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Abstract: For analysis of three-wire three-phase linear systems, the transformations ‘wye-delta’ and ‘delta-wye’ from 
Kennelly’s theorem are used. These transformations can be applied to balanced systems but not to unbalanced systems. 
Depending on the type of connection that is used, zero-sequence voltages and currents appear in generators and loads and 
are not transferred over the network. The zero-sequence voltage in a delta-connected load and the zero-sequence current 
that is obtained using Kennelly’s theorem in a star-connected load, or vice versa, cause different imbalance effects. In this 
work, the equivalent circuit for any point of the system is developed. The impedances of the equivalent circuit in any node 
are calculated using line-to-line voltages and line currents. This equivalent circuit incorporates all energetic phenomena, 
including the imbalance. For its calculation, the phasor unbalance power is used. 
 

1. Introduction 
In order to analyse an electrical power system 

correctly, it is necessary to know all the phenomena involved 
in the energy balance. In an unbalanced linear system, in 
addition to reactive and active power, there are other 
inefficient powers caused by imbalances that increase the 
apparent power of the system [1]. The quality of the system 
is significantly degraded by these phenomena. The value of 
the apparent power will depend on the asymmetry of the 
voltages in the nodes of the distribution network and the 
currents that circulate in the electric lines [2-5]. The 
configuration of the type of distribution and transmission 
network significantly affects the propagation of the 
imbalance in the system nodes. In a radial network, there will 
be higher levels of imbalance than in a mesh network [6]. 

In an electrical system, the imbalances are mainly 
caused by the connected loads. However, they can also be 
caused by the asymmetry of the voltages [7]. In most 
countries, there are standards that restrict the values of 
asymmetric voltages. An unequal distribution of loads causes 
an imbalance in the voltage and the circulating currents of the 
nodes [6]. 

The effects of imbalances on the electrical equipment 
in a system are multiple [8-11]: decrease of power and energy 
capacity in equipment, increase in the power losses of the 
lines and in the windings of machines and transformers, 
additional heating in electrical equipment, mechanical 
vibrations, unexpected failure of the protection, and 
propagation of imbalances from one node to another. 

In an electrical system, measuring the unbalanced 
power allows us to correct and eliminate these inefficiencies 
and to estimate more reliably the apparent power of the 
system. The IEEE 1459-2010 standard [12] formulates the 
unbalanced power 𝑆𝑆𝑈𝑈 according to (1). This power occurs at 
the fundamental frequency, and its unit is VA. 𝑆𝑆𝑒𝑒  is the 

effective apparent power that is deduced from an approximate 
equivalent circuit having the same losses as the actual circuit, 
and 𝑆𝑆+ is the positive-sequence apparent power [13-15]: 

𝑆𝑆𝑈𝑈 = �𝑆𝑆𝑒𝑒2 − 𝑆𝑆+2                                   (1) 

 
Unified power measurement (UPM) formulates the 

unbalanced power 𝐷𝐷𝑈𝑈 from (2). 𝑆𝑆1 is the modulus of the total 
apparent power defined by Buchholz [16-18]. It is expressed 
by the sequence components from (3) [19]. In a four-wire 
linear unbalanced three-phase system, the values 𝑆𝑆𝑒𝑒  and 𝑆𝑆1 
are approximate but not equal, and therefore the unbalanced 
powers 𝑆𝑆𝑈𝑈 and 𝐷𝐷𝑈𝑈 are also unequal. However, the values are 
the same in three-wire linear systems: 

 

𝐷𝐷𝑈𝑈 = �𝑆𝑆12 − 𝑆𝑆+2                                  (2) 

𝑆𝑆1 = 3�(𝑉𝑉+2 + 𝑉𝑉−2 + 𝑉𝑉02) (𝐼𝐼+2 + 𝐼𝐼−2 + 𝐼𝐼02)            (3) 

 
In 2016, from the expressions for instantaneous power, 

the authors of [20] formulated the total phasor of the 
unbalanced power from (4) and the total phasor of the 
apparent power from (5). These expressions are applicable to 
linear systems with unbalanced loads and asymmetric 
voltages: 

𝐷𝐷𝑢𝑢����⃗ = �1 + 𝛿𝛿−2 + 𝛿𝛿02  (𝐴𝐴 𝑢𝑢𝑎𝑎 + 𝐵𝐵 𝑢𝑢𝑏𝑏 + 𝐶𝐶 𝑢𝑢𝑐𝑐 + 𝐷𝐷 𝑢𝑢𝑑𝑑) 

+�𝛿𝛿−2 + 𝛿𝛿02  �𝑃𝑃+𝑢𝑢𝑥𝑥 + 𝑄𝑄+𝑢𝑢𝑦𝑦�                                  (4) 

𝑆𝑆1���⃗ = �1 + 𝛿𝛿−2 + 𝛿𝛿02 �𝐴𝐴 𝑢𝑢𝑎𝑎 + 𝐵𝐵 𝑢𝑢𝑏𝑏 + 𝐶𝐶 𝑢𝑢𝑐𝑐 + 𝐷𝐷 𝑢𝑢𝑑𝑑 + 𝑃𝑃+𝑢𝑢𝑥𝑥
+ 𝑄𝑄+𝑢𝑢𝑦𝑦�                                                      (5) 
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The three-wire three-phase systems have particular 
characteristics that must be taken into account in order to 
correctly estimate the energetic phenomena in an unbalanced 
system. These features involve many issues for the 
calculation of the unbalanced power: 

- The first problem is the variety of connection 
types of the network’s elements. The generators 
and loads can be star-connected or delta-
connected. In unbalanced systems, depending on 
the type of connection that is used, there are zero-
sequence voltages or currents. These zero-
sequence values are not transferred over the 
network [21], and therefore the unbalanced power 
and total apparent power that are calculated at any 
point in the system will have different values, 
depending on whether the calculations are 
performed from the source or from the load. 

- The second problem is due to the electrical 
parameters measured at any point in the system.  
These parameters are the line-to-line voltages and 
the line currents. Moreover, in a network, it is 
impossible to know the nature of the connection 
system of the generators and loads. 

- Finally, it is difficult to obtain an equivalent 
circuit that takes into account all energetic 
phenomena.  Kennelly’s transformations of ‘star-
delta’ and ‘delta-star’ are only valid for the 
calculation of active and reactive power flows, 
but not for the calculation of powers caused by the 
phenomenon of imbalance. The zero-sequence 
voltage in a delta-connected load and the zero-
sequence current that are obtained using 
Kennelly´s theorem in a star-connected load, or 
vice versa, cause different imbalance effects. 

In this paper, the equivalent circuit at any point in the 
three-wire three-phase linear system is proposed from the 
line-to-line voltages and line currents. For that, it is not 
necessary to know the nature of the connection types of the 
generators and loads in a system; in this circuit, all energetic 
phenomena are represented, including those that are caused 
by the imbalances. Accordingly, in Section 2, considering the 
different forms of connection systems in generators and loads, 
it is shown that the classical energy balance is not valid for 
determining the unbalanced power. In Section 3, the 
equivalent circuit is developed. This circuit is calculated from 
the line-to-line voltages and line currents measured in a node. 
In Section 4, the values A, B, C, and D of the phasor total 
unbalanced power in a three-wire three-phase linear system 
is analysed. In Section 5, in order to facilitate an 
understanding of the concepts developed in this work and its 
application, a practical case study of a three-bus system with 
unbalanced loads and voltages is studied. The connection 
systems of the loads are different. 

2. Energy balance of unbalanced three-phase 
systems  

In this section, we will demonstrate that the total 
apparent power produced by the generator is not the same as 
that consumed by the load in circuits with different 
configurations, under certain considerations. Finally, and for 
the balance to be identical, an equivalent circuit will be 
obtained that will replace the load. 

2.1. Case A: Three-phase electrical system with 
generator and star-connected load 

 
Fig.1 shows a three-phase electrical system with 

generator and star-connected load. The value of the total 
apparent power is given by equation (3) of the UPM theory. 
That is, from the standpoint of the generator: 

 

𝑆𝑆1𝐺𝐺 = 3 ��𝑉𝑉𝑔𝑔𝑎𝑎+2 + 𝑉𝑉𝑔𝑔𝑎𝑎−2 + 𝑉𝑉𝑔𝑔𝑎𝑎02 � (𝐼𝐼𝑎𝑎+2 + 𝐼𝐼𝑎𝑎−2 + 𝐼𝐼𝑎𝑎02 ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose 𝐸𝐸𝑎𝑎 = 𝐸𝐸𝑏𝑏 = 𝐸𝐸𝑐𝑐  are balanced, and that the 

impedance 𝑍𝑍𝑔𝑔 is the same for every phase. We then have that 
the total apparent power of the above-mentioned generator 
𝑆𝑆1𝐺𝐺 is given by 

 

𝑆𝑆1𝐺𝐺 = �9 �𝑉𝑉𝑔𝑔𝑎𝑎+2 + 𝑉𝑉𝑔𝑔𝑎𝑎−2 � (𝐼𝐼𝑎𝑎+2 + 𝐼𝐼𝑎𝑎−2 )            (6) 

 
This is because the generator, with the above-

mentioned conditions, will not have zero-sequence 
components, neither of voltage nor of current, under normal 
conditions of operation. 

On the other hand, the load will consume a different 
total apparent power 𝑆𝑆1𝐿𝐿 , provided that the sum of 𝑉𝑉𝑎𝑎1 , 
𝑉𝑉𝑏𝑏1 and 𝑉𝑉𝑐𝑐1  voltages is not null. This is because a zero-
sequence voltage is present on the load. Therefore: 

 

𝑆𝑆1𝐿𝐿 = �9 · (𝑉𝑉𝑎𝑎1+2 + 𝑉𝑉𝑎𝑎1−2 + 𝑉𝑉𝑎𝑎102 ) (𝐼𝐼𝑎𝑎+2 + 𝐼𝐼𝑎𝑎−2 )      (7) 

 
Moreover, taking into account that 𝑉𝑉𝑔𝑔𝑎𝑎+ = 𝑉𝑉𝑎𝑎1+  and 

𝑉𝑉𝑔𝑔𝑎𝑎− = 𝑉𝑉𝑎𝑎1−: 
 

𝑆𝑆1𝐿𝐿 = �𝑆𝑆1𝐺𝐺2 + 9 (𝑉𝑉𝑎𝑎102 ) (𝐼𝐼𝑎𝑎+2 + 𝐼𝐼𝑎𝑎−2 ) = �𝑆𝑆1𝐺𝐺2 + 𝐷𝐷𝑈𝑈2    (8) 

 
The last addend of the final sum 𝐷𝐷𝑈𝑈 corresponds to the 

unbalanced power that the zero-sequence voltage provides, or 
the voltage difference between the generator neutral and the 
neutral of the load. 

Therefore, to correct the energy balance, we will have 
to cancel the zero-sequence voltage and obtain the equivalent 
impedances. To do this, we include the zero-sequence voltage 
in the star load, as shown in Fig. 2: 

 
Fig. 1.  Three-phase electrical system with 
generator and star-connected load. 
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 Here: 
 

𝑍𝑍′𝑎𝑎 = 𝑍𝑍𝑎𝑎 +
𝑉𝑉𝑎𝑎10
𝐼𝐼𝑎𝑎

= 𝑍𝑍𝑎𝑎  
𝑉𝑉′𝑎𝑎1

𝑉𝑉′𝑎𝑎1 − 𝑉𝑉𝑎𝑎10
= 𝑍𝑍𝑎𝑎  

𝑉𝑉𝑔𝑔𝑎𝑎
𝑉𝑉𝑔𝑔𝑎𝑎 − 𝑉𝑉𝑎𝑎10

   (9) 

 
With this change in each of the branches, the total 

apparent power produced by the generator coincides with the 
total apparent power consumed by the load. 

 
2.2. Case B: Three-phase electrical system with 

star-connected generator and delta-
connected load 

 
Fig.3 shows a three-phase electrical system with star-

connected generator and delta-connected load. Making the 
same assumption as in the previous section, the total apparent 
power produced by the generator is given by equation (6). On 
the other hand, the load will have a different total apparent 
power, provided that the sum of the currents of the triangle. 
𝐼𝐼𝑎𝑎𝑏𝑏1, 𝐼𝐼𝑏𝑏𝑐𝑐1 and 𝐼𝐼𝑐𝑐𝑎𝑎1 is not null. This is because a zero-sequence 
current is present inside the triangle. Therefore: 

 

𝑆𝑆1𝐿𝐿 = �9 (𝑉𝑉𝑎𝑎𝑏𝑏1+2 + 𝑉𝑉𝑎𝑎𝑏𝑏1−2 ) (𝐼𝐼𝑎𝑎𝑏𝑏1+2 + 𝐼𝐼𝑎𝑎𝑏𝑏1−2 + 𝐼𝐼𝑎𝑎𝑏𝑏102 ) 

Moreover, taking into account that 
 

𝑉𝑉𝑔𝑔𝑎𝑎+ =
𝑉𝑉𝑎𝑎𝑏𝑏1+
√3

         𝑉𝑉𝑔𝑔𝑎𝑎− =
𝑉𝑉𝑎𝑎𝑏𝑏1−
√3

 

 
𝐼𝐼𝑎𝑎+ = √3 𝐼𝐼𝑎𝑎𝑏𝑏1+      𝐼𝐼𝑎𝑎− = √3 𝐼𝐼𝑎𝑎𝑏𝑏1− 

 
we obtain 
 

𝑆𝑆1𝐿𝐿 = �𝑆𝑆1𝐺𝐺2 + 9 𝐼𝐼𝑎𝑎𝑏𝑏102  (𝑉𝑉𝑎𝑎𝑏𝑏1+2 + 𝑉𝑉𝑎𝑎𝑏𝑏1−2 ) = �𝑆𝑆1𝐺𝐺2 + 𝐷𝐷𝑈𝑈2   (10) 

 
As before, the last addend of the final sum corresponds 

to the unbalanced power 𝐷𝐷𝑈𝑈. In this case, the zero-sequence 
current generated in the unbalanced delta-connected loads 
produced it. 

 With this result, and to correct the energy balance, we 
will have to cancel the zero-sequence current and obtain the 
equivalent impedances. Accordingly, a voltage source, the 
product of the zero-sequence current and the impedance of 
this branch, will be included in the branches as: 

 
Here: 
 

𝑍𝑍′𝑎𝑎𝑏𝑏1 = 𝑍𝑍𝑎𝑎𝑏𝑏1 +
𝑍𝑍𝑎𝑎𝑏𝑏1 𝐼𝐼𝑎𝑎𝑏𝑏10
𝐼𝐼′𝑎𝑎𝑏𝑏1

= 𝑍𝑍𝑎𝑎𝑏𝑏1  
𝑉𝑉𝑎𝑎𝑏𝑏1

𝑉𝑉𝑎𝑎𝑏𝑏1 − 𝑍𝑍𝑎𝑎𝑏𝑏1 𝐼𝐼𝑎𝑎𝑏𝑏10
  (11) 

 
With this change in each of the branches, the total 

apparent power produced by the generator coincides with the 
total apparent power consumed by the load. 

 
2.3. Case C: Three-phase electrical system with 

delta-connected generator and star-
connected load 

 
 

 
Fig. 2.  Initial and equivalent circuit. 
 

 
Fig. 3.  Three-phase electrical system with 
star-connected generator and delta-
connected load. 
 

 
Fig. 4.  Initial and equivalent circuit. 

 
Fig. 5.  Three-phase electrical system with 
delta-connected generator and star-
connected load. 
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Fig.5 shows a three-phase electrical system with delta-
connected generator and star-connected load. Making the 
same assumption as in the previous section, the total apparent 
power produced by the generator is given by the equation (12). 

 

𝑆𝑆1𝐺𝐺 = �9 �𝑉𝑉𝑔𝑔𝑎𝑎𝑏𝑏+2 + 𝑉𝑉𝑔𝑔𝑎𝑎𝑏𝑏−2 � �𝐼𝐼𝑔𝑔𝑎𝑎𝑏𝑏−2 + 𝐼𝐼𝑔𝑔𝑎𝑎𝑏𝑏−2 �     (12) 

 
On the other hand, the load will consume a different 

total apparent power 𝑆𝑆1𝐿𝐿 , provided that the sum of the 
voltages 𝑉𝑉𝑎𝑎1, 𝑉𝑉𝑏𝑏1 and 𝑉𝑉𝑐𝑐1 is not null. This is because a zero-
sequence voltage is present on the load. Therefore: 

 

  𝑆𝑆1𝐿𝐿 = �9 (𝑉𝑉𝑎𝑎1+2 + 𝑉𝑉𝑎𝑎1−2 + 𝑉𝑉𝑎𝑎102 ) (𝐼𝐼𝑎𝑎+2 + 𝐼𝐼𝑎𝑎−2 ) 

 
Moreover, taking into account that 
 

𝑉𝑉𝑎𝑎1+ =
𝑉𝑉𝑔𝑔𝑎𝑎𝑏𝑏+
√3

      𝑉𝑉𝑎𝑎1− =
𝑉𝑉𝑔𝑔𝑎𝑎𝑏𝑏−
√3

 

 
𝐼𝐼𝑎𝑎+ = √3 𝐼𝐼𝑔𝑔𝑎𝑎𝑏𝑏+      𝐼𝐼𝑎𝑎− = √3 𝐼𝐼𝑔𝑔𝑎𝑎𝑏𝑏− 

 
we obtain 
 

𝑆𝑆1𝐿𝐿 = �𝑆𝑆1𝐺𝐺2 + 9 (𝑉𝑉𝑎𝑎102 ) (𝐼𝐼𝑎𝑎+2 + 𝐼𝐼𝑎𝑎−2 ) = �𝑆𝑆1𝐺𝐺2 + 𝐷𝐷𝑈𝑈2    (13) 

 
This equation is the same as in the previous section, 

Eq. (8). Because the energy balance is correct, we will have 
to cancel the zero-sequence voltage and obtain the equivalent 
impedances, which yields equation (9). 

 
2.4. Case D: Delta-connected generator and 

delta-connected load 
 

Fig.6 shows a three-phase electrical system with delta-
connected generator and delta-connected load. Making the 
same assumption as in the previous section, the total apparent 
power produced by the generator is given by equation (12). 

On the other hand, the load will have a different total 
apparent power provided the sum of the currents of the 
triangle 𝐼𝐼𝑎𝑎𝑏𝑏1, 𝐼𝐼𝑏𝑏𝑐𝑐1 and 𝐼𝐼𝑐𝑐𝑎𝑎1 is not null. This is because a zero-
sequence current is present inside the triangle. Therefore: 

 

  𝑆𝑆1𝐿𝐿 = �9 (𝑉𝑉𝑎𝑎𝑏𝑏1+2 + 𝑉𝑉𝑎𝑎𝑏𝑏1−2 ) (𝐼𝐼𝑎𝑎𝑏𝑏1+2 + 𝐼𝐼𝑎𝑎𝑏𝑏1−2 + 𝐼𝐼𝑎𝑎𝑏𝑏102 ) 

Moreover, taking into account that 
 

𝑉𝑉𝑔𝑔𝑎𝑎𝑏𝑏+ = 𝑉𝑉𝑎𝑎𝑏𝑏1+       𝑉𝑉𝑔𝑔𝑎𝑎𝑏𝑏− = 𝑉𝑉𝑎𝑎𝑏𝑏1− 
𝐼𝐼𝑔𝑔𝑎𝑎𝑏𝑏1+ =  𝐼𝐼𝑎𝑎𝑏𝑏1+      𝐼𝐼𝑔𝑔𝑎𝑎𝑏𝑏1− =  𝐼𝐼𝑎𝑎𝑏𝑏1− 

 
we obtain 
 

𝑆𝑆1𝐿𝐿 = �𝑆𝑆1𝐺𝐺2 + 9 𝐼𝐼𝑎𝑎𝑏𝑏102  (𝑉𝑉𝑎𝑎𝑏𝑏1+2 + 𝑉𝑉𝑎𝑎𝑏𝑏1−2 ) = �𝑆𝑆1𝐺𝐺2 + 𝐷𝐷𝑈𝑈2    (14) 

 
To correct the energy balance, we will have to cancel 

the zero-sequence current and obtain the equivalent 
impedances, which yields equation (11). 

3. New equivalent circuits of a three-wire three-
phase sinusoidal power system  

According to Kennelly’s theorem, we can transform a 
star-connected three-phase load to another equivalent delta-
connected load, and vice versa (see Fig.7). From the point of 
view of the energy balance, these changes are only valid when 
the load is balanced; otherwise they are not valid. First, we 
are going to see the star-to-delta transformation. 

 

According to Kennelly: 
 

𝑍𝑍𝑎𝑎𝑏𝑏 = 𝑍𝑍𝑎𝑎 + 𝑍𝑍𝑏𝑏 +
𝑍𝑍𝑎𝑎  𝑍𝑍𝑏𝑏
𝑍𝑍𝑐𝑐

𝑍𝑍𝑏𝑏𝑐𝑐 = 𝑍𝑍𝑏𝑏 + 𝑍𝑍𝑐𝑐 +
𝑍𝑍𝑏𝑏 𝑍𝑍𝑐𝑐
𝑍𝑍𝑎𝑎

𝑍𝑍𝑐𝑐𝑎𝑎 = 𝑍𝑍𝑐𝑐 + 𝑍𝑍𝑎𝑎 +
𝑍𝑍𝑐𝑐  𝑍𝑍𝑎𝑎
𝑍𝑍𝑏𝑏

                       (15) 

 
Obviously, from the standpoint of the energy balance, 

the transformation will be correct when the sum of the 
currents 𝐼𝐼𝑎𝑎𝑏𝑏 , 𝐼𝐼𝑏𝑏𝑐𝑐 and 𝐼𝐼𝑐𝑐𝑎𝑎  is null; otherwise, it will not be 
equivalent, as shown in the previous sections. 

To achieve equivalence, we can utilise equation (9). 
However, we can also use the expressions obtained from the 
line-to-line voltages and phase currents, because they are 
easily measurable parameters. 

If we call the positive-sequence current of Kennelly’s 
equivalent delta 𝐼𝐼𝑎𝑎𝑏𝑏+ and the positive-sequence current of the 
delta energetically equivalent with the generator 𝐼𝐼´𝑎𝑎𝑏𝑏+ , we 
then have: 

 
𝐼𝐼′𝑎𝑎𝑏𝑏+ = 𝐼𝐼𝑎𝑎𝑏𝑏+        𝐼𝐼′𝑎𝑎𝑏𝑏− = 𝐼𝐼𝑎𝑎𝑏𝑏−        𝐼𝐼′𝑎𝑎𝑏𝑏0 = 0      (16)  

 
Developing the system, we get 

 

 
Fig. 6.  Three-phase electrical system with delta-
connected generator and delta-connected load. 
 

 
Fig. 7.  Original circuit with star-connected load and 
its delta-connected equivalent. 
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𝐼𝐼′𝑎𝑎𝑏𝑏 = 𝐼𝐼𝑎𝑎𝑏𝑏+ + 𝐼𝐼𝑎𝑎𝑏𝑏−
𝐼𝐼′𝑏𝑏𝑐𝑐 = 𝑎𝑎2 𝐼𝐼𝑎𝑎𝑏𝑏+ + 𝑎𝑎 𝐼𝐼𝑎𝑎𝑏𝑏−
𝐼𝐼′𝑐𝑐𝑎𝑎 = 𝑎𝑎 𝐼𝐼𝑎𝑎𝑏𝑏+ + 𝑎𝑎2 𝐼𝐼𝑎𝑎𝑏𝑏−

                      (17) 

 
 On the other hand, and according to Fig. 8, we have 

 
𝐼𝐼𝑎𝑎 = 𝐼𝐼′𝑎𝑎𝑏𝑏 − 𝐼𝐼′𝑐𝑐𝑎𝑎 = (𝐼𝐼𝑎𝑎𝑏𝑏+ + 𝐼𝐼𝑎𝑎𝑏𝑏−) − (𝑎𝑎 𝐼𝐼𝑎𝑎𝑏𝑏+ + 𝑎𝑎2 𝐼𝐼𝑎𝑎𝑏𝑏−)
𝐼𝐼𝑏𝑏 = 𝐼𝐼′𝑏𝑏𝑐𝑐 − 𝐼𝐼′𝑎𝑎𝑏𝑏 = (𝐼𝐼𝑎𝑎𝑏𝑏+ + 𝐼𝐼𝑎𝑎𝑏𝑏−) − (𝑎𝑎2 𝐼𝐼𝑎𝑎𝑏𝑏+ + 𝑎𝑎 𝐼𝐼𝑎𝑎𝑏𝑏−) 

 
𝐼𝐼𝑎𝑎 = √3 𝐼𝐼𝑎𝑎𝑏𝑏+ 𝑒𝑒−30𝑗𝑗 + √3 𝐼𝐼𝑎𝑎𝑏𝑏− 𝑒𝑒30𝑗𝑗

𝐼𝐼𝑏𝑏 = √3 𝐼𝐼𝑎𝑎𝑏𝑏+ 𝑒𝑒−150𝑗𝑗 + √3 𝐼𝐼𝑎𝑎𝑏𝑏− 𝑒𝑒150𝑗𝑗
        (18) 

 
Solving the previous system (18), we obtain 
 

𝐼𝐼𝑎𝑎𝑏𝑏+ =
𝑎𝑎 𝐼𝐼𝑏𝑏

3
−
𝑎𝑎2 𝐼𝐼𝑎𝑎

3
         𝐼𝐼𝑎𝑎𝑏𝑏− =

𝑎𝑎2 𝐼𝐼𝑏𝑏
3

−
𝑎𝑎 𝐼𝐼𝑎𝑎

3
 

Substituting in (17), we have 
 

𝐼𝐼′𝑎𝑎𝑏𝑏 =
𝐼𝐼𝑎𝑎 − 𝐼𝐼𝑏𝑏

3
      𝐼𝐼′𝑏𝑏𝑐𝑐 =

𝐼𝐼𝑏𝑏 − 𝐼𝐼𝑐𝑐
3

      𝐼𝐼′𝑐𝑐𝑎𝑎 =
𝐼𝐼𝑐𝑐 − 𝐼𝐼𝑎𝑎

3
 

 
From the currents circulating in the delta energetically 

equivalent with the generator, and knowing the line-to-line 
voltages 𝑉𝑉𝑎𝑎𝑏𝑏, 𝑉𝑉𝑏𝑏𝑐𝑐and 𝑉𝑉𝑐𝑐𝑎𝑎, impedances that form this triangle 
are the following: 

 

𝑍𝑍′𝑎𝑎𝑏𝑏 =
𝑉𝑉𝑎𝑎𝑏𝑏
𝐼𝐼′𝑎𝑎𝑏𝑏

=
3 𝑉𝑉𝑎𝑎𝑏𝑏
𝐼𝐼𝑎𝑎 − 𝐼𝐼𝑏𝑏

𝑍𝑍′𝑏𝑏𝑐𝑐 =
𝑉𝑉𝑏𝑏𝑐𝑐
𝐼𝐼′𝑏𝑏𝑐𝑐

=
3 𝑉𝑉𝑏𝑏𝑐𝑐
𝐼𝐼𝑏𝑏 − 𝐼𝐼𝑐𝑐

𝑍𝑍′𝑐𝑐𝑎𝑎 =
𝑉𝑉𝑐𝑐𝑎𝑎
𝐼𝐼′𝑐𝑐𝑎𝑎

=
3 𝑉𝑉𝑐𝑐𝑎𝑎
𝐼𝐼𝑐𝑐 − 𝐼𝐼𝑎𝑎

                        (19) 

 
Now we consider the reverse transformation, namely, 

from delta to star. According to Kennelly’s theorem see Fig.9, 
where: 

𝑍𝑍𝑎𝑎 =
𝑍𝑍𝑎𝑎𝑏𝑏 𝑍𝑍𝑐𝑐𝑎𝑎

𝑍𝑍𝑎𝑎𝑏𝑏 + 𝑍𝑍𝑏𝑏𝑐𝑐 + 𝑍𝑍𝑐𝑐𝑎𝑎

𝑍𝑍𝑏𝑏 =
𝑍𝑍𝑎𝑎𝑏𝑏 𝑍𝑍𝑏𝑏𝑐𝑐

𝑍𝑍𝑎𝑎𝑏𝑏 + 𝑍𝑍𝑏𝑏𝑐𝑐 + 𝑍𝑍𝑐𝑐𝑎𝑎

𝑍𝑍𝑐𝑐 =
𝑍𝑍𝑏𝑏𝑐𝑐 𝑍𝑍𝑐𝑐𝑎𝑎

𝑍𝑍𝑎𝑎𝑏𝑏 + 𝑍𝑍𝑏𝑏𝑐𝑐 + 𝑍𝑍𝑐𝑐𝑎𝑎

                        (20) 

 
Obviously, from the standpoint of the energy balance, 

the transformation will be correct when the sum of the 

voltages 𝑉𝑉𝑎𝑎 , 𝑉𝑉𝑏𝑏 and 𝑉𝑉𝑐𝑐  is null; otherwise, it will not be 
equivalent, as shown in the previous sections. 

As in the previous case, to achieve equivalence, we 
can employ equation (11). However, we can also use the 
expressions obtained from the line-to-line voltages and phase 
currents, because they are easily measurable parameters. 

If we call the positive-sequence voltage of the 
equivalent Kennelly’s star 𝑉𝑉𝑎𝑎+ and the positive-sequence 
voltage of the star energetically equivalent with the generator 
𝑉𝑉′𝑎𝑎+, we have 

 
𝑉𝑉′𝑎𝑎+ = 𝑉𝑉𝑎𝑎+        𝑉𝑉′𝑎𝑎− = 𝑉𝑉𝑎𝑎−        𝑉𝑉′𝑎𝑎0 = 0      (21) 

 
Developing the system, we obtain 
 

𝑉𝑉′𝑎𝑎 = 𝑉𝑉𝑎𝑎+ + 𝑉𝑉𝑎𝑎−
𝑉𝑉′𝑏𝑏 = 𝑎𝑎2 𝑉𝑉𝑎𝑎+ + 𝑎𝑎 𝑉𝑉𝑎𝑎−
𝑉𝑉′𝑐𝑐 = 𝑎𝑎 𝑉𝑉𝑎𝑎+ + 𝑎𝑎2 𝑉𝑉𝑎𝑎−

                      (22) 

 
On the other hand, according to Fig. 10, we have 

𝑉𝑉𝑎𝑎𝑏𝑏 = 𝑉𝑉′𝑎𝑎 − 𝑉𝑉′𝑏𝑏 = (𝑉𝑉𝑎𝑎+ + 𝑉𝑉𝑎𝑎−) − (𝑎𝑎2 𝑉𝑉𝑎𝑎+ + 𝑎𝑎 𝑉𝑉𝑎𝑎−)
𝑉𝑉𝑏𝑏𝑐𝑐 = 𝑉𝑉′𝑏𝑏 − 𝑉𝑉′𝑐𝑐 = (𝑎𝑎2 𝑉𝑉𝑎𝑎+ + 𝑎𝑎 𝑉𝑉𝑎𝑎−) − (𝑎𝑎 𝑉𝑉𝑎𝑎+ + 𝑎𝑎2 𝑉𝑉𝑎𝑎−) 

 
𝑉𝑉𝑎𝑎𝑏𝑏 = √3 𝑉𝑉𝑎𝑎+ 𝑒𝑒−30𝑗𝑗 + √3 𝑉𝑉𝑎𝑎− 𝑒𝑒30𝑗𝑗

𝑉𝑉𝑏𝑏𝑐𝑐 = √3 𝑉𝑉𝑎𝑎+ 𝑒𝑒−90𝑗𝑗 + √3 𝑉𝑉𝑎𝑎− 𝑒𝑒90𝑗𝑗
        (23) 

 
Solving the previous system (23), we obtain 
 

𝑉𝑉𝑎𝑎+ =
𝑉𝑉𝑏𝑏𝑐𝑐  𝑒𝑒60𝑗𝑗 + 𝑉𝑉𝑎𝑎𝑏𝑏

3
         𝑉𝑉𝑎𝑎− =

𝑉𝑉𝑏𝑏𝑐𝑐 · 𝑒𝑒−60𝑗𝑗 + 𝑉𝑉𝑎𝑎𝑏𝑏
3

 
 

 
 
Fig. 9.  Original circuit with delta-connected load and 
its star-connected equivalent. 

 
 

Fig. 8.  Equivalent circuit with unbalanced delta-
connected load and without zero-sequence current. 
 

 
Fig. 10.  Equivalent circuit with unbalanced 
star-connected load and without zero-
sequence voltage. 
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Substituting in (22), we have 
 

𝑉𝑉′𝑎𝑎 =
𝑉𝑉𝑎𝑎𝑏𝑏 − 𝑉𝑉𝑐𝑐𝑎𝑎

3
      𝑉𝑉′𝑏𝑏 =

𝑉𝑉𝑏𝑏𝑐𝑐 − 𝑉𝑉𝑎𝑎𝑏𝑏
3

     𝑉𝑉′𝑐𝑐 =
𝑉𝑉𝑐𝑐𝑎𝑎 − 𝑉𝑉𝑏𝑏𝑐𝑐

3
 

 
Once we have the voltage applied to the star-

connected impedances energetically equivalent with the 
generator, and knowing the phase currents 𝐼𝐼𝑎𝑎 , 𝐼𝐼𝑏𝑏and 𝐼𝐼𝑐𝑐 , the 
impedances that form such a star are as follows: 

 

𝑍𝑍′𝑎𝑎 =
𝑉𝑉′𝑎𝑎
𝐼𝐼𝑎𝑎

=
𝑉𝑉𝑎𝑎𝑏𝑏 − 𝑉𝑉𝑐𝑐𝑎𝑎

3 𝐼𝐼𝑎𝑎

𝑍𝑍′𝑏𝑏 =
𝑉𝑉′𝑏𝑏
𝐼𝐼𝑏𝑏

=
𝑉𝑉𝑏𝑏𝑐𝑐 − 𝑉𝑉𝑎𝑎𝑏𝑏

3 𝐼𝐼𝑏𝑏

𝑍𝑍′𝑐𝑐 =
𝑉𝑉′𝑐𝑐
𝐼𝐼𝑐𝑐

=
𝑉𝑉𝑐𝑐𝑎𝑎 − 𝑉𝑉𝑏𝑏𝑐𝑐

3 𝐼𝐼𝑐𝑐

                        (24) 

 
Thus, if the phase currents and line-to-line voltages of 

a transmission line are known, we can obtain the equivalent 
circuit in delta or star configuration by using Eqs. (19) and 
(24), always from the standpoint of the total apparent power 
delivered by the generator. 

This allows us to obtain the total apparent power that 
is consumed, without knowing the connection or the nature 
of downstream loads, at any point in an unbalanced network. 
It should be noted that the proposed equivalent circuits allow 
the active and reactive powers consumed individually in each 
of the phases to be obtained. On the contrary, in the 
equivalent circuits derived from the transformations of 
Kennelly, only the sum of these two powers is known, but not 
the phase-by–phase values. 

4. Unbalance total phasor and apparent power 
phasor 

According to [20], the unbalanced total phasor and 
apparent power phasor are formulated from Eqs. (4-5). The 
unbalanced factors of the voltages are given by 𝛿𝛿− = 𝑉𝑉−/𝑉𝑉+ 
and 𝛿𝛿0 = 𝑉𝑉0/𝑉𝑉+. The values A, B, C, and D are calculated 
from Eqs. (25-28): 

 
A = −√2 � Vz+ Iz 𝑐𝑐𝑐𝑐𝑐𝑐 θZZ+ 𝑐𝑐𝑐𝑐𝑐𝑐 2αZ+

Z=a,b,c

        (25) 

 
B = √2 � Vz+ Iz 𝑐𝑐𝑐𝑐𝑐𝑐 θZZ+ 𝑐𝑐𝑠𝑠𝑠𝑠 2αZ+

Z=a,b,c

            (26) 

 
C = −√2 � Vz+ Iz 𝑐𝑐𝑠𝑠𝑠𝑠 θZZ+ 𝑐𝑐𝑠𝑠𝑠𝑠 2αZ+

Z=a,b,c

         (27) 

 
D = −√2 � Vz+ Iz 𝑐𝑐𝑠𝑠𝑠𝑠 θZZ+ 𝑐𝑐𝑐𝑐𝑐𝑐 2αZ+

Z=a,b,c

         (28) 

 
In a three-wire three-phase electrical system, the zero-

sequence line current is null. Decomposing each of the terms 
A, B, C, and D under these conditions, we observe that the 
following equations are satisfied: 

 
C = A = −√2 � Vz+ Iz 𝑐𝑐𝑐𝑐𝑐𝑐 θZZ+ 𝑐𝑐𝑐𝑐𝑐𝑐 2αZ+

Z=a,b,c

        (29) 

D = B = √2 � Vz+ Iz 𝑐𝑐𝑐𝑐𝑐𝑐 θZZ+ 𝑐𝑐𝑠𝑠𝑠𝑠 2αZ+
Z=a,b,c

            (30) 

5. Practical case study 
In this section, a practical case study is developed to 

check all the concepts discussed in the previous sections. 
Fig. 11 shows a three-wire three-bus electrical system 

with two unbalanced three-phase linear loads. Load 1 is star-
connected, and Load 2 is delta-connected. The loads are 
modelled at a constant impedance. The line-to-line voltages 
are unbalanced and sinusoidal in bus 1 (Slack node), where 

 
𝑉𝑉𝑎𝑎𝑏𝑏 = 394,00 · 𝑒𝑒𝑗𝑗30,21 
𝑉𝑉𝑏𝑏𝑐𝑐 = 380,92 · 𝑒𝑒−𝑗𝑗91,10 
𝑉𝑉𝑐𝑐𝑎𝑎 = 379,95 · 𝑒𝑒𝑗𝑗151,28 

The line impedances are displayed in Table 1. The 
impedances of Load 1 and Load 2 are displayed in Tables 2 
and 3, respectively. 

 
Fig. 11.  Three-wire three-bus electrical system 
with two unbalanced three-phase linear loads. 
 

 
Table 1 Line impedances 

 R (Ω) X (Ω) 
   
Line 1-2 0,06 0,02 
Line 2-3 0,04 0,01 

  
Table 2 Load 1 impedances 

 R (Ω) X (Ω) 
   
Za 17 3 
Zb 
Zc 

7 
10 

1 
2 

 
 
Table 3 Load 2 impedances 

 R (Ω) X (Ω) 
   
Zab 24 3 
Zbc 
Zca 

8 
3 

1 
2 
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After solving the system, the following results are 
obtained (Tables 4-5): 

 
5.1. Equivalent circuits in any of the nodes 

 
The impedances of the equivalent circuit at any of the 

nodes can be represented as star-connected or delta-
connected configurations. Both representations are valid. We 
are going to use a star-connected circuit. Fig. 12 shows the 
equivalent circuits ‘star-connected’ in any of the nodes. In 
this circuit, the line-to-line voltages and line currents are 
known (Tables 4 and 5). The values of the equivalent 
impedances are displayed in Table 6 are calculated from Eq. 
(24). 

Considering the values in Tables 4 and 5, the 
following results (Tables (6–9)): 

 

 

 

 

 

 

Table 4 Line-to-line voltage 
 Vab (V) Vbc (V) Vca (V) 

Modulus Angle Modulus Angle Modulus Angle 
       
Node 2 387,16 30,46 367,77 - 91,85 364,60 151,98 
Node 3 384,18 30,78 360,81 - 92,29 355,67 152,56 

 
 
Table 5 Line currents 

 Ia (A) Ib (A) Ic (A) 
Modulus Angle Modulus Angle Modulus Angle 

       
Node 1-2 107,45 - 45,72 81,19 - 116,75 154,30 104,44 
Node 2-3 101,33 - 52,15 55,05 - 113,40 136,62 107,16 
Load 1 13,20 - 13,52 26,42 - 123,74 18,98 84,44 

 

Table 6 Line equivalent impedances 
 Z’a Z’b Z’c 

R (Ω) X (Ω) R (Ω) X (Ω) R (Ω) X (Ω) 
       
Node 1 1,424 1,530 2,766 - 0,205 1,354 0,378 
Node 2 1,364 1,510 2,706 - 0,225 1,294 0,358 
Node 3 1,218 1,743 3,924 - 0,574 1,439 0,325 
Load 1 16,240 - 3,257 8,336 0,325 8,894 6,337 
Load 2 1,218 1,743 3,924 - 0,574 1,439 0,325 
       

 

 
 

Fig. 12.  Equivalent circuit ‘star-connected’ in any 
of the nodes. 
 
 

Table 7 Line-to-neutral voltage 
 Va (V) Vb (V) Vc (V) 

Modulus Angle Modulus Angle Modulus Angle 
       
Node 1 224,62 1,33 225,17 - 120,99 216,97 120,04 
Node 2 218,68 2,18 220,44 - 121,50 207,23 119,91 
Node 3 215,51 2,90 218,34 - 121,73 201,60 119,88 

 
Table 8 Positive-, negative-, and zero-sequence line-to-neutral voltage 

 V+ (V) V- (V) V0 (V) 
Modulus Angle Modulus Angle Modulus Angle 

       
Node 1 222,23 0,13 5,26 63,61 0 0 
Node 2 215,37 0,20 8,21 67,44 0 0 
Node 3 211,70 0,35 10,24 69,75 0 0 
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5.2. Unbalanced power and apparent power in the 

loads, lines and nodes 
 

The values A, B, C, and D displayed in Table 11 are 
calculated from Eqs. (25–30), and the following results are 
obtained: 

The unbalanced power phasors are calculated from Eq. 
(4), and the following results are obtained (see equation at the 
bottom of the page). 

 
For lines 1–2 and 2–3, we apply the following: 
 

𝐷𝐷𝑢𝑢(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 1−2)�����������������������⃗ = 𝐷𝐷𝑢𝑢(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 1)�������������������⃗ − 𝐷𝐷𝑢𝑢(𝐿𝐿𝑁𝑁𝑑𝑑𝑒𝑒 2)�������������������⃗  
 

𝐷𝐷𝑢𝑢(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 2−3)�����������������������⃗ = 𝐷𝐷𝑢𝑢(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 2)�������������������⃗ − 𝐷𝐷𝑢𝑢(𝐿𝐿𝑁𝑁𝑎𝑎𝑑𝑑 1)�������������������⃗ − 𝐷𝐷𝑢𝑢(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 3)�������������������⃗  

 
The unbalanced power phasors are calculated from Eq. 

(5), and the following results are obtained (see equation at the 
bottom of the page). 

 
For lines 1–2 and 2–3, we apply the following: 
 

𝑆𝑆1(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 1−2)���������������������⃗ = 𝑆𝑆1(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 1)������������������⃗ − 𝑆𝑆1(𝐿𝐿𝑁𝑁𝑑𝑑𝑒𝑒 2)������������������⃗  

 

𝑆𝑆1(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 2−3)���������������������⃗ = 𝑆𝑆1(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 2)������������������⃗ − 𝑆𝑆1(𝐿𝐿𝑁𝑁𝑎𝑎𝑑𝑑 1)������������������⃗ − 𝑆𝑆1(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 3)������������������⃗  

 
The moduli of the unbalanced power phasor and 

apparent power phasor are displayed in Table 12. These 

values are the same as those obtained by Buchholz, UPM, and 

IEEE Std. 1459-2010. 

 
 
 

Table 9 Voltage unbalance factors 
 δ- δ0 
   
Node 1 0,02368 0 
Node 2 
Node 3 

0,03814 
0,04839 

0 
0 

 
Table 10 Positive-sequence active and reactive powers 

 P+ (W) Q+ (VAr) 
   
Node 1 67657,22 25423,00 
Node 2 
Node 3 

65541,63 
52802,35 

24717,81 
22349,91 

Load 1 11761,15 2123,37 
Load 2 52802,35 22349,91 

 

Table 11 Values A, B, C and D of the nodes and loads 
 A and C B and D 
   
Node 1 12477,16 18422,15 
Node 2 12071,04 17868,66 
Node 3 9385,82 20414,17 
Load 1 2466,60 2874,60 
Load 2 9385,82 20414,17 

 

𝐷𝐷𝑢𝑢(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 1)�������������������⃗ = 12480,7 𝑢𝑢𝑎𝑎 + 18427,3 𝑢𝑢𝑏𝑏 + 12480,7 𝑢𝑢𝑐𝑐 + 18427,3 𝑢𝑢𝑑𝑑  + 1601,9 𝑢𝑢𝑥𝑥 + 601,9 𝑢𝑢𝑦𝑦 𝑉𝑉𝐴𝐴 

𝐷𝐷𝑢𝑢(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 2)�������������������⃗ = 12079,8 𝑢𝑢𝑎𝑎 + 17881,6 𝑢𝑢𝑏𝑏 + 12079,8 𝑢𝑢𝑐𝑐 + 17881,6 𝑢𝑢𝑑𝑑 + 2499,7 𝑢𝑢𝑥𝑥 + 942,7 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝐷𝐷𝑢𝑢(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 3)�������������������⃗ = 9396,8 𝑢𝑢𝑎𝑎 + 20438,1 𝑢𝑢𝑏𝑏 + 9396,8 𝑢𝑢𝑐𝑐 + 20438,1 𝑢𝑢𝑑𝑑 + 2555 𝑢𝑢𝑥𝑥 + 1081,5 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝐷𝐷𝑢𝑢(𝐿𝐿𝑁𝑁𝑎𝑎𝑑𝑑 1)�������������������⃗ = 2468,4 𝑢𝑢𝑎𝑎 + 2876,7 𝑢𝑢𝑏𝑏 + 2468,4 𝑢𝑢𝑐𝑐 + 2876,7 𝑢𝑢𝑑𝑑 + 448,6 𝑢𝑢𝑥𝑥 + 81 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝐷𝐷𝑢𝑢(𝐿𝐿𝑁𝑁𝑎𝑎𝑑𝑑 2)�������������������⃗ = 9396,8 𝑢𝑢𝑎𝑎 + 20438,1 𝑢𝑢𝑏𝑏 + 9396,8 𝑢𝑢𝑐𝑐 + 20438,1 𝑢𝑢𝑑𝑑 + 2555 𝑢𝑢𝑥𝑥 + 1081,5 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝐷𝐷𝑢𝑢(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 1−2)�����������������������⃗ = 400,8 𝑢𝑢𝑎𝑎 − 545,7 𝑢𝑢𝑏𝑏 + 400,8 𝑢𝑢𝑐𝑐 − 545,7 𝑢𝑢𝑑𝑑 − 897,8 𝑢𝑢𝑥𝑥 − 340,8 𝑢𝑢𝑦𝑦 𝑉𝑉𝐴𝐴 

𝐷𝐷𝑢𝑢(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 2−3)�����������������������⃗ = 214,6 𝑢𝑢𝑎𝑎 − 320,3 𝑢𝑢𝑏𝑏 + 214,6 𝑢𝑢𝑐𝑐 − 320,3 𝑢𝑢𝑑𝑑 − 503,9 𝑢𝑢𝑥𝑥 − 219,7 𝑢𝑢𝑦𝑦 𝑉𝑉𝐴𝐴 

 

𝑆𝑆1(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 1)������������������⃗ = 12480,7 𝑢𝑢𝑎𝑎 + 18427,3 𝑢𝑢𝑏𝑏 + 12480,7 𝑢𝑢𝑐𝑐 + 18427,3 𝑢𝑢𝑑𝑑 + 67676,2 𝑢𝑢𝑥𝑥 + 25430,1 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝑆𝑆1(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 2)������������������⃗ = 12079,8 𝑢𝑢𝑎𝑎 + 17881,6 𝑢𝑢𝑏𝑏 + 12079,8 𝑢𝑢𝑐𝑐 + 17881,6 𝑢𝑢𝑑𝑑 + 65589,3 𝑢𝑢𝑥𝑥 + 24735,8 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝑆𝑆1(𝑁𝑁𝑁𝑁𝑑𝑑𝑒𝑒 3)������������������⃗ = 9396,8 𝑢𝑢𝑎𝑎 + 20438,1 𝑢𝑢𝑏𝑏 + 9396,8 𝑢𝑢𝑐𝑐 + 20438,1 𝑢𝑢𝑑𝑑 + 52864,1 𝑢𝑢𝑥𝑥 + 22376,1 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝑆𝑆1(𝐿𝐿𝑁𝑁𝑎𝑎𝑑𝑑 1)������������������⃗ = 2468,4 𝑢𝑢𝑎𝑎 + 2876,7 𝑢𝑢𝑏𝑏 + 2468,4 𝑢𝑢𝑐𝑐 + 2876,7 𝑢𝑢𝑑𝑑 + 11769,7 𝑢𝑢𝑥𝑥 + 2124,9 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝑆𝑆1(𝐿𝐿𝑁𝑁𝑎𝑎𝑑𝑑 2)������������������⃗ = 9396,8 𝑢𝑢𝑎𝑎 + 20438,1 𝑢𝑢𝑏𝑏 + 9396,8 𝑢𝑢𝑐𝑐 + 20438,1 𝑢𝑢𝑑𝑑 + 52864,1 𝑢𝑢𝑥𝑥 + 22376,1 𝑢𝑢𝑦𝑦  𝑉𝑉𝐴𝐴 

𝑆𝑆1(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 1−2)���������������������⃗ = 400,8 𝑢𝑢𝑎𝑎 − 545,7 𝑢𝑢𝑏𝑏 + 400,8 𝑢𝑢𝑐𝑐 − 545,7 𝑢𝑢𝑑𝑑 + 2086,9 𝑢𝑢𝑥𝑥 + 694,4 𝑢𝑢𝑦𝑦 𝑉𝑉𝐴𝐴 

𝑆𝑆1(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 2−3)���������������������⃗ = 214,6 𝑢𝑢𝑎𝑎 − 320,3 𝑢𝑢𝑏𝑏 + 214,6 𝑢𝑢𝑐𝑐 − 320,3 𝑢𝑢𝑑𝑑 + 955,4 𝑢𝑢𝑥𝑥 + 234,8 𝑢𝑢𝑦𝑦 𝑉𝑉𝐴𝐴 
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6. Conclusion 
This article has analysed the behaviour of unbalanced 

three-wire three-phase linear systems from the standpoint of 
the total apparent power generated. It has been shown that the 
total apparent power produced by the generator does not 
coincide with the power consumed by the load. Expressions 
have been developed to transform unbalanced loads with 
zero-sequence components to unbalanced loads without zero-
sequence components, to correct the energy balance. This 
occurs because the apparent power imbalance generated by 
the zero-sequence components is not transmitted over the 
network, and therefore it only affects the load that produces 
it. 

It has been shown that the equivalent circuits derived 
from Kennelly transformations are not valid from the 
standpoint of the power imbalance. New equations have been 
developed to obtain a circuit star-connected or delta-
connected in any node of the network, equivalent to the 
connected unbalanced downstream loads of this network. It 
should be noted that such equivalent circuits are independent 
of the type of connection of the downstream loads. These 
equations are obtained from the node voltages and phase 
currents. These parameters can be measured easily. This 
simplifies the analysis of electrical networks as well as 
individual determination of the active and reactive powers in 
each of the phases. These powers cannot be calculated from 
the equivalent circuits deduced from Kennelly’s 
transformations. 

In three-wire three-phase systems, the conclusion is 
that it is sufficient to calculate the values A and B used in the 
imbalance power phasor, because A = C and B = D. This 
equality simplifies the calculations in this type of system 
compared to four-wire three-phase systems. 

Finally, to validate the applicability of the proposed 
equations and to clarify the underlying principles, a practical 
three-wire system case study has been developed. 
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