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Resum
Aquesta tesi de màster té com a objectiu desenvolupar un nou model matemàtic per a una

xarxa de sensors sense �ls que operen amb cicle de treball i estan equipats amb maquinari de

recol·lecció d’energia. El protocol emprat és S-MAC i la xarxa és modelada amb una Cadena

de Markov de temps discret 3-D (DTMC) l’estat de la qual està de�nit pel vector (i,k,b). Els

elements de l’aquest vector són: el nombre de paquets en la cua d’un dispositiu, el nombre de

nodes actius en un cicle i el nivell discret de càrrega de la bateria. Els elements de la matriu

de transició s’obtenen combinant les probabilitats que de�nixen el resultat de l’accés al canal

i les probabilitats que de�nixen el consum i l’arribada d’energia. Els paràmetres de rendiment

provenen directament de la distribució estacionària i s’analitzaran en diferents escenaris. A

més, s’ha calculat la distribució del temps que passa el sensor amb energia en la bateria quan

no es pot collir-la..

Resumen
Esta tesis de máster tiene como objetivo desarrollar un nuevo modelo matemático para una

red de sensores inalámbricos que operan con ciclo de trabajo y están equipados con hardware

de recolección de energı́a. El protocolo empleado es S-MAC y la red es modelada con una

Cadena de Markov de tiempo discreto 3-D (DTMC) cuyo estado está de�nido por el vector

(i,k,b). Los elementos del dicho vector son: el número de paquetes en la cola de un dispos-

itivo, el número de nodos activos en un ciclo y el nivel discreto de carga de la baterı́a. Los

elementos de la matriz de transición se obtienen combinando las probabilidades que de�nen

el resultado del acceso al canal y las probabilidades que de�nen el consumo y la llegada de en-

ergı́a. Los parámetros de rendimiento provienen directamente de la distribución estacionaria

y se analizarán en diferentes escenarios. Además, se ha calculado la distribución del tiempo

que pasa el sensor con energı́a en la baterı́a cuando no se puede cosecharla.



Abstract
�is master’s thesis aims to develop a new mathematical model for a network of wireless

sensors that operate with duty cycle and are equipped with energy harvesting hardware. �e

protocol used is S-MAC and the network is modeled with a discrete-time 3-D Markov Chain

(DTMC) whose state is de�ned by the vector (i, k, b). �e elements of the said vector are: the

number of packets in the queue of a device, the number of active nodes in a cycle and the

discrete level of charge of the ba�ery. �e elements of the transition matrix of the DTMC are

obtained by combining the probabilities that de�ne the ways to access to the channel and the

probabilities that de�ne the energy consumption and arrival. �e performance parameters

come directly from the stationary distribution and will be analyzed in di�erent scenarios. In

addition, we have calculated the distribution of time that the sensor passes with power in the

ba�ery when no energy can be harvested.
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Riassunto
Oggigiorno molte applicazioni richiedono l’implementazione di sensori che raccolgono

informazioni su una determinata area geogra�ca per poi successivamente trasme�erle a un

gateway centrale. �esti dispositivi possono condividere il problema di una limitata energia

a causa della ba�eria e pertanto il loro consumo deve essere rido�o al minimo. �ando la

sostituzione o la ricarica delle ba�erie sul campo non è fa�ibile, un meccanismo di raccolta

dell’energia potrebbe essere la scelta migliore per prolungare la durata della rete. �esta tesi

di laurea mira a sviluppare un nuovo modello matematico con il quale saremo in grado di

valutare le prestazioni di reti di sensori wireless Duty-Cycled dotati di hardware per la raccolta

di energia. Il modello considererà un singolo sistema di nodi in grado di inviare pacche�i di

informazione solo a un nodo centrale (Sink Node), ma si potrebbero considerare la possibilità

di integrare più sistemi per formare una rete più grande. Tu�i i nodi funzionano in regime di

Duty-Cycle (DC) in modo che, all’interno di un ciclo, si alternino periodi a�ivi e ina�ivi al �ne

di risparmiare energia. Per essere considerato a�ivo, un sensore dovrebbe avere abbastanza

energia e una quantità minima di pacche�i all’interno della coda. Si supporrà che l’arrivo

di pacche�i a un dispositivo segua un processo di Poisson. Inoltre, quando un dispositivo

vince l’accesso al canale, esso trasme�e un frame contenente più pacche�i la cui lunghezza

è limitata da un valore massimo o dal numero di pacche�i nella coda. Il protocollo utilizzato

sarà il S-MAC con un handshake RTS/CTS/DATA/ACK basato su un CSMA/CA e in cui i timer

di back-o� vengono rese�ati ad ogni ciclo iterativo. Difa�i, la probabilità di vincere l’accesso

al canale è stre�amente correlata alla selezione del valore di back-o�.

La rete sarà modellata con una catena di Markov tempo discreta tridimensionale (DTMC) il cui

stato è de�nito dal ve�ore (i,k,b). Gli elementi ve�oriali sono: i) il numero di pacche�i nella

coda di un dispositivo; ii) il numero di nodi a�ivi in un ciclo; iii) il livello e�e�ivo di carica della

ba�eria. Di fa�o, per limitare la cardinalità dello spazio degli stati DTMC, l’energia raccolta dai

nodi e il loro consumo di energia saranno anche discretizzati in modo adeguato. Pertanto, uno

dei contributi dello studio sarà quello di de�nire l’energia consumata dai nodi per ciascuno dei

diversi modi di accesso al canale, come le trasmissioni avvenute con successo o le collisioni. Gli

3



elementi della matrice di transizione sono o�enuti combinando le probabilità che de�niscono

il modo di accedere al canale e le probabilità relative al consumo o arrivo di energia. Inoltre, il

tu�o sarà formulato con una matrice di transizione associata a un processo di �asi-Nascita-

Morte, in modo tale che un algoritmo di riduzione dello stato a blocchi verrà utilizzato per

o�enere la distribuzione stazionaria. I parametri di prestazione, fra cui il ritardo medio, il

throughput e il consumo di energia, provengono dire�amente dalla distribuzione stazionaria

e saranno analizzati in diversi scenari. Ad esempio, si cambierà la dimensione della rete, la

dimensione della coda, la probabilità di arrivo dell’energia e cos̀ı via. In particolare, impostando

quest’ultima uguale a zero, sarà possibile determinare la distribuzione del tempo trascorso dal

dispositivo �no alla scarica della ba�eria. Può essere modellato come una distribuzione di

fase, cioè una distribuzione del tempo �no all’assorbimento da parte di uno stato DTMC. Tale

analisi potrà consentire di comprendere al meglio il consumo energetico della rete.
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Chapter 1

Introduction

1.1 Prologue

Nowadays, wireless sensor networks have assumed fundamental importance not only in the

�eld of scienti�c research but also in the everyday life of any citizen. In fact, thanks to the

Internet of �ings (IoT), both our homes and our cities are becoming increasingly ”Smart” in

order to make every type of service more e�cient. Examples of such applications will be the

lighting control in cities, the arrangement of sensors for environmental and territorial control

and the network of security cameras positioned in the various streets of the city.

An omnipresent problem of such networks is energy consumption. In fact, many sensors

are located in places that are di�cult to connect to the mains electricity and this involves the

use of a ba�ery power supply. To prolong the network lifetime, there are two ways we can

operate, that are both to guarantee the lowest possible consumption of energy and implement

a technology of energy harvesting (EH) . On the �rst point, many standards such as Bluetooth

Low Energy (BLE), ZigBee, ANT, and other Low Power Wide Area Networks (LPWAN) have

been created. In the course of my thesis, however, I will mainly focus on the second point,

that is on the situations that provide for the collection of energy from external factors such as

solar rays or electromagnetic energy.
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1.2 Previous work

�roughout my research period, I have developed a mathematical model that represents the

operating way of a sensor network thanks to a three-dimensional Discrete Time Markov Chain

(DTMC). A 2-D model has already been developed in [3], such that I have continued their work

by considering the actual ba�ery charge level. �e remaining two dimensions are the number

of packets in the queue of a device and the number of active nodes in a cycle. Respectively,

their maximum values are Q and K .

�e protocol employed is the S-MAC with CSMA/CA-based RTS/CTS/DATA/ACK handshake,

where back-o� timers are reset at each cycle iteration. In fact, the probability to win access

to the channel is strictly related to the selection of the back-o� value. �e model considers a

single cluster of sensor nodes that are able to send information packets only to a central Sink

Node (SN), but it might contemplate multiple clusters to form a larger network. All of the

sensors contemporaneously active at the beginning of the same cycle will contend the access

to the channel in order to send information to the SN.

All the nodes work in a Duty-Cycle (DC) regime so that, within a cycle, they periodically

alternate an active and inactive period with the goal of saving energy.

1.3 Targets, methodology and contribution

To limit the cardinality of the DTMC state space, one of the contributions of the study has

been to discretize the energy harvested and the energy consumed by the nodes for each of the

di�erent channel access outcomes, such as successful transmissions or collisions.

It has been assumed that, inside a cycle, the energy harvesting hardware does not send en-

ergy as long as its value overcomes a tunable threshold, then it passes such discrete amount

of energy to the corresponding sensor ba�ery with a probability PrEP . �e threshold is C

times the maximum energy Emax
tx that a successful transmission can consume and it is equal,

as well, to the energy stored inside one notch of the ba�ery out of the possible B notches.

In other words, a�er an energy acquisition from the EH hardware, the ba�ery level increases
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of one, whereas a�er C full frame successful transmission, it decreases of one. Subsequently,

the consumption of every other node operation has been normalized to this threshold such

that the respective values assume the probabilistic view of a fraction of cycles in which the

RN consumes energy. For example, if Emax
tx = 10 mJ and C = 20, then 1 cycle every 20 of

maximum transmission produces a consumption of one energy notch and PrEP is the fraction

of cycles in which at least 20 ∗ 10 mJ are harvested.

Another contribution of my work on [3] has been the de�nition of a threshold bm that speci-

�es the minimum number of packets in the queue under which is not energetically convenient

to transmit.

�e transition matrix elements of the DTMC are obtained by combining the probabilities that

de�ne the channel access outcome and the probabilities that de�ne the energy consumption

and the arrival of packets and harvested energy. Moreover, it will be formulated as a tran-

sition matrix associated with a �asi-Birth-Death process and hence a block state reduction

algorithm will be used to reduce the computational cost required to obtain the stationary dis-

tribution.

�e performance parameters, including the average delay, the throughput and the energy

consumption, directly come from the stationary distribution and they will be analyzed in dif-

ferent scenarios. For example, by changing the size of the network, the size of the queue, the

energy arrival probability, and so on. In particular, by se�ing the la�er greater than the en-

ergy consumed, it will be possible to determine the distribution of the time the device spends

with power until the ba�ery runs out. It can be modelled as a phase type distribution, that is

a distribution of the time until absorption in an absorbing DTMC. Its analysis will allow us to

be�er understand the energy consumption of the network.

1.4 Contents

�e remainder of this document is structured as follows: chapter two provides a brief overview

of the basic concept of DTMC; chapter three de�nes the reference network scenario and the
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way to discretize the energy is further explained; chapter four focuses on how the probabil-

ities have been combined to de�ne the transition matrix elements and how to calculate both

the stationary distributions and the main performance parameters; chapter �ve includes the

conclusions and the future works.
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Chapter 2

Introduction to Markov Chains

Since the subject of the Markov Chains was completely new to my knowledge, under the

guidance of Professor Martinez I have learned the main basic notions behind this theory, such

as the Markov Chains and some probabilistic distributions. Following, I have summarized

some of these notions that will be useful to follow the next chapters.

2.1 Discrete Time Markov Chains

Since my work is mainly based on Markov chains in a permanent regime, I have �rst studied

their general properties. �ese properties apply to my study because both the trend of the

number of packets inside a waiting bu�er of a sensor node and the amount of energy of the

sensor can be represented by a stochastic processes N(t). �en, if the time axis is discretized

in cycles of length T and the stochastic process is memoryless, then N(ti) becomes a DTMC

with ti = iT .

Each m state that the stochastic process can take for that particular cycle is characterized

by a probability pm(ti). �anks to the Markovian property of the absence of memory, the

probability of transition from a state m to a n, ie pmn(ti, ti+1), does not depend on the past

instants but only on the current and future ones.

From the previous de�nitions we can easily �nd the Chapman-Kolmogorov relation (2.1)
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which de�nes the transition probability between two states, i.e. m and b, placed in two non-

adjacent time instants, for example t0 and t2, with t0 < t1 < t2. [2].

pmb(t0, t2) =
∑
n

pmn(t0, t1)pnb(t1, t2) (2.1)

In the course of my study I have only dealt with homogeneous time chains, so the prob-

abilities of transition between states do not depend on the individual moments but only on

their di�erence (2.2).

pmn(t0, t0 + k) = pmn(k) ∀ t0, k (2.2)

Moreover, the states are aperiodic and recurrent and the chain is irreducible [2].

A periodic state means that one can return to the same state a�er a �xed number, i.e. a period,

of transitions.

A state is called recurrent if the probability of returning to that state is equal to 1. In particular,

the state is positively recurring if the numbers of transitions to return to a state is a �nite

number.

Finally, a chain is irreducible if all states communicate with each other.

A more complete classi�cation of states is visible in Fig. 2.1.

Under these assumptions, a�er an in�nite number c of cycles T (or jumps) from an initial

i state, we obtain the so-called stationary probabilities πj of the j state [1], i.e.:

lim
c→∞

pci→j = πj (2.3)

�ese probabilities are independent of the initial state (ergodic chain) and interpretable in

two main ways:

• πj represents the probability of �nding the chain in the j state at a random time slot.

• πj it is the fraction of cycles that the system spends in the j state in the stationary regime
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Figure 2.1: Classi�cation of the states [1]

�e vector π = [π1...πj...] includes all the possible states and can be obtained by the Global

Balance Equations (2.4). It can be de�ned thanks to the transition matrix P which consists of

all pi→j∀ i, j. �is system of equations, usually solved in matrix form, must be �anked by the

condition that the sum of the elements on the same row of P must be equal to 1 [1].

πj =
∑∞

k=0 πkpk,j∑∞
j=0 πj = 1

⇐⇒

π = π · P

‖π‖ = 1

(2.4)

2.2 Probabilistic elements

Many elements related to the study of probabilities have been used, thus in the following lines

I will describe what are the most common distributions that the stochastic processes present
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in the problems related to the queuing theory.

First of all, we must divide the discrete-time case from the continuous-time one. Further-

more, for each of the two cases, the distributions of the processes related to the following three

factors have been analysed:

• the number of arrivals in a given time

• the waiting time for the �rst arrival

• the waiting time for the �rst K arrivals

2.2.1 Discrete-time case

�e arrival or absence of a packet within a time slot, or cycle, is a Bernoulli random variable

with the probability of success (arrival) p and probability of failure (non-arrival) 1 − p = q.

Multiple consecutive slots form a Bernoulli process without memory. Let k be the number of

arriving and n the number of consecutive slots to be analysed, the probability density function

that describes the number of packets arriving in n slots of time is the binomial distribution in

(2.5).

fK(k, n, p) =

(
n

k

)
pk(1− p)n−k (2.5)

while its expected value and variance are expressed in (2.6).

E[K] =
∑
k

kfK(k) = np

V ar[K] = E[K2]− E[K]2 = p(1− p)
(2.6)

If we were interested in the number of time slots n that we have to wait before the �rst
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success, the distribution of this phenomenon is no longer binomial but geometric (2.7).

fN(n, p) = (1− p)n−1p

E[N ] = 1/p

V ar[N ] = (1− p)/p2

(2.7)

Finally, if what we are looking for is the number of necessary cycles to receive K arrivals,

the distribution to be used is the Pascal one (2.8). �is distribution is easily obtained from the

(2.5) since it corresponds to the probability of having k − 1 arriving in n− 1 slots multiplied

by the probability of having an arrival in the n-th slot.

fN(n, k, p) =

(
n− 1

k − 1

)
pk−1(1− p)t−kp

E[N ] = k/p

V ar[N ] = k(1− p)/p2

(2.8)

2.2.2 Continuous-time case

�e continuous-time case is based on the discrete case when the time duration τ of the time

slots is in�nitesimal (τ ≈ δ). By de�ning the rate describing the average number of arrivals

per second with λ, the probability of K arriving during δ is:

fK(k, δ, λ) =


1− λδ, se k = 0

λδ, se k = 1

0, se k > 1

(2.9)

By combining the (2.9) and the (2.5) we get the probability density function relative to the

number of arrivals within a period of t:

fK(k, t, λ) =
(λt)ke−λt

k!

E[K] = λt

V ar[K] = λt

(2.10)
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�e (2.10) pdf is known as Poisson distribution and is widely used to model totally random

and independent entries in a time interval of length t.

�e time between consecutive arrivals is modelled with an exponential pdf (2.11) and it is

interesting to note how the distribution of Poisson in the (2.10) becomes the exponential one

when k = 1.

fT (t, λ) = λe−λt

E[T ] = 1/λ

V ar[T ] = 1/λ2

(2.11)

Finally, the time-related distribution t to detect k arrivals equals the probability that k− 1

arrive in time [0, t− δ], that is the (2.10) wri�en with k − 1 times the probability of receiving

a packet at the next δ instant (2.9). �e result is the distribution of Erlang (2.12).

fT (t, λ, k) =
(λt)k−1

(k − 1)!
e−λtλ

E[T ] = k/λ

V ar[T ] = k/λ2

(2.12)

�e table 2.1 summarizes the names of the distributions in the time-discrete and time-

continuous case for the various parameters that we want to analyse [4].

Table 2.1: Distributions with discrete and continuous time
Parameter Discrete-time distri-

bution

Continuous-time

distribution

Arrivals number in a

given time

Binomial Poisson

Waiting time for the

�rst arrival

Geometric Exponential

Waiting time for K ar-

rivals

Pascal Erlang

15



Figure 2.2: Parameters in a waiting system [2]

2.3 �euing theory

In queueing theory, to represent a waiting system, one must �rst get familiar with the notation

about some common parameters. All the parameters in Fig. 2.2 are random variables with

di�erent distributions. �eir meaning is described in table 2.2.

�ese parameters can be related to each other thanks to Li�le’s Law. �is law is easy

to understand, but it took several years to prove it. If with λ we call the rate of customers

entering and leaving the system and with Ts the average service time value s, Li�le’s law says

that the average values of the random variables in �gure 2.2 depend on each other thanks to

the formulas in (2.13).

N = λT

Q = λW

NS = λTS

(2.13)
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Table 2.2: Meaning of the parameters in Fig.2.2 [2]
Parameter Function

τ Customer inter-arrival

time

s Customer service time

W Waiting time in the

queue

T Residence time in the

system

NS Number of customers

served simultaneously

Q Number of customers

waiting in the queue

N Number of customers

in the system
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Chapter 3

Scenario

A�er explaining the basic notions of Markov Chains, I am now going to illustrate the scenario

under study. First, I will describe the topology of the network, how the RN can be modelled

according to the DTMC and the Medium Access Protocol that has been deployed. �en, I will

explain a way to treat the energy as a discrete variable such that the cardinality of the state

space of the DTMC will be limited. Finally, I will talk about the activation and inactivation of

a node due to the absence or presence of energy in the ba�ery or packets in the queue.

3.1 Sensors network

�e sensors network under study respects a star topology, i.e. each node sends data to a central

server called sink node (SN) (Fig. 3.1 (a)). Each node has an antenna for data transmission

and hardware to harvest energy from the environment. �e DTMC is designed for all the

network but I am going to refer to the behaviour of a generic reference node (RN) by assuming

homogeneity in nodes behaviour.

At a random cycle (remember that time is discretized in cycles of duration T ), the RN may

be in di�erent states. We represent the network states by a state vector of three dimensions

(i k b), that are, respectively, the number of packets in the bu�er of the RN waiting to be sent

(0 ≤ i ≤ Q), the number of active nodes for that cycle in addition to the RN (0 ≤ k ≤ K) and

18



the actual ba�ery charge level (0 ≤ b ≤ B).

A clarifying example is given in Fig. 3.1 (b) where the RN presents i = 5 packages ready to

be sent, k = 2 other nodes that want to access the channel and b = 3 ba�ery notches; hence,

the state of the chain at that cycle is (5, 2, 3).

At this point, the main purpose is to understand how and with what probability the state

transitions occur from one cycle to another. In other words, if at cycle n the state of the RN

is (i, k, b), what is the probability that at the next cycle n + 1 the RN is in the state (j, l, d)?

Taking up the Markov chain theory described above, this corresponds to de�ning the elements

of the transition matrix P.

For example, assuming that neither data packets nor energy arrive at the RN at the end of

cycle n, the element P(i,k,b)(j,l,d) with j < i, l > k and d < b is equivalent to the probability

that there has been a correct sending of packets (therefore i decreases and becomes j) times

the probability that the number of active nodes in the system increases (therefore k rises and

becomes l) and the whole is multiplied by the probability that the ba�ery level decreases by

one (therefore b decreases and becomes d). An example is visible in Fig. 3.2.
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(a) Star topology (b) RN in the state (5,2,3)

Figure 3.1: (a) shows the network topology; (b) represents the situation when the RN is in a

state (i, k, b)=(5,2,3).

(a) RN in the state (5,2,3) (b) RN in the state (1,3,2)

Figure 3.2: (a) shows the state at the beginning of the cycle t0; (b) illustrates the system a�er

the transition, i.e. at the beginning of the next cycle t1.
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3.2 S-MAC

�e operation of the Medium Access Protocol (MAC) de�nitely a�ects the energy consump-

tion since the transmission and overhearing events depends on the protocol used.

S-MAC is one of the most studied protocols in the literature thanks to its e�ectiveness and

simplicity. Its main qualities are substantial energy savings, good scalability and the ability

to avoid collisions in packet transmission. �e main purpose of the S-MAC is to save energy

on four factors: collisions, receiving packets that are intended for other nodes (overhearing),

sending and receiving control packets, and �nally listening to the channel when no package

has been sent [5].

Two extensions have been added to the classic operation of S-MAC. �e �rst refers to the

de�nition of a parameter F that indicates how many packets are jointly sent into a frame

throughout a cycle [3]. �e second, instead, consists of specifying the minimum number bm

of packets in the queue that are necessary to activate the node. �is threshold might be tun-

able and allow the node to save energy by reducing the number of consecutive transmissions.

Moreover, it has been assumed that no data packets can be lost due to a collision because they

will be retransmi�ed an in�nite number of times.

We can divide the S-MAC cycle into three parts: synchronization, data and sleep period

(Fig. 3.3).

Figure 3.3: Periods in a S-MAC cycle

In a synchronization period, every node decides its sleep-awake schedule and communicate

it to the other nodes thanks to a SYNC packet.
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Figure 3.4: Operational way of an active node with S-MAC [3]

At that point, if a node has less than bm packets, then it suddenly goes to the sleeping mode;

otherwise, it randomly selects a value that indicates a slot inside a contention window (CW)

of length W . Depending on the back-o� time values of the other nodes, the node under study

goes to sleep a�er:

• losing the contention

• colliding with other nodes during the RTS packet

• receiving the last packet of a RTS/CTS/DATA/ACK handshake that says the data have

been received correctly by the Sink Node.

As example, Fig. 3.4 shows the operation of S-MAC in the most signi�cant case of a node

that manages to send a frame of packets.

3.2.1 S-MAC parameters

�e access to the channel is ruled by probabilistic laws and hence I have illustrated in Table

3.1 the parameters for each channel outcome of a node that uses S-MAC.
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Table 3.1: Probabilistic parameter that de�ne the access to the channel [3]
Symbol Formula Description

Ps,k
∑W−1

w=0
1
W
(W−1−w

W
)k

Probability that RN transmits success-

fully in a cycle with other k active

nodes, thanks to selecting a back-o�

value smaller than the ones chosen by

other k active nodes

Psf,k
∑W−1

w=0
1
W
(W−w

W
)k

Probability that RN transmits (success-

fully or causing a collision) with other k

nodes active

Pf,k Psf,k − Ps,k = 1
W

Probability that RN transmits and a colli-

sion happens with other k nodes active

T̂k 1− (k + 1)Ps,k − Pf,k

Probability that the RN does not trans-

mit when contending with other k active

nodes and two or more of the other nodes

collide

Sk kPs,k−1

Probability that an active node transmits

successfully in a cycle where k active

nodes contend, that is the active node

plus k − 1 contenders and the RN

BTs,k
1

Ps,k

∑W−1
w=0 w

1
W
(W−1−w

W
)k

Average number of slots of back-o� time

conditioned on a successful packet trans-

mission by the RN when contending with

other k active nodes

BTf,k
∑W−1

w=0 w[(
W−w
W

)k − (W−1−w
W

)k]

Average number of slots of back-o� time

conditioned on an unsuccessful packet

transmission by the RN when contending

with other k active nodes
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3.3 Energy consumption in S-MAC

Due to the fact that the synchronization period is a constant for each state and the sleep

period always provides for a very small amount of power, the most relevant results regarding

the energy consumption come from the data period.

�e analysis will be �anked by numerical examples obtained in Matlab with the following

data:

Table 3.2: Numerical data to be used in the examples [3]
Parameter Data Description
T 60 ms Duration of a cycle
tSY NC 0.18 ms Duration of a synchronization packet
tRTS 0.18 ms Duration of a request to send packet
tCTS 0.18 ms Duration of a clear to send packet
tACK 0.18 ms Duration of an acknowledgment packet
Dp 0.001 ms Propagation delay
tDATA 1.716 ms Duration of a data packet

tslot 0.001 ms Duration of one slot in the contention win-
dow

W 128 Number of slots in the contention window
Ptx 52 mW Transmission power
Prx 59 mW Reception power
Psl 3 µW Sleep power

Nsc 10 Number of cycles between one sync
packet and another

Q 10 Maximum number of packets in the queue
N 13 Number of nodes inside the network

bm 1 �reshold of packets in the queue to make
the node active or not

F 5 Maximum frame size

dc 0.5 Duty cycle: fraction of cycle in which the
system is active

3.3.1 Synchronization

�e synchronization period is omnipresent in all cycles and the node transmits a SYNC packets

once every Nsc cycles. �e energy consumed is:

Esync =
1

Nsc

· [tSY NC · Ptx + (Tsync − tSY NC) · Prx] +
Nsc − 1

Nsc

· (tSY NC · Prx) (3.1)
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where Tsync is the total synchronization period time that includes the maximum back-o� time

(W − 1), the sending time of the package tSY NC and the propagation time Dp.

With the numeric data of the table 3.2 we get Esync = 0.085 mJ.

3.3.2 Data period

According to the channel outcome, the events that can occur in the data period are shown in

Fig. 3.5. At each of them correspond a di�erent usage of transmission and reception power

and hence the energy consumption of the RN is di�erent in every case.

Figure 3.5: Channel outcomes and the respective energy consumed

Based on the description of S-MAC in Fig. 3.6 we can derive the formula related to the

energy that is normally used within a cycle in which the RN manages to win the contention

of the channel (3.2).

Etx(i, k) = tRTSPtx + [tCTS + tACK + 4Dp]Prx + αtDATAPtx +BTs,ktslotPrx (3.2)

where α ranges from 1 to the maximum number of packets per frame (α = min(i, F )).
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Figure 3.6: S-MAC cycle in a case of a successful transmission

In the same way, we can calculate the energy used by the node during the data period of

the other channel outcomes. (3.3), (3.4) and (3.5) respectively de�ne the energy consumed by

the RN whether it collides with another nodeEcoll(k), another node wins the accessEovh,tx(k)

or two or more other nodes collide Eovh,coll(k).

Ecoll(k) = BTs,ktslotPrx + tRTSPtx + 2DpPrx (3.3)

Eovh,tx(k) = (BTs,ktslot +Dp)Prx (3.4)

Eovh,coll(k) = (BTf,ktslot +Dp)Prx (3.5)

�e numerical results obtained with the data in table 3.2 are in Fig. 3.7 and Fig. 3.8. �e

x-axis represents the number of active node in the network in addition to the RN, the y-axis

the number of packets in the queue of the RN.

We notice that the energy in Fig. 3.7 does not increase once the size of the tx frame reaches F .

Moreover, in Fig. 3.8 we see that the more nodes are active, the smaller is the value of BTs,k
or BTf,k that must be considered for the transmission or collision and hence the smaller the

consumed power is.
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Figure 3.7: Energy consumption for cycles where the RN manages to transmit [mJ]

3.3.3 Sleep

With the same arguments used to determine the energy consumption during the data period,

we could calculate the energy consumed in the sleeping period for every di�erent event. How-

ever, the values are so small that we consider them negligible, thus I am not going to represent

the results as I did in the previous section.

3.4 Energy Discretization

In order to start the process of energy discretization, let us assume that one notch of the ba�ery

is C times the maximum energy that can be consumed by a node in a random cycle. Next, let

us normalize every element of the table in Fig. 3.7 according to that maximum and we further

divide everything by C .

If we take as example the new value PrE,tx(i ≥ F, k = 0) = Etx/(C ∗max), it means that, in
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Figure 3.8: Energy consumption for cycles where the RN does not manage to transmit [µJ]

this state and in the current cycle, we consume the 1/C of an energy notch. In other words,

every C occurrences of this event there is a consumption of 1 notch of energy. Consequently,

PrE,tx might be considered as the probability to consume one energy notch in the ba�ery of

the RN when the event occurs.

We can apply the same arguments to other channel outcomes by paying a�ention to use

the same normalization factor. By doing that and by referring to Fig. 3.5, in addition to PrE,tx
we get:

• PrE,coll
• PrE,ovh,tx
• PrE,ovh,coll

3.4.1 Energy harvesting

Initially, we assume that the environmental conditions are error-free but it has been thought of

specifying such conditions in the future to model the energy harvesting process by a Markov

Chain in a more elaborated and realistic way.

We have also assumed that the energy harvesting hardware does not send energy as long as its
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value overcomes a tunable threshold, then it passes such discrete amount of energy to the RN

ba�ery. �is occurs with probability PrEP in a random cycle. �e threshold corresponds to C

times the maximum energy Emax
tx that a successful transmission can consume and it is equal,

as well, to the energy stored inside one notch of the ba�ery out of the possibleB notches (Fig.

3.9). �erefore, we interpret PrEP as the fraction of cycles in which a packet of energy reaches

the RN and subsequently provokes an increase of one notch on it. We could have modelled

the energy arrival according to some type of distribution, as it has been done in [6] and [7],

but the result would always be a fraction between 0 and 1 which indicate, respectively, that

no energy at all will arrive in any cycle or that it arrives in every cycle. Consequently, in the

model the energy arrival is controlled only by varying the value of PrEP .

Figure 3.9: How the harvesting hardware passes energy to the node ba�ery

3.4.2 Energy state transition

By combining the concepts of energy consumption and collection, it is easy to understand that

the energy state transition can only be of three types: the RN remains at the same energy level,

it gains an extra energy notch or it consumes a notch (Fig. 3.10).

In a certain state (i, k) the RN gains a notch when the energy consumed is not su�cient
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Figure 3.10: �e three possible transitions

to decrease the level and, at the same time, we witness the arrival of a energy package (3.6).

Pr+E,tx(i, k) = PrEP · (1− PrE,tx(i, k)) (3.6)

�e second transition can occur in two ways: either the energy has arrived and, at the

same time, a notch has been consumed, or an energy package has not arrived but the energy

consumed has not been su�cient to lower the number of notches (3.7).

Pr=E,tx(i, k) = PrEP · PrE,tx(i, k) + (1− PrEP ) · (1− PrE,tx(i, k)) (3.7)

Finally, the probability that the RN loses a notch is equal to the probability that the en-

ergy consumed is su�cient to decrease the level times the probability that no energy package

reaches the RN in that cycle (3.8).

Pr−E,tx(i, k) = (1− PrEP ) · PrE,tx(i, k) (3.8)

We might fall in two particular cases, namely when b = 0 or i < bm, that is the RN has

no energy or no su�cient packets to transmit, or when b = B, that is the RN ba�ery is totally
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full.

In the former case, we suppose that the RN is not capable to send anything, thus it just waits

as long as some energy or more packets arrive. Consequently, the formulas (3.6) and (3.7) are

simpler and become, respectively, PrEP and (1− PrEP ).

In the la�er, we have the reversed problem, namely the RN cannot acquire energy any more

but only consume it. Consequently, PrEP = 0 and the (3.7) and (3.8) change according to this

simpli�cation.

It is important to notice that, no ma�er in which case we are, by summing up the energy

formulas relative to three possible transitions the result is always 1. �is simple property leads

to the fact that the row of the transition matrix, which I am going to build in the next section,

will be equal to one so that the transition matrix is still stochastic.

3.5 Packets in the queue

Once the energy factor has been discussed, we should de�ne how the number of packets in the

queue of the RN evolves with time. We have �rst considered the fraction of cycles in which i

packets arrive (Ai) by using a Poisson process with arrival rate λ (3.9). In addition to that, we

have also de�ned the probability that i or more packets arrive in the same cycle A≥i. At the

beginning of the new cycle, the number of packets j in the RN queue can vary from i−α and

Q, with α = min(i, F ) .

Ai = e−λt(λT )i/i!

A≥i = 1−
∑

Ai

with i− α ≤ j ≤ Q

(3.9)

3.6 Activation or Inactivation of other nodes

About the dimension k, that is the number of active nodes that contend the channel with the

RN, we are interested in two phenomena:
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• the probability that n nodes, out of K − k that are inactive, become active in the next

cycle (Bkn)

• the probability that s nodes, out of k that are active, remain active in the next cycle (Ss)

If we indicate with Bk the vector such that Bkn occupies the n-th position and with S

the one referring to Ss, then each element of convolution vector Pl in (3.10) indicates the

combinations of the previous probabilities such that their joint values produces l active nodes

at the end of the cycle.

Pl(l) = S ∗Bk = [Pl0....P ll....P lK ]

with

Bk(k) = [Bk0...Bkn...BkK−k]

S(k) = [S0...Ss...Sk]

Ex: if k = 3, K − k = 6 then Pl4 = B1S3 +B2S2 +B3S1 +B4S0

(3.10)

All the next formulas depend on the stationary distribution πi,k,b whose ikb-th element tells

us the fraction of cycles the RN spends in the state (i, k, b). Initially, we have given random

values to this vector but the algorithm is iterated with a �xed point method as long as the error

between the current πi,k,b and the old πi,k,b is smaller than a threshold, for example 10−10.

3.6.1 Bkn

Bkn strictly depends on how we de�ne Pact/inac, that is the probability of the RN turning to

active conditioned on the fact that in the previous cycle it was inactive. �us, we �rst de�ne

Ginact by summing the fraction of cycles in which a node either does not have enough packet

or its ba�ery is empty (3.11).

Ginact(k) =
bm−1∑
i=0

B∑
b=1

πi,k,b +

Q∑
i=0

πi,k,0 (3.11)

�en, we must sum up:
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• the fraction of cycles in which the node receive more than bm packets while it already

has enough energy;

• the fraction of cycles in which it receives both energy and packets;

• the fraction of cycles in which it receives only some energy because it already has

enough packets in his bu�er;

Pact/inact has been obtained by dividing the sum of the previous elements by Ginact (3.12).

Pact/inact(k) =
1

Ginact

·
bm−1∑
i=0

B∑
b=1

πi,k,b · A≥bm−i

+
1

Ginact

·
bm−1∑
i=0

πi,k,0 · PrEP · A≥bm−i

+
1

Ginact

·
Q∑

i=bm

πi,k,0 · PrEP

Pinac/inac(k) =1− Pact/inact(k)

(3.12)

Finally, Bkn can be obtained by considering all the n combination out of K − k (3.13).

Bkn(k) =

(
K − k
n

)
P n
act/inacP

(K−k)−n
inac/inac (3.13)

3.6.2 Ss

In order to de�ne the probability that s nodes, out of k that are active, remain active in the

next cycle, we �rst describe the probabilities that a single node turns inactive according to its

channel outcomes:

• Pinact/succ(k): probability to turn inactive conditioned on the fact that the node success-

fully transmits;

• Pinact/coll(k) probability to turn inactive conditioned on the fact that the node is involved

in a collision;
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• Pinact/ovh/tx(k) probability to turn inactive conditioned on the fact of being overhearing

a successful transmission;

• Pinact/ovh/col(k) probability to turn inactive conditioned on the fact of being overhearing

a collision;

In order to determinePinact/succ, we must �rst consider the fraction of cyclesGsucc in which

a successful transmission takes place (3.14). �en, we take into account for b > 2 the fraction

of cycles in which:

• the successful transmission leads to an empty bu�er and less then bm packets arrive;

• the successful transmission brings to have 1 ≤ i < bm packets in the queue and less

then bm− 1− i packets arrive;

whereas for b = 1:

• the successful transmission produces a consumption of one notch of energy (Pr−E,tx(i, k))

while b was equal to 1;

• the successful transmission empties the bu�er, does not consume energy (1−Pr−E,tx(i, k)),

but less then bm packets arrive;

• the successful transmission does not empty the bu�er or consume energy, but less then

bm− 1− i packets arrive;

If we sum up the previous probabilities and divide everything by Gsucc, we �nally obtain

Pinact/succ (3.15) or (3.16).

Gsucc(k) =

Q∑
i=bm

B∑
b=1

πi,k,b · Ps,k (3.14)
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Pinact/succ(k) =
1

Gsucc

·
F∑

i=bm

B∑
b=2

πi,k,b · Ps,k ·
bm−1∑
i=0

Ai

+
1

Gsucc

·
β∑

i=F+1

B∑
b=2

(πi,k,b · Ps,k ·
(F+bm−1)−i∑

j=0

Aj)

+
1

Gsucc

·
Q∑

i=bm

πi,k,1 · Ps,k · Pr−E,tx(i, k)

+
1

Gsucc

·
F∑

i=bm

πi,k,1 · Ps,k · (1− Pr−E,tx(i, k)) ·
bm−1∑
i=0

Ai

+
1

Gsucc

·
β∑

i=F+1

(πi,k,1 · Ps,k · (1− Pr−E,tx(i, k)) ·
(F+bm−1)−i∑

j=0

Aj)

with

β = min(Q,F + bm− 1) and bm ≤ F

(3.15)

On the other hand, if bm > F :

Pinact/succ(k) =
1

Gsucc

·
β∑

i=bm

B∑
b=2

(πi,k,b · Ps,k ·
(F+bm−1)−i∑

j=0

Aj)

+
1

Gsucc

·
Q∑

i=bm

πi,k,1 · Ps,k · Pr−E,tx(i, k)

+
1

Gsucc

·
β∑

i=bm

(πi,k,1 · Ps,k · (1− Pr−E,tx(i, k)) ·
(F+bm−1)−i∑

j=0

Aj)

with

β = min(Q,F + bm− 1) and bm > F

(3.16)

Pinact/coll, Pinact/ovh/tx and Pinact/ovh/col cannot consider the events that lead to inactivity

due to packets transmission so that their formula are, respectively, (3.17), (3.18) and (3.19).
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Pinact/coll(k) =
1

Gcoll

·
Q∑

i=bm

πi,k,1 · Pf,k · Pr−E,coll(k)

with

Gcoll(k) =

Q∑
i=bm

B∑
b=1

πi,k,b · Pf,k

k ≥ 1

(3.17)

Pinact/ovh/tx(k) =
1

Govh/tx

·
Q∑

i=bm

πi,k,1 · kPs,k · Pr−E,ovh,tx(k)

with

Govh/tx(k) =

Q∑
i=bm

B∑
b=1

πi,k,b · kPs,k

k ≥ 1

(3.18)

Pinact/ovh/col(k) =
1

Govh/col

·
Q∑

i=bm

πi,k,1 · T̂k · Pr−E,ovh,coll(k)

with

Govh/col(k) =

Q∑
i=bm

B∑
b=1

πi,k,b · T̂k

k ≥ 2

(3.19)

By taking the conjugate of each of the previous formulas, we de�ne the probabilities that

the RN remains active according to the di�erent channel outcomes (3.20). Moreover, the prob-

ability Ps,k, Pf,k, kPs,k and T̂k can go out from the summary and be simpli�ed with the same

values of the denominator.
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Pact/succ(k) = 1− Pinact/succ

Pact/coll(k) = 1− Pinact/coll

Pact/ovh/tx(k) = 1− Pinact/ovh/tx

Pact/ovh/col(k) = 1− Pinact/ovh/col

(3.20)

Once we get the (3.20), we can continue with the calculation of Ss that changes according

to the channel outcome of the RN.

RN successfully transmits Ps,k

If the RN successfully transmits, then the other k nodes are overhearing the transmission. It

means that s out of k nodes could remain active due to Pact/ovh/tx, while k − s turn to active

thanks to the (3.18). �erefore:

Ss,succ(k) =

(
k

s

)
P s
act/ovh/tx · P k−s

inact/ovh/tx (3.21)

RN overhears a successful transmission kPs,k

If the RN overhears a transmission, then one active node is successfully transmi�ing while the

others k − 1 are overhearing the transmission. �us, we are interested to the probability that

the transmi�ing node remains active (a = 1), it turns to inactive, c out of k − 1 overhearing

nodes remain active and k − 1− c turn to inactive (3.22).

P (a, 1− a, c, k − 1− c) =(
k − 1

c

)
· P a

act/succ · P 1−a
inac/succ · P

c
act/ovhtx · P k−1−c

inac/ovh/tx

(3.22)

Finally, the probability Ss,ovhtx that s nodes remain active is in (3.23).
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Ss,ovh/tx(k) =

β∑
a=α

P (a, 1− a, s− a, k − 1− s+ a)

with

α = max(0, s− (k − 1)); β = min(1, s)

k∑
s=0

Ss,ovh/tx(k, s) = 1

(3.23)

If the RN is not active and a successful transmission among other nodes happens (kPs,k−1),

then the probability Ss,ANtx = Ss,ovh/tx (3.24) thanks to the fact that we can simplify the

kPs,k−1 to the denominator and numerator.

Ss,ANtx(k) =

β∑
a=α

P (a, 1− a, s− a, k − 1− s+ a) (3.24)

RN collides Pf,k

�e RN can collide with n = 1, 2 or k active nodes and, consequently, k− 1, k− 2…or 0 active

nodes are overhearing the channel. �us, we are interested to the probability that a colliding

remain actives, n−a colliding turn to inactive, c out of k−n overhearing nodes remain active

and k − n− c overhearing turn to inactive (3.25).

P (a, n− a, c, k − n− c) =(
n

a

)(
k − n
c

)
· P a

act/coll · P n−a
inac/coll · P

c
act/ovh/coll · P k−n−c

inac/ovh/coll

(3.25)

�e probability that the RN collides with n out of k active nodes is given by:

Pf,k,n =

(
k

n

) W∑
w=1

1

W
·
(

1

W

)n
·
(
W − w
W

)k−n
such that

k∑
n=1

Pf,k,n = Pf,k

(3.26)
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Finally, the probability Ss,coll that s nodes remain active is the sum between all the possible

combination of n and a (3.27).

Ss,coll(k) =
k∑

n=1

β∑
a=α

P (a, n− a, s− a, k − n− s+ a) · Pf,k,n
Pf,k

with

α = max(0, s− (k − n)); β = min(n, s)

k∑
s=0

Ss,coll(k) = 1

(3.27)

RN overhears a collision T̂k

If the RN overhears a collision between n = 2, 3 or k nodes, then k − 2, k − 3 or 0 nodes are

overhearing that collision. We can de�ne the probability of overhearing a collision between n

nodes as we did in (3.26) but without considering the in�uence of the RN.

T̂k,n =

(
k

n

) W∑
w=1

(
1

W

)n
·
(
W − w
W

)k−n+1

such that
k∑

n=2

T̂k,n = T̂k

(3.28)

�e probability Ss,ovhcoll (3.29) that s nodes remain active is the sum between all the pos-

sible combination between (3.25) and (3.28).

Ss,ovh/coll(s, k) =
k∑

n=2

β∑
a=α

P (a, n− a, s− a, k − n− s+ a) · T̂k,n
T̂k

with

α = max(0, s− (k − n)); β = min(n, s)

k∑
s=0

Ss,ovh/coll(k, s) = 1

(3.29)
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If the RN is not active and the other nodes provoke a collision (Ŝk = 1 − kPs,k−1),

then (3.28) becomes the (3.30) and (3.29) becomes the (3.31).

Ŝk,n =

(
k

n

) W∑
w=1

(
1

W
)n · (W − w

W
)k−n

such that
k∑

n=2

Ŝk,n = Ŝk

(3.30)

Ss,ANcoll(s, k) =
k∑

n=2

β∑
a=α

P (a, n− a, s− a, k − n− s+ a) · Ŝk,n
Ŝk

with

α = max(0, s− (k − n)); β = min(n, s)

k∑
s=0

Ss,ANcoll(k) = 1

(3.31)

3.6.3 Pll

As I previously said, we are interested in the vector that indicates the combinations of the

probabilities Ss and Bkn such that their joint value produces l active nodes at the end of the

cycle. Because of the di�erence between the channel outcomes, also (3.10) has been broken

down in di�erent probabilities, just like it is indicated in the following summary table 3.3.
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Table 3.3: Probabilistic parameters that de�ne the activity of a node
Symbol Formula Description

Pact/inac (3.12) Probability to make a node active conditioned on the fact
that in the previous cycle was inactive

Bkn (3.13)
Probability that n nodes, out of K − k that have their
queues or ba�ery empty or both, become active in the
cycle

Ss,event
(3.21) (3.23) (3.24) (3.27)
(3.29) (3.31)

Probability that s out of k active nodes remain active in
the cycle when the RN presents a predetermined channel
outcome

Plsucc Ssucc ∗Bk
Probability that l out of K nodes are active in the next
cycle when the RN successfully transmits

Plovhtx Sovhtx ∗Bk
Probability that l out of K nodes are active in the next
cycle when the RN overhears a successful transmission

Plcoll Scoll ∗Bk
Probability that l out of K nodes are active in the next
cycle when the RN is involved in a collision

Plovhcoll Sovhcoll ∗Bk
Probability that l out of K nodes are active in the next
cycle when the RN overhears a collision

PlANsucc SANsucc ∗Bk
Probability that l out of K nodes are active in the next
cycle when the RN is not active and a node successfully
transmits

PlANcoll SANcoll ∗Bk
Probability that l out of K nodes are active in the next
cycle when the RN is not active and a collision happens
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Chapter 4

3-D Transition matrix and Results

In this chapter, I will �rst discuss how to de�ne the state transition probabilities by combining

the probabilistic parameter described previously; then, I will show how the performance can

be calculated and how they behave by varying the scenario.

4.1 Creation of the 3-D transition matrix

�e RN can behave in �ve ways depending on whether or not it has energy and packets to send

or whether it is the only active node or not. According to these behaviours, in the following

sections it is described how the elements of the transition matrix can be de�ned by combining

all the previous concepts.

4.1.1 No node is active

In order to be considered no active, the RN must have less than bm packets or no energy

at all or both. �e energy consumed is close to 0 mJ because the RN suddenly goes to the

sleeping mode at the beginning of the cycle. Due to the absence of consumption, the modi�ed

transition probabilities, which are in (4.1), may only refer, in addition to the probabilities of

packet arrivals and activation of other nodes, either to the gain of a notch or to keep the same

energy level.
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P(i,0,b)(j,l,b+1) = Bkl · Aj−i · PrEP

P(i,0,b)(j,l,b) = Bkl · Aj−i · (1− PrEP )

with

0 ≤ i < bm or bm ≤ i ≤ Q

k = 0

b = 0 or 0 ≤ b < B or b = B

i ≤ j < Q or j = Q

0 ≤ l ≤ K

(4.1)

�e (4.1) cannot be used in the case in which the ba�ery is totally full, that is b = B,

because the energy level clearly cannot further grows. In this state, the RN is programmed to

maintain the same level of energy.

Moreover, if j = Q, it means that Q − i packets or more have arrived, thus we cannot use

Aj−i any more but A≥Q−i.

4.1.2 �e RN is not active

�is section refers to the case when b = 0 or i < bm or both, i.e. the RN is not active, while

there is at least another node ready to transmit. In the most general case, the formula that

must be used are in (4.2) and its meaning is described as follows. �e �rst line of the sum

represents those cycles in which one of the other active node manages to win the contention

for the channel, while the second describe the event in which the active node does not manage

to transmit because it collides with other active nodes.
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P(i,k,b)(j,l,b+1) =Sk · Pll,ANtx · Aj−i · PrEP

+Ŝk · Pll,ANcoll · Aj−i · PrEP

P(i,k,b)(j,l,b) =Sk · Pll,ANtx · Aj−i · (1− PrEP )

+Ŝk · Pll,ANcoll · Aj−i · (1− PrEP )

with

0 ≤ i < bm or bm ≤ i ≤ Q

1 ≤ k ≤ K

b = 0 or 0 < b < B or b = B

i ≤ j < Q or j = Q

0 ≤ l ≤ K

(4.2)

Just like I said in the previous section, the element Aj−i changes to A≥Q−i when j = Q

while the RN is programmed to maintain the same level when b = B.

4.1.3 Only the RN is active

If RN is the only active node, then the RN surely transmits α = min(i, F ) packets and the

energy that is consumed in this cycle is PrE,data,tx(i, k = 0) (4.3).

P(i,0,b)(j,l,b+1) = Ps,0 ·Bkl · Aj−i+α · Pr+E,tx(i, 0)

P(i,0,b)(j,l,b) = Ps,0 ·Bkl · Aj−i+α · Pr=E,tx(i, 0)

P(i,0,b)(j,l,b−1) = Ps,0 ·Bkl · Aj−i+α · Pr−E,tx(i, 0)

with

bm ≤ i ≤ Q

k = 0

0 < b < B or b = B

i− α ≤ j < Q or j = Q

0 ≤ l ≤ K

(4.3)

Also for this section we might fall into the case in which j = Q or b = B, wherein the RN

is programmed to maintain the same level of energy as long as it does not consume something.
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4.1.4 Contention: RN and other nodes are active

�e fourth section is the most interesting and general one because it describes the contention

of the channel between k + 1 active nodes, including the RN. �e next formulas follows the

following pa�ern:

P(i,k,b)(j,l,d) =Pr1{ RN manages to transmit}

+ Pr2{ another node wins the access }

+ Pr3{ RN collides }

+ Pr4{ two or more other nodes collide }

(4.4)

If we break down each line of (4.4), it becomes the (4.5) that is an example of a transition

to an higher level of energy.

P(i,k,b)(j,l,b+1) =

Ps,k · Pll,succ · Aj−i+α · Pr+E,tx(i, k)

+kPs,k · Pll,ovh/tx · Aj−i · Pr+E,ovh,tx(k)

+Pf,k · Pll,coll · Aj−i · Pr+E,coll(k)

+T̂k · Pll,ovh/coll · Aj−i · Pr+E,ovh,coll(k)

with

bm ≤ i < Q or

bm ≤ i ≤ Q⇒ A≥Q−i

1 ≤ k ≤ K

0 < b < B or

b = B ⇒ PrEP = 0

i ≤ j < Q or

j = Q⇒ A≥Q−i

0 ≤ l ≤ K

(4.5)

�e �rst line of (4.5) says that the RN wins the access to the channel (Ps,k) and it receives

j − i + α packets in the same cycle (Aj−i+α). In addition to that, the RN gains one energy

notch (Pr+E,tx(i, k)) and l other nodes will be active once the cycle ends (Pll,succ).

�e second line describes the probability that another node of the network wins the contention

(kPs,k) and that the RN receives j − i packets. Moreover, everything is multiplied by the

probability of winning an energy notch thanks (Pr+E,ovh,tx(k)).

�e third takes into account the probabilities relative to a collision that includes the RN and
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hence the probability of gaining a notch is Pr+E,coll(k).

Finally, the last line provides for the case when a collision between other nodes but the RN

occurs (T̂k). All the lines are multiplied for their respective probability to �nd l active nodes

at the beginning of the next cycle.

�e last special case that must be included is when i−α ≤ j ≤ i− 1. We can obtain these

values of j only if the RN has won the channel and thus the only line which remains is the

�rst while the others will be set to 0.

4.1.5 Impossible transitions

All the other cases not included by the previous lists of indices must be considered impossible

transitions and their values are equal to 0.

4.1.6 Resuming table and visual interpretation

A summary of all the di�erent cases is illustrated in table 4.1. Moreover, a visual interpretation

of the transitions that might occur is given in Fig. 4.1. It has been obtained by using:

• Q = 3: maximum number of packets in the queue

• K = 2: number of nodes in the system, except the RN

• F = 2: maximum frame size

• B = 3: maximum state of the ba�ery

• C = 10: fraction of notch consumed due to a fully transmission

• λ = 2: arrival rate of the packets [units of arrival every second]

• bm = 2: threshold of packets in the queue to make the node active or not

• Prep = 0.1: fraction of cycles in which one energy notch arrives

Fig. 4.1 must be read in the following way. �e y-axis shows the possible states at the cycle

t0, while the x-axis at t1 a�er a transition. �e probability of such transition is denoted by the

colour, i.e. the darker the grey is, the more likely the transition can occur. I have divided the

matrix into square cells, each of dimension (Q + 1)(K + 1)× (Q + 1)(K + 1), that indicate
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the ba�ery transition. For instance, the cell at the second line and second column includes all

the transitions of Q and K that provide for being in the same ba�ery state b = 1 ↪→ b = 1.

�e cell on its right side, instead, includes all the transitions of the other dimensions providing

that an increase of the energy happens b = 1 ↪→ b = 2. On the contrary, the cell on the le�

represents the transitions referring to consumption of energy b = 1 ↪→ b = 0.

Figure 4.1: Visual representation of a transition matrix of the RN states into a small network

with a high probability of energy arrival and high consumption every time a packet is sent

47



Table 4.1: Elements of the 3-D transition matrix
No node is active
P(i,0,b)(j,l,b+1) = Bkl ·Aj−i · PrEP
P(i,0,b)(j,l,b) = Bkl ·Aj−i · (1− PrEP )

0 ≤ i < bm; k = 0; 0 ≤ b < B or b = B; i ≤ j < Q or j = Q; 0 ≤ l ≤ K
or

bm ≤ i ≤ Q; b = 0

�e RN is not active
P(i,k,b)(j,l,b+1) =Sk · Pll,ANtx ·Aj−i · PrEP

+Ŝk · Pll,ANcoll ·Aj−i · PrEP
P(i,k,b)(j,l,b) =Sk · Pll,ANtx ·Aj−i · (1− PrEP )

+Ŝk · Pll,ANcoll ·Aj−i · (1− PrEP )
with

0 ≤ i < bm or 0 ≤ i ≤ Q
1 ≤ k ≤ K
b = 0 or 0 ≤ b < B or b = B

i ≤ j < Q or j = Q

0 ≤ l ≤ K

Only the RN is active
P(i,0,b)(j,l,b+1) = Ps,0 ·Bkl ·Aj−i+α · Pr+E,tx(i, 0)

P(i,0,b)(j,l,b) = Ps,0 ·Bkl ·Aj−i+α · Pr=E,tx(i, 0)

P(i,0,b)(j,l,b−1) = Ps,0 ·Bkl ·Aj−i+α · Pr−E,tx(i, 0)

bm ≤ i ≤ Q; k = 0; 0 < b < B or b = B; i− α ≤ j < Q or j = Q; 0 ≤ l ≤ K

Contention: RN and other nodes are active
P(i,k,b)(j,l,b+1) =Ps,k · Pll,succ ·Aj−i+α · Pr+E,tx(i, k)

+kPs,k · Pll,ovhtx ·Aj−i · Pr+E,ovh,tx(k)

+Pf,k · Pll,coll ·Aj−i · Pr+E,coll(k)

+T̂k · Pll,ovhcoll ·Aj−i · Pr+E,ovh,coll(k)

P(i,k,b)(j,l,b) =Ps,k · Pll,succ ·Aj−i+α · Pr=E,tx(i, k)

+kPs,k · Pll,ovhtx ·Aj−i · Pr=E,ovh,tx(k)

+Pf,k · Pll,coll ·Aj−i · Pr=E,coll(k)

+T̂k · Pll,ovhcoll ·Aj−i · Pr=E,ovh,coll(k)

P(i,k,b)(j,l,b−1) =Ps,k · Pll,succ ·Aj−i+α · Pr−E,tx(i, k)

+kPs,k · Pll,ovhtx ·Aj−i · Pr−E,ovh,tx(k)

+Pf,k · Pll,coll ·Aj−i · Pr−E,coll(k)

+T̂k · Pll,ovhcoll ·Aj−i · Pr−E,ovh,coll(k)

bm ≤ i ≤ Q; 1 ≤ k ≤ K;

0 < b < B or b = B;

i ≤ j < Q or j = Q; 0 ≤ l ≤ K

P(i,k,b)(j,l,b+1) = Ps,k · Pll,succ ·Aj−i+α · Pr+E,tx(i, k)

P(i,k,b)(j,l,b) = Ps,k · Pll,succ ·Aj−i+α · Pr=E,tx(i, k)

P(i,k,b)(j,l,b−1) = Ps,k · Pll,succ ·Aj−i+α · Pr−E,tx(i, k)

bm ≤ i ≤ Q 1 ≤ k ≤ K;

0 < b < B or b = B;

i− α ≤ j < i; 0 ≤ l < K

48



4.2 Results

All the next results have been calculated with the following parameters: Q = 7,K = 9,B = 6,

C = 10.

4.2.1 Steady-state Probabilities

Once we know all the elements of the transition matrix P, we can proceed to the calculation

of the steady-state probabilities and the performance parameters.

We might use many approaches to calculate πi,k,b, but only two of them have been consid-

ered. �e �rst (4.6) is the simplest and derives directly from the theory of Markov Chains, as

explained in [2].

π ·P = π

π · 1 = 1
⇒ π = 1T · (P+ E− I)−1 (4.6)

On the other hand, because the transition matrices are of dimension (Q+1)(K +1)(B +

1) × (Q + 1)(K + 1)(B + 1), the second approach consists in an iteration of inversions of

smaller matrices. �e method’s name is block state reduction and it is described in [8] for

�asi-Birth-Death processes. �ese processes are characterized by the same diagonality of

the transition matrix that we can observe in Fig. 4.1. �e method starts with a division of the

transition matrix (Q+1)× (K+1)× (B+1) in smaller ones of dimension (Q+1)× (K+1)

(4.7).

P(B+1)×(B+1) ⇒



A00 U00 0 . . . . . . 0

D21 A11 U23 0 . . . 0

0 D32 A11 U23 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . D32 A11 U23

0 0 0 . . . DB,B+1 EB


(4.7)
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�en, we can use the algorithms described below in order to solve the linear system in (4.8).



π0 = π0E0

πB−b = πB−b−1RB−b
B∑
b=0

πb1 = 1

with

RB−b = U23(I − EB−b)−1

R0 = U00(I − EB−b)−1

and

EB−1 = A11 + U23(I − EB−b+1)
−1DB,B+1

EB−b = A11 + U23(I − EB−b+1)
−1D32

E0 = A00 + U00(I − E1)
−1D21

(4.8)

Data: A00 U00 D21 A11 U23 D32 EB DB,B+1 B

Result: Steady-State probabilities πi,k,b

RB = U23(I − EB)

for 1 ≤ b ≤ B − 1 do

if b=B-1 then
EB−b = A11 + U23(I − EB−b+1)

−1DB,B+1

end

else
EB−b = A11 + U23(I − EB−b+1)

−1D32

end

RB−b = U23(I − EB−b)

end

E0 = A00 +D21(I − E1)U00

/* Solution of the linear system */

πik,b=0 =

(I − E0)

1..1..1

−1 0
1


for 1 ≤ b ≤ B do

πik,b = πik,b−1Rb

end

/* Normalization */

sum =
B∑

b=0

(Q+1)×(K+1)∑
ik=0

πik,b

for 0 ≤ b ≤ B do
πik,b = πik,b / sum

end
Algorithm 1: Block state reduction algorithm
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(a) πi =
K∑
k=0

B∑
b=0

πi,k,b

(b) πk =
Q∑
i=0

B∑
b=0

πi,k,b

(c) πb =
Q∑
i=0

K∑
k=0

πi,k,b

Figure 4.2: Single dimension stationary distributions obtained with the same inputs of Fig. 4.1

Once we have found out which are πb and, consequently, πi,k,b, we can obtain the marginal

probability πi (Fig. 4.2 (a)) by simply summing over all the values for k and b and vice versa

for πk (Fig. 4.2 (b)) and πb (Fig. 4.2 (c)). Because at the beginning of the process, that is before

building the transition matrix, we needed some initial values of πi,k,b, all the previous instruc-

tions are repeated as long as the di�erence between the current πi,k,b and the one calculated

in the previous iterations is less than 10−10.

4.2.2 Performance parameters

�anks to the stationary distributions previously found, we can now calculate di�erent per-

formance parameters.
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�roughput of a node

It is the average number of packets successfully delivered per cycle by a node. Indeed, we

obtain it by summing the fraction of states in which the RN node is active multiplied by the

number of packets that are sent and the probability that the transmission succeeds (4.9).

η =

Q∑
i=bm

K∑
k=0

B∑
b=1

απi,k,bPs,k [
packets

cycles
] (4.9)

Figure 4.3: �roughput of a single node as a function of λ and with di�erent F , bm and PrEP
values

We suddenly notice from Fig. 4.3 that the throughput gets worse by reducing the proba-

bility of harvesting energy. �is is due to the fact that the node is more likely to empty the

ba�ery and hence stop transmi�ing.

Moreover, the throughput grows proportionally with F and such behaviour states again the
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importance of the aggregated packet transmission to improve the performances of the system

[3].

Finally, with low packets and energy arrival rates, we do not see changes between throughputs

with di�erent bm but, with high arrival rate and a constant energy supply, the higher is bm,

the more likely transmission with many packets will be.
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Successful Transmission in a Random Cycle

If we are just interested in the probability that an active node manages to transmit conditioned

on the fact of being active, then the (4.9) becomes the (4.10).

Ps =
1

Q∑
i=bm

K∑
k=0

B∑
b=1

πi,k,b

Q∑
i=bm

K∑
k=0

B∑
b=1

πi,k,bPs,k (4.10)

Figure 4.4: Probability of successful transmission as a function of λ and with di�erent F , bm

and PrEP values

�e interesting result coming from Fig. 4.4 is that the probability of successful transmission

is higher when the energy is harvested less frequently. One reason of such a behaviour could

be that the other nodes are less likely to be active, then Ps,k is higher. Moreover, everything is

conditioned on the fact of being already active, thus the event of being with no energy is not

taken into account for the RN.
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Packets in the queue

�e average number of packets in the queue is given by summing the amount of packets in

the queue in a state times the probability of being in that state (4.11).

Q =

Q∑
i=1

πi · i [packets] with πi =
K∑
k=0

B∑
b=0

πi,k,b (4.11)

Figure 4.5: Average number of packets in the queue as a function of λ and with di�erent F ,

bm and PrEP values

Fig. 4.5 shows that the average number of packets in the queue grows proportionally with

bm and inversely proportional with PrEP . As a ma�er of fact, both the events produce a

reduction of transmissions and hence a rise in the queue of the node.
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Average Delay

Once we know η and Q, thanks to the Li�le’s Law that has been explained in the �rst chapter,

we sort out the average delay in the queue for each packet (4.12).

W =
Q

η
[portion of cycles] (4.12)

Figure 4.6: Average delay for a packet as a function of λ and with di�erent F , bm and PrEP
values

Fig. 4.6 illustrates that enlarging bm causes an abrupt increase of the average delay for low

packets arrival rates. �e curves �rst rapidly decrease until a minimum and then rises gently

until becoming stable for high rates. From this and the previous �gures it is clear that, the

lower is PrEP , the worse will be the global performances.

Average energy consumed

�e average energy consumed depends on the channel outcome we are referring to:
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Eav,tx =

Q∑
i=bm

K∑
k=0

B∑
b=1

πi,k,b · Ps,k · Etx(i, k) Eav,ovh,coll =

Q∑
i=bm

K∑
k=2

B∑
b=1

πi,k,b · T̂k · Eovh,coll(k)

Eav,coll =

Q∑
i=bm

K∑
k=1

B∑
b=1

πi,k,b · Pf,k · Ecoll(k) Eav,ovh,tx =

Q∑
i=bm

K∑
k=1

B∑
b=1

πi,k,b · kPs,k · Eovh,tx(k)

(4.13)

Figure 4.7: Average energy transmi�ed as a function of λ and with di�erent F , bm and PrEP
values

If the energy arrival is more unlikely, the average number of transmission doubtless falls

o� and hence the average energy consumption is lower.

Phase type distribution

When we give as input a probability of energy arrival equal to 0, the RN works thanks to its

stored energy but, a�er a while, it will surely fall into the absorbing state of no energy at all,

57



that is b = 0. In this case, basing on the 2-D process in [8], we have derived the phase type

distribution for a 3-D DTMC, de�ned as the distribution of the time until absorption in an

absorbing DTMC. To obtain it, the �rst step is to rearrange the P matrix as you see in Fig.

4.8 and decide in a vector α which are the initial probabilities that the system starts from a

transient state b. I have supposed that the RN starts to work with a full ba�ery so thatα00,B = 1

while the other elements of α are 0.

Figure 4.8: Rearranging of the transition matrix and declaration of the α vector

A�er deriving t, we have calculated the probability pc that the RN falls into the absorption

state b = 0 at the cycle c (4.14). An example of such a probability density function and the

associated cumulative distribution function is in Fig. 4.9.

Finally, we can express the mean value by using the (4.15).

p0 = α01
′ = 0

pc = (αTc−1t)1′
(4.14)

µ = α(I− T)−11′ (4.15)
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(a) Probability density function (b) Cumulative distribution function

Figure 4.9: Example of pdf and cdf relative to a random variable related with the probability

of falling in the state b = 0 during a speci�c cycle (F = 7, λ = 3, bm = 7)

Validation

In Fig. 4.10 you can see a comparison between the performance obtained by using the Matlab

code of the model and the same parameters coming from a network simulator. �e relative

error (mat−sim)
sim

is represented in the last column. We notice that, above all for λ = 3, the

relative error is very small and hence we could say my model come up with quite accurate

results.

Figure 4.10: Comparison between the model and the simulation results with the following

input parameters: Q = 10, N = 10, B = 10, C = 10, F = 2, bm = 2
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Chapter 5

Conclusion

In the thesis, an analytical model based on a discrete-time Markov chain (DTMC) has been

elaborated to evaluate the performances of a wireless network. �e nodes communicate with

a common sink node with the classic S-MAC protocol to which two important extensions have

been added. �e �rst refers to the number of packets that are jointly sent together in the same

cycle, whereas the second is the number minimum of packets in the queue under which a node

cannot be considered active.

During each cycle, every channel outcome causes its speci�c energy consumption and one

energy notch is harvested with probability PrEP . We have �rst calculated each element of

the transition matrix and realized that its form belongs to the family of �asi Birth and Death

processes. �is allows to exploit speci�c algorithms to solve the stationary distribution that

greatly reduce the computational complexity, particularly when the cardinality of the state

space is large. From such a distribution, we have derived the performance parameters expres-

sions, such as throughput, average number of packets in the queue of a node, average packet

delay in a node bu�er, i.e., since packet arrival until it is successfully transmi�ed, and energy

consumption. Finally, we have analysed the behaviour of a single node when it starts with full

ba�ery but no energy can be harvested.

As previously said, the thesis describes a novel methodology to treat the energy as a di-

mension of a DTMC. �e main limitation is due to the huge dimensionality of the transition
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matrix. Indeed, a high number of notches would be�er represent the behaviour of the energy

and hence increase the model precision. However, we must mediate between such a number

and the computational complexity. If more precision is required, we can use a block state re-

duction algorithm to solve the stationary distribution.

With some combination of input parameters, i.e. a very low PrEP , the main algorithm, that

uses a �xed point iteration, does not converge properly. �us, it would be useful to carry out

a deeper study on such an issue in the future.

�e energy harvested has been represented for simplicity with a Bernoulli process. Further

analysis of the energy arrival distribution according to the di�erent environments might give

results useful for a real-life application.

Finally, because a channel error-free has been assumed, adapting the model to a channel error-

prone would be interesting by introducing it as a further dimension.
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