, for each year y, we binarize

W(y) based on Revealed Comparative Advantage Balassa, 19651 and obtain
1We do not expect the binarization strategy to have crucial effects on the results, especially if the

matrices are sparse to begin with
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M(y) such that:

Mc,t(y) =


1 if Wc,t∑

t′ Wc,t′
>

∑
c′ Wc′,t∑

c′,t′ Wc′,t′

0 otherwise.
(3.1)

The binary matrices are then fed to the EFC algorithm to yield non-negative

scores and rankings for fitness as well as complexity. In formulae:
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with initial condition: ∑
t

Q
(0)
t = 1 ∀t. (3.3)

The fitness of a country is thus defined as the average complexity of its tech-

nologies. The definition of the complexity of a technology, instead, involves

a non-linear equation that attributes lower complexity to the technologies

patented by low-fitness countries. It should be noted that, depending on the

structure of M(y), the scores of the lower-ranked entities can converge to

zero (Pugliese, Zaccaria, and Pietronero, 2016). Fortunately, rankings remain

consistent and can therefore be trusted. For this reason, focusing on country

and technology rankings is a good strategy.
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It is worth mentioning that patenting intensity (and coverage) in several

countries has grown sharply in the past decades. Moreover, filing of new patent

applications in specific technological areas is relatively intermittent, meaning

that for a given pair (c, t), the corresponding cell in matrix M(y) is often

different from that in M(y + 1). This is more apparent if technological codes

are disaggregated, and can induce some noise. As proposed in 2.5, we use 2

digits ENV-TECH classes to increase for inter-temporal stability. A further

complementary approach entails averaging over multiple yearly snapshots of

W(t)

W(y, δ) =
1

δ

δ−1∑
t=0

W(y − t) (3.4)

before bin arising to obtain M(y, δ). For our analysis, we choose δ = 10

and divide the data into four non-overlapping windows—1971–1980, 1981–

1990, 1991–2000, and 2000–2010—each labelled using the latest included year

(e.g., 2010 stands for the period 2000–2010). Unless otherwise stated, 2-digit

technology classes are employed throughout.

3.3 Column Selection and Technological Sector Fitness

In general, the fitness and complexity rankings produced by the EFC algorithm

are not invariant to the addition (or subtraction) of rows or columns in the

binary matrix.
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Figure 3.1: Example of the influence of column selection on fitness and complexity rankings.
Panel a) depicts a binary country-technology matrix M consisting of three countries (c1, c2,
and c3) and three technologies (t1, t2, and t3); ordering the rows by fitness and the columns
by complexity (right), we see that t1 is more complex than t2 and c3 has higher fitness than
c2. Panel b) depicts the same matrix M of panel a), to which an additional column τ1 has
been added; ordering the rows by fitness and the columns by complexity (right), we see that
now t2 is more complex than t1 and c2 has higher fitness than c3. The figure shows that, in
general, the addition (or subtraction) of columns to M(y) can potentially affect fitness and
complexity rankings.
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Figure 3.1 depicts a toy example illustrating this point. The right part of

panel (a) depicts a 3-by-3 matrix M with rows and columns sorted by fitness

and complexity respectively. In particular, row c1 has higher fitness than c3,

which in turn has higher fitness than c2; columns instead can be ordered in

decreasing order of complexity as follows: t1, t2, t3. Panel (b) represents the

same matrix to which one additional column τ1 was added. Ordering the rows

and columns of the new matrix with the EFC algorithm, both the ranking of

rows and columns changes. In particular, c2 is now fitter than c3 and t2 is more

complex than t1.

This example indicates that applying sector fitness to technologies might yield

biased results. However, two remarks mitigate this concern. First, while the

figure shows that it is in general possible to alter the ranking by simply adding

a column, we had to choose a rather extreme case to make the point. In fact,

column τ1 is built in such a way to bring very close together the compositions of

the most and least fit row of panel (a). However, this is quite unrealistic because

it would be much harder to achieve if the matrix were substantially larger (as

are the empirical matrices of the analysis). On the other hand, adding τ1 is

akin to adding the information that a country the was thought to patent only

in a very ubiquitous agricultural field and nothing else, also patents in ground

breaking medical technologies. This however looks intuitively implausible and

contrasts with the evidence shown e.g., in Figure 3.5.

Finally, it is worth noting that, although it is true that applying sector fitness to

green technologies cuts some potentially relevant columns from M, it is also the

case that these omitted fields are not exclusively linked to green technologies,
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otherwise they would certainly be included in the classification. Hence, even

if we were to include them, we would only account for them partially, and,

since we know that they can potentially influence the fitness and complexity

rankings, adding them to the analysis would not make us feel any safer about

the eventual introduction of biases in the results of the analysis performed with

the EFC algorithm. For this reason, we believe that omitting the columns that

are not exclusively (or very predominantly) linked to green technologies should

not be a major shortcoming.

3.4 Results and Discussion

3.4.1 Green Fitness Ranking: Countries and Technologies

Figure 3.2 shows the green fitness rankings of all countries across all four time

windows. The higher the ranking the more complex the country’s portfolio of

green technologies and, thus, the more advanced the invention competences.

We provide a synthetic sketch focus on how countries’ innovation capacity

evolves over time using colour coding to distinguish three groups depending on

the initial ranking: leaders (black), followers (purple), and laggards (orange).

To begin with, most of the countries that were leaders in 1980 are still in

the top ranking in 2010. Even so, we observe some heterogeneity in their

long-term paths. A first group of global leaders such as the United States

(USA), France (FRA), Germany (DEU) (in black in Figure 3.2) maintained a

steady high ranking throughout the period, while others—e.g., Japan (JPN),

Sweden (SWE), India (IND)—remained mostly in the upper echelons, but also
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declined slightly and were caught up with in the ranking by some follower

and laggard countries. Among these, it is worth mentioning some fast-growing

countries, listed by increase in the green fitness ranking, such as Malaysia

(MYS), South Korea (KOR), China (CHN), Slovakia (SVK), Portugal (PRT)

and Saudi Arabia (SAU), confirming our intuition in section 2.4. These all

started from mid-to bottom positions in 1980 and after an impressive, and

steady, acceleration have reached the top part of the ranking. Notice that over

time the geographical distribution of inventive activity spreads out, primarily

towards Asia, while the presence of Latin American and African countries is

only marginal. As regards Europe, the distinction between leaders and followers

resonates with the differences between countries in the core and those in the

periphery. Notice also that laggard countries exhibit similar stability to leaders,

meaning that countries starting in such groups in the 1980 time window tend,

with some notable exceptions, to remain in the same group throughout.

Figure 3.3 lists the Green Complexity of 2-digit environmental technologies

in our database and the associated ranking. Again, the idea is that a higher

complexity ranking indicates that a technology entails a more advanced array

of capabilities. Compared to countries, green technologies exhibit more fluidity,

at least in the bottom half of the list, as about half of them have at least

one appearance in the top 10 (conversely, only 4 have been in the the top

5). Looking more in detail, three groups of green technologies emerge. The

first cluster comprises technologies that consistently rank highest (black in

Figure 3.3), namely ’Nuclear Energy’ (4_4), ’Environmental Monitoring’ (1_5),

’Enabling Technologies for GHG Emissions Mitigation’ (8_3) and ’Enabling
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Figure 3.2: Time evolution of the green fitness ranking of countries from 1980 to 2010. The
country labels on the left and right vertical axes are listed from bottom to top in order of
increasing fitness in the first and last period of analysis respectively. The lines trace the
changes in ranking of each country across decades. Label and line colours refer to the position
of countries in the initial ranking: black, violet and purple are associated respectively to the
top-, middle-, and bottom-third of the 1980 green fitness ranking. Colours are mixed in 2010,
meaning that positions in the ranking have changed substantially for several countries (see
e.g., the constant growth of China and South Korea highlighted by the thicker purple lines).
The names of the countries associated to the abbreviations reported on the y-axis of the plot
are reported in section 9.1 of Appendix.
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Technologies in Transport’ (6_5)—in fact, each one of them has been top of

the list in the period under analysis. In the second cluster (purple in Figure

3.3) are technologies that, while being consistently high ranking, have at least

once slipped out of the top 10. Among these we observe a variety of patterns,

some stable technologies—such as ’Capture or Disposal of Greenhouse Gases

other than CO2’ (5_2)—some oscillating technologies—such as ’Technologies

for Efficient Electrical Power Generation, Transmission or Distribution’ (4_5),

’CO2 Capture or Storage’ (5_1) or ’Air Transport’ (6_3)—as well as steady

growers—i.e., ’Road Transport’ (6_1), ’Rail Transport’ (6_2), ’Enabling Tech-

nologies’ (4_6)—and steady decliners - like ’Technologies Relating to Chemical

Industry’ (9_2) and ’Climate Change Mitigation Technologies for Sector-Wide

Applications’ (9_7). The third cluster (orange in Figure 3.3) contains technolo-

gies that have only been in the top 10 once, e.g., ’Water Pollution Abatement’

(1_2) and ’Renewable Energy Generation’ (4_1).

Again, a closer look indicates heterogeneity of patterns over time: the most

notable are the ascent of ’Road Transport’ (6_1) and ’Technologies in the Pro-

duction Process for Final Industrial or Consumer Products’ (9_6) in contrast

with the decline of ’Soil Remediation’ (1_4) and ’Architectural or Construc-

tional Elements Improving the Thermal Performance of Buildings’ (7_3). An

interesting indication is that Mitigation technologies rank in general higher than

Adaptation. Another notable feature is that almost all Enabling Environmental

Technologies—that is, horizontal technologies with potential applicability in

a variety of fields—feature high in the ranking, thus reaffirming the complex
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Figure 3.3: Time evolution of green complexity ranking of ENV-Tech technologies from
1980 to 2010. The technology labels on the left and right vertical axes are listed from
bottom to top in order of increasing complexity in the first and last period of analysis
respectively. The lines trace the changes in ranking of each technology across decades. Label
and line colours refer to the position of technologies in the initial ranking: black, violet and
purple are associated respectively to the top-, middle-, and bottom-third of the 1980 green
complexity ranking. Colours are mixed in 2010, meaning that positions in the ranking have
changed substantially for several technologies. For instance, notice the constant growth of the
ENV-Tech technology ’Road Transport’ (6_1), and the steady decline of the ENV-Tech
technology ’Technologies Relating to Chemical Industry’ (9_2), highlighted respectively by a
thicker orange and purple line. The definitions of the technological codes associated to the
abbreviations reported on the y-axis of the plot are reported in table 2.1 of chapter 2.
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nature of the underlying capabilities that are needed for their design and

creation.

3.4.2 The Most Complex Green Technologies and the Main

Innovators

Let us now juxtapose the information gathered so far and look into combined

country-green technology patterns. In Figure 3.4 we plot the green fitness based

on the country-green technology matrices M(y, 10) against per capita GDP (y),

for y ∈ [1980, 2010]. By pooling all countries and years in our database, we

estimate the expected value of green fitness through a non-parametric Nadaraya-

Watson estimation with a Gaussian kernel Nadaraya, 1964. The corresponding

95% confidence interval is computed with a bootstrap resampling. Figure 3.4

provides a generalization of what has emerged so far, namely that there is a

positive relationship between average GDP per capita and our measure of green

fitness. We opt for GDP as a proxy of living standards in a country for two

reasons. The first is that GDP is a gold standard which helps us ground our

exploratory study on green innovation better within the existing literature,

primarily prior studies that use EFC approach on trade. For all the known

limitations that GDP carries it remains the most widely used measure. The

second reason is that when we contemplated the Human Development Index

(HDI)2 as an alternative (and more comprehensive) measure, we found a strong

correlation with GDP and, thus, that findings were substantially unaltered.
2The HDI is a composite statistics developed within the United Nations Development Program

to account for the intersection of three dimensions of a country well-being: health (proxied by life
expectancy), education (mean years of schooling), and per capita income.
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Figure 3.4: Correlation between green fitness ranking and per capita GDP over the time
interval 1980–2010. Green fitness, as a proxy for the green innovative capacity of countries,
is positively correlated with income per capita. The figure is obtained by pooling countries
and years in our database. The expected value of green fitness is obtained through a non-
parametric kernel estimation (purple line), while the 95% confidence interval of the expected
value (purple shadow) is computed with bootstrap.
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Figure 3.5: 3-digit M(2010, 10) with rows and columns ordered by green fitness and green
complexity respectively. Colour represents the share of each technology within the technology
basket of each country. The matrix shows a semi-triangular shape, accordingly to the EFC
narrative, the highest green fitness countries are competitive in almost all technologies, from
the most to the least complex, while the basket of technologies of lower fitness countries is
limited to less complex technologies.

In turn, the triangular shape of the country-technology matrix of Figure 3.5

indicates that countries with higher levels of GDP per capita possess, as several

scholars advocate, more developed capabilities that allow them to be major

producers of more complex green technologies. By the same token, inventive

efforts in poorer countries are limited to less complex technologies as a reflection

of overall lower capabilities. These two snapshots confirm that the distribution

of inventive capacity in green technology is broadly in line with prior literature

(Tacchella, Cristelli, et al., 2012; Pugliese, Chiarotti, et al., 2017; Sbardella,

Pugliese, and Pietronero, 2017).

Looking more in detail, Table 3.1 shows the ten most complex green tech-

nologies over the entire time period of the analysis (1971–2010) and, for each
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one, it lists the top five inventor countries, the share in total world green

innovation and the corresponding RCA index. A few features emerge from this

table. First, eight out of ten of the most complex technologies are for Climate

Change Mitigation—the only two exceptions being GHG Capture and Storage,

and Environmental Management. Second, in the upper part of the list are

three types of enabling technologies, which indicates that the most advanced

inventive efforts are currently devoted to perfecting existing technologies for

wide, cross-sectoral purposes. Third, and related to the former, the list provides

a balanced mix between mature technologies (i.e., enabling or nuclear energy)

and very experimental ones (i.e., carbon capture, superconducting elements for

efficient energy distribution). Fourth, the table also portrays a balanced pic-

ture as the key environmental priorities encompass areas like transport, waste,

industrial production, energy and buildings. Fifth, as already anticipated

earlier, the leading producers are all high-income countries. Another notable

feature is the recurrence of Asian catching-up countries in various domains.

South Korea ranks high in all but two (i.e., environmental management and

rail transport) as a reflection of the environmental challenges due to a wide

industrial mix (e.g., (Oh, Wehrmeyer, and Mulugetta, 2010)). China excels in

waste management, rail transport, industrial production and energy, a profile

that resonates with the heterogeneity of emission sources due to remarkable

regional and sectoral differences (Liu et al., 2012). Conversely, Taiwan only

appears in waste management, plausibly as a result of targeted policy efforts

(e.g., (Yang and Innes, 2007)). Table 3.2 reports the same information as Table

3.1, but for the lower-complexity technologies. Unsurprisingly, also in this case

the top 5 innovators per technology are high-fitness countries, which consistently
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with the triangular structure of Figure 3.5, have the necessary capabilities to

excel across the spectrum, while low-fitness countries perform relatively well

only in mundane technologies.

Figure 3.6 focuses on a sample of top countries as of 2010 and shows that there

is heterogeneity in the composition of the portfolios of such top innovators.

Therein each panel contains the shares of patenting in all green technologies

(ordered by increasing green complexity from left to right) in the first and final

decade. For instance, Japan is relatively focused on the the most complex

technologies. This contrasts with the country profiles of, say, the US or France

which instead have a more balanced portfolio of green innovation across the

complexity spectrum. The above is informative of the differential contribution

of countries to the advancement of the green technology frontier. Moreover,

this broad and long-term view allows us to discern countries that have been

leaders since the beginning of the period, such as Japan, the US, France and

Germany, from the latecomers like China and South Korea, which indeed only

started to patent in the 1990s. The distribution of the patenting shares for each

country-decade panel reveals the direction of inventive efforts. For instance, in

the last decade Japan (Panel A of Figure 3.6) stands out as rather proactive in

complex technologies with high and low complexity, rather than those in the

middle. By contrast, the relative contribution of the US (Panel B of Figure 3.6)

has decreased after the 1990s, due to the entry of other actors. In relative terms,

and compared to Japan, the distribution of US shares in green technology is

higher in technologies with middle levels of complexity. The relative shares of
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Technology Family Technology Group Top 5 Innova-
tors

Share RCA

CCMT for transportation Enabling Technologies 6.5 (example:
Electric vehicle charging)

JPN 0.441 1.126
USA 0.196 1.100
DEU 0.172 1.543
FRA 0.054 1.394
KOR 0.049 0.676

Environmental management
Environmental Monitoring 1.5 (ex-
ample: Tools for environmental data
analysis)

JPN 0.279 0.713
DEU 0.267 2.400
USA 0.243 1.366
FRA 0.104 2.706
SWE 0.020 3.700

CCMT for wastewater treat-
ment or waste management

Enabling Technologies 8.3 (example:
Landfilling with gas recovery)

JPN 0.522 1.333
USA 0.177 0.991
CHN 0.082 1.039
KOR 0.066 0.901
TWN 0.037 1.980

CCMT for transportation Rail Transport 6.2 (example: Re-
ducing energy consumption)

JPN 0.461 1.176
DEU 0.129 0.725
USA 0.112 1.420
FRA 0.094 0.847
KOR 0.056 1.464

Capture, storage, sequestra-
tion, or disposal of GHGs

Capture or Disposal of Gases other
than CO2 5.2 (example: Chemical
nitrification inhibitors)

JPN 0.430 1.098
USA 0.238 1.333
DEU 0.080 0.720
KOR 0.049 0.669
FRA 0.041 1.068

CCMT for production or pro-
cessing of goods

Enabling Technologies 9.8 (example:
Direct digital manufacturing)

JPN 0.492 1.254
USA 0.165 0.927
CHN 0.124 1.585
DEU 0.088 0.789
KOR 0.033 0.458

CCMT for energy generation,
transmission or distribution

Nuclear Energy 4.4 (example: Nu-
clear fusion reactors)

JPN 0.501 1.277
USA 0.163 0.915
KOR 0.135 1.853
FRA 0.053 1.373
DEU 0.047 0.424

CCMT for energy generation,
transmission or distribution

Technologies for Efficient Electri-
cal Power Generation, Transmission
or Distribution 4.5 (example: Su-
perconducting electric elements or
equipment)

JPN 0.384 0.979
CHN 0.228 2.901
USA 0.120 0.671
KOR 0.076 1.048
DEU 0.073 0.657

CCMT for transportation Road Transport (example: Hybrid
vehicles)

JPN 0.548 1.397
DEU 0.145 1.307
USA 0.124 0.696
FRA 0.049 1.284
KOR 0.048 0.662

CCMT for buildings

Architectural or Constructional El-
ements Improving Thermal Perfor-
mance 7.3 (example: Retrofit insu-
lation)

JPN 0.437 1.114
DEU 0.124 1.117
USA 0.104 0.582
CHN 0.098 1.242
KOR 0.088 1.207

Table 3.1: Top innovators in the most complex green technologies.
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Technology Family Technology Group Top 5 Innovators Share RCA

Environmental Management Water Pollution Abatement 1.2 (ex-
ample: Oil spill cleanup)

USA 0.338 1.899
DEU 0.1340 1.255
JPN 0.110 0.281
FRA 0.065 1.681
KOR 0.038 0.526

CCMT related to energy gen-
eration, transmission or dis-
tribution

Renewable Energy Generation 4.1
(example: Wind energy)

JPN 0.278 0.707
USA 0.168 0.944
CHN 0.127 1.616
KOR 0.111 1.524
DEU 0.102 0.920

Environmental Management Waste Management 1.3 (example:
Material recycling)

USA 0.281 1.58
JPN 0.132 0.339
DEU 0.122 1.110
FRA 0.081 2.098
ITA 0.050 4.199

CCMT for buildings
Energy Efficiency in Buildings 7.2
(example: Lighting)

JPN 0.303 0.773
USA 0.213 1.197
CHN 0.132 1.683
KOR 0.121 1.661
DEU 0.055 0.497

CCMT for buildings

Enabling Technologies in Buildings
7.4 (example: Enabling technologies
or technologies with a potential or
indirect contribution to GHG emis-
sions mitigation)

JPN 0.418 1.066
USA 0.162 0.911
CHN 0.116 1.472
KOR 0.079 1.080
DEU 0.077 0.696

CCMT in the production or
processing of goods

Technologies Related to Metal Pro-
cessing 9.1 (example: Reduction of
greenhouse gas [GHG] emissions)

JPN 0.412 1.052
CHN 0.166 2.119
USA 0.096 0.542
DEU 0.084 0.754
KOR 0.063 0.866

CCMT for energy generation,
transmission or distribution

Energy Generation from Fuels of
Non-Fossil Origin 4.2 (example: Bio-
fuels)

JPN 0.279 0.7111
USA 0.245 1.378
CHN 0.120 1.526
DEU 0.086 0.777
KOR 0.059 0.815

CCMT in the production or
processing of goods

Technologies Relating to Chemical
Industry 9.2 (example: Improve-
ments relating to chlorine produc-
tion)

JPN 0.313 0.797
USA 0.233 1.306
CHN 0.123 1.572
DEU 0.086 0.774
KOR 0.0515 0.707

CCMT for wastewater treat-
ment or waste management

Solid Waste Management 8.2 (ex-
ample: Waste collection, transporta-
tion, transfer or storage)

JPN 0.439 1.121
CHN 0.125 1.593
USA 0.108 0.604
KOR 0.104 1.434
DEU 0.055 0.499

CCMT for energy generation,
transmission or distribution

Enabling Technologies 4.6 (example:
Energy storage)

JPN 0.614 1.566
USA 0.113 0.635
KOR 0.089 1.219
DEU 0.058 0.520
CHN 0.045 0.579

Table 3.2: Top innovators in the least complex green technologies.
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Figure 3.6: Composition of national green technology baskets. Each panel illustrates the
share of patents produced by a selection of countries in each 2-digit technological field in 1980
(upper part) and 2010 (bottom). Technologies are ordered by increasing complexity. The
colour of the bars indicates the ranking of each technology in 1980, while the background
colour stands for the 1-digit technology to which each bar belongs (see list on p. 3). The
hatched pattern is for technologies that are observed in both time windows.
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Germany and France (Panels C and D of Figure 3.6) are somewhat constant over

time and spread evenly across the whole technological spectrum. Interestingly,

newcomers like China and South Korea (Panels E and F of Figure 3.6) join the

global path of green technology innovation with contributions to both less and

more complex technologies.

3.4.3 How Does Green Innovation Capacity Vary with Income

and Trade?

Coherent with the argument that the accumulation of competences is a vehicle

for fostering growth (Nelson and Phelps, 1966), Figure 3.4 in the previous

subsection hints at a strong positive correlation between green innovation and

per capita income. At the same time, Figure 3.2 highlights a divide between

mid-ranking countries, whereby some manage to climb up the green technology

complexity ladder (i.e., China and South Korea) while others do not (i.e.,

Argentina, Bulgaria). No doubt, the structural characteristics of a country

play a fundamental role in unleashing the innovation potential, and in this

part of the chapter we investigate some of these characteristics and the extent

of their impulse. Given the exploratory nature of our analysis, in Figure 3.7

we focus on GDP per capita (as a proxy of standards of living and economic

growth potential in each country) and export fitness (as a proxy of the trade

performance of each country) 3.
3This is the sum of the complexities of the products exported by each country Tacchella, Cristelli,

et al., 2012. The economic fitness measure based on export data from the UN-COMTRADE
database (available online at http://comtrade.un.org) is available for the period 1995–2015 at https:
//datacatalog.worldbank.org/dataset/economic-fitness (accessed in January 2017). However, in
the present chapter we employ the most recent version of the export fitness database, provided to us
by the PIL group of the Institute of Complex Systems-CNR in Rome.
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Figure 3.7: The three-dimensional relation between export fitness, GDP per capita, and
green fitness. The colour map represents the variation of green fitness obtained with a
non-parametric Nadaraya-Watson kernel estimation by pooling all countries in our database
over the time interval 1980–2010.

We propose a graphical analysis based on a colour map which portrays the

relation between GDP per capita and export fitness on the x-y axes, and the

entire range of green technological fitness for all the countries in our database

on the z-axis, represented with colour variation. In this case, as for Figure

3.4, green fitness is computed for each year as a moving average over a δ = 10.

The colour map is obtained through a 3-dimensional Nadaraya-Watson non-

parametric estimation (Nadaraya, 1964) fed with a pooling of all countries in

our database over the period 1980–2010.

The areas of Figure 3.7 with higher intensity are those of greater interest. The

purple-coloured portion at the bottom left-hand of the graph indicates that,

as expected, countries with low GDP and low export fitness exhibit the lowest

green technology fitness; also expected is the growth of green fitness as one

moves towards the top right corner of the plot.
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Another interesting portion of this diagram is on the right-hand side, where

intermediate levels of (log) GDP per capita (between 8 and 9.5) and very high

export fitness correspond to very high levels of green fitness. This indicates

that a highly diversified portfolio of trade matters for unleashing innovation

capacity among both high- and mid-level income countries. Put otherwise, a

country’s level of wealth is not a barrier to developing advanced competences

for environmental innovation insofar as they engage trade of more complex

products. The diagonal movement of colour is in agreement with the EFC

narrative according to which countries with higher export fitness than per

capita GDP show a level of complexity that has not yet translated into higher

income, but indicates higher development and growth potential (Pugliese,

Chiarotti, et al., 2017). This finding resonates with the descriptive analysis of

the rankings in the previous subsections, where the performance of emerging

countries in green innovation has been commented on. It also resonates with the

recombinant nature of the technology at hand, and the fact that green patents

exhibit more diversity of technical components and of know-how relative to

non-green ones (Barbieri, Marzucchi, and Rizzo, 2018). Openness to trade and

strategic specialization in key components for green technologies are thus likely

to enable middle-income countries to accelerate in the pursuit of environmental

innovation. This is especially true if we consider the high levels of fitness

of enabling technologies that bring together different pools of know-how into

coherent solutions for wide applicability.
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3.5 Conclusions

The main questions addressed in this chapter are: which countries innovate

the most? What are the most complex green technologies? What is the

relationship between economic development and specialisation in environmental

technologies?

First, we provide an overview of spatial and temporal characteristics of green

innovation by exploiting the geo-localisation of patent data. Second, we move

beyond aggregate trends and delve into the relative performance of each country

in relation to the complexity of the technology. This allows us to identify three

typologies of countries: leaders, followers, and laggards. As expected, there is a

direct relationship between GDP per capita and innovation capacity. That said,

we also observe the growing relevance of countries that started from behind

but that managed to become prominent actors. Most of these are based in

East Asia. Third, we complement previous studies on green technology with a

deeper understanding of how innovation capacity is distributed across areas

of specialisation. The fitness ranking approach reveals that, after a period of

deeper specialisation within diverse domains, innovation in green technology

has become more horizontal, with bigger efforts being observed in cross-domain,

or enabling, technologies. This trend seems to indicate that while the relative

stage of development of individual areas – such as renewable energy generation

or waste management—may have peaked in terms of technology life cycle,

there is now demand for greater interoperability across green technologies – the

integration of Information and Communication Technologies for monitoring
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energy distribution. Such findings leads us to develop in the next chapter a

methodology to measure life cycle stages, to deeply analyse the determinants of

specialization and diversification of countries in green technologies throughout

their life cycle.
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Chapter 4

The life cycle of technologies

4.1 Introduction

The exploratory analysis of chapter 3 shows that green technologies are not a

homogeneous body, but that some are more complex than others. Furthermore,

their ranking is not static over time: technologies composing the first and the

second cluster at the beginning of the period change position but mainly stay

in the top 2 clusters, while technologies among the third cluster in 1970 mainly

remain in the third cluster in 2010.

The fitness methodology employed in the previous chapter is an analysis of

a bipartite network composed by countries and green technologies. Therein
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the technology’s positions in the ranking represent to a certain degree their

geographical diffusion and patenting activity. But this ranking does not provide

detailed information about the inner composition of technologies. Are these

technologies always based on the same components or is there a change in the

relevant knowledge base over time? Moreover, we could expect that only a

stabilisation of the knowledge base will be associated with a growth in patenting

activity and probably a wider geographical diffusion (William J Abernathy and

J. M. Utterback, 1978).

Like industries or products, technology evolves along a S-shaped (or double-S-

shaped) life cycle moving from a period of introduction to growth, maturity and

decline (Achilladelis, Schwarzkopf, and Cines, 1990; Achilladelis, 1993; Andersen,

1999; Haupt, Kloyer, and Lange, 2007). In the introduction phase different

pieces of knowledge are recombined to obtain a new technology that differs from

what has been developed before. In this phase, a small number of firms are

involved in the experimentation and aim at solving the technological problems

that characterise this activity. The technology that emerges in this phase is

often associated with high production costs, low penetration in the market

and uncertainty in the potential use of the technology itself (Callon, 1998).

In the growth phase the lower uncertainty that surrounds the new technology

triggers a phase of development in which R&D risk decreases, innovation is

less radical and the number of innovators increases (Haupt, Kloyer, and Lange,

2007). Finally, when a dominant design is reached the technology enters a

maturity phase that is mainly characterised by incremental innovation, high

standardisation and widespread diffusion.
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There is no consensus in the literature about the assessment of the stage of

technologies development through patent data. Haupt, Kloyer, and Lange

(2007) rely on patent indicators and empirically test their difference along the

technology life cycle stages. Although they do not directly use patent indicators

to detect the stage of development of technologies, the authors show that these

indicators follow specific patterns depending on the stage of development of

the technology - whose life cycle stages are defined a priori by a pool of experts

and literature review.

Other studies directly employ patent indicators to identify the life cycle stages

of technologies (Gao et al., 2013; Chang and Fan, 2016). These works define life

cycle stages of a benchmark technology through expert interviews and assess

the trends of patent indicators over its technological evolution. Subsequently,

they compare patent indicators of the technologies under analysis with the ones

calculated on the benchmark technology assigning the life cycle stage of the

latter to the former. Finally, stochastic techniques are also employed to measure

technology life cycle. Lee et al. (2012; 2016) run Hidden Markov Models to

analyse patent indicators time-series. This technique allows calculating the

highest probability path that gives the most probable stage of development at

each step of the time series.

We cannot apply here these methodologies because they rely on benchmark

technologies from which the life cycle stages are derived, or focus just on the

number of patents as in the case of Hidden Markov Models. In fact, we study

here a broad number of heterogeneous environmental-related technologies for

which a benchmark technology is hard to identify - even with the contribution

67



Chapter 4. The life cycle of technologies

of a pool of experts. In addition, we acknowledge that the stage of development

of green technologies should take into account how technologies diffuse over

time and not just the intensity of patenting. Moreover, it should also take into

account that not all intermediate stages are achieved by technologies. Finally,

our desired indicator should be able to provide information on the life cycle

stage of broad technological domains not just single patents.

After reviewing the relevant literature in section 4.2, we will present a novel

approach in section 4.3 using a network analysis to describe the knowledge

base evolution and the co-occurrence with a variation in the patenting rate.

Then, in section 4.4, we add to patenting activity a geographical component to

propose a measure of the life cycle stages.

4.2 Industry life cycle and agglomeration economies

In economic geography, two complementary pathways are usually seen as

triggers for regional development. One dates back to Marshall’s (1920) idea

of interaction and proximity of goals and of competences, whereas the other

stems out the work of Jane Jacobs (1969) and thrives on the diversity of

competences of the local economy. (Glaeser et al., 1992) have further extended

this framework emphasising the importance of diversification for urban growth.

The question of whether industries benefit in different ways from agglomeration

externalities depending on their stage of maturity has been recently explored

from both empirical and theoretical perspectives. The life cycle heuristic has

been a staple of scholarly research on the opportunities and the challenges
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associated with innovation. Empirical evidence both from regional economics

(R. D. Norton, 1979; R. Norton and Rees, 1979; Markusen and Svensson,

1985) and industrial dynamics (e.g. Gort and S. Klepper, 1982; William J.

Abernathy and Clark, 1985; David B. Audretsch and Maryann P. Feldman,

1996; S. Klepper, 1996; Klepper and Steven, 1997; Agarwal and Gort, 2002)

supports the conjecture that emerging industries grow at a faster pace than

those locked into old, mature industries1. Duranton and Puga (2001) elaborate

a conceptual framework that explains how diversification and specialisation

favour, respectively, young and mature industries. At the beginning of the life

cycle young firms need experimentation of their new products or prototypes.

Diversified local environments act as the seedbed for alternative production

processes that can be tried, adopted or discarded by firms. However, when firms

reach maturity and need to switch to mass production, specialised cities are more

suitable due to lower production costs. These findings are confirmed by empirical

studies that have investigated the association between agglomeration economies

and industry life cycle. Neffke, Henning, and R. Boschma (2011) confirm

Henderson et al.’s (1995) insights showing that Marshallian specialisation

externalities exert a positive impact as long as maturity is reached. On the

contrary, young industries benefit from local diversity that becomes even

negative for mature ones (Neffke, Henning, R. Boschma, et al., 2011).

The process that links together agglomeration externalities and industry growth

along the life cycle has been studied in depth in a strand of economic geography
1For instance, R. Norton and Rees (1979) find that the decline of the US Manufacturing Belt

during the late sixties was essentially a core-periphery realignment, which has theoretical roots in the
product life cycle framework. The decentralisation of production to peripheral Southern and Western
states followed the dispersion of innovative capacity and the rise of new, high-tech sectors at the
beginning of the life cycle.
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that places diversification at the heart of the innovation process. In particular,

diversification leads to regional growth due to the knowledge spillovers and

learning opportunities that urban diversity brings about (Glaeser et al., 1992;

Duranton and Puga, 2001; Frenken and Ron A Boschma, 2007). In turn,

empirical evidence confirms that Jacobs externalities are associated with the

adoption of new production processes or the development of new product,

whereas Marshall externalities are often perceived as detrimental (Harrison,

Kelley, and Gant, 1996; Kelley and Helper, 1999; Maryann P Feldman and

David B Audretsch, 1999; Carolina Castaldi, Frenken, and Los, 2015). The

theoretical explanation of the positive relationship between diversification of

the regional structure and the generation of innovation can be found in the

recombinant innovation theory (Schumpeter, 1939; R. Nelson and Winter, 1982;

Weitzman, 1998; Fleming, 2001). Therein, the higher the availability of pieces

of knowledge the higher the likelihood of successfully recombining knowledge

in an original manner that leads to innovation.

In this context, local search and bounded rationality are important dimensions

(March and Simon, 1958; R. Nelson and Winter, 1982), so innovators tend to

recombine bits of knowledge they are familiar with in order to decrease the

risk of failure. In so doing, however, they reduce the chances of developing

radical innovation. On the contrary, when innovators recombine cognitive

distant bits of knowledge they face higher uncertainty but, if successful, the

resulting innovative output exerts higher impacts. The recent evolutionary turn

in economic geography builds on tenet that Jacobs externalities do not merely

lead to a more efficient division of labour within regions. Rather, in a diversified
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environment the opportunities for innovation increase due to the availability of

different types of knowledge that is geographically close and can be recombined.

Along these lines, Frenken and Ron A Boschma (2007) moved the debate on

agglomeration economies further by acknowledging that diversification per se

does not fully capture the mechanism that brings about regional economic

growth. The flow of knowledge within regions requires a balance of cognitive

distance to avoid lock-ins and of cognitive proximity to enable effective learning

(Nooteboom, 2002; R. Boschma and Iammarino, 2009).

The notion of related (unrelated) variety has been put forth to explain how

agglomeration externalities lead to regional growth. Related industries share

some cognitive structures that enhance learning opportunities and knowledge

spillovers that enable regions to growth faster – a result that has been confirmed

by an increasing number of studies (Frenken and Ron A Boschma, 2007;

Essletzbichler, 2007; Bishop and Gripaios, 2010). These studies have directly or

indirectly assumed that diversified local contexts are supportive of knowledge

spillovers and recombinant innovation. (Castaldi and Giarratana, 2014) have

directly tested to what extent diversified regional knowledge bases trigger the

generation of innovation. Their findings are in line with the recombinant nature

of innovation put forward by evolutionary studies. More radical innovations

seem to emerge in regions whose knowledge base is diversified across cognitive

distant technological domains, whereas incremental innovation are developed

in regions characterised by related variety in local knowledge.
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4.3 Approaching the technology life cycle with network

analysis

The International Patent Classification (IPC), and its successor the Cooperative

Patent Classification (CPC), are used to describe the knowledge base of a patent

(see section 2.3 for details). The recombinant innovation theory (Schumpeter,

1939; R. Nelson and Winter, 1982; Weitzman, 1998; Fleming, 2001) tells use

that inventions appear when there a recombination of existing knowledge in a

new way. Here, each IPC/CPC code assigned to a patent is a knowledge piece

and the invention described in the patent is the new recombination (we used

the same idea in chapter 6 to measure the knowledge variety).

In practice, since ENV-TECH is mainly based on CPC (6 families out of 8

use only CPC codes), we use the recombination of CPC codes to describe the

evolution of the knowledge base. We create a mode-1 network for each green

technology, where nodes are CPC codes and a tie is created between 2 codes

when they describe the same patent family. For example, if patent family A of

green technology X is described with CPC codes F02P5/15, F02D41/04 and

F02B11/00, then 3 nodes will be created in the X network with a tie between

the first and the second code, the second and the third, and the first and the

third. We have then a network for each green technology and each year that

represents the knowledge base this year.

At this stage, we have only a certain number of networks with an important

amount of ties and nodes, but hardly understandable, as a lot of CPC code

recombinations appear only a few times. To disentangle significant knowledge
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Figure 4.1: Knowledge base of green technology 5.2 - Capture or disposal of greenhouse
gases other than CO2 (1970-1994). Clusters of CPC codes are identified with different colors.

recombinations from this noise, we use the same methodology as already

explained in section 2.6: a cluster detection algorithm (Louvain, Blondel et al.,

2008) with an overlapping time periods of 5 years.

Figure 4.1 illustrates an example of cluster detection for technology 5.2 - Capture

or disposal of greenhouse gases other than CO2 during the period 1970-1994. It

is worth noting that is the algorithm itself that calculates the optimal time frame,

we just defined the number of time period from 1970 to 2010. Consequently, a
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Figure 4.2: Evolution of the knowledge base of green technology 5.2 - Capture or disposal
of greenhouse gases other than CO2 (1970-2010). Colours represent clusters detected through
network analysis as illustrated in figure 4.1.

technology with long time periods has a stable knowledge base, so it is either

in a phase where they are very few ongoing developments (emergence) or where

dominants design are stabilized. The algorithm implemented by Cortext is

also able to calculate the evolution of these clusters across the time period,

representing them using Alluvial diagram (see Figure 4.2 as an example of

clusters’ evolution for technology 5.2). The Size of each “flow” represents the

size of each cluster, the color remains stable across time periods to easily identify

the cluster on the network map.

For each green technology, these networks are assembled over time as flows

of cluster represented by alluvial diagrams. To ease the exploration of these

diagrams, we created a web application available at https://franperr.github.

io/envtech-networks where users can select a green technology in the drop-

down menu at the top of the page to obtain its alluvial diagram and network
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4.3 Approaching the technology life cycle with network analysis

Figure 4.3: Evolution of the knowledge base of green technology 4.1 - Renewable energy
generation (1970-2010). Colours represent clusters detected through network analysis.

maps (available at the bottom of the page for each time period). Each CPC

code is clickable to have a description and its position in the CPC classification.

Below the network maps, we also represent the evolution of the number of

patent families included in this technology.

Using this application, we observe phases of stability, where flows maintain

almost the same size and number, and phases of recombination where some flows

split, merge, disappear or change significantly their size. For example, green

technology 4.1 - Renewable energy generation knowledge base (figure 4.3 and

also available at https://franperr.github.io/envtech-networks/?data=4.

1) remains stable over time, there is mainly some variation at the end of the

period (appearance of several clusters). Looking at the growth rate (available

at the same url, below the alluvial diagram), we can see an increasing in the

patenting activity when there is a recombination of knowledge, and a decrease
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(or a smaller growth) when knowledge base remains stable. Another example

can be green technology 1.1 - Air pollution abatement (https://franperr.

github.io/envtech-networks/?data=1.1): we can see a significant growth of

patenting activity in the last decade of the 20th century when there is significant

movement in the knowledge base.

Even if comparing evolution of patent families growth and knowledge base gives

us insights about the life cycle of a technology, we are still missing information

about the localisation of its developments: is this recombination occurring

because new designs are emerging in some specific places, or is it because

recombination helps to create a design with a broader contribution ? It is

an arduous task to define the threshold to identify one situation from the

other. That is why we propose to add to our measure of technology life cycle a

geographical component, as detailed in the next section.

4.4 A proposition of technology life cycle stages

4.4.1 Ubiquity and patenting activity

Our methodology to measure the life cycle of technologies is based on the

idea developed by William J Abernathy and J. M. Utterback (1978) and

Vona and Consoli (2015) where they defined different stages of technologies,

which co-evolve with the know-how needed to implement, use and adapt these

technologies.
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As explained in the previous section, in the early stage, knowledge exploration

and experimentation are going on, different designs appear and compete among

them, highly localised and only in few places. As the technology develops,

designs started to be standardised, inferior variants disappear and dominant

designs start to have some diffusion. As technology goes toward maturity, some

dominant designs appear with a high level of standardisation and a wider degree

of geographical diffusion.

Therefore, instead of using the knowledge base recombination and patent families

growth, which are somehow correlated as we saw previously, we construct

our measure of life cycle along two axis: inventing activity (proxied through

patenting activity) and geographical ubiquity. we can then create a quadrant

along these two dimensions as represented in Table 4.1, with four different

stages: Emergence, Development, Diffusion, Maturity.

Table 4.1: Life cycle stages

Ubiquity
Low High

Patenting High Development Diffusion
intensity Low Emergence Maturity

The emergence phase is characterised by a low level of technological diffusion

and intensity. It represents the lowest level of maturity of the technology

where inventive activities are highly concentrated in few countries and the

number of patents is relatively low. Once the patenting intensity increases,

a development phase begins. In this case, the technological advances are

still geographically concentrated and characterised by an intense patenting

77



Chapter 4. The life cycle of technologies

activity that favours the development of the green technology. In the diffusion

phase both the geographical scope and patenting activities grow. Therein,

a high number of countries specialise in the development of the technology

with an increase in inventive activities. Finally, in the maturity phase where

standardisation in the design and knowledge-related activities are obtained,

patenting intensity decreases while the geographical diffusion of the inventive

activities remains relatively high. It is worth stressing that we allow for non-

linearity in technological evolution, which implies that not all stages are required,

maturity may represent an intermediate step before subsequent developments

and jumps along the maturity stages are feasible.

4.4.2 Measuring the life cycle of green technologies

To identify the maturity of green technologies, we develop a measure of tech-

nology life cycle based on two indicators: the geographical ubiquity and the

intensity of patenting.

The ubiquity indicator captures the extent to which innovative activities are

geographically spread relative to countries’ specialisation in green technologies.

Following Balland and D. Rigby (2017), the geographical scope of inventions is

calculated using the Revealed Technological Advantage (RTA) for each green

technology, country and time period as follows:

RTAjct =
Patentsjct/

∑
j Patentsjct∑

c Patentsjct/
∑

jc Patentsjct
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The RTA measures the intensity of the contribution of each country c to the

development of technology j at time t. That is, it captures the efforts spent by

a country in developing a specific green technology (numerator) with respect to

global efforts in developing the same technology (denominator). The ubiquity

of each technological domain is given by the number of countries that exhibit a

given RTA in a particular green technology at time t:

UBIQUITYjt =
∑
c

Mcj

Where Mcj = 1 if RTA > 1. Therefore, the higher the number of countries

specialised in the development of a particular technology, the higher the UBIQ-

UITY of that technology. In other words, the indicator is a proxy for diffusion

of innovative activities. The advantage of this measure with respect to other

potential patent indicators of diffusion (such as i.e. citations, family size, etc.)

is that it allows capturing specialisation patterns in specific technologies relative

to their global counterparts.

The second indicator is on the number of patent families in green technologies

at country level. This is a proxy of patenting intensity of each country in the

development of technologies. Finally, we measure the average growth rate over

four years of both patenting intensity and the ubiquity indicator. This enables

us to smooth the trends in both indicators and capture their dynamics over

time.
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Figure 4.4: Evolution of a selection of Green Technologies (1971 - 2010). Each dot represents
the relative position of a technology in each decade, the arrow indicating the last decade.

Figure 4.4 combines information about these indicators on a sample of technolo-

gies as an example. The more vertical is the direction of the line, the higher is

the growth of the patenting activity and the lower is the number of countries

who participate in its development in relative terms, meaning we are in a case

of a technology in a development phase. On the opposite, the more horizontal

is the line, the lower is the variation of the patenting activity and the higher is

its geographical ubiquity, which is the case of technologies in a diffusion phase.

The majority of GTs exhibit a tendency to move from the bottom left part of

the graph to the top right over time, meaning an increase in both patenting

activity and geographical ubiquity.

Let us provide some illustrative examples from the technologies under analysis.

Figure 4.4 shows that the technologies related to renewable energy generation
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maintain a fairly stable level of patenting activity since 1981-1990 while geo-

graphical ubiquity reaches the highest value among all the other technologies.

This is in line with what we expect from a set of technologies in a diffusion

stage (US National Academy of Sciences, National Academy of Engineering,

and National Research Council, 2010). On the other hand, a small number

of countries contribute to the enabling technologies in transport (application

of fuel cell or hydrogen technology to transportation and charging of electric

vehicle) but the patenting activity is increasing decade after decade, which

means these technologies are not mature yet and still in a development phase,

in line with the reality (US Department of Energy, 2017). The other three set

of technologies (air pollution abatement – 1.1, CO2 capture and storage – 5.1

and technologies related to metal processing – 9.1) shown in figure 4.4 present

a shifting pattern from a development stage towards maturity: they present

an important growth in patenting activities during the whole period, but the

ubiquity starts to increase only in the last two decades, in line with what is

observed in these sets of technologies (Lim et al., 2009). This pattern is slightly

different for technologies related to efficiency and reduction of greenhouse gas

emissions in metal processing (9.1): between 1981-1990 and 1991-2000, the

amount of patenting activities is stable but they are spread among a higher

number of countries, meanwhile in the last decade, the ubiquity diminishes and

the patenting activity growths again. This trajectory variation may indicate a

future change in the trend of the life cycle of these technologies (The Boston

Consulting Group, 2015).
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Figure 4.5: Selected green technologies by stage of life-cycle, 2001-2010. Dashed lines
represent the means for all the Green Technologies in the time period.

All the technologies follow a similar path, but some are more advanced in

the TLC than others. For example, even if air pollution abatement and CO2

capture or storage are moving toward the diffusion stage, their movements start

later compared to the average of all the other technologies. To characterize

this evolution in the context of all the green technologies, we calculate the

average value of ubiquity and patenting growth rate for all the GT in each time

period. We can then identify the 4 quadrants defined in table 4.1. "Emergence"

is assigned to technologies with a value of patenting intensity and ubiquity

below the average, "development" to a patenting intensity above average but

an ubiquity below average, "diffusion" to both intensity and ubiquity above

average, and "maturity" to an ubiquity above average but a patenting intensity

below the average of all the technologies for the time period. In Figure 4.5, we

illustrate the 4 phases of TLC during the period 2001-2010 for the same set
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Figure 4.6: All green technologies by stage of life-cycle, 2001-2010. Dashed lines represent
the means for all the Green Technologies in the time period.

of technologies shown in Figure 4.4, the means being represented with dashed

lines. In this example, CO2 capture or storage (5.1) and enabling technologies

in transport (6.5) are in the "emergence" phase, air pollution abatement (1.1)

in the "development" phase, renewable energy generation (4.1) would be in

the "diffusion" phase and technologies related to metal processing (9.1) in the

"maturity" phase. We apply this methodology to all green technologies at 2

digit level. Figure 4.6 is an illustration of this calculation for the last decade

2001 - 2010, where each number is the ENV-TECH code of the technology and

colours represent ENV-TECH families.

Table 4.2 shows the lifecycle stage calculated for each green technology in each

decade over the period (column headers are the last year of the decade). We

can observe that the indicator captures the heterogeneity that characterises
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Table 4.2: Life cycle stages of green technologies

ID ENV-TECH 1980 1990 2000 2010
1.1 AIR POLLUTION ABATEMENT 4 4 4 4
1.2 WATER POLLUTION ABATEMENT 3 4 4 4
1.3. WASTE MANAGEMENT 3 3 4 4
1.4 SOIL REMEDIATION 1 1 3 3
1.5 ENVIRONMENTAL MONITORING 1 1 1 1
2.1 DEMAND-SIDE TECH (water conservation) 1 3 3 3
2.2 SUPPLY-SIDE TECH (water availability) 1 1 1 3
4.1 RENEWABLE ENERGY GENERATION 4 4 4 4
4.2 ENERGY GENERATION FROM FUELS OF NON-FOSSIL ORI-

GIN
1 3 3 4

4.3 COMBUSTION TECH WITH MITIGATION POTENTIAL 1 1 1 3
4.4 NUCLEAR ENERGY 2 2 1 1
4.5 EFFICIENCY IN ELECTRICAL POWER GENERATION,

TRANSMISSION OR DISTRIBUTION
1 2 1 1

4.6 ENABLING TECH IN ENERGY SECTOR 1 2 2 2
4.7 OTHER ENERGY CONVERSION OR MANAGEMENT SYS-

TEMS REDUCING GHG EMISSIONS
1 1 1 3

5.1 CO2 CAPTURE OR STORAGE (CCS) 1 1 1 3
5.2 CAPTURE OR DISPOSAL OF GREENHOUSE GASES OTHER

THAN CARBON DIOXIDE (N2O, CH4, PFC, HFC, SF6)
1 1 1 3

6.1 ROAD TRANSPORT 2 4 2 2
6.2 RAIL TRANSPORT 1 1 1 1
6.3 AIR TRANSPORT 1 1 1 3
6.4 MARITIME OR WATERWAYS TRANSPORT 1 1 1 3
6.5 ENABLING TECH IN TRANSPORT 1 1 1 2
7.1 INTEGRATION OF RENEWABLE ENERGY SOURCES IN

BUILDINGS
1 1 1 4

7.2 ENERGY EFFICIENCY IN BUILDINGS 1 3 4 4
7.3 ARCHITECTURAL OR CONSTRUCTIONAL ELEMENTS IM-

PROVING THE THERMAL PERFORMANCE OF BUILDINGS
1 1 1 1

7.4 ENABLING TECH IN BUILDINGS 4 4 4 4
8.1 WASTEWATER TREATMENT 1 3 4 4
8.2 SOLID WASTE MANAGEMENT 3 3 4 4
8.3 ENABLING TECH OR TECH WITH A POTENTIAL OR INDI-

RECT CONTRIBUTION TO GHG MITIGATION
1 1 1 1

9.1 TECH RELATED TO METAL PROCESSING 3 3 3 4
9.2 TECH RELATING TO CHEMICAL INDUSTRY 1 4 4 4
9.3 TECH RELATING TO OIL REFINING AND PETROCHEMICAL

INDUSTRY
1 1 1 3

9.4 TECH RELATING TO THE PROCESSING OF MINERALS 1 3 1 3
9.5 TECH RELATING TO AGRICULTURE, LIVESTOCK OR

AGROALIMENTARY INDUSTRIES
1 3 1 3

9.6 TECH IN THE PRODUCTION PROCESS FOR FINAL INDUS-
TRIAL OR CONSUMER PRODUCTS

1 1 2 4

9.7 CLIMATE CHANGE MITIGATION TECH FOR SECTOR-WIDE
APPLICATIONS

1 1 1 1

9.8 ENABLING TECH WITH A POTENTIAL CONTRIBUTION TO
GHG EMISSIONS MITIGATION

1 1 1 4

ID and ENV-TECH correspond to green technology groups listed in OECD (2016). Numbers in the
columns indicate the life cycle stage of green technologies: 1="Emergence", 2="Development",

3="Diffusion", 4="Maturity" (as per Table 4.1).
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green technologies allowing for non-linear transition between life cycle stages.

For instance, ENV-TECH 7.1 "Integration of renewable energy sources in

buildings" falls in the emergence stage until 2000 moving to the diffusing phase

until maturity is reached in 2010. Green technologies aimed at reducing the

environmental impact of nuclear energy follow an opposite pattern starting in

the development phase moving to the emergence stage from 1990 onwards.
Table 4.3: Technology maturity ranking

ENV-TECH (1-DIGIT) Technological field Ranking
ENV-TECH 5 Capture, storage, sequestration or disposal of GHG 1 (Less mature)
ENV-TECH 6 CCMT Transportation 2
ENV-TECH 4 CCMT Energy generation, transmission or distribution 3
ENV-TECH 9 CCMT Production or processing of goods 4
ENV-TECH 2 CCMT Water-related adaptation technologies 5
ENV-TECH 8 CCMT Wastewater treatment or waste management 6
ENV-TECH 7 CCMT Buildings 7
ENV-TECH 1 Environmental management 8 (More Mature)

While table 4.2 shows expected results, we can calculate the average stage of

each ENV-TECH family during the time period 1970-2010, and rank them

from less mature to more mature. This is presented in table 4.3. As expected,

technologies for capture, storage, sequestration or disposal of greenhouse gases

and CCMT related to Transportation are less mature, while mature technologies

are those related to the management of water, waste and environment, which

are well-known local environment issues since the 19th century (Tarr et al.,

1984).

Summing up, this chapter has presented a novel methodology to classify tech-

nologies along the life cycle.

Drawing on established literature (William J Abernathy and J. M. Utterback,

1978;S. Klepper, 1996;J. Utterback, 1994;Vona and Consoli, 2015), we translit-

erate the heuristic of maturity stages to the case of green technologies, with a
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view to disentangle the differential degree of development of this rather diverse

set of technologies.

This exercise complements the descriptive information provided in chapter 3

by adding a “functional” dimension to the mapping of green technologies. The

classification that emerges from the present chapter will be used in the remainder

of the thesis as a guideline to capture various nuances of the development of

green innovative capacity.
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Chapter 5

Green specialisation and

diversification across countries

5.1 Introduction

In chapter 3, we ranked countries according to their capacity to produce com-

plex green technologies. We found that high-income countries were producing

complex green technologies, but also that mid-income countries were also capa-

ble of complex green innovation when they were exporting complex products.

To explore why some countries are capable of green innovation while others are

not in spite of similar wealth levels, this chapter elaborates an empirical analy-
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sis of the temporal and geographical distribution of environmental inventive

activities, and on how specific country characteristics enable the development

of green technology. We analyse patterns of diversification and specialization

in a restricted panel of 63 countries over the period 1970-2012. Our empirical

approach adopts and extends the methodology proposed by Petralia, Balland,

and Morrison (2017): we set out to uncover the general trends of green techno-

logical specialization, and identify country-specific factors that enable or hinder

the diversification in new areas of green technology.

We propose to identify whether and to what extent local competences hinder or

facilitate the development of green technologies across countries. Prior research

leads us to expect that there are significant cross-country differences both in the

ability to enter existing technological domains, as well as setting in motion new

trajectories (Jean Olson Lanjouw and Mody, 1996; Veugelers, 2012; Costantini

and Mazzanti, 2012; Fankhauser et al., 2013; Calel and Dechezleprêtre, 2016).

Only few areas possess the necessary competences to invest in complex tech-

nologies, and this capacity is plausibly correlated with their long-run path of

economic development (see chapter 3). A recent study by Petralia, Balland,

and Morrison (2017) has tackled this issue by exploring the entire landscape of

technologies across a large selection of countries. Their analysis disentangles

the role of country-specific characteristics - namely, possessing technological

competences - as well as technology-specific characteristics - namely, complexity

of technology - on the paths of specialisation and diversification.

In the remainder of the chapter we employ a similar approach to map the

geographical distribution of environmental technology development, and to
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assess how specific country characteristics enable or thwart the development of

inventive activities. In so doing we seek to fill a gap concerning how countries

build green innovation capabilities, and how such a capacity differs along the

gradient of economic development.

5.2 Data and Variables

In this chapter, we use green technology data from 63 countries, to be able to

compare our findings with research by Petralia, Balland, and Morrison (2017)

on all technologies.

Complexity of green technologies

The second key dimension in this analysis is the complexity of green technologies.

This time, and again in order to facilitate the comparison, we employ the

methodology used by Petralia, Balland, and Morrison (2017), built on the

seminal work of Hidalgo, Winger, et al. (2007). Both methodologies build a

matrix between Green Technologies and Countries to obtain a mode-2 network,

and then interact several times a measure of diversity / ubiquity of technologies

/ countries in order to obtain an average value of complexity. In our study,

technologies are the 36 items identified in table 2.1 and countries are those of

the inventors.

In Hidalgo’s methodology, the first step is to calculate the Reveal Techno-

logical Advantage (RTA), to identify countries’ technological trajectories and

capabilities over time. To this end we calculate:
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RTAcjt =
Patentscjt/

∑
j Patentscjt∑

c Patentscjt/
∑

cj Patentscjt

Scjt = I[RTAcjt > 1]

Where c stands for country, j for ENV-TECH subgroup, t for the year between

1970 and 2012, and I[.] represents the indicator function. This measure provides

information on country’s specialization in each technology, comparing the share

of that technology in country’s technology production with the worldwide

average share of that technology for each year. A country has an advantage

when its share in a green technology domain is bigger than the world average,

identified when Scjt is equal to one. This indicator identifies the year t in which

a country c starts to diversify in a technology j (Scjt−1 = 0 and Scjt = 1) or

the circumstance in which a country had not entered a technology domain at

the beginning of the period (Scjt = 0 with t = 1970).

To construct our Index of Technological Complexity (ITC), we only consider

countries that are significant producers of particular green technology (GT)

(Scjt = 1). To this end, we build a two-mode matrix M = (Mc,j) for each

year, where Mc,j reflects whether a country c has RTA in the production of

GT j. Following the method of reflections, the ITC is an iteration between

two variables : the diversity of countries and the ubiquity of GT. These two

variables measure the degree of centrality for both sets of nodes, in the country

- green technology network.

The degree of centrality of countries is given by the number of GT in which a

country has an RTA (diversity):
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kc,0 =
∑
j

Mc,j

In the same manner, the degree of centrality of GT is given by the number of

countries with a RTA in this technology (ubiquity):

kj,0 =
∑
c

Mc,j

Hidalgo and Hausmann (2009) demonstrates that the measure of complexity

for countries and technologies can be calculated as an iteration of these two

degrees of centrality as follows:

kc,n =
1

kc,0

∑
j

Mc,jkj,n−1

kj,n =
1

kj,0

∑
c

Mc,jkc,n−1

Each iteration of n provides finer-grained estimates of the knowledge complexity

of technologies they produce. To illustrate, when n = 1, kj,1 represents the

average diversity of countries that have an RTA in technology j. In the next

iteration, kj,2 represents the average ubiquity of the green technologies produced

in countries that have a RTA in GT j. ITC for technology j is defined as

the value of kj,n with the maximum number of iterations for each year under

analysis.
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Green technological space

ENV-TECH defines 3 levels of classification, from the broader level which we

call family to the more detailed one, called technology. Families are too broad

to help us understand the specialization patterns of countries, but technologies

have too few patent families to capture the contribution to green technologies

of low-middle income countries, as defined in Petralia, Balland, and Morrison,

2017 (Appendix A). As already explained in section 2.5, we use the 2-digits

level, for a total of 36 green technologies (GT).

Each ENV-TECH family aggregates a set of technologies by topic (transporta-

tion, energy, building, etc...) and objective (climate change adaptation or

mitigation), but the technologies belonging to a family can have a different gra-

dient of relatedness, and can even be more related to other technologies outside

their own family. In order to measure relatedness, we follow Petralia, Balland,

and Morrison (2017), Hidalgo, Winger, et al. (2007) and Balland and D. Rigby

(2017) in seeing the Technological Space as a network-based representation of

the production of technologies, defined as nodes, the relatedness of each couple

of technologies being a tie between two nodes. Accordingly, relatedness between

green technology i and j is calculated as follows:

Rijt =
Ccjt√
SitSjt

Where Ccjt counts the co-occurrences of technologies i and j, and Si and Sj

count the size of GT at period t. Therefore, the more two technologies are
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associated to the same patent families, the more related they are controlling

for size, the higher is Rijt.

Density of green technologies

Once we have a measure to estimate the proximity of green technologies between

them, we can calculate how close is a technology to the country’s portfolio of all

technologies. This variable varies from 0 to 1, with higher values indicating a

country has capacity to produce GT nearby a given technology. It is measured

as follows:

Densitycjt =

∑
iRijtXcit∑
iRijt

Where Xcit is a dummy variable that takes value 1 if country c is patenting in

GT i during the year t. This variable illustrates the capacities of country c to

produce patents in technologies related to technology j in year t, which help to

understand if capacities in the production of related technologies are linked to

diversification in other technologies.

Other variables

We calculate for each ENV-TECH class and each year, the number of patent

families produced (Size), and the Herfindhal Index. The size will be used to

control for scale effects. As is common in the literature, the Herfindhal Index is
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used here as an indicator of competition among countries in each technology1.

We also control for the level of development of each country’s economy over

time through proxied by GDP (Source: Green Growth Knowledge Platform2).

5.3 Empirical Analysis

Descriptive Statistics

Table 5.1 shows descriptive statistics of the main variables of interest. To

facilitate comparability with Petralia, Balland, and Morrison (2017) we limit

the dataset to 63 (our 146) countries, covering 35 green technologies, from

1970 to 2012. About 28% of countries specialized in a technology at year t

(Scjt = 1) were not specialized in the same technology a year before (identified

in the column NPAcjt−1), which we define as a diversification event. On the

other hand, 22% of the observations were having a patent activity in year t− 1

(identified in the column PAcjt−1) and lost their technological advantages on

year t (Scjt = 0). These proportions are respectively higher and lower than

those reported by Petralia, Balland, and Morrison (2017), in that we find

stronger frequency of specialisation in green technologies but, once a country

has started to invent, it tends to retain a technological advantage.
1Given the specificities of the ENV-TECH classification, we do not use technology value added

like Petralia, Balland, and Morrison (2017). This is because, first, ENV-TECH associates various IPC
and CPC codes to a technology, which makes difficult to associate an industrial sector to a specific
technology, so makes inappropriate the use of manufactures surveys. Second, and in particular in the
case of emergent technologies like for example CO2 capture and sequestration, the value added could
be important in the future but this kind of technology is not used enough at present to be able to
estimate it.

2Available at http://www.greengrowthknowledge.org/
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Table 5.1: Main Descriptive Statistics

Obs Mean SD Min Max
Specialization 95976 0.179 0.384 0 1
Log Size 95976 4.983 2.022 0 9.231
Herfindhal Index 95294 0.300 0.180 0 1
ITC 95294 12.338 3.266 3.556 23.5
Density 94550 0.416 0.404 0 1
GDP Per Capita 77065 12822.7 15636.0 97.2 113239.6

Correlation Table
Specialization 1
Log Size 0.213 1
Herfindhal Index -0.100 0.036 1
ITC -0.113 -0.562 -0.098 1
Density 0.398 0.163 -0.070 0.042 1
GDP 0.232 0.240 -0.120 0.038 0.484 1

Specialization PAcjt−1 NPAcjt−1 Total
Scjt = 1 0.723 0.277 1
Scjt = 0 0.217 0.783 1

Number of countries: 63
Number of technologies: 35
Coverage: 1970 – 2012
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Regression analysis

Our objective is to characterize patterns of technological diversification and

specialization in green technologies, in relation with the intrinsic characteristics

of the technology (size and complexity), but also with the characteristics

of the country, in particular activity in other proximate green technologies

(Density) and whether there is prior technological advantage as per RTA. We

characterise diversification in two ways: first, by restricting the dataset to

cases in which there was no patenting activity at the beginning of the sample

(RTAcjt < 0.1 where t = 1970) and, second, by accounting only for the cases

in which there was no patenting activity in the prior year (RTAcjt−1 < 0.1).

Contrary to what Petralia, Balland, and Morrison (2017) find, using patents

from PATSTAT instead of USPTO mitigates the uncertainty on the detection

of global knowledge production, as PATSTAT is a worldwide patent database

and is not limited to the United States only. All the other limitations identified

(patent production depending on firm strategies and rate of patenting varying

over time and space could lead to a misrepresentation of the real knowledge

production) apply.

We estimate two different linear probability models, one for diversification and

the other for specialization. Both models include dummies for green technologies,

countries and years in order to control for potential biases introduced by

peculiarities of certain green technologies, countries or years. We specify two

models as follows:
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• Diversification equation

Scjt = Θ1Densitycjt−1+Θ2Densitycjt−1×GDPct+β1 logSizejt+β2HIjt

+ β3ITCjt + δcDc + δjDj + δtDt + εcjt (5.1)

• Specialization equation

Scjt = Θ1Densitycjt−1 + β1 logSizejt ×GDPct + β2HIjt ×GDPct
+ β3ITCjt ×GDPct + δcDc + δjDj + δtDt + εcjt (5.2)

Where c, j, and t identify respectively countries, green technologies and years,

Scjt takes the value of unity when a country c has an RTA above unity in a

technology j in year t, GDPct is the GDP per capita for country c and year

t, Densitycjt is the proximity of surrounding green technologies in country c

to technology j in year t, HIjt, ITCjt and Sizejt are the technology-related

variables defined in Table 5.1, and εcjt is the error term.

The first model seeks to capture the effect of a country possessing competences

in proximate technologies on diversification, and to further assess if the effect is

higher when the diversification is recent or if it dates back to the beginning of the

sample. The second equation aims at identifying the patterns of specialization

in green technologies, measuring the effects of the technology determinants

themselves and those of surrounding technologies in a country, regardless of

whether a country has previously produced that technology. When we run

regressions for this model, we interact all the variables with GDP to assess
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if there are patterns according to the level of development. Last but not

least, we extend the framework of Petralia, Balland, and Morrison (2017) by

estimating diversification and specialization in a model adding a variable called

maturity, which represents green technology life cycle stage (as defined in the

previous chapter, section 4.4, table 4.3). In so doing we evaluate whether

green technologies behaviour is homogeneous across families, or if intrinsic

characteristics of ENV-TECH domains have a differential influence.

5.4 Results and discussion

Table 5.2: Results of the Econometric Model

Diversification Equation (RTA < 0.1 Diversification Equation (RTA < 0.1 Specialization
in the previous period) at the beginning of the sample) Equation

Density 0.02746*** 0.11723*** 0.13949***
(0.01) (0.01) (0.01)

Density × GDP 0.00049 0.00030
(0.00) (0.00)

Technological-level Variables
Log Size 0.00497** 0.00658*** 0.01495***

(0.00) (0.00) (0.00)
Herfindahl Index -0.01898*** -0.04997*** 0.01416*

(0.01) (0.01) (0.01)
ITC 0.00169*** 0.00389*** 0.00484***

(0.00) (0.00) (0.00)
GDP 0.00012 0.00016 0.00736***

(0.00) (0.00) (0.00)
GDP × Log Size -0.00049***

(0.00)
GDP × Herfindahl Index -0.01453***

(0.00)
GDP × ITC -0.00012**

(0.00)

R2 0.098 0.209 0.228
Tech Fixed Effects Yes Yes Yes
Time Fixed Effects Yes Yes Yes
Country Fixed Effects Yes Yes Yes
Obs 51149 70547 77065

* p < .1, ** p < .05, *** p < .01

Table 5.2 & 5.3 show the results obtained from the regressions. Both tables

report the results of three models: in columns (1) and (2) are the diversification
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Table 5.3: Regression results with technology life cycle

Diversification Equation (RTA < 0.1 Diversification Equation (RTA < 0.1 Specialization
in the previous period) at the beginning of the sample) Equation

Density 0.02746*** 0.11723*** 0.13872***
(0.01) (0.01) (0.01)

Density × GDP 0.00049 0.00030
(0.00) (0.00)

Technological-level Variables
Log Size 0.00497** 0.00658*** 0.01555***

(0.00) (0.00) (0.00)
Herfindahl Index -0.01898*** -0.04997*** 0.00558

(0.01) (0.01) (0.01)
ITC 0.00169*** 0.00389*** 0.00464***

(0.00) (0.00) (0.00)
Maturity 0.02568*** 0.04474*** 0.04034***

(0.00) (0.00) (0.00)
GDP 0.00012 0.00016 0.00523***

(0.00) (0.00) (0.00)
GDP× Log Size -0.00053***

(0.00)
GDP × HHI -0.01311***

(0.00)
GDP × ITC -0.00008

(0.00)
GDP × Maturity 0.00037***

(0.00)

R2 0.09796 0.20889 0.22834
Tech Fixed Effects Yes Yes Yes
Time Fixed Effects Yes Yes Yes
Country Fixed Effects Yes Yes Yes
Obs 51149 70547 77065

* p < .1, ** p < .05, *** p < .01
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models, the difference being the sample selection, and column (3) shows results

from the specialisation model. Our benchmark for the interpretation of results

are the findings of Petralia, Balland, and Morrison (2017) with the proviso that

we focus on green technologies.

The specification of Table 5.2 shows a positive and significant correlation be-

tween density and diversification. This result holds if we consider diversification

with respect to the previous year as well as diversification with respect to

the first year at the beginning country time-series. This positive relationship

suggests that having technological capabilities in cognitive related technologies

increases the likelihood of entering into a new-to-the-country green technological

domain. The result is in line with section 3.4.3 of chapter 3 that emphasise

the pivotal role of related capabilities in the green knowledge generation pro-

cess. Indeed, knowledge stemming from existing capabilities reduces the costs

and uncertainty that exploratory mechanisms entail and triggers technological

variety across different - though related - fields (Carolina Castaldi, Frenken,

and Los, 2015). Similar results have been provided by Noailly and Shestalova

(2017) who point out that renewable energy technologies benefit, among other

factors, from intra and inter-technology spillovers.

The positive correlation between density and diversification indicates that

the finding of Petralia, Balland, and Morrison (2017) holds also for green

technologies. However, in our study the interaction between Density and GDP

is not statistically different from zero (Column 1 and 2). Petralia, Balland, and

Morrison (2017) find a negative coefficient, meaning that existing capabilities

in related technologies are less relevant for developed countries relative to
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developing ones, and, thus, that the costs and uncertainty of exploring new

technological domains is a major concern when the endowment of financial

resources is lower. We ascribe the lack of a significant relationship in our results

to a peculiarity of green technologies, namely that they are altogether at an

early stage of development (OECD, 2011). Operating in such a technological

domain characterised by a high level of uncertainty, due to lack of established

practices and gaps in know-how, entails that financial capacity does not influence

diversification capacity.

We also find positive and significant coefficients for the technology-level variables

(i.e. Size and ITC) with the exception of a negative and significant coefficient for

the Herfindhal index. This suggests that diversification is higher when patenting

activities are spread across different countries, i.e. diversification in new green

technological fields is favoured by worldwide distribution of green technological

advances. The main difference with respect to Petralia, Balland, and Morrison

(2017) is the effect of technology complexity: whereas their reported coefficient

is negative and significant, ours is positive and significant. This implies that in

the case of green technologies the likelihood of diversification and specialisation

increases with technological complexity. To support this finding, we recall the

intrinsic features of green technologies. In a recent paper, Barbieri, Marzucchi,

and Rizzo (2018) compare green and non-green technologies across different

knowledge dimensions. It has been observed that green technologies are more

complex, radical and exert higher impacts on subsequent technologies with

respect to non-green ones. In particular, the authors find that green technical

knowledge emerges from a variety of knowledge sources that spans a wide
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spectrum of cognitively distant knowledge fields. Moreover, environmental-

related technologies recombine a higher amount of technological components

that are drawn from different domains. That is, directing technological change

towards a sustainable path requires substantial efforts in bringing together

different knowledge sources, more so than in established technological domains.

Results from the specialization equation are shown in the third column of Table

5.2. Therein the coefficient of technology density is positive and significant in

line with Petralia, Balland, and Morrison (2017). This corroborates the idea

that, even in the domain of green technologies, operating in proximate fields

increases the likelihood of specialisation. Size is also positive and significant

while the Herfindhal index is not. We also find that technology complexity

has a positive and significant association with specialisation, in contrast with

Petralia, Balland, and Morrison (2017). However when we interact these

variables with GDP, our findings suggest that the likelihood of specialising

in a given green technological field decreases as far as complexity and GDP

increase. Although the size of the coefficient is low, important non-linearities

arising from this interaction will be discussed below. On the one hand, it

seems that top countries of the GDP per capita distribution are more likely to

specialise in less complex green technologies. On the other hand, low income

countries have lower probability of specialising in more complex technologies

relative to developed, but they are characterised by an increasing probability

of specialisation as technological complexity increases.

Given the idiosyncratic features of our domain of analysis, we investigate

whether and to what extent the degree of maturity of green technologies affects
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our results. To this end, we refer to the methodology proposed in chapter

4. Table 4.3 reports the macro-technological groups ranked in relation to

their level of maturity. In that table, technologies such as i.e. "Capture,

storage, sequestration or disposal of GHG" (ENV-TECH 2) are at early stages

of development while other domains such as i.e. "Environmental or Waste

management" (ENV-TECH 1-2) are at a more mature stage3.

Table 5.3 shows results of the regressions articulated according to this life-cycle

classification. Therein, the coefficient of technological maturity (i.e. TLC) is

positive and significant in all specifications. That is, high levels of technological

maturity are associated with an increased probability to diversify in green

technological fields that had not previously been explored by the country.

The result holds if we focus on the specialisation equation (Column 3). Not

surprisingly the finding suggests that countries tend to diversify and specialise,

i.e. spend effort to explore new-to-the-country green domains, in more mature

technological domains. This is particularly relevant as far as developed countries

are concerned. Indeed, the interaction term between GDP and TLC suggests

that the more a country is developed, the higher is the likelihood of specialising

in mature technologies.

Figure 5.1 summarizes the probability of diversification taking into account the

margins at different levels of GDP (left panel) and technological complexity

(right panel) with darker colors showing a higher probability and isolines

indicating probability values.
3It is worth noting that the level of maturity is calculated relative to the stage of development of

all green technologies.
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Figure 5.1: Diversification probabilities according to the characteristics of technologies and
countries.

Figure 5.2: Specialization probabilities according to the characteristics of technologies and
countries.
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On the left-hand panel, the probability of diversification increases when both

the country’s capabilities in producing inventions in related green technologies

and the GDP increase. However, the presence of related capabilities is more

important for developed countries since their probability of diversification in-

creases from 8% at low values of Density to 14% for high values of Density. Also

developing and emerging countries experience a similar trend, although they

move from almost 7% at low level of relatedness to less than 10% at high levels

of Density. On the right-hand panel of figure 5.1, we focus on the relationship

between Density and technological complexity and the probability of diversifi-

cation. In Table 5.2 we observe that Density and technological complexity have

a positive relationship with diversification. That is, having technological capa-

bilities in neighbouring green technologies increases diversification. The same

result holds when we consider technological complexity. At a constant level of

related capabilities (i.e. Density) the probability of diversification increases at

high values of complexity meaning that the latter does not represent a barrier

for diversification. In comparison, Petralia, Balland, and Morrison (2017) report

a negative relationship: the more complex is a technology, the lower is the

probability of diversification with a similar level of density. Our reading of

this difference is that diversifying into new green technological domains entails

operating in a more complex system due to less established know-how. As a

consequence, possessing capabilities in related domains enables diversification,

even towards more complex green technologies.
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Figure 5.2 illustrates how the probability of specialization in new green tech-

nologies depends on the characteristics of the technology and on the economic

performances.

The left-hand panel shows the extent to which the probability of specialization

changes according to green technologies density and the complexity. These re-

sults confirm the finding associated with diversification. That is, the probability

of specialisation tends to be higher when complex green technologies (usually

associated with a higher economical value) are concerned and when countries

have inventive capabilities in surrounding green technologies (density) in the

country increases. Conversely, the right-hand panel of Figure 5.2 represents

the effects of the technology complexity and the economic performances of the

countries (proxied through GDP per capita) on the probability of specialization.

We observe two main trends. First, when GDP is high the probability of

specialising in green technological fields is higher for low values of technological

complexity. In other words, as expected, more developed countries specialise in

less complex technologies. Second, however, countries with low levels of GDP

are more likely to specialise into more complex technological fields. In this case

the probability of specialisation is clearly lower compared to developed coun-

tries’, but it increases together with technology complexity. The non-linearities

emerging from Figure 5.2 (right panel) therefore indicate that the complexity

of green technologies is not per se a barrier to specialisation for countries in

the middle of the income distribution.

This, other than adding to previous literature, including but not limited to

Petralia, Balland, and Morrison (2017), offers interesting insights for policy.
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Our reading is that, akin to several other societal challenges, dealing with

environmental sustainability calls upon the capacity to build rich and diverse

knowledge structures with the proactive participation of both firms and the

attendant institutions (Nelson, 2008). The evidence provided here shows

that countries that successfully develop domestic capabilities can overcome

technological barriers. More than this, we find that these opportunities are not

precluded to countries with lower income levels, and therefore to the places

that according to many are most vulnerable to climate change hazards.

5.5 Conclusions

The present chapter has analysed cross-country patterns of diversification and

specialization in environmental technology development, and their drivers. This

exercise yields two main findings. First, countries are more likely to diversify

into new domains of green technology that are close to the portfolio of existing

competences as proxied by prior technological orientation. While this is coherent

with prior literature, our results are peculiar in that the observed effect does

not exhibit strong association with the stage of development of a country – as

in Petralia, Balland, and Morrison (2017) – but, rather, with the maturity of

the green technology. In particular, differences in competences are a bigger

obstacle than differences in wealth. Second, in line with prior studies, we find

that countries move along cumulative paths of specialization, and towards more

complex technologies. At the same time, and contrary to other studies the

complexity of green technologies is not an obstacle to specialisation.

107



Chapter 5. Green specialisation and diversification across countries

This chapter has filled the gap in the literature about how countries build green

innovation capabilities, and how these capabilities differ along their economic

development. Even if the use of patent data is not exempt of limitations, this

chapter provides interesting insights that contribute to the scholarly and the

policy debate about how countries could tackle climate change, water scarcity

and environment degradation while fostering their economic development.
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Chapter 6

Co-evolution of green

technologies and the knowledge

base

6.1 Introduction

The objective of this chapter is to establish an empirical correspondence between

the degree of maturity of green technologies (as per the life cycle) and the

knowledge base of the attending local economy.
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Economic geographers and innovation scholars concur that the more diverse

the spectrum of know-how available in a region, the greater the potential of

successfully exploiting available inputs as well as unexplored interdependences

between them (D. L. Rigby and Essletzbichler, 1997; Frenken and Ron A

Boschma, 2007; Balland and D. Rigby, 2017). This rests on the premise that the

composition of activities through which knowledge is channelled into productive

uses affects the rate and direction of technical change in a region. In this vein,

it has been argued, the more sectors are related, the easier is recombination

stemming from the transfer of knowledge from one context of application to

another. A thorough review of empirical studies by Content and Frenken (2016)

confirms that relatedness is an important driver of regional diversification

across a broad spectrum of dimensions (e.g., products, industries, technologies)

and of spatial units (e.g., countries, regions, cities, labour market areas) of

analysis. In particular, related diversification is observed to be a stronger driver

compared to unrelated diversification. This is, to some extent, not surprising

considering the nature of these constructs. Diversification is an uncertain

process that can be better dealt with by relying on available local resources,

and on well-tested connections across them, both trademark features of related

variety. Unrelated diversification, on the other hand, entails implementing new

forms of coordination across different and formerly unassociated capabilities

(Desrochers and Leppälä, 2011; R. Boschma, Coenen, et al., 2017). At the same

time, Ron A. Boschma and Frenken (2006) call for caution against determinism,

highlighting that spatial contingencies are of minor importance at the initial

stage of development of a sector, because a gap is likely to exist between the

requirements of new knowledge and the established environment. Within this
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debate, the question of whether and to what extent related and unrelated

variety actually affect technological innovation has been addressed only recently

by Carolina Castaldi, Frenken, and Los (2015). Their empirical analysis on the

United States (US) shows that the two forms of regional diversification are not

opposite but, rather, complementary forces. In particular, radical innovations

are observed more frequently in federal states with a diversified knowledge

base across unrelated domains, whereas incremental innovation has a stronger

association with related variety in local knowledge.

Based on this premise, this chapter aims to move this analysis forward by

distinguishing between related and unrelated variety along the path of develop-

ment of green technology. In so doing we take issue with the notion that either

related or unrelated variety are drivers of innovation regardless of the life-cycle

stage of the technology.

We propose that it is important to consider simultaneously region-specific and

external factors that may trigger opportunities for new industry and technologies

to emerge. To this end, we adopt a regional knowledge production function

(RKP) approach that incorporates qualitative features of the local knowledge

base as well as the degree of maturity of technology. So far, the analysis of

regional innovation has focused mainly on the extent to which R&D and human

capital interact (Charlot, Riccardo Crescenzi, and Musolesi, 2015) and affect

(Riccardo Crescenzi, Gagliardi, and Iammarino, 2015) the innovation generation

process. However, following the evolutionary tenet that innovation is the result

of successful recombination of existing ideas (Schumpeter, 1939; Basalla, 1989;

Weitzman, 1998; Arthur, 2007), we account for the fact that the structure
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of the regional knowledge base and the relatedness between its components

influence the recombination process (Frenken and Ron A Boschma, 2007;

Carolina Castaldi, Frenken, and Los, 2015). Against this backdrop, we expect

the life cycle stage of technology to determine whether local diversification

(or specialisation) across knowledge domains provides the highest benefits for

innovation. The study builds on the above to test two conjectures. The first

is that unrelated variety of the local knowledge stock matters for innovation

at early stages of the technology life-cycle while related variety has little or

no effect. The second is that, as the technology approaches maturity, related

variety of the local knowledge base is the major driver, while unrelated variety

loses progressively prominence. The empirical analysis is on green technology

development in a panel of 48 US federal states and District of Columbia (D.C.)

between 1980 and 2009, using the data built in chapter 2, but limiting it

to these regions. In order to study the relationship between technology life

cycle and regional knowledge structure we build entropy indicators that are

decomposed at different levels of relatedness between technological domains

(Jacquemin et al., 1979; Attaran, 1986; Frenken and Ron A Boschma, 2007;

Carolina Castaldi, Frenken, and Los, 2015). Finally, we follow the parametric

approach proposed by Charlot, Riccardo Crescenzi, and Musolesi (2015) and

adopt a random growth specification of the unobservable part of the model

to control for time-invariant regional characteristics, common time effects and

time-varying unobservable features whose exclusion would bias the econometric

estimation.
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The analysis yields two main findings. First, green technology development

exhibits stronger association with unrelated variety than with related variety.

This is not surprising considering that, first, the transition towards environ-

mentally sustainable production is still at early stages (OECD, 2015) and,

second, that green technology, being more complex than non-green technology,

requires the orchestration of diverse and cognitively distant knowledge inputs

(Barbieri, Marzucchi, and Rizzo, 2018). The second key finding is that unrelated

variety has stronger association with the early stages of the green technology

life cycle, while related variety becomes more important as technology enters

into maturity. On the whole, the chapter claims novelty on three fronts. First,

we operationalise the empirical connection between the technology life cycle

and the knowledge base, which had so far only been approached on conceptual

grounds (Vona and Consoli, 2015). The second contribution is to the debate

spurred by Castaldi and Giarratana (2014) on whether and to what extent

related and unrelated variety affect technological innovation, with the additional

benefit of the life-cycle perspective. Third, last but not least, we add empirical

evidence on the connection between environmental sustainability and regional

studies on which, according to Truffer and Coenen (2012), the sub-discipline of

environmental economic geography has been largely silent.

This chapter is organised as follow. The next section extends the theoretical

background presented in chapter 4. Section 6.3 describes additional data used,

variables and empirical strategy. Finally, whereas Section 6.4 presents the

descriptive statistics and discuss the results, Section 6.5 concludes the chapter

and illustrates the policy implications.
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6.2 Technology life cycle in the regional knowledge

production function

Along the life cycle, industries rely on different types of innovation that require

different sources (R. Norton and Rees, 1979). The birth of new industries typi-

cally follows radical innovation and the development of immature technologies,

whereas once a dominant design is established, technological disruptions are less

likely and the industry reaches a maturity stage in which innovation is mostly

incremental (Neffke, Henning, and R. Boschma, 2011). Such a mechanism

implies that industries exploit different types of agglomeration externalities

according to their stage of maturity. So far, we have observed that existing

studies treat technology as a latent element that evolves and leads to industry

maturity. Agglomeration economies are beneficial for industry and regional

growth because of their indirect effect in terms of knowledge spillovers and

learning opportunities. However, no study has provided a direct test to explore

why agglomeration externalities should trigger industrial technology.

A critical issue in the diffusion literature is the implicit assumption is that

neither the new technology nor the one that is being replaced change (B.

Hall and Trajtenberg, 2004). This static view stands in sharp contrast with

empirical evidence on the incremental adaptations that ultimately leads to

improvement of technology (Christensen, 1997; Foster, 1986). Moreover, and

closer to the goals of our analysis, central to the dynamics technology is

the balance between intrinsic performance characteristics and the specific

features of the selection environment (Vona and Consoli, 2015). These features
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can be bottlenecks - see e.g. the analysis of the American machine tool

industry by Rosenberg (1976) or Hughes’ 1993 account of the evolution of the

electrical power system - or can be facilitating circumstances of the ecosystem

- as is the case in Constant’s (1980) study on aircraft piston-engine or in

Henderson’s (1995) analysis on optical lithography. The broader point is that

acknowledging the role of the context of adoption entails shifting the focus

from substitution between new and old technology to the evolution of the

selection environment. This resonates with Boschma and Frenken’s (2006)

cautionary remark concerning deterministic accounts of regional variety: spatial

contingencies, and the associated uncertainties, matter.

Building on these premises, we look at how agglomeration economies and

technology life cycle interact. In the geography of innovation literature, the

RKP function approach provides a suitable theoretical framework to investigate

these issues (see e.g. R. Crescenzi, Rodriguez-Pose, and Storper, 2007, 2012;

Ponds, Oort, and Frenken, 2010; M. Feldman and Graddy-Reed, 2014; Charlot,

Riccardo Crescenzi, and Musolesi, 2015). Therein the regional perspective

is embedded in the knowledge production function framework proposed by

Griliches (1979) to observe the regional determinants of the generation of

innovation. However, whether regional innovation inputs (e.g. human capital

and R&D investments) and agglomeration economies exert heterogeneous effects

on innovation output according to the maturity of the technology remains an

unexplored question. Delving into details provides insights into the type of

knowledge base structure that enables regions to intensify their innovative

activities and evolve along the life cycle. To do so, we extend the RKP
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framework to incorporate knowledge diversification at different levels of variety

(Frenken and Ron A Boschma, 2007; Carolina Castaldi, Frenken, and Los, 2015).

Moreover, since the regional endowment of innovation inputs and given the

heterogeneity of regional structural characteristics, we also test whether specific

features of the local knowledge base exert different impacts on innovation output

depending on the level of development of regions.

6.3 Empirical application

Figure 6.1 shows the geographical distribution of green and total patenting

activities per million inhabitants at state level (Panel A and B, respectively).

Not surprisingly, the two distributions follow a similar pattern with states

such as Massachusetts, Connecticut, Alabama, Georgia, Maryland and Kansas

that fall in the top quintile in both panels. It is worth noting that states

in the Great Lakes (e.g. Michigan, Indiana, etc.) and New England (e.g.

Massachusetts, Connecticut, etc.) are particularly effective in the production

of green technological knowledge, whereas states in the West (e.g. California,

Oregon, Washington, etc.) perform better in total patenting over time. Another

noticeable element is that some states rank high in the distribution of green

patent families per million inhabitants and low in total patenting activities, for

example Illinois, Michigan and Ohio.
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(a) Green Technologies

(b) All Technologies

Figure 6.1: Quintiles of green and total patent families per million inhabitants (average
1980-2010). Darker colours correspond to top quintiles. 48 US federal states and District of
Columbia are included in the maps. Alaska and Hawaii are left out from the analysis. The
cartographic boundary shapefile is provided by the US Census Bureau (Accessed in 2018).
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6.3.1 Measuring regional knowledge base diversification

We calculate entropy indicators to measure diversification of regional innovative

activities. The advantage is that such measure can be scaled up or down at

different levels of aggregation associated with specific degrees of relatedness. In

the seminal paper by Frenken and Ron A Boschma (2007), the entropy measure

is decomposed into related and unrelated variety to capture the extent to which

relatedness and diversification characterise the regional cognitive structures.

Recently, Carolina Castaldi, Frenken, and Los (2015) employ the same measure

to assess diversification in technological capabilities of US federal states. In

the present chapter, we follow Carolina Castaldi, Frenken, and Los (2015) in

the use of geographical information on patent families to calculate the entropy

indicators using patent data at the state level in US. To do so, we exploit the

technological classification codes assigned to each patent. The hierarchical

structure of the International Patent Classification (IPC) system can be used

to measure variety at different code digits. We calculate related, semi-related

and unrelated variety of patenting activities assuming relatedness between

two patents when they share the same IPC code. Moreover, this relatedness

increases when the number of IPC digits rises. Specifically, unrelated variety

(UV) is measured using the entropy of the patent family distribution over IPC

1-digit classes:

UVit =
∑
k

sk,itln

(
1

sk,it

)
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Where
∑

k sk,it is the share of patent families in technological field k = [1..N ]

at IPC 1-digit level, with at least one inventor located in state i at time t.

Semi-related variety (SRV) is equal to the entropy at 4-digit within each IPC

1-digit level. Given the decomposition theorem developed by Theil (1972), SRV

is the difference between the entropy measure calculated at 4-digit and 1-digit

level (i.e. UV):

SRVit =
∑
l

sl,itln

(
1

sl,it

)
−
∑
k

sk,itln

(
1

sk,it

)

Where
∑

l sl,it represents the share of patent families in each state over techno-

logical fields l = [1..P ] (IPC 4-digit level). Finally, we calculate related variety

(RV) at the IPC 8-digit level. As before, RV is obtained by subtracting to the

entropy at 8-digit, the one at 4-digit level. In so doing, we calculate variety

across narrow technological fields (i.e. IPC 8-digit level) within each broader

technological field (i.e. 4-digit level):

RVit =
∑
m

sm,itln

(
1

sm,it

)
−
∑
l

sl,itln

(
1

sl,it

)

Where
∑

m sm,it is the share of patent families in state i at time t over tech-

nological fields m = [1..R]. As far as we move from UV to RV, the cognitive

distance between technological fields decreases. RV is calculated across very

similar and specific technological domains compared to UV, which is measured

across distant and broad technological fields.
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Finally, we obtain the regional green technological efforts at each stage of the

technology life cycle as follow:

GPL
it =

∑
j

Pij(L)t

for each L = [Emergence,Development,Diffusion,Maturity]

where the green patent families in state i and time t are summed according to

the life cycle stage L of green technology j they belong to (see Table 4.1 in

chapter 4). The resulting four variables capture the geographical distribution

of green patenting activities in each stage of the technology life cycle.

Figure 6.2 shows the distribution of population-weighted green patenting across

US states per life cycle stages, i.e. GPL
it . A quick comparison across the different

panels of the figure shows persistence of leading states in the top quintile of all

stages of the life cycle. These states are also characterised by a medium-high

patenting activity when the size of green patenting is concerned. Other states

are more effective in the production of green technological knowledge just in

some stages of the life cycle. Thus, for example, Washington ranks high in the

development of green technologies in the developing stage, whereas New York

in the development and diffusion stages. Michigan is effective especially in the

production of knowledge related to developing and mature green technologies

but not in those in the diffusion phase. Conversely, South Carolina falls in the

top quintile in the diffusion stage.
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(a) Emergence phase (b) Development phase

(c) Diffusion phase (d) Maturity phase

Figure 6.2: Quintiles of green patent families per million inhabitants over technology life
cycle stages (average 1980-2009). Darker colours correspond to top quintiles. 48 US federal
states and District of Columbia are included in the maps. Alaska and Hawaii are left out
from the analysis. The cartographic boundary shapefile is provided by the US Census Bureau
(Accessed in 2018).
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6.3.2 The empirical model

To test whether and what type of knowledge base diversification is associated

with the generation of new environmental technical knowledge, this chapter

employs a Knowledge Production Function (KPF) inspired approach previously

formalised by Griliches (1979) that is extended in three directions. First,

following Adam B Jaffe (1989) and R. Crescenzi, Rodriguez-Pose, and Storper

(2007) we exploit the geographical dimension of the dataset (in our case US

states), rather than focussing on firms (Adam B Jaffe, 1986), as unit of analysis

to investigate the spatial organisation of innovative activities. Second, we

acknowledge that local knowledge diversification plays a pivotal role in the

knowledge production process (Jacobs, 1969; Glaeser et al., 1992) and that

various forms of variety are associated with different degrees of relatedness

between technological domains (Frenken and Ron A Boschma, 2007; Carolina

Castaldi, Frenken, and Los, 2015). Third, we integrate the technology life-cycle

heuristic into the KPF framework in order to assess which type of variety in the

knowledge base is associated with knowledge production process at different

the levels of technological maturity. We estimate the following empirical model:

GPL
jt = β1V arietyjt + β2R&Djt + β3HCjt + Controlsjt + τj + γt + δjt + ejt

where the dependent variable is the number of patent families per million

inhabitants in all green technologies and separately for green technologies at

different stages of the technology life cycle (L) in state j and year t. V ariety is
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a proxy for regional knowledge base diversification discussed above that includes

UV, SRV and RV. R&D are research and development expenditures and HC

human capital. In some specifications we also include a battery of controls that

capture R&D and human capital in neighbouring states and population density

(Controls)1. We also include time fixed effects (γt), state fixed effects (τj) and

region specific time trends that control for unobservable heterogeneity that

varies linearly over time in each state. The latter enables us to capture, among

others, state-specific time patterns that we are not able to control for due to

data availability, such as policy intervention, green fiscal reforms, etc. which

are usually introduced at federal state level. Finally, ejt captures the residual

variation. Table 6.1 provides descriptive statistics of the variables employed in

the econometric analysis.

Table 6.1: Descriptive statistics

Variable Description Obs Mean Std. Dev. Min Max
UV (IPC 3-dig) Unrelated variety at 3-digit level 1,470 3.773 .221 2.832 4.204
SRV (IPC 4-dig) Semi-Related Variety at 4-digit level 1,470 1.248 .205 .268 1.528
RV (IPC 8-dig) Related Variety at 8-digit level 1,470 1.453 .361 .246 1.916
GP Green patent families, pmi 1,470 27.69 26.64 0 300.94
Tot Pat Total patent families, pmi 1,470 429.6 351.24 36.18 2810.15
Emergence Green patents, Emergence stage, pmi 1,470 4.451 4.781 0 51.61
Development Green patents, Development stage, pmi 1,470 6.821 9.026 0 95.21
Diffusion Green patents, Diffusion stage, pmi 1,470 6.163 6.345 0 83.79
Maturity Green patents, Maturity stage, pmi 1,470 24.08 25.93 0 320.18
R&D Research and Development expenditures (w.r.t. GDP) 1,470 .014 .011 .001 .066
HC % Population with bachelor degree or more 1,470 .057 .021 .0321 .541
R&D Neighb Research and Development expenditures in neighbouring states (w.r.t. GDP) 1,470 .015 .007 .002 .047
HC Neighb % Population with bachelor degree or more in neighbouring states 1,470 .055 .007 .037 .093
Pop Dens Population Density 1,470 4.80 1.476 1.53 9.14

Number of States: 49; Coverage: 1980-2009; pmi= per million inhabitants

1Neighbour states are defined as states that share a border.
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6.4 Econometric results

Before exploring the results of the econometric analysis, Figure 6.3 provides

a graphical indication of the extent to which green and total patenting are

associated with the regional diversification of the knowledge base. There is a

positive relationship between patenting activities and variety at different level

of relatedness. As far as related variety is concerned, green and total patents

follow an almost-overlapping pattern with a relative majority of patents that

are generated where greater related variety characterises regional knowledge.

However, the distribution of patenting activities over quintiles of unrelated vari-

ety shows that this type of diversification is particularly relevant at supporting

the generation of green knowledge compared to all patents. At lower levels of

unrelated variety, total patenting prevails over green patenting. Conversely, as

far as unrelated diversification of the regional knowledge base increases, green

patenting is favoured and shows a higher association with this type of variety.

These results are confirmed by the econometric estimation of the model detailed

in section 6.3.2 (Table 6.2). Two main specifications are proposed in order to

observe the differences between green and total patent families as dependent

variable. Common to all specifications is that whereas UV and RV variety are

positive and statistically significant in the case of green patents, SRV and RV

are positively associated with total (i.e. green plus non green) patenting. This

suggests that green inventive activities emerge in states where the knowledge

base is diversified across unrelated technological domains. On the other hand,

total patenting activities proliferate in states characterised by semi-related and
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6.4 Econometric results

(a) Unrelated variety (b) Semi-related variety

(c) Related variety

Figure 6.3: Distribution of green and total patent families over quintiles of different type of
variety (average 1980-2009)
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related diversification across knowledge fields. In addition, when testing the

difference between the coefficients in each respective specification, we observe

that while UV and RV are significantly different just at 10%, in the case of

total patenting the null hypothesis of equality between SRV and RV coefficients

is rejected2. This lends support to the notion that green technologies need both

diversification across unrelated and related knowledge domains, and differ from

total patenting that require more related diversification. The result is in line

with studies that emphasise the different nature of green technologies. Barbieri,

Marzucchi, and Rizzo (2018) provide evidence of the higher complexity of green

innovation, suggesting that the recombination process in the green field requires

bits of knowledge with higher cognitive distance. Here we observe this peculiar

feature of green technologies from a local perspective. Finally, looking at the

innovation input we can observe that human capital is positive and slightly

significant across all specifications. On the contrary, the coefficient of R&D

expenditures is not statistically significant in both the green and non-green

RKP functions.

Moving to the core of the analysis, Table 6.3 presents the estimates of the model

using green patents per capita as dependent variable. First, the coefficient of

UV is statistically significant for emerging technologies, thus implying that

diversification across unrelated technological fields favours green technologies

in the emerging phase. According to the recombinant innovation theory, in the

early stage of the life cycle technological development benefits from the richness

of cognitively distant bits of knowledge. Together with unrelated variety,
2The null hypothesis is rejected at 5%
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Table 6.2: Regression results

(1) (2) (3) (4) (5) (6)
GP (log) Tot Pat (log) GP (log) Tot Pat (log) GP (log) Tot Pat (log)

UV (IPC 3-digit) (log) 1.413*** -0.875 1.403*** -0.881 1.386*** -0.931*
(0.460) (0.539) (0.445) (0.519) (0.421) (0.507)

SRV (IPC 4-digit) (log) 0.317* 0.232*** 0.301 0.215*** 0.286 0.193***
(0.179) (0.0655) (0.179) (0.0682) (0.184) (0.0668)

RV (IPC 8-digit) (log) 0.397*** 0.523*** 0.394*** 0.521*** 0.392** 0.515***
(0.143) (0.0952) (0.142) (0.0956) (0.154) (0.0987)

R&D (log) 0.0233 0.00806 0.0222 0.00694
(0.0196) (0.0112) (0.0181) (0.0103)

HC (log) 0.134** 0.140* 0.0960* 0.0995*
(0.0644) (0.0689) (0.0545) (0.0532)

R&D Neighb (log) 0.0427 0.0278
(0.0634) (0.0280)

HC Neighb (log) 0.294 0.224**
(0.218) (0.0829)

Pop Dens -0.502 -0.889***
(0.813) (0.196)

State FE x x x x x x
Time Dummies x x x x x x
Random growth x x x x x x
Obs. 1466 1470 1466 1470 1466 1470
R2 0.856 0.965 0.857 0.965 0.857 0.966
F 906429.2 216914.8 52052121.7 225300.1 128242.3 12321.1

Notes: The analysis covers 48 US Federal States and the District of Columbia over 1980-2009. (Driscoll
and Kraay, 1998) standard errors, robust to heteroskedasticity and serial and spatial correlation, in
parentheses. * p < 0.1; **p < 0.05; *** p < 0.01.
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R&D expenditures play a key role in this stage of technology evolution. In the

subsequent stage of the life cycle, characterised by higher patenting intensity, all

types of variety exert a positive effect on green innovative activities. In this phase

human capital is positively associated with green patent production. Moving

to the diffusion phase, related variety in the local knowledge base is positively

correlated with the generation of environmental-related patents. In addition,

both the main innovation inputs, i.e. R&D and human capital are positive and

significant. Finally, when maturity is achieved, related variety becomes the

main driver of green innovative activities. These results confirm the propositions

outlined in the introduction, and are coherent with the conceptual framework of

section 6.2. The development of technology along the life cycle requires different

types of regional knowledge base diversification and innovation inputs. These

elements interact with the selection environment of the surrounding states, in

this case, and enable technology to advance. Unrelated variety exerts more

influence at the beginning of the life cycle when technologies are at an early

stage. Knowledge recombination of cognitive distant knowledge is required to

enable experimentation and trial and error. In these early phases also R&D and

human capital are fundamental to trigger patenting activity. However, in the

maturity phase, when a dominant design is established, regional diversification

is the main driver of green knowledge production though at a higher level of

technological relatedness.
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Table 6.3: Regression results over the life cycle

GP (log) Emergence Development Diffusion Maturity

UV (IPC 3-digit) (log) 1.386*** 0.958* 1.214** 0.597 0.716
(0.421) (0.523) (0.590) (0.786) (0.473)

SRV (IPC 4-digit) (log) 0.286 -0.356 0.783*** 0.166 -0.205
(0.184) (0.338) (0.201) (0.249) (0.147)

RV (IPC 8-digit) (log) 0.392** 0.421 0.516*** 0.434* 0.554***
(0.154) (0.313) (0.157) (0.247) (0.0848)

R&D (log) 0.0222 0.0784** 0.0192 0.0628** -0.0296
(0.0181) (0.0290) (0.0414) (0.0235) (0.0217)

HC (log) 0.0960* -0.0164 0.333** 0.251* -0.000803
(0.0545) (0.105) (0.127) (0.143) (0.0578)

R&D Neighb (log) 0.0427 0.197*** 0.0772 0.137 -0.0518
(0.0634) (0.0517) (0.102) (0.0889) (0.0482)

HC Neighb (log) 0.294 -0.00881 0.366 0.0946 0.860***
(0.218) (0.375) (0.891) (0.358) (0.261)

Pop Dens -0.502 0.662 0.999 -0.301 -0.338
(0.813) (0.828) (0.965) -1.210 (0.587)

State FE x x x x x
Time Dummies x x x x x
Random growth x x x x x
Obs. 1466 1392 1371 1424 1452
r2.w 0.857 0.542 0.760 0.662 0.885
F 128242.3 644300.7 86586.6 168032.5 451319.1

Notes: The analysis covers 48 US Federal States and the District of Columbia over 1980-2009. (Driscoll
and Kraay, 1998) standard errors, robust to heteroskedasticity and serial and spatial correlation, in
parentheses. * p < 0.1; **p < 0.05; *** p < 0.01.
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6.5 Conclusions

The present chapter has explored empirically the relationship between local

knowledge structures and the generation of green technology in the US over

a thirty-year period. We framed the analysis in the life cycle heuristic to test

whether the development of green technology benefits from specific types of

agglomeration economies at different levels of technological relatedness. While

prior literature in economic geography had acknowledged the existence of a life

cycle path, this chapter is the first attempt to operationalise the heuristic by

means of an empirical framework. The main finding is that local environment-

related innovation are positively correlated with a knowledge base that is

diversified across unrelated technological fields. This is coherent with the

notion that green technology is on average more radical and complex than

non-green technology, and that it requires a higher variety across cognitively

distant domains (De Marchi, 2012; Barbieri, Marzucchi, and Rizzo, 2018).

We also find that diversification across unrelated technological domains in

local innovative activities favours green innovation mostly at early stages of

development. On the other hand, more mature technologies benefit from a

diversification across related knowledge domains. This confirms our main

conjecture, and is consistent with Castaldi and Giarratana (2014) with regards

to the influence of local economic variety on technological innovation.

130



Chapter 7

Public procurement and local

labour markets

7.1 Introduction

While in previous chapter we focused on the interaction between knowledge

base, green technologies and the economical characteristics of the producing

territories, being countries or federal states, we look in this chapter at the effects

of two important and yet much neglected factors, i.e. public procurement and

the skills configuration of employees in local labour markets. On the one hand,

public procurement represents an important macroeconomic policy lever, which
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can be considered a demand-side instrument. While extant literature has largely

investigated the impact of public procurement on innovation (Nelson, 1982;

Geroski, 1990; Ruttan, 2006), the analysis of the impact of public procurement

for green inventions is still at an infancy stage (Ghisetti, 2017). On the other

hand, skills configurations are the outcome of evolutionary processes of localized

learning and accumulation of competences. The composition of the skills bundle

at the territorial level represents in this respect a crucial dimension of local

knowledge bases, which has not been investigated yet in relationship to the

generation of green technologies (GTs). In sum, public procurement and skills

composition can be considered as a novel view on demand-pull and technology-

push policy levers respectively. Moreover, we present an empirical investigation

focusing on territorial units, i.e. commuting zones (CZs). The analysis of

the geography of eco-innovation has emerged only recently, and it is still an

underdeveloped area of investigation (Ghisetti and Quatraro, 2017; Montresor

and Quatraro, 2017). Finally, we provide evidence on the determinants of eco-

innovation in the US, while most of the extant empirical studies have brought

forward European evidence.

This chapter is structured as it follows. Section 7.2 articulates the theoretical

framework and develops the hypotheses. In Section 7.3 we outline the research

design. Section 7.4 presents the results of the econometric analysis. In Section

7.5 we provide a critical discussion of our findings and derive concluding remarks.
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7.2 Theory and hypotheses development

Eco-innovations feature a number of characteristics that to some extent make

them different from other generic kinds of innovations (Rennings, 2000). On

one hand, R&D efforts leading to the generation of every kind of innovation

are likely to be featured by knowledge spillovers. In this context, one expects

the allocation of resources to innovation efforts to be optimal because of the

difficult appropriability conditions. On the other hand, the specific character

of eco-innovation concerns the reduction of external costs related to environ-

ment degradation. Unless these external effects can be fully internalized by

firms generation GTs, the case for policy intervention emerges to ensure op-

timal investments levels by private economic agents. This leads to another

important aspect, which is related to the role of regulation as a determinant

of eco-innovation. Environmental policy is important in that it can set tech-

nological standards, prices and pollution thresholds pushing firms to renew

their production processes to comply with the prescriptions of environmental

regulations and hence reducing their costs. This inducement effect creates new

market for GTs, pulling R&D efforts dedicated to their generation (Johnstone

et al., 2012; Nemet, 2009; Hoppmann et al., 2013; Costantini, Crespi, et al.,

2015).

Such specificities of GTs bring the institutional context to the core of the

analyses of the determinants of their generations. Institutions are in fact place-

specific, so that both micro, and meso, and macro-level empirical studies include

some proxy of the regulatory framework at the regional or the country level as
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a key variable to explain differences in the production of eco-innovations across

firms, regions and countries Barbieri, Ghisetti, et al., 2016. Fewer studies have

considered the role of supply side policies, aiming at fostering the development

of technological capabilities in green domains through the R&D supporting

schemes (Costantini, Crespi, et al., 2015).

Innovative green public procurement (GPP) has been instead largely neglected

in the empirical literature (Ghisetti, 2017). This is particularly problematic

for the analysis of the geography of eco-innovation. Public procurement is

indeed strongly place-specific, showing a high variance across regions and within

regions over time (Heald and Short, 2002; Morgenroth, 2010). Moreover, GPP

has been indicated as a key channel favouring the introduction of technologies

allowing for meeting targets of environmental sustainability, because of the

strong radical, and hence uncertain, nature of this kind of technologies (Mowery,

Richard R. Nelson, and Martin, 2010). GPP can be therefore regarded as a

direct form of public intervention on the demand side for GTs, by means

of the government expenditure macroeconomic lever bearing effects on the

development of environmentally sound products (Parikka-Alhola, 2008). The

arguments developed so far lead us to spell out our first hypothesis:

H1: Territorial differences in GPP are associated with green technological

change differentials across regions.

The full appreciation of the mechanisms underlying knowledge production is

crucial to gain a comprehensive view on the spatial dynamics of GTs generation.

Knowledge recombination has long been acknowledged as the main dynamics
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underlying the generation of new knowledge, and eventually new technologies

(Weitzman, 1996 and 1998; Fleming and Sorenson, 2001). Knowledge shows a

co-relational structure emerging from the connections that innovating agents

establish amongst the different ideas to produce novelty (Saviotti, 2007). The

accumulation of competences through learning dynamics make it easier to

combine together pieces of knowledge with which innovating are familiar, rather

than to combine pieces of knowledge that are far away from agents’ competences.

Successful innovation processes appears to be grounded therefore on highly

coherent knowledge bases (Quatraro, 2010; Krafft et al., 2014). Recent empirical

evidence would suggest that eco-innovations are specific also in this respect,

as they are more likely to emerge out of the hybridization of technologies

that do not share important commonalities. GTs are often the result of the

combination of green and dirty technologies in new and unprecedented ways

(Zeppini and van der Bergh, 2011; Dechezlepetre et al., 2004; Colombelli and

Quatraro, 2017). The combination of knowledge inputs that loosely related

requires the capacity to manage exploration-oriented search processes to move

beyond the fences of established technological domains (Nightingale, 1988). At

the territorial level, the accumulation of tacit skills that enhance the capacity

to explore heterogeneous technological domains to envisage new recombination

opportunities represents therefore an enabling condition for green technological

change. This leads us to our second hypothesis:

H2: The prevalence of exploration-oriented skills in local contexts is associated

with higher levels of green technological change.
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Skills configuration and GPP have been indicated as two main drivers of

green technological change at the local level. However, due to the double

externality problem, the endowment of exploration-oriented skills at the local

level can hardly display its full potential in terms of GTs enablers, because of

the reluctance of economic agents to undertake such uncertain ventures like

innovation activities in presence of strong externalities and low appropriability

conditions. On the other hand, high levels of GPP are likely to be more effective

in the stimulation of the production of environmentally sound technologies in

areas that are characterized by local availability of exploration-oriented skills.

The two dimensions are likely to show a high degree of interdependence and

mutual enforcing dynamics. These considerations lead us to spell us our third

hypothesis.

H3: The prevalence of exploration-oriented skills and high levels of GPP in

local context are mutually enforcing in affecting the rate of green techno-

logical change.

In view of the hypotheses developed in this section, the rest of the chapter will

provide an empirical analysis based on the US evidence. Next section illustrates

the empirical strategy.

7.3 Research design

Following the literature on US local labour market dynamics, we focus our

analysis at the level of Commuting Zones (CZs). Both public procurement and

innovation dynamics are indeed likely to be strongly attached to local features
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of employment and skills endowments. The spatial level of analysis should thus

be cautiously selected when innovation and procurement dynamics are under

scrutiny. CZs seem to be really suitable in this sense. The concept of CZs was

firstly developed by Tolbert and Sizer (1996) who used county-level commuting

data from the 1990 Census data to create 741 clusters of counties that are

characterized by strong commuting ties within CZs, and weak commuting ties

across CZs. Since the contribution by Dorn (2009), this geographic construction

for defining regional economies in the US has been widely accepted as the best

tool for studying local labour market dynamics. Even if we do not directly

focus on labour market dynamics, local occupational-task compositions play a

crucial role in our analysis. This justifies our choice.

7.3.1 Data and variables

We exploit three main sources of data at the level of CZs to measure: i) the

green innovative local effort, proxied by patenting activity; ii) the level of local

green procurement expenditures and iii) the local composition of occupational

tasks.

The local level of green innovation activity is measured through the fraction-

alized1 stock of US-invented green patent families, as defined in chapter 2.

The stock of green patents is weighted by forward (family) citations received2.
1Patent p is assigned to CZ c according to the fraction of inventors resident in CZ c over the total

number of inventors filing the patent p.
2In order to make citations comparable across years and ENV-TECH technologies, we calculate a

weighted number of citations, dividing the raw number of citations by the average number of citations
in the same year t and the same technology j, and then by the average number of citations in the
same year t, following the method proposed by Hall et al. (2001): N.cit.weighted = N.cit

AvgN.citt,j
AvgN.citt
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Weighting by forward citations allows us to account for the intrinsic technologi-

cal value of the local protected inventions.

The green patent stock per CZ j at time t is thus calculated as:

Stockj,t = N.Patj,t + [(1− δ)× Stockj,t−1] , (7.1)

where δ is the decay rate.3

Furthermore, by exploiting the ENV-TECH classification, we differentiate the

GT-stock between two macro-technology groups: i) green adaptation technolo-

gies (ENV-TECH families (1) and (2)); and ii) green mitigation technologies

(ENV-TECH families from (4) to (9)). Figure 7.1 plots the geographic quintile

distribution of GT patents at the level of CZs for the period 2000-2011. Precisely,

panel c) refers to the total number of GT patents, panel a) to green mitigation

technologies and panel b) to green adaptation technologies, respectively.

Procurement data

Second, we collect data on environmental-related procurement expenditures

by exploiting public information provided by the USAspending.gov resource

(https://www.usaspending.gov). Procurement information is available from

2000 on.

The Federal Funding Accountability and Transparency Act of 2006 (FFATA)

was signed into law on September 26, 2006. The legislation required that federal
3We calculate patent stocks with the permanent inventory method, applying a 15% annual rate of

obsolescence.
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(a) GT-mitigation patents (b) GT-adaptation patents

(c) Total GT patents

Figure 7.1: Geographic distribution of GT patents, 2000-2011 (quintiles)
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contract, grant, loan, and other financial assistance awards of more than $25,000

be displayed on a searchable, publicly accessible website, USAspending.gov, to

give the American public access to information on how their tax dollars are

being spent. As a matter of discretion, USAspending.gov also displays certain

federal contracts of more than $3,000. The initial site went live in 2007. Federal

agencies are required to report the name of the entity receiving the award, the

amount of the award, the recipient’s location, the place of performance location,

as well as other information.

Precisely, we exploit data on all registered federal contracts. From each funded

contract we extract information about the place of performance location (5-digits

Zipcode)4 where the contract is executed and the amount of resources dedicated

(in 2010 USD). According to the Product and Service Codes Manual (PSC,

August 2015 Edition), we are able to individuate procured “green” contracts

and to distinguish them between product-, and service-related.5 Indeed, the

PSC Manual provides codes to describe products, services, and R&D purchased

by the federal government for each contract action reported in the Federal

Procurement Data System (FPDS). Since a contract may include multiple

products/services, with and without environmental attributes, the PSC data

element code has been selected based on the predominant product or service

that is being purchased.
45-digits Zipcodes allow us to assign precise levels of expenditures to counties and, consequently,

to CZs.
5Statutory requirements and Executive Order 13514 direct the Office of Management and Budget

(OMB) Office of Federal Procurement Policy (OFPP) to report on procurement of products and
services with environmental attributes including recycled content, bio-based, and energy efficient.
Data collected in the Federal Procurement Data System include these three environmental attributes
plus an “environmentally preferable” attribute. This last attribute means products or services that
have a lesser or reduced effect on human health and the environment when compared with competing
products or services that serve the same purpose.
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Figure 7.2 plots the geographic quintile distribution of GPP expenditures at the

level of CZs for the period 2000-2011. Precisely, panel c) refers to the total level

of expenditures, panel a) to GPP for products, panel b) to GPP for services,

respectively.

Occupational-task data

To capture the role of human capital in local labour markets, we rely on the

task-based framework originally proposed by (Autor, Levy, and Murnane, 2003)

and recently extended to the analysis at geographical level by Autor and Dorn

(2013). This line of empirical research represents a significant break from the

traditional approach to human capital. Rather than traditional indicators such

as i.e. the average number of years of education in the workforce or the share

of individuals with postgraduate degrees human capital endowment is analysed

by looking at the relative importance of typologies of occupations. These are

identified by focusing on work activities and the attending skills needed to

perform the essential tasks of a job.

In this framework work activities are grouped in three broad categories. First,

routine tasks that entail executing codified instructions with minimal discretion

on the part of the worker. Routine tasks are characteristic of middle-skilled

jobs that entail repetitive cognitive (i.e. clerks) or manual (i.e. blue-collar)

duties. The second main category of work task include activities that require

creativity, problem-solving, intuition and social perceptiveness. These abstract

tasks are characteristic of professional, managerial, technical and creative

occupations that require high levels of formal education. Since analytic and
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(a) Product GPP (b) Service GPP

(c) Total GPP

Figure 7.2: Geographic distribution of GPP expenditures, 2000-2011 (quintiles)
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interpersonal capabilities are so important, technology accrue productivity

benefits to these workers by facilitating the transmission, organization, and

processing of information. On the other side of the skill spectrum are manual

tasks, which demand visual and language recognition, personal interaction and

physical dexterity. Occupations that use intensively these tasks are typically

low-skill service jobs such as food preparation, catering, driving and cleaning.

Following prior empirical studies along these tracks (Autor, Levy, and Murnane,

2003; Autor, Katz, and Kearney, 2006; Dorn, 2009; Autor and Dorn, 2013) we

merge job task requirements from the fourth edition of the US Department of

Labour’s Dictionary of Occupational Titles (DOT) (US Department of Labor

1977) to their corresponding Census occupation classifications to measure

routine, abstract, and manual task content by occupation.6 We combine these

measures to create summary indicators of task-intensity by occupation (routine

RTI, abstract ATI and manual MTI), calculated as

ATIk = ln(TAk,1980)− ln(TRk,1980)− ln(TMk,1980), (7.2)

RTIk = ln(TRk,1980)− ln(TAk,1980)− ln(TMk,1980), (7.3)

MTIk = ln(TMk,1980)− ln(TAk,1980)− ln(TRk,1980), (7.4)

where, TRk , TAk and TMk are, respectively, the routine, abstract, and manual

task inputs in each occupation k in 1980.7 For each kind of task, this measure
6The DOT permits an occupation to comprise multiple tasks at different levels of intensity.
7Tasks are measured on a zero to ten scale.
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rises in its importance in each occupation and declines in the importance of

the other two tasks.

Next, to operationalize these measures constructs at the geographic level, we

take two additional steps. We first use the task intensity index to identify the set

of occupations that are in the top employment-weighted third of task-intensity

in 1980. We refer to these as either abstract-, routine- or manual-intensive

occupations. We next calculate for each CZ j a task employment share measure

(RSHjt, ASHjt and MSHjt) equal to:

ASHjt =

(
K∑
k=1

Ljkt · 1
[
ATIk > ATIP66

])( K∑
k=1

Ljkt

)−1

, (7.5)

RSHjt =

(
K∑
k=1

Ljkt · 1
[
RTIk > RTIP66

])( K∑
k=1

Ljkt

)−1

, (7.6)

MSHjt =

(
K∑
k=1

Ljkt · 1
[
MTIk > MTIP66

])( K∑
k=1

Ljkt

)−1

, (7.7)

where Ljkt is the employment in occupation k in CZ j at time t, and 1[·] is

the indicator function, which takes the value of one if the occupation is task

intensive by our definition.

Finally, according to the shares calculated from (7.5) to (7.7), we assign a set

of dummies equal to 1 if the CZ j is in the top third of national task share at

time t:

AIjt = 1
[
ASHjt > ASHP66

t

]
, (7.8)
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RIjt = 1
[
RSHjt > RSHP66

t

]
, (7.9)

MIjt = 1
[
MSHjt > MSHP66

t

]
. (7.10)

This characterization of local labour markets allows us to investigate whether

diverse occupational task compositions moderate the effect of green public

procurement on the generation of GTs.

Figure 7.3 plots the geographic quintile distribution of task-intensive occupations

at the level of CZs in 2005. Precisely, panel a) refers to abstract-intensive

occupations, panel b) to routine-intensive occupations, panel c) to manual-

intensive occupations, respectively.

7.3.2 Empirical strategy

Using the full sample of 722 CZs observed from 2000 to 2011, we fit models of the

following form to investigate the relationship between green public procurement

and the local level of green technological activity:

Yj,t = β0 + β1GPP j,t−1 + X ′
j,tβ2 + εj,t, (7.11)

where Yj,t is the (log transformed) fractionalized stock of green patent families

(weighted by forward citations) at time t filed by inventors resident in CZ

j; GPPj,t−1 is the (log transformed) level of expenditures for green public

procurement performed in CZ j at time t − 1 (2010 USD); additionally, the

vector X ′
j,t contains (in most specifications) a rich set of controls for CZs’
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(a) Abstract (b) Routine

(c) Manual

Figure 7.3: Geographic distribution of task-intensive occupations, 2005 (quintiles)
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labour force and demographic composition that might independently affect

innovation outcomes. Standard errors are clustered at the State level to account

for spatial correlations across CZs.

To test for moderating effects of local heterogeneity in terms of CZ occupational

task compositions on green innovation activities, we estimate three models,

augmenting (7.11) as follows:

Yj,t = β0+β1GPPj,t−1+β2RIj,t−1+β3GPPj,t−1×RIj,t−1+X ′
j,tβ4+εj,t. (7.12)

Yj,t = β0+β1GPPj,t−1+β2AIj,t−1+β3GPPj,t−1×AIj,t−1+X ′
j,tβ4+εj,t. (7.13)

Yj,t = β0 + β1GPPj,t−1 + β2MIj,t−1 + β3GPPj,t−1 ×MIj,t−1 +

+X ′
j,tβ4 + εj,t. (7.14)

where dummy variables RIj,t−1, AIj,t−1 and MIj,t−1 are calculated according

to equations from (7.8) to (7.10).8

8Due to occupational data availability, the period considered for this second step of the analysis
reduces (2005-2011).
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Exploiting the ENV-TECH classification, we are also able to differentiate

between diverse types of green technologies. In the final step of the analysis we

thus change our dependent variable accordingly, re-estimating equations from

(7.11) to (7.14). Precisely, we aggregate technologies in two precise groups:

mitigation and adaptation GTs.9

7.4 Results

Section 7.2 puts forward the key hypotheses driving our study, according to

which we expect that GPP exerts a positive impact on the local dynamics of

GT generation, because of the double externality problem and the regulatory

push/pull effect. Moreover, we expect that the configuration of the skill bundle

in local labour markets also affect the process by which green inventions are

brought about, because of the spanning of the recombinant innovation process

over a large number of heterogeneous technological components.
9Mitigation technologies aggregate ENV-TECH technologies from (4) to (9). Adaptation technolo-

gies are the ones related to groups (1) and (2).
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(I) (II) (III) (IV) (V) (VI)

tot GPP 0.082∗∗∗ 0.068∗∗∗ 0.067∗∗∗ 0.064∗∗∗ 0.063∗∗∗ 0.077∗∗∗
(0.009) (0.009) (0.009) (0.009) (0.009) (0.010)

pop density 0.003∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗ -0.000
(0.001) (0.001) (0.001) (0.001) (0.000)

employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗
(0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗ 0.000∗ 0.000∗∗∗
(0.000) (0.000) (0.000)

share of R&D employment 6.686∗ 8.584∗∗
(3.824) (4.260)

r2_w 0.383 0.399 0.403 0.404 0.405 0.386
r2_o 0.147 0.127 0.073 0.084 0.085 0.501
r2_b 0.551 0.125 0.071 0.082 0.082 0.508
N 7937 7937 7937 7937 7937 7937
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP lagged 1-year. Standard errors clustered at the level of State.
Models I to V, estimated in fixed effect, include a constant and year dummies.
Model VI includes also geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 7.1: Effect of total green procurement on GT stock (2001-2011)
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Table 7.2: Effect of GPP for products on GT stock (2001-2011)

(I) (II) (III) (IV) (V) (VI)

product GPP 0.073∗∗∗ 0.050∗∗∗ 0.049∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.053∗∗∗
(0.013) (0.012) (0.012) (0.012) (0.012) (0.013)

pop density 0.004∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ -0.000
(0.002) (0.001) (0.001) (0.001) (0.000)

employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗
(0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗ 0.000∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000)

share of R&D employment 6.972∗ 8.609∗∗
(3.888) (4.378)

r2_w 0.365 0.385 0.389 0.391 0.392 0.371
r2_o 0.067 0.118 0.069 0.082 0.083 0.472
r2_b 0.432 0.118 0.068 0.080 0.081 0.478
N 7933 7933 7933 7933 7933 7933
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP lagged 1-year. Standard errors clustered at the level of State.
Models I to V, estimated in fixed effect, include a constant and year dummies.
Model VI includes also geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 7.3: Effect of GPP for services on GT stock (2001-2011)

(I) (II) (III) (IV) (V) (VI)

service GPP 0.093∗∗∗ 0.078∗∗∗ 0.077∗∗∗ 0.073∗∗∗ 0.073∗∗∗ 0.087∗∗∗
(0.010) (0.010) (0.010) (0.010) (0.010) (0.011)

pop density 0.003∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗ -0.000
(0.001) (0.001) (0.001) (0.001) (0.000)

employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗
(0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗ 0.000∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000)

share of R&D employment 6.716∗ 8.510∗∗
(3.772) (4.168)

r2_w 0.384 0.400 0.404 0.406 0.406 0.388
r2_o 0.138 0.126 0.074 0.086 0.086 0.498
r2_b 0.495 0.125 0.072 0.083 0.084 0.505
N 7937 7937 7937 7937 7937 7937
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP lagged 1-year. Standard errors clustered at the level of State.
Models I to V, estimated in fixed effect, include a constant and year dummies.
Model VI includes also geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Tables 7.1, 7.2 and 7.3 present the results of the baseline estimates of the rela-

tionship between expenditures in GPP and the local environmental innovation

capacity. Table 7.1 shows the estimates for the effect of the overall levels of

GPP. Tables 7.2 and 7.3 focus instead on product-related and service-related

GPP, respectively. Our dependent variable is the log transformed level of frac-

tionalized stock of local environmental patents, weighted by forward citations

corrected for patent equivalents (patent families).

Columns from I to V of Table 7.1 provide the results of CZ fixed-effect estima-

tions of equation (7.11), by gradually saturating the empirical model with the

controls described in Section 7.3.1. GPP in column one shows a positive and
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significant coefficient. Although we use CZ fixed effects, this result can hide

some effects of unobserved variables that one may want to mitigate. For this

reasons in Column II we add a control for the population density of the area.

This variable is used in empirical studies to proxy the effect of agglomeration

economies. The coefficient of this variable is positive and significant as one

could have expected. Most importantly, the coefficient of GPP is still positive

and significant, though its magnitude is slightly lower than in the previous

estimation. Estimates reported in Column III also include employment share,

the coefficient of which is negative and significant . The other coefficients

are in line with previous estimations. In Columns IV and V we add to the

estimated models the number of firms observed in the area and the share of

R&D employment respectively. Both coefficient are positive and significant.

Still, the coefficient of GPP preserves the sign and statistical significance.

Column VI estimates equation (7.11) obtained by substituting fixed effects

for the nine US Census macro-areas for CZ fixed-effects. The overall results

suggest that the effect of GPP is robust across different model specifications.

In particular, we can quantify the positive and significant impact of GPP on

local green innovation activities: a 1% increase in GPP leads to some 0.077%

increase in the stock of green patents in the local areas.

Tables 7.2 and 7.3 replicate the same strategy as the one proposed in Table

7.1 but focusing on the effects of, respectively, GPP for products and GPP for

services on the total stock of green technological knowledge at the local level.

We find a significant and positive effect of both types of public procurement

expenditures. Importantly, we do observe that expenditures for procured green
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services show higher effectiveness in boosting the overall level of local green

innovation activity than expenditures for procured green products. If one looks

at Column VI of both tables, it comes that a 1% increase in GPP for products

yields a 0.053% increase in the local stock of GTs, while the same variation in

GPP for services yields a 0.087% increase in the local stock of GTs.

The overall picture emerging from this first set of estimates provides empirical

support to our Hypothesis 1, according to which GPP is expected to positively

affect the local accumulation of GT stock.

We can now turn to investigation of the effects of the local occupational task

compositions on GTs stock, drawing upon the measures proposed in Section

7.3.1. Our aim is to test for the direct of the local skills configuration on the

local stock of GTs, as well as how they moderate the relationship between GPP

and local green innovation capacity.
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Table 7.4: Effect of total GPP and task composition on GT stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

tot GPP 0.039∗∗∗ 0.039∗∗∗ 0.039∗∗∗ 0.021∗∗ 0.040∗∗∗ 0.048∗∗∗

(0.008) (0.009) (0.008) (0.008) (0.008) (0.009)
RI 0.003 0.004

(0.013) (0.012)
GPP*RI -0.000

(0.011)
AI 0.041∗∗∗ 0.017

(0.014) (0.015)
GPP*AI 0.042∗∗∗

(0.010)
MI -0.013 0.001

(0.010) (0.010)
GPP*MI -0.037∗∗∗

(0.012)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 6.101 6.100 6.533 6.378 6.455 6.561

(6.303) (6.298) (6.272) (6.264) (6.348) (6.418)

r2_w 0.328 0.328 0.328 0.331 0.327 0.329
r2_o 0.458 0.458 0.464 0.469 0.461 0.464
r2_b 0.467 0.467 0.473 0.478 0.471 0.473
N 3851 3851 3851 3851 3851 3851
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RSH, ASH and MSH lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 7.4 takes as a benchmark Column VI proposed in Tables 7.1 to 7.3. As

explained in Section 7.3.1, we built dummy variables equal to 1 if a CZ is in

the top 33% of task-intensive occupations shares: abstract (AI), routine (RI)

and manual (MI). We include these dummy variables in the estimations, as well

as their interaction with (total) GPP. Column I and II focus on RI. Both the

coefficient of the direct and moderating effects do not appear to significantly

affect local GTs generation. Columns III and IV deal with AI. The coefficient of

the direct effect is positive and significant in column III, but it loses significance

in column IV, when the interaction with GPP is introduced. The moderating
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effect shows a positive and significant coefficient. Columns V and VI report

the estimations of the effect of RI. The direct effect does not appear to be

significant in any of the estimations, while the moderating effect is negative.

The prevalence of routine skills appears to reduce the impact of GPP on local

accumulation of GTs.

Overall, the inclusion of the local skills composition in the empirical framework

seems to reduce the magnitude of the direct effect of GPP. In table 7.4 a 1%

increase in GPP yields an increase in GTs ranging from 0.021% to 0.048%,

which is far lower than the 0.077% increase found in table 7.1. AI is the only

skill category yielding a positive impact on GTs at the local level. If one sums

the coefficient of GPP and the one of the interaction of AI with GPP, the overall

effect of GPP appears to be much closer to the evidence reported in table 7.1.

Focusing on Column IV, in the areas in the top 33% of abstract-task intensive

occupations (AI=1), the overall impact of 1% increase in GPP consists of some

0.063% increase in local GTs stock.
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Table 7.5: Effect of GPP for products and task composition on GT stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

product GPP 0.020∗ 0.021∗∗ 0.020∗∗ 0.008 0.021∗∗ 0.023∗∗

(0.010) (0.011) (0.010) (0.012) (0.010) (0.010)
RI 0.005 0.006

(0.013) (0.013)
GPP*RI -0.006

(0.018)
AI 0.038∗∗∗ 0.036∗∗

(0.014) (0.014)
GPP*AI 0.021

(0.014)
MI -0.012 -0.009

(0.010) (0.010)
GPP*MI -0.031

(0.023)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 5.782 5.845 6.243 6.257 6.164 6.248

(6.243) (6.248) (6.220) (6.233) (6.302) (6.320)

r2_w 0.327 0.327 0.327 0.327 0.326 0.326
r2_o 0.440 0.440 0.446 0.447 0.444 0.444
r2_b 0.449 0.449 0.455 0.455 0.453 0.453
N 3849 3849 3849 3849 3849 3849
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RI, AI and MI lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 7.6: Effect of GPP for services and task composition on GT stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

service GPP 0.047∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.025∗∗ 0.048∗∗∗ 0.057∗∗∗

(0.010) (0.011) (0.010) (0.011) (0.010) (0.011)
RI 0.003 0.005

(0.013) (0.012)
GPP*RI -0.004

(0.012)
AI 0.041∗∗∗ 0.018

(0.014) (0.015)
GPP*AI 0.050∗∗∗

(0.012)
MI -0.013 0.001

(0.010) (0.011)
GPP*MI -0.042∗∗∗

(0.016)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 5.875 5.881 6.324 6.167 6.245 6.292

(6.254) (6.249) (6.230) (6.224) (6.301) (6.383)

r2_w 0.331 0.331 0.331 0.334 0.330 0.331
r2_o 0.458 0.459 0.465 0.470 0.462 0.464
r2_b 0.468 0.468 0.474 0.479 0.472 0.474
N 3851 3851 3851 3851 3851 3851
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RI, AI and MI lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Tables 7.5 and 7.6 complement the analysis proposed in Table 7.4 by inves-

tigating whether there are differences in the effect of GPP expenditures for,

respectively, products and services on total GT stock. Results show that the

direct impact found before exists for both types of expenditures. However,

it is strongly driven by GPP expenditures for services, confirming the initial

estimates proposed in Tables 7.1, 7.2 and 7.3. Moreover, the moderating effect

of ASH holds for what concern GPP for services, while when one focuses on

GPP for products, only the direct effect of ASH shows a positive and significant

coefficient.
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Figure 7.4 plots average marginal effects calculated on the basis of the results

from Tables 7.4, 7.5 and 7.6. The bottom parts of the three panels plot average

marginal effects of respectively, total, product- and service-related GPP when

the CZ is in the top third share of task-intensive occupations (abstract, routine

and manual alternatively). Top areas plot the reverse case (average marginal

effects when the CZ is not in the top third share of task-intensive occupations).

Focusing on areas in the top third, we find that the local knowledge base

proxied by means of occupations brings about heterogeneity in the results. In

particular, the coefficient for abstract occupations is always significant, with a

stronger effect of expenditure on services as compared to product. Recall that

abstract occupations are intensive in activities that require problem-solving,

intuition, persuasion, and creativity. These characteristics are over-represented

in professional, managerial, technical and creative occupations in areas as diverse

as law, medicine, science, engineering, design, and management. Workers who

are most adept in these tasks typically have high levels of education and

analytic capability. This resonates with the high level of knowledge intensity

of service activities that entail personal interaction, social perceptiveness and

adaptability and which, in our model, augment the innovation outcome of

public procurement. The coefficient for routine occupations is only significant

for service procurement. These jobs encompass many middle-skilled cognitive

(i.e., bookkeeping, clerical work) or manual activities (i.e., repetitive physical

operations in production jobs). Even though the growth routine jobs has been

in decline for some time (Autor, Levy, and Murnane, 2003; Autor and Dorn,

2013), routine occupations still make up the bulk of employment in the United
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States. In the case under analysis, we ascribe the positive effect of routine

occupations to the persistent important role of clerical and administrative

workers in services. Lastly, the endowment of manual skills is only mildly

significant in the general category of public procurement but not in the sub-

components. This is not surprising considering that low-skill manual intensive

jobs are mainly in areas such as assistance and hospitality, and thus we expect

them to be only marginally related to the relation between innovation and

public procurement.
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7.4.1 A comparison between GTs for adaptation and mitigation

Table 7.7: Effect of GPP on GT stock: mitigation and adaptation (2001-2011)

Mitigation GT Adaptation GT

(I) (II) (III) (IV) (V) (VI)

total GPP 0.086∗∗∗ 0.043∗∗∗
(0.011) (0.008)

product GPP 0.061∗∗∗ 0.036∗∗∗
(0.014) (0.010)

service GPP 0.096∗∗∗ 0.049∗∗∗
(0.011) (0.009)

pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

employment share -0.000∗∗ -0.000∗∗∗ -0.000∗∗ -0.000∗ -0.000∗∗ -0.000∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

share of R&D employment 7.089 7.115 7.016 4.603 4.640 4.558
(4.438) (4.379) (4.367) (4.983) (5.283) (4.917)

r2_w 0.381 0.364 0.382 0.245 0.236 0.247
r2_o 0.510 0.479 0.507 0.558 0.539 0.556
r2_b 0.519 0.486 0.516 0.576 0.555 0.573
N 7937 7933 7937 7937 7933 7937
Dep. Var.: Stock of fractionalized patent families (mitigation and adaptation) weighted by fwd. cits. (log).
GPP variables lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

As a further step of the analysis, we exploit the OECD ENV-TECH classification

to test for the differential effects of GPP on the two main groups of green

technological stock: adaptation and mitigation, respectively. Columns I, II and

III of Table 7.7 present estimates for the effect of, respectively, total, product-

and service-related GPP on the stock of green mitigation technologies. Columns

IV, V and VI report the similar estimates concerning the determinants of green
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adaptation technologies. Results demonstrate that the overall level of GPP

positively affects both kinds of green technological stock (Columns I and IV).

The magnitude is higher for mitigation technologies. When splitting GPP

between product- and service-related, we do find a significant positive effect

of both, with service-related GPP expenditures showing higher effectiveness

within both groups of green technologies. The highest effect is found for service-

related GPP on mitigation GT stock (results from Column III suggest that a

1% increase in service-related GPP leads to a 0.096% increase in the stock of

green mitigation patents).

Table 7.8: Effect of total GPP and task composition on GT-mitigation stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

tot GPP 0.043∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.023∗∗∗ 0.045∗∗∗ 0.053∗∗∗

(0.009) (0.010) (0.009) (0.008) (0.009) (0.010)
RI 0.001 0.003

(0.013) (0.013)
GPP*RI -0.003

(0.011)
AI 0.044∗∗∗ 0.016

(0.016) (0.017)
GPP*AI 0.049∗∗∗

(0.011)
MI -0.010 0.005

(0.011) (0.011)
GPP*MI -0.040∗∗∗

(0.013)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 5.863 5.870 6.360 6.177 6.206 6.320

(6.416) (6.413) (6.391) (6.384) (6.451) (6.528)

r2_w 0.319 0.319 0.319 0.322 0.318 0.320
r2_o 0.463 0.463 0.469 0.476 0.466 0.469
r2_b 0.473 0.473 0.479 0.485 0.476 0.479
N 3851 3851 3851 3851 3851 3851
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RI, AI and MI lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 7.9: Effect of GPP for products and task composition on GT-mitigation stock
(2006-2011)

(I) (II) (III) (IV) (V) (VI)

product GPP 0.024∗∗ 0.026∗∗ 0.025∗∗ 0.009 0.026∗∗ 0.028∗∗

(0.011) (0.012) (0.011) (0.013) (0.011) (0.011)
RI 0.003 0.004

(0.013) (0.013)
GPP*RI -0.006

(0.020)
AI 0.041∗∗∗ 0.037∗∗

(0.016) (0.016)
GPP*AI 0.027∗

(0.016)
MI -0.008 -0.005

(0.011) (0.011)
GPP*MI -0.035

(0.024)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 5.514 5.581 6.046 6.055 5.890 5.983

(6.337) (6.345) (6.320) (6.336) (6.388) (6.411)

r2_w 0.318 0.318 0.317 0.318 0.317 0.317
r2_o 0.443 0.443 0.450 0.450 0.446 0.446
r2_b 0.452 0.452 0.458 0.459 0.455 0.456
N 3849 3849 3849 3849 3849 3849
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RI, AI and MI lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 7.10: Effect of GPP for services and task composition on GT-mitigation stock
(2006-2011)

(I) (II) (III) (IV) (V) (VI)

service GPP 0.051∗∗∗ 0.053∗∗∗ 0.052∗∗∗ 0.026∗∗ 0.052∗∗∗ 0.061∗∗∗

(0.010) (0.011) (0.010) (0.011) (0.010) (0.011)
RI 0.001 0.005

(0.013) (0.013)
GPP*RI -0.009

(0.013)
AI 0.044∗∗∗ 0.018

(0.016) (0.017)
GPP*AI 0.057∗∗∗

(0.013)
MI -0.009 0.005

(0.011) (0.011)
GPP*MI -0.045∗∗∗

(0.016)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 5.621 5.639 6.140 5.960 5.987 6.036

(6.375) (6.369) (6.357) (6.353) (6.413) (6.502)

r2_w 0.321 0.321 0.321 0.325 0.320 0.322
r2_o 0.463 0.463 0.470 0.476 0.466 0.469
r2_b 0.473 0.473 0.479 0.486 0.476 0.479
N 3851 3851 3851 3851 3851 3851
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RI, AI and MI lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 7.11: Effect of total GPP and task composition on GT-adaptation stock (2006-2011)

(I) (II) (III) (IV) (V) (VI)

tot GPP 0.021∗∗∗ 0.020∗∗∗ 0.022∗∗∗ 0.012 0.022∗∗∗ 0.030∗∗∗

(0.007) (0.007) (0.007) (0.008) (0.007) (0.008)
RI 0.003 0.002

(0.007) (0.007)
GPP*RI 0.003

(0.011)
AI 0.020∗∗ 0.007

(0.009) (0.008)
GPP*AI 0.023∗∗

(0.010)
MI -0.019∗∗∗ -0.006

(0.006) (0.007)
GPP*MI -0.036∗∗∗

(0.008)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 2.601 2.590 2.815 2.737 2.902 3.013

(4.737) (4.732) (4.707) (4.720) (4.760) (4.856)

r2_w 0.188 0.188 0.187 0.188 0.187 0.190
r2_o 0.511 0.511 0.515 0.520 0.516 0.520
r2_b 0.525 0.525 0.530 0.535 0.530 0.535
N 3851 3851 3851 3851 3851 3851
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RI, AI and MI lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 7.12: Effect of GPP for products and task composition on GT-adaptation stock
(2006-2011)

(I) (II) (III) (IV) (V) (VI)

product GPP 0.009 0.008 0.009 0.007 0.009 0.011
(0.009) (0.009) (0.009) (0.010) (0.009) (0.009)

RI 0.004 0.004
(0.007) (0.007)

GPP*RI 0.003
(0.014)

AI 0.018∗∗ 0.018∗∗

(0.009) (0.009)
GPP*AI 0.003

(0.012)
MI -0.018∗∗∗ -0.017∗∗∗

(0.006) (0.006)
GPP*MI -0.022∗

(0.012)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 2.474 2.488 2.708 2.713 2.799 2.867

(4.790) (4.783) (4.771) (4.774) (4.826) (4.844)

r2_w 0.189 0.189 0.188 0.187 0.188 0.188
r2_o 0.497 0.498 0.502 0.502 0.502 0.503
r2_b 0.511 0.511 0.516 0.516 0.516 0.517
N 3849 3849 3849 3849 3849 3849
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RI, AI and MI lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 7.13: Effect of GPP for services and task composition on GT-adaptation stock
(2006-2011)

(I) (II) (III) (IV) (V) (VI)

service GPP 0.031∗∗∗ 0.030∗∗∗ 0.032∗∗∗ 0.017∗ 0.032∗∗∗ 0.040∗∗∗

(0.008) (0.008) (0.008) (0.010) (0.008) (0.009)
RI 0.003 0.001

(0.007) (0.007)
GPP*RI 0.003

(0.010)
AI 0.020∗∗ 0.005

(0.009) (0.008)
GPP*AI 0.033∗∗∗

(0.010)
MI -0.018∗∗∗ -0.006

(0.006) (0.007)
GPP*MI -0.041∗∗∗

(0.009)
pop density -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
employment share -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N. of firms 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
share of R&D employment 2.453 2.444 2.677 2.585 2.762 2.815

(4.653) (4.649) (4.625) (4.649) (4.677) (4.785)

r2_w 0.192 0.192 0.191 0.194 0.191 0.194
r2_o 0.514 0.514 0.519 0.525 0.519 0.523
r2_b 0.529 0.528 0.533 0.540 0.534 0.538
N 3851 3851 3851 3851 3851 3851
Dep. Var.: Stock of fractionalized patent families weighted by forward citations (log).
GPP, RI, AI and MI lagged 1-year. Standard errors clustered at the level of State.
All models include a constant, year and geographic dummies (9 Census divisions).
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Next, we investigate more in depth the moderating effect of local labour

market composition in the relation between green public procurement and green

innovation capacity across macro-families of green technology. In particular,

we analyse separately the effects on GT stock in mitigation (Tables 7.8, 7.9

and 7.10) and in adaptation technologies (Tables 7.11, 7.12 and 7.13). In

short, mitigation strategies, and the attendant technologies, seek to tackle

the causes of climate change such as accumulation of greenhouse gases in the

atmosphere. Mitigation is understood as having a global character as opposed
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to adaptation strategies which, instead, aim at reducing the local impact of

climate change. Mitigation is a priority in a broad range of domains such as

energy, transportation, manufacturing and waste management. Conversely,

adaptation strategies target primarily water and health sectors.

We find that the average marginal effects for mitigation technologies are the

same as those observed in the general case above. This applies to both the

significance and the magnitude of the coefficients. Once again, a high endowment

of managerial, scientific and interpersonal (viz. abstract) skills yields an

innovation premium (Figure 7.5) for public procurement in both products

and services. Routine intensive occupations have a significant moderating

effect only for service expenditure. Conversely, among adaptation technologies,

the coefficients of both routine and abstract occupations are significant only

for service-related GPP (Figure 7.6). We ascribe this to the preponderance

of intangible nature of coordinating, planning and implementing adaptation

strategies at local level.

7.5 Conclusions

In this chapter we have investigated the impact of a somewhat neglected type of

public intervention, i.e. green public procurement (GPP), on the generation of

GTs. In this respect, our analysis marks an important difference with most of

the extant literature, in that we consider a direct demand-side policy lever (i.e.

government expenditure) instead of indirect demand-pull effects engendered by

the implementation of stringent environmental regulatory frameworks.
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Figure 7.4: A.M.E. of GPP on total GT stock with 95% CIs

Our analysis of the link between GPP and the generation of GTs has been

conducted at the territorial level, i.e. US commuting zones. We put forward

the hypothesis that the local accumulation of competences represents a key

enabling condition for the generation of new technologies in general. GTs show

some specificities in this respect, in that they appear to emerge as an outcome

of the hybridization of a variety of technologies that often are loosely related

with one another. The configuration of the local bundle of skills is therefore

important in affecting local differences in the capacity to sustain green inventive

activities. The prevalence of abstract skills is crucial in this respect, in that it

is related to cognitive abilities to combine ideas and inputs from different fields

in new and previously untried ways.

Our results have provided empirical support to our hypotheses, showing that

GPP actually exerts a positive impact on the generation of GTs. In particular,
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Figure 7.5: A.M.E. of GPP on GT-mitigation stock with 95% CIs

we have found that a 1% increase in GPP engenders some 0.077% increase in

the local stock of GTs. The government expenditure lever can therefore prove

to be efficient in the promotion of technology-driven sustainability transitions.

Moreover, we have found that GPP for services yield a stronger impact than

GPP for products. This suggests the existence of bandwagon effects upwards

in the value chain, for which the demand for green services stimulate the

generation of the technologies that make them possible.

The configuration of the local skills bundle also proved to affect the dynamics

of GTs generation. In particular, the prevalence of abstract skills is positively

associated to the generation of GTs. Moreover, this specific set of skills

moderates the effect of GPP on GTs, by magnifying its coefficient. According

to our estimates, the overall impact of GPP in areas in which abstract skills are
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Figure 7.6: A.M.E. of GPP on GT-adaptation stock with 95% CIs

prevalent is almost twice the impact of GPP in areas in which this prevalence

is not observed.

Finally, our analyses allowed to investigate the differential impact of GPP and

local skills bundle configuration on mitigation vis-à-vis adaptation oriented

green technologies.

Our results bear important policy implications. The most straightforward

concerns the role of public expenditure in boosting technology-driven sustainable

development. Most of the extant literature has focused on technology push or

demand pull deployment policies. We do not deny the relevance of these policy

instruments. However, we show that besides these options, policymakers can

affect the rate and the direction of green inventive activities by demanding for

specific green services or products. While these are expected to satisfy specific

needs of public administrations, the GTs that are produced are expected to be
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relevant for a wider set of economic activities, bearing important spillovers for

prospective adopters.
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Conclusions

Green technologies are a means to successfully achieve the decoupling of eco-

nomic growth and environmental degradation. Building climate change re-

silience within countries entail the reorganisation of existing, and in some case

the creation of new, systems for generating and using natural resources. Against

this backdrop, accelerating the development and diffusion of new low-carbon

technologies remains a crucial ingredient of the environmental policy mix.

Progress in recent years has been significant if uneven, not only between

green technology domains but also across countries, and the concern is that

imbalances on the distribution of opportunities could further exacerbate these

gaps and, paradoxically, become hurdles towards sustainability. Thus, continued

innovation and deployment are crucial, but so is the capacity to put in place
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policies that facilitate diffusion, especially towards developing countries that are

most exposed to climate hazards and yet lag behind the technological frontier.

Because climate change is a global phenomenon with local manifestations,

we proposed in this dissertation an analysis that articulates green technology

development across domains from a geographical perspective. Effective resource

management cannot be divorced from characteristics of the institutional regime

over which regulatory functions are to be undertaken. While the geographic

distribution of natural resources may partially be determined by exogenous

factors – such as i.e. availability of raw materials – the capacity for adaptation

and mitigation stems from endogenous factors such as human capital and

institutional flexibility. This dissertation contributes to the literature about

technological development focusing on green technologies from the perspective

of countries’ development, knowledge recombination, public procurement and

labour markets.

8.1 Main contributions and findings

The first contribution of this dissertation is the creation of a dataset collecting

systematic information about green patents and the localisation of their inven-

tors. This effort permitted a systematic exploration of green technologies from

the perspective of economic geography.

A first overview proposed in chapter 3 provided us with a novel global mapping

of green innovation capacity over time and across countries. In so doing we

identified three typologies of countries: leaders, laggards and catch-up. As
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expected, GDP per capita is positively associated to the production of complex

green technologies, but we also found that the production of complex green

technologies in mid-income countries is associated with the export of complex

products. This means that internal capabilities are as important as GDP to

produce green technologies. On the technology side, the evolution of the fitness

ranking reveals that green innovation has become more horizontal in the last

decades with important efforts in cross-domain or enabling technologies, while

there was a stronger development in individual areas at the beginning of the

time period. The latter may have peaked in term of technology life cycle, while

enabling technologies (i.e. ICT for monitoring energy distribution) may be in a

development phase.

In order to test these conjectures, chapter 4 proposes a methodology to measure

technology life cycle stages based on patenting activity and geographical ubiquity.

This methodology is based on the life cycle heuristic proposed by William J

Abernathy and J. M. Utterback (1978) and further refined by S. Klepper

(1996) and J. Utterback (1994) and later works underlying the dynamics of the

knowledge base by Nelson (1994) and Vona and Consoli (2015). It defines four

stages: emergence, development, diffusion and maturity. The rationale of this

exercise is that green technologies encompass a large and diverse domain, and

that the underlying bodies of knowledge advance at uneven pace. This entails

that progress across the problem solving spectrum will be diverse and that

this, in turn, matters for the various domains that are interconnected, namely:

cross-technology complementarities, the design of policy and the viability of
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the self endowment. This is why identifying and classifying green technologies

over the life cycle heuristic is a central contribution of this thesis.

Using this framework, chapter 5 shows that countries are more likely to diversify

into new domains of green technology that are close to the portfolio of exist-

ing competences as proxied by prior technological orientation. In particular,

differences in competences are a bigger obstacle than differences in wealth.

This observed effect is in line with previous literature, but the core difference

resides in the association with countries development: while Petralia, Balland,

and Morrison (2017) found a strong association with the stage of development

of countries, we found a strong association with the maturity of technologies.

On the specialization side, we found that complexity of technologies is not an

obstacle, contrary to previous literature.

The life cycle framework was also used in chapter 6 to identify knowledge

recombination types associated with green technology production. First, we

found that green innovation is more associated to the recombination of distant

knowledge than other innovations, confirming Barbieri, Marzucchi, and Rizzo

(2018) findings that green technologies are more complex, radical, pervasive and

impactful. Second, emergence stages of the green technology life cycle are more

associated with the recombination of distant knowledge while recombination of

related knowledge takes precedence when moving toward maturity stage. This

is a clear confirmation of the idea that the advance of technology cannot be

divorced from the dynamics of the underpinning know-how (Vona and Consoli,

2015). This is also a powerful reminder of the systemic nature of innovation,
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and the intrinsic importance of other domains, that are often neglected, such as

education and training, policy design, mobility and international cooperation.

Finally, in the last chapter, using US procurement data at commuting zone level,

we find a positive and significant impact of green public procurement on green

innovation. When we enrich the model with occupational-task data, defining

share of routine, manual and abstract skills, we also find that an important

share of abstract skills in the territory is positively associated to the production

of green innovation.

8.2 Policy implications

The present dissertation provides interesting findings that have relevance for

policy, first because of the urgency to mitigate climate change and to adapt our

societies to it, and second because the development of technological solution

must be carried out without leaving aside low or mid-income countries. Climate

change is a global phenomenon with markedly local manifestation, some territo-

ries may be tempted to foster the development of green technologies according

to their needs without taking into account their local production configuration.

We saw in chapter 3 and 4 that green technologies are not at the same stage

of development, and not all the countries are able to produce complex green

technologies. Betting on emerging technologies to mitigate climate change

(i.e. CO2 capture and sequestration) could be risky because they may be not

mature in time to be massively used in order to remain below a 2oC increase

of the average temperature. On the same vein, fostering the development of
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electric vehicles while enabling technologies in transport and in energy sector

are still at an early stage of development could lead to an increase of greenhouse

gases emissions, as electricity is still mainly produced using coal (BP Statistical

Review of World Energy 2018) and these technologies could not be ready soon

enough to meet the demand.

On the other hand, policy makers who want to promote the development of

green technologies should take into account the characteristics of their territories.

We saw in chapter 5 that the diversification in green innovation is associated

not so much with a higher level of development but with already existing

capacities in neighbouring technologies. They should also consider the stage

of development of these technologies, as diversification is positively associated

with mature technologies.

Technology life cycle should also be taken into consideration regarding local

capabilities and labour market: territories willing to develop emerging green

technologies should have an unrelated knowledge base, and public procurement

will be more impactful if labour market has an important share of abstract skills.

No country in isolation will have the capacity to develop green technologies,

and barriers to knowledge and to shared understanding can become barriers to

the ability to counter climate change on a global basis.
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8.3 Future avenues and developments

This dissertation draws a worldwide overview of green innovation, and focuses

on the United States to explore the type of knowledge recombination associated

and the efficiency of public procurement according to local labour market.

The immediate next step will be to exploit the dataset through the development

of a web site, in order to contribute to the general debate about climate change

mitigation and adaptation. Data would be made available on an open platform

that allows to access, visualize and use.

Other developments will be to explore other territories, like the European

Union, to investigate if we observe similar relations between knowledge base

recombination, public procurement and labour market with green innovation.

Moreover, enriching this dataset with information about local use of technologies,

greenhouse gases emissions and environmental pollution would make possible

to analyse if the use of environment management, climate change adaption and

mitigation technologies really leads to sustainable economies. This could be

done by contrasting the environmental performance of each country, e.g. in

terms of pollution, vis-à-vis their capacity to generate green technologies.

But there is also great potential to further extend the insights generated here

by engaging qualitative analysis by country, in the hope to gain further insights

into all the possible ways in which environmentally sustainable practices diffuse.

On the society side, while there is an extensive debate going on about increasing

inequalities, to our knowledge, few developments have been done exploring the
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impact of inequalities on the development of technologies, in particular of green

technologies. An extension of this dissertation would be to explore whenever

inequalities within countries enable or thwart green innovation. It would be an

interesting contribution to the general debate about growth, climate action and

development, which are complementary objective according to the Sustainable

Development Goals (SDGs) and Paris Agreement.

To reiterate, the contribution of this thesis is the elaboration of a detailed

global map of green inventions. As such, a map is only useful to gain insights

on the broad direction of the phenomenon at hand, as well as the main spots

of interest – be they a burst of innovation or a lack of thereof. Once a point of

interest has been identified, qualitative work is the best vehicle to deeper the

analysis. We leave this step for future research.
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Appendix

9.1 List of countries codes
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ISO3 Code Country Name ISO3 Code Country Name ISO3 Code Country Name

ARG Argentina GRC Greece NOR Norway
AUS Australia HRV Croatia NZL New Zealand
AUT Austria HUN Hungary PHL Philippines
BEL Belgium IDN Indonesia POL Poland
BGR Bulgaria IND India PRT Portugal
BHS Bahamas IRL Ireland ROU Romania
BLR Belarus IRN Iran RUS Russian Federation
BRA Brazil ISR Israel SAU Saudi Arabia
CAN Canada ITA Italy SGP Singapore
CHE Switzerland JAM Jamaica SRB Serbia
CHL Chile MAR Morocco SVK Slovakia
CHN China MCO Monaco SVN Slovenia
COL Colombia MEX Mexico SWE Sweden
CYP Cyprus MYS Malaysia THA Thailand
CZE Czech Republic NLD Netherlands TWN Taiwan
DEU Germany JPN Japan UKR Ukraine
DNK Denmark KAZ Kazakhstan USA United States of America
ESP Spain KOR South Korea UZB Uzbekistan
FIN Finland LIE Liechtenstein VEN Venezuela
FRA France LUX Luxembourg ZAF South Africa
GBR United Kingdom
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9.2 ENV-TECH 2016 Classification

Code Description

1. ENVIRONMENTAL MANAGEMENT

1.1. AIR POLLUTION ABATEMENT

1.1.1. Emissions abatement from stationary sources (e.g. SOx, NOx, PM emissions from combustion plants)

1.1.2. Emissions abatement from mobile sources (e.g. NOx, CO, HC, PM emissions from motor vehicles)

1.1.3. Not elsewhere classified

1.2. WATER POLLUTION ABATEMENT

1.2.1. Water and wastewater treatment

1.2.2. Fertilizers from wastewater

1.2.3. Oil spill cleanup

1.3. WASTE MANAGEMENT

1.3.1. Solid waste collection

1.3.2. Material recycling

1.3.3. Fertilizers from waste

1.3.4. Incineration and energy recovery

1.3.5. Landfilling [n.a.]

1.3.6. Not elsewhere classified

1.4. SOIL REMEDIATION
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1.5. ENVIRONMENTAL MONITORING

2. WATER-RELATED ADAPTATION TECHNOLOGIES

2.1. DEMAND-SIDE TECHNOLOGIES (water conservation)

2.1.1. Indoor water conservation (faucets, showers, sanitation, home appliances)

2.1.2. Irrigation water conservation

2.1.3. Water conservation in thermoelectric power production

2.1.4. Water distribution

2.2. SUPPLY-SIDE TECHNOLOGIES (water availability)

2.2.1. Water collection (rain, surface and ground-water)

2.2.2. Water storage

2.2.3. Desalination of sea water [n.a.]
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Code Description

3. BIODIVERSITY PROTECTION AND ECOSYSTEM HEALTH [n.a.]

search strategy currently not available

4. CLIMATE CHANGE MITIGATION technologies related to ENERGY generation,

transmission or distribution

4.1. RENEWABLE ENERGY GENERATION

4.1.1. Wind energy

4.1.2. Solar thermal energy

4.1.3. Solar photovoltaic (PV) energy

4.1.4. Solar thermal-PV hybrids

4.1.5. Geothermal energy

4.1.6. Marine energy

4.1.7. Hydro energy (conventional, tidal, stream)

4.2. ENERGY GENERATION FROM FUELS OF NON-FOSSIL ORIGIN

4.2.1. Biofuels

4.2.2. Fuel from waste (e.g. methane)

4.3. COMBUSTION TECHNOLOGIES WITH MITIGATION POTENTIAL

(e.g. using fossil fuels, biomass, waste, etc.)

4.3.1. Technologies for improved output efficiency (combined heat and power, combined cycles, etc.)
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4.3.2. Technologies for improved input efficiency (efficient combustion or heat usage)

4.4. NUCLEAR ENERGY

4.4.1. Nuclear fusion reactors

4.4.2. Nuclear fission reactors

4.5. EFFICIENCY IN ELECTRICAL POWER GENERATION, TRANSMISSION OR DISTRIBUTION

4.5.1. Superconducting electric elements or equipment

4.5.2. Not elsewhere classified (incl. FACTS, APF, etc.)

4.6. ENABLING TECHNOLOGIES IN ENERGY SECTOR

4.6.1. Energy storage

4.6.1.1. Batteries

4.6.1.2. Capacitors

4.6.1.3. Thermal storage

4.6.1.4. Pressurised fluid storage

4.6.1.5. Mechanical storage

4.6.1.6. Pumped storage

4.6.2. Hydrogen technology

4.6.3. Fuel cells

4.6.4. Smart grids in energy sector

4.7. OTHER ENERGY CONVERSION OR MANAGEMENT SYSTEMS REDUCING GHG EMISSIONS
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Code Description

5. CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES

5.1. CO2 CAPTURE OR STORAGE (CCS)

5.2. CAPTURE OR DISPOSAL OF GREENHOUSE GASES OTHER THAN CARBON DIOXIDE

(N2O, CH4, PFC, HFC, SF6)

6. CLIMATE CHANGE MITIGATION technologies related to TRANSPORTATION

6.1. ROAD TRANSPORT

6.1.1. Conventional vehicles (based on internal combustion engine)

6.1.2. Hybrid vehicles

6.1.3. Electric vehicles

6.1.4. Fuel efficiency-improving vehicle design (common to all road vehicles)

6.2. RAIL TRANSPORT

6.3. AIR TRANSPORT

6.4. MARITIME OR WATERWAYS TRANSPORT

6.5. ENABLING TECHNOLOGIES IN TRANSPORT

6.5.1. Electric vehicle charging

6.5.2. Application of fuel cell and hydrogen technology to transportation
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7. CLIMATE CHANGE MITIGATION technologies related to BUILDINGS

7.1. INTEGRATION OF RENEWABLE ENERGY SOURCES IN BUILDINGS

7.2. ENERGY EFFICIENCY IN BUILDINGS

7.2.1. Lighting

7.2.2. Heating, ventilation or air conditioning [HVAC]

7.2.3. Home appliances

7.2.4. Elevators, escalators and moving walkways

7.2.5. Information and communication technologies [ICT]

7.2.6. End-user side

7.3. ARCHITECTURAL OR CONSTRUCTIONAL ELEMENTS IMPROVING THE THERMAL

PERFORMANCE OF BUILDINGS

7.4. ENABLING TECHNOLOGIES IN BUILDINGS

8. CLIMATE CHANGE MITIGATION technologies related to WASTEWATER TREATMENT

or WASTE MANAGEMENT

8.1. WASTEWATER TREATMENT

8.2. SOLID WASTE MANAGEMENT

8.2.1. Waste collection, transportation, transfer or storage

8.2.2. Waste processing or separation
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8.2.3. Landfill technologies aiming to mitigate methane emissions

8.2.4. Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

8.2.5. Reuse, recycling or recovery technologies

8.2.5.1. Dismantling or mechanical processing of waste for the recovery of materials during separation, disassembly,

preprocessing or upgrading

8.2.5.2. Metal recycling

8.2.5.3. Disassembly of vehicles for recovery of salvageable parts

8.2.5.4. Construction or demolition [C&D] waste

8.2.5.5. Glass recycling

8.2.5.6. Plastics recycling

8.2.5.7. Paper recycling

8.2.5.8. Disintegrating fibre-containing textile articles to obtain fibres for re-use

8.2.5.9. Rubber waste recycling

8.2.5.10. Recovery of polymers other than plastics or rubbers

8.2.5.11. Recovery of luminescent materials

8.2.5.12. Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

8.2.5.13. Recovery of tanning agents from leather

8.2.5.14. Recycling of wood or furniture waste (production of fertilisers from the organic fraction of waste or refuse)

8.2.5.15. Packaging reuse or recycling (bio-packaging)
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8.2.5.16. Recycling of waste of electrical or electronic equipment

8.2.5.17. Recycling of batteries

8.2.5.18. Recycling of fuel cells

8.2.5.19. Nuclear fuel reprocessing

8.2.5.20. Reuse, recycling or recovery technologies cross-cutting to different types of waste

8.3. ENABLING TECHNOLOGIES OR TECHNOLOGIES WITH A POTENTIAL OR INDIRECT

CONTRIBUTION TO GHG MITIGATION

9. CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION

OR PROCESSING OF GOODS

9.1. TECHNOLOGIES RELATED TO METAL PROCESSING

9.1.1. Reduction of greenhouse gas [GHG] emissions

9.1.2. Process efficiency

9.2. TECHNOLOGIES RELATING TO CHEMICAL INDUSTRY

9.2.1. General improvement of production processes causing greenhouse gases [GHG] emissions

9.2.2. Improvements relating to chlorine production

9.2.3. Improvements relating to adipic acid or caprolactam production

9.2.4. Improvements relating to chlorodifluoromethane [HCFC-22] production

9.2.5. Improvements relating to the production of other chemicals or pharmaceuticals
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9.3. TECHNOLOGIES RELATING TO OIL REFINING AND PETROCHEMICAL INDUSTRY

9.3.1. Reduction of greenhouse gas [GHG] emissions during production processes

9.3.2. Bio-feedstock

9.3.3. Carbon capture or storage [CCS] specific to hydrogen production

9.3.4. Ethylene production

9.4. TECHNOLOGIES RELATING TO THE PROCESSING OF MINERALS

9.4.1. Production of cement

9.4.2. Cement grinding

9.4.3. Manufacturing or processing of sand or stone

9.4.4. Production or processing of lime

9.4.5. Glass production

9.4.6. Production of ceramic materials or ceramic elements

9.5. TECHNOLOGIES RELATING TO AGRICULTURE, LIVESTOCK OR AGROALIMENTARY INDUSTRIES

9.5.1. Agricultural machinery or equipment

9.5.2. Reduction of greenhouse gas [GHG] emissions in agriculture

9.5.3. Land use policy measures

9.5.4. Afforestation or reforestation

9.5.5. Livestock or poultry management

9.5.6. Fishing and aquaculture
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9.5.7. Apiculture

9.5.8. Food processing

9.6. TECHNOLOGIES IN THE PRODUCTION PROCESS FOR FINAL INDUSTRIAL

OR CONSUMER PRODUCTS

9.6.1. Technologies for shaping products (e.g. rolling metal, forging, hammering, pressing or riveting)

9.6.2. Technologies for metal working

9.6.3. Technologies for printing, lining or stamping machines

9.6.4. Technologies for working on wood, veneer or plywood

9.6.5. Technologies for production of paper and paper articles

9.6.6. Technologies for working on or processing of plastics

9.6.7. Technologies for conveying, packing or storing of goods

9.6.8. Other manufacturing technologies (e.g., for mixing, separation, applying liquids, drying, etc.)

9.6.9. Manufacturing of products or systems for producing renewable energy (e.g. wind turbines)

9.6.10. Manufacturing of batteries and fuel cells

9.6.11. Manufacturing or assembling of vehicles

9.6.12. Manufacturing of electric and electronic components of products

9.6.13. Technologies for production or treatment of textiles and foot wear

9.6.14. Technologies for production of tobacco products

9.7. CLIMATE CHANGE MITIGATION TECHNOLOGIES FOR SECTOR-WIDE APPLICATIONS
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9.8. ENABLING TECHNOLOGIES WITH A POTENTIAL CONTRIBUTION

TO GHG EMISSIONS MITIGATION
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