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Abstract 

Extracellular vesicles (EVs) are attracting increasing interest since they might represent a more 

convenient therapeutic tool with respect to their cells of origin. In the last years much time and 

effort have been expended to determine the biological properties of EVs from mesenchymal stem 

cells (MSCs) and other sources. The immunoregulatory, anti-inflammatory and regenerative 

properties of MSC EVs have been demonstrated in in vitro studies and animal models of 

rheumatoid arthritis or osteoarthritis. This cell-free approach has been proposed as a possible 

better alternative to MSC therapy in autoimmune conditions and tissue regeneration. In addition, 

EVs show great potential as biomarkers of disease or delivery systems for active molecules. The 

standardization of isolation and characterization methods is a key step for the development of EV 

research. A better understanding of EV mechanisms of action and efficacy is required to establish 

the potential therapeutic applications of this new approach in joint conditions. 

 

Keywords: extracellular vesicles, mesenchymal stem cells, inflammation, immunomodulation, 

rheumatoid arthritis, osteoarthritis 

 

 

1. Introduction 

 

 Extracellular vesicles (EVs) are actively secreted by cells and represent a mechanism for 

cell-to-cell signaling in physiological and pathophysiological responses [1,2]. These 

microparticles are usually classified based on the mode of biogenesis as microvesicles, exosomes, 

and apoptotic bodies [3]. Microvesicles and exosomes are both commonly found in extracellular 

fluids and represent the most described classes of EVs. Microvesicles are shedding vesicles 



  

3 

 

between 50 nm and 1 µm in diameter generated by plasma membrane protrusions followed by 

fission of their membrane stalk [3,4]. Exosomes are formed as intraluminal vesicles in endosomal 

compartments called multivesicular bodies and they are released in an exocytic manner by fusion 

of these multivesicular endosomes with the plasma membrane. These EVs show a mean size of 

40 to 100 nm in diameter and are enriched in endosome related proteins [4,5] whereas apoptotic 

bodies (50–5,000 nm in diameter) are released from fragmented apoptotic cells [3]. 

 Joint conditions represent an important public health problem as they are a major cause of 

pain, functional limitation and physical disability. As a main example, rheumatoid arthritis (RA) 

is a chronic autoimmune disease characterized by synovial angiogenesis, hyperplasia of the 

synovial membrane and infiltration of immune cells besides cartilage damage and bone 

resorption [6]. RA is a systemic disease which can affect organs such as the lungs, heart and eyes 

and is associated with an increased risk of cardiovascular disease, infection, lymphoma, and 

reduced life expectancy [7,8]. The cause of RA is not yet fully understood, although autoimmune 

dysfunction plays a leading role in inflammation and joint damage, with a pre-rheumatoid phase 

preceding the onset of articular disease followed by established RA. Modification of the 

abnormal immune response by immune modulatory cells and other novel approaches represents 

an attractive possibility to achieve long-term tolerance and control of chronic inflammation [9]. 

Osteoarthritis (OA), the most prevalent joint condition in the elderly, is associated with 

progressive articular cartilage loss, low-grade synovitis and alterations in subchondral bone and 

periarticular tissues. There is an imbalance between anabolic and catabolic processes in the joint 

as well as a relevant contribution of mechanical stress and inflammatory mediators [10]. A 

number of risk factors are associated with OA, such as advancing age, obesity, and trauma that 

determine the progression of pathophysiological events in joint tissues [11]. There is no effective 
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treatment for OA although new therapies to stop disease progression or repair tissue damage are 

been investigated. 

 In the last years, the interest for the therapeutic applications of EVs has exponentially 

increased as these microparticles may reproduce the effects of parent cells with some advantages. 

In particular, EVs from mesenchymal stem cells (MSCs) provide a promising approach for 

immunomodulation and tissue regeneration. How these effects are mediated are not yet clear but 

EVs represent a novel strategy for future cell-free therapy of joint pathologies. Although these 

studies are at an early stage, the possible activity of EVs in joint conditions is of great interest 

and will be the focus of this review. 

 

 

2. Isolation and characterization of extracellular vesicles 

 Current methods for isolating exosomes from biologic fluids include differential 

ultracentrifugation, density gradient centrifugation, size exclusion chromatography, polymer-

based precipitation, filtration and immunoaffinity capture, as summarized in table 1. All of them 

have limitations such as co-isolation of contaminating materials, loss of EV components due to 

damaged membrane integrity during isolation or failure to completely isolate EV fractions. In 

particular, removal of serum proteins and lipoproteins is problematic [12]. Depletion of the most 

abundant serum proteins such as albumin or immunoglobulins seems necessary to avoid biasing 

downstream analysis. Sample collection from different biological fluids should take into 

consideration possible sources of artefacts and variability [13]. Platelet removal, for example, is 

mandatory when working with blood, plasma or serum, as platelets release EVs upon activation 

in freeze-thaw cycles [14]. Additionally, serum used to supplement culture media must be 

previously EV depleted [15]. Therefore the presence of contaminants may influence the behavior 
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of EV preparations leading to confusing effects on target cells. In addition, EVs from different 

sources can exhibit differences in composition or in non-specific component aggregation to their 

surface which can alter their physicochemical properties [16] and diverse EV subpopulations can 

be secreted by the same cell [17]. Consistency of pre-analytical procedures and report of 

complete experimental details have been recommended in order to get reproducible results [12]. 

 There has been a great improvement of detection technologies during the past 20 years 

[18]. Quantification of EVs is usually performed by nanoparticle tracking analysis, tuneable 

resistive pulse sensing [19] or dynamic light scattering, and morphology confirmed by 

transmission electron microscopy, cryo-electron microscopy or atomic force microscopy [12]. 

Determinations of protein to lipid ratio, lipid bilayer order, and lipid composition may prove 

useful for quality control of EVs [20]. Western blotting or flow cytometry with fluorescent 

counting beads are normally used to detect EV protein markers [21]. The detection of specific 

markers would include CD63, CD9, and CD81 tetraspanins and endosome markers such as 

syntenin-1, ALG-2-interacting protein X (Alix) and tumor susceptibility gene 101 protein 

(TSG101), for exosomes [4,5,22]. Microvesicles can include cytoskeletal components (actin, 

actin-binding proteins (profilin-1, cofilin-1), myosin, tubulin), enzymes (alpha-enolase, pyruvate 

kinase, triosephosphate isomerase), membrane molecules (HLA-I, HLA-II antigens, Na+/K+ 

ATPase), proteins involved in vesicle biogenesis and trafficking (e.g. Ras-related proteins), 

lactadherin that binds to the phosphatidyl-serine surface of microvesicles, or clusterin (ApoJ), a 

protein involved in the clearance of apoptotic bodies and cell debris [21]. In addition, a set of 

components is cell-specific. Therefore, EVs from MSCs express on their surface MSC markers 

CD29, CD73, CD44 and CD105, as well as cell adhesion molecules and growth factor receptors. 

Inside EVs, a wide range of active molecules can be found such as cytokines, enzymes, nuclear 
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receptors, miRNAs and other RNAs such as transcription factor CP2/clock homolog, 

retinoblastoma-like-1, ubiquitin-related modifier-1 and interleukin-1 receptor antagonist [23].  

Studies in 3T3-L1 mature adipocytes have shown a role for protein and lipid content in 

the characterization of large EVs (probably including microvesicles, with expression of β-actin 

and enrichment in endoplasmin and α-actinin-4), and small EV populations (sEVs, with 

expression of exosomal markers Alix, TSG101 and tetraspanins). The lipidomic analysis 

indicated cholesterol enrichment of sEVs, whereas large EVs were characterized by high amounts 

of externalized phosphatidylserine [24]. It has also been demonstrated the presence of two 

distinct subpopulations of exosomes (low density fractions exosomes and high density fractions 

exosomes). Both types express the exosomal markers Alix and TSG101 but differed in the 

presence of α-actinin-4, cyclin-Y (enriched in low density fraction exosomes) and ephrin type-A 

receptor 2 proteins (enriched in high density fractions exosomes) as well as in their RNA content 

[17]. As isolation methods based on different biogenesis pathways are still lacking, an universal 

nomenclature has been proposed based exclusively on size: large EVs pelleted at low speed, 

medium-sized EVs pelleted at intermediate speed, and sEVs pelleted at high speed. Among sEVs, 

further subcategories may be distinguished based on the presence or absence of different markers: 

a, enriched in CD63, CD9 and CD81 tetraspanins and endosome markers; b, devoid of CD63 and 

CD81 but enriched in CD9; and two groups not associated to the endosomal pathway: c, devoid 

of CD63/CD9/CD81; and d, enriched in extracellular matrix or serum-derived factors [22].  

There is an increasing interest in the structural and functional biology of EVs. In addition 

to common components [25], these microparticles contain markers from the parent cells and 

therefore cell type specific protein, mRNA, miRNA, and lipid subsets have been identified which 

can be useful for diagnostic and therapeutic purposes. Interestingly, stress conditions or 

activation of intracellular signaling by mediators such as cytokines change EV composition and 
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therefore the response of recipient cells [26-28]. The content of proteins, RNA and lipids has 

been investigated by high-throughput methods. Genomic DNA has also been detected in EVs 

although its function is unknown [28]. In addition to classical techniques, proteomic analyses of 

EVs can be performed by high-resolution and high-sensitivity mass spectrometry and high-

resolution liquid chromatography mass-spectrometry-based approaches [29]. These techniques 

and gas chromatography coupled to mass spectrometry, provide information on the presence of 

lipid species and metabolites in EVs [30]. EVs contain lipids in a bilayer membrane and also 

transport bioactive lipids and lipid related enzymes such as phospholipase A2 and other enzymes 

involved in eicosanoid synthesis. Besides, EVs are enriched in cholesterol and sphingomyelin 

which can accumulate in recipient cells [31] as EVs may transfer lipids between cells for 

metabolism into bioactive mediators [32]. Metabolomic strategies have recently provided the 

characterization of EV metabolic activity [30]. Interestingly, high throughput transcriptomic 

studies have identified a wide range of mRNA and miRNA data sets based on microarray and 

next-generation sequencing analyses leading to a comprehensive data classification [33,34]. 

These EV components can be functional after transfer to cells [35]. Other RNA species within 

EVs include viral RNSs, Y-RNAs, fragments of tRNAs, small nuclear RNA, small nucleolar 

RNA, piwi-interacting RNAs, long non-coding RNAs and circular RNAs [28,36]. There are a 

wide range of studies on EV composition which are collected by three curated data repositories: 

ExoCarta [37], Vesiclepedia [3] and EVpedia [38], and functional enrichment analysis tools are 

also available [39]. 

 

 

3. Immunomodulatory effects of extracellular vesicles 
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 A wide range of evidence indicates that EVs produced by both immune and non-immune 

cells can play an important role in the regulation of immunity (reviewed in [40,41]). Circulating 

endogenous EVs produced by different cell types contribute to the suppression of immune 

responses, either in an antigen-specific or a nonspecific manner. For instance, platelet-derived 

EVs can inhibit inflammatory responses due to the presence of 12-lipoxygenase which is 

transferred to mast cells to synthesize the pro-resolving mediator lipoxin A4 [42]. Endothelial 

cell-derived EVs can suppress monocyte activation due to the transfer of miRNAs such as miR-

10a able to target several components of the nuclear factor-κB (NF-κB) pathway, including 

interleukin-1 receptor-associated kinase 4 [43]. Some studies have suggested that antigen-specific 

immunosuppressive EVs from autologous plasma may be used to inhibit inflammation. 

Interestingly, intraarticular injection of exosomes obtained from autologous conditioned serum 

was safe and reduced pain and inflammatory markers in RA patients who do not respond well to 

conventional therapy [44]. In addition, blood-derived exosomes may be negative regulators of 

osteoclast formation in RA [45]. 

 Oxidative stress plays an important role in the regulation of the immune response in 

arthritis [46]. In RA patients there is a significant elevation of surface thiols on circulating 

monocytes while the newly released EVs of isolated CD14+ cells from these patients have 

decreased thiol levels and enhanced peroxyredoxin 1 expression compared with healthy subjects. 

These results suggest that production of EVs by human monocytes may regulate oxidative stress 

in these cells [47]. It has been reported that macrophages release EVs containing Gla-rich protein 

which is a calcification inhibitor in articular tissues and a possible anti-inflammatory agent in 

chondrocytes, synoviocytes and monocytes/macrophages. This protein may link inflammation 

and calcification events in the joint and is able to inhibit the production of pro-inflammatory 

cytokines in macrophages [48]. 
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 On the other hand, human neutrophils release EVs able to block inflammatory responses 

of macrophages and induce the release of transforming growth factor-β1 (TGF-β1) which can 

promote the resolution of the inflammatory response [49]. Neutrophil-derived microvesicles also 

exert chondroprotective actions in vitro and in murine models of inflammatory arthritis. It has 

been demonstrated that neutrophils migrate into inflamed joints to release microvesicles which 

penetrate into the cartilage. Neutrophil microvesicles require annexin A1 and its receptor formyl 

peptide receptor 2 to exert protective effects on chondrocytes which are mediated by TGF-β1 

production, extracellular matrix deposition and inhibition of chondrocyte apoptosis. Interestingly, 

RA synovial fluids contain abundant neutrophil-derived microvesicles with a possible cartilage 

protecting role [50].  

 Dendritic cell (DC)-derived EVs deliver their content into the cytoplasm of acceptor DCs 

which could be a mechanism involved in fine-tuning of the immune response [51]. Nevertheless, 

These EVs are not only vehicles to deliver immunosuppressive factors from their parent cells as 

they exert antigen-specific effects which depend on the presence of molecules such as MHC class 

II and B7. Distal therapeutic effects were also observed after local administration of DC EVs 

suggesting that they may act by interacting with endogenous immune cells at the membrane level 

or by transfer of proteins and RNAs leading to an immunosuppressive and anti-inflammatory 

behavior of these cells [44]. Exosomes from immature DC may be partially immunosuppressive 

[52] and they can be modified to enhance this property. It has been suggested that IDO 

expression in DCs modifies exosomes to render them tolerogenic. Therefore, exosomes derived 

from DCs overexpressing indoleamine 2,3-dioxygenase (IDO) have an anti-inflammatory effect 

in collagen-induced arthritis (CIA) and delayed-type hypersensitivity murine models. These 

exosomes may directly interact with T cells and other antigen-presenting cells (APCs) to alter 

their function which was partially dependent on B7 costimulatory molecules [53]. In the CIA 
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model, intravenous administration of exosomes derived from DCs expressing interleukin(IL)-10, 

DCs expressing IL-4 or DCs expressing FasL-effectively inhibited arthritis [54,55]. Injected 

exosomes are internalized by CD11c+ cells at the site of injection and in the draining lymph 

node. Local administration of exosomes was also able to inhibit the inflammation of murine 

delayed-type hypersensitivity in both the treated and the untreated distal paws in a MHC class II 

dependent and MHC class I independent manner [55]. 

 The ability of Treg cells to release exosomes is required to inhibit Th1 cell proliferation in 

vivo and prevent systemic disease. It has been reported that the miRNA content of exosomes play 

an important role in this inhibitory effect. Therefore, let-7d is transferred to Th1 cells and 

mediates the suppression of Th1 cell proliferation and interferon-γ (IFN-γ) secretion [56]. The 

transfer of the dominant negative form of inhibitor of NF-κB kinase 2 (IKK2) has been used to 

give rise to immature CD4+CD25-Treg cells (dnIKK2-Treg). These cells release EVs containing 

specific miRNAs and inducible nitric oxide (NO) synthase which are delivered into target cells 

leading to block of cell cycle progression and induction of apoptosis. In addition, dnIKK2-Treg-

EV-exposed T cells can be converted into regulatory cells [57]. 

 Cell infiltration and the imbalance between cell proliferation and cell death contribute to 

pathological changes in RA. In particular, the resistance of synovial lymphocytes, macrophages 

and fibroblasts to apoptosis may play a role in the chronification of arthritis [58]. The bioactive 

death ligands FasL and APO2L/TRAIL are stored inside human T cells and secreted associated 

with EVs upon cell activation [59]. Interestingly, the number of EVs containing APO2L/TRAIL 

in synovial fluid is very low in RA patients and the persistence of activated T lymphocytes has 

been related to the resistance to Fas/CD95 and the inefficient secretion of EVs containing 

bioactive FasL and APO2L/TRAIL [60]. Therefore, EVs expressing APO2L/TRAIL may be a 

therapeutic approach for RA which has been explored in preclinical models. Intraarticular 
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injection of artificial lipid vesicles resembling natural EVs with bound APO2L/TRAIL exerted 

anti-inflammatory effects and inhibited synovial hyperplasia in a model of antigen-induced 

arthritis in rabbits [61]. 

 EVs from other sources may be of interest for their immunoregulatory properties. For 

instance, bovine milk contains EVs expressing CD63 and immunoregulatory miRNAs (miR-30a, 

-223, -92a). Oral administration of bovine milk derived EVs delayed the onset of CIA and 

diminished cartilage pathology, bone marrow inflammation and serum monocyte chemoattractant 

protein-1, IL-6 and anticollagen IgG2a levels, accompanied by reduced splenic Th1 (Tbet) and 

Th17 (RORγt) mRNA [62]. 

 MSC EVs have been shown to reduce inflammation, regulate immune responses and 

facilitate tissue regeneration [63]. There are complex interactions between MSCs and immune 

cells that may help to understand their immunomodulatory properties. The effects of MSCs are 

mediated by cell-to-cell contact and paracrine mechanisms due to the production of soluble 

molecules and EVs released into the extracellular milieu. The importance of cell-to-cell contact 

in immunosuppression by MSCs has been shown in different studies as well as the role of 

adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule-1 [64,65]. MSCs have been reported to secrete a wide range of molecules 

such as purines, bone morphogenetic proteins (BMPs), CD274, CCL2, connexin 43, IDO [66], 

prostaglandin E2 [67], IL-6, IL-10, NO [68], heme oxygenase-1 [69], tumor necrosis factor-

inducible gene-6 (TSG-6) [70], leukemia inhibitory factor (LIF), CD95/CD95 ligand, galectins, 

human leukocyte antigen-G5 (HLA-G5) [71], and growth factors such as TGF-β1 [68], hepatic 

growth factor (HGF) [72], vascular endothelial growth factor (VEGF), platelet-derived growth 

factor, fibroblast growth factor (FGF), etc. [73]. Other ways of cellular communication between 
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MSCs and immune cells include the bidirectional exchange of cytoplasmic components mediated 

by tunneling nanotubes derived from human T cells [74] and the transfer of EVs. 

 Cellular therapy with stem cells showed a low engraftment and poor survival leading to 

the demonstration that MSCs act through paracrine effects in animal models of ischemic heart 

disease and acute kidney injury [75-79]. Therefore, it was demonstrated that only the fraction of 

the conditioned medium (CM) containing products >1000 kDa (100-220 nm) provided 

cardioprotection in a mouse model of ischemia and reperfusion injury [80] leading to the 

confirmation that protective effects of MSC secretome depended on the presence of EVs [80-82]. 

In addition, EVs exert a modulating role on the effects of soluble mediators [83]. 

 The beneficial effects of MSCs in glucocorticoid-refractory graft-versus-host disease in 

human patients have been related to immune response-modulating factors secreted by these cells 

and identified as EVs [84]. Similarly, EVs from umbilical cord (UC)-MSCs ameliorated the 

inflammatory immune reaction and kidney function in grade III-IV chronic kidney disease 

patients [85]. Phase I clinical studies with EVs have revealed a low toxicity and stability in 

plasma and different clinical studies have tested their potential in wound healing [86], hair 

regeneration [87], acne scars and skin rejuvenation [JSPH2012-082], type-1 diabetes 

[NCT02138331], the development of vaccines for different types of cancer or as vehicles for drug 

delivery to cells [88]. 

 The degree of EV-mediated immunomodulation seems to be proportional to the ability of 

different immune cells to uptake these microparticles [89,90] leading to the inhibition of 

proliferation and differentiation processes [91]. EVs from MSCs may exert the strongest 

immunomodulatory effects on B cells compared with other lymphocyte subsets which may 

depend on the ability of B cells to incorporate EVs. Therefore, EVs from MSCs inhibit the 

proliferation of B cells and also of NK cells [89]. Nevertheless, the role on T cells has not been 
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clearly demonstrated. It has been reported that exosomes from adipose-derived MSCs (AMSCs) 

exert an inhibitory effect on proliferation, differentiation and activation of T cells [92]. In 

contrast, microvesicles from bone marrow (BM)-MSCs have been shown to exert a lower 

immunomodulatory effect on T-cell proliferation compared with the parent cells [93]. Other 

reports failed to demonstrate any effect on lymphocyte proliferation by EVs from MSCs [74]. In 

another study, BM-MSC EVs exhibited in vitro immunomodulatory effects on T cells but they 

were different from those of their parent cells [94]. Immunosuppressive effects of BM-MSCs can 

be enhanced by priming with IFN-γ and tumor necrosis factor-α (TNFα) which leads to higher 

ICAM-1 expression and internalization of EVs by immune cells. In addition, primed EVs 

enhance the immunosuppressive ability of resting BM-MSCs towards T cells, which may be 

mediated by IDO increase [89]. Another report has indicated the possible contribution of 

cyclooxygenase-2 and different miRNAs to the immunosuppressive effects of cytokine-

stimulated BM-MSCs [95]. Microvesicles and exosomes from murine MSCs have been shown to 

inhibit the proliferation of CD8+ T cells and the proliferation and activation of B cells. In 

addition, both types of EVs increased the Treg population but were without effect on CD4+ 

IFNγ+ T cells [96].  

 EVs released by MSCs are efficiently internalized by macrophages and induce 

proliferation and the transition of pro-inflammatory macrophages to an anti-inflammatory and 

pro-resolving M2 phenotype [97]. It was demonstrated that microvesicles from murine AMSCs 

were quickly incorporated into the intracytoplasmic region of M1-macrophages and promoted a 

M2-like phenotype and the reduction of pro-inflammatory miR-21 and miR-155. These results 

were confirmed in vivo in an experimental model of acute peritonitis [98]. Also, M2 polarization 

was induced by MSC EVs in mouse or human monocytes which in turn polarized activated 
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CD4+ T cells to CD4+CD25+FoxP3+ Treg cells [99]. In contrast, EVs from UC-MSCs did not 

polarize monocytes [100]. Figure 1 shows a summary of the immunosuppressive effects of EVs. 

 Few studies on the in vivo effects of EVs in arthritis models have been published. It has 

been reported that administration of EVs from murine MSCs ameliorated the symptoms in the 

mouse CIA model of RA [96]. In bovine serum albumin-induced synovitis in pigs, intraarticular 

administration of EVs from porcine BM-MSCs exerted anti-inflammatory effects with reductions 

in synovial lymphocytes count and TNFα expression. These EVs efficiently counteracted the 

antigen-driven T cell response and may represent a therapeutic strategy for the treatment of T cell 

mediated diseases such as RA [101]. 

 Transfer of EVs components can play an important role in the effects of these 

microparticles. MSC EVs include a cargo of immunomodulatory proteins which may act in a 

synergistic manner [102]. These microparticles thus induce high levels of anti-inflammatory 

TGF-β1 and IL-10 [103,104], and inhibit pro-inflammatory IL-1β, IL-6, TNF-α and IL-12p40 

[99]. Microvesicles derived from mouse BM-MSCs express regulatory molecules present in 

parent cells such as programmed death-ligand 1 (PD-L1), galectin-1 (Gal-1) and TGF-β1 which 

confer tolerogenic properties to these microparticles [105]. Interestingly, PD-L1 contributes to 

the development of inducible T regulatory (iTreg) cells [106] while Gal-1 has been shown to 

induce growth arrest and apoptosis of activated T cells and contribute to the promotion and 

generation of Treg cells [107,108]. Therefore, Gal-1 gene therapy or protein administration to 

DBA/1 mice inhibited clinical and histological manifestations of arthritis in the CIA model [109]. 

The results of these studies support the interest of EVs in the treatment of chronic inflammatory 

and autoimmune disorders. In addition, microvesicles from MSCs contain ribonucleoproteins 

involved in the intracellular traffic of RNAs as well as selective miRNAs which may be 

transferred to target cells [110] and likely exert immunomodulatory effects in arthritic diseases 
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(reviewed in [111]). Apart from the presence and properties of endogenous miRNAs, loading of 

EVs with miRNAs or anti-miRs may be an interesting approach to enhance the 

immunoregulatory activity of these microparticles in chronic inflammatory conditions [42]. 

 

 

4. Regenerative properties of extracellular vesicles in joint conditions 

 

 Joint conditions are important targets of MSC therapy mainly to treat chondral and/or 

bone lesions and defects resulting from injury or trauma, or in OA. In the last years, the possible 

applications of MSCs in cartilage repair used alone or combined with biomaterials have been 

extensively explored. MSCs are injected into the joint space, or implanted in a scaffold matrix or 

as tissue engineered constructs in order to create a favorable microenvironment for tissue repair 

(for review see ref. [112]). Stem cells are capable of selectively homing to injured tissues and 

differentiating into several types of cells to repair the lesion and improve the affected function. 

Humoral mediators produced by injured tissue would be chemotactic for stem cells, they also 

stimulate local proliferation of endogenous or exogenous stem cells or could be a signaling 

mechanism to expand the pool of bone marrow progenitor cells in response to tissue injury [113]. 

Nevertheless, it has been reported that chondrogenesis in 3D culture generates constructs whose 

mechanical properties are inferior to constructs formed with chondrocytes [114] leading to 

studies on different strategies to improve the chondrogenic potential of MSCs [115].  

 Cell differentiation and engraftment would not be the sole mechanisms for tissue 

regeneration as transplanted cells become fewer and disappear soon after transplantation [115]. 

Additionally, MSCs exhibit a variety of trophic activities relevant to musculoskeletal therapy and 

can promote chondrogenesis, osteogenesis, musculogenesis, tenogenesis, angiogenesis and 
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neurogenesis (reviewed in [73]). The efficacy of MSC therapies in joint repair has been 

demonstrated in many animal models and clinical studies [116-126]. 

 The effectiveness of many MSC-based therapies in tissue repair has been attributed to the 

paracrine secretion of these cells as only a small percentage of the MSC populations injected into 

the joint actually remain at the site of injury (reviewed in [8]). The MSC secretome would 

promote tissue repair by modulating the local microenvironment and supporting growth and 

activity of local cells. Nevertheless, the composition of MSC secretome is quite complex and 

varies depending on the microenvironment of cells [127]. For instance, MSCs have a differential 

response to synovial fluid from early- versus late-stage OA, with a higher secretion of CXCL8, 

IL6 and CCL2 in the first case [128]. Accordingly, pretreatment of MSCs with different factors 

can improve the release of immunomodulating or regenerating mediators [129] as it has been 

shown by priming the parent MSCs with lipopolysaccharide [130].  

 The CM of MSCs contains a wide range of cytokines, chemokines, hormones, lipid 

mediators, cytokines, growth factors and extracellular matrix components which can mediate 

tissue healing. The regenerative properties of CM from MSCs have been explored in many 

different tissues (reviewed in [88]). Therefore, MSC CM can regenerate bone through 

mobilization of endogenous stem cells, angiogenesis and osteogenesis [131] and promote 

periodontal tissue regeneration [132] and healing of bisphosphonate-related osteonecrosis of the 

jaw in rats [133]. Interestingly, the therapeutic efficacy of human BM-MSCs CM was 

demonstrated in a human clinical study. This CM containing insulin-like growth factor-1, VEGF, 

TGF-β1 and HGF, in beta-tricalcium phosphate or an atelocollagen sponge, regenerated alveolar 

bone [134].  

Treatment of OA chondrocytes or synovial cells with CM from BM-MSCs or AMSCs in 

an inflammatory milieu inhibits the production of inflammatory and catabolic agents [9,10]. In 
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this respect, we have reported that CM from AMSCs exert protective effects in OA chondrocytes 

[20,21]. Therefore, factors produced by MSCs can enhance the anabolic properties of a wide 

range of cells such as chondrocytes, chondrocyte progenitor cells, cartilage-derived 

stem/progenitor cells, synovium-resident multipotent progenitor cells, 

osteoblasts/osteoclasts/resident MSCs in subchondral bone and chondrogenic cells within the 

infrapatellar fat pad [73].  

 The EVs present in CM show a great potential in the regeneration of joint tissues to 

replace stem cell-based therapy. EVs secreted by hMSC carry hyaluronan on their surface which 

is able to interact with proteins and proteoglycans of extracellular matrix to maintain tissue 

homeostasis, and contribute to extracellular matrix remodeling and tissue healing [135,136]. EVs 

express adhesion molecules to bind to and interact with cells, but they are also able to bind to 

extracellular matrix components. EVs from some cell types contain extracellular matrix 

regulatory proteins involved in re-structuring, cytokine release, angiogenesis and cell migration 

as well as lysyl oxidases which crosslink collagens and elastin [137,138]. In particular, 

exogenous lysyl oxidases have been shown to be useful in cartilage integration problems [139]. 

Interestingly, EVs from different cell types are able to transfer the mRNA of growth factors and 

their receptors to tissue cells to initiate tissue repair responses [140,141].  

 Treatments with MSC EVs are able to reproduce the main actions of CM suggesting that 

these microparticles are relevant mediators. EVs from naïve or genetically modified MSCs may 

be used to improve the regenerative properties of these cells as they can modulate the 

microenvironment of damaged cartilage to promote repair or to enhance the chondrogenic ability 

of these cells [124]. Different scaffolds have been investigated to retain MSC EVs and promote 

cartilage repair. One of them is a photoinduced imine crosslinking hydrogel glue with excellent 
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biocompatibility and integration with cartilage matrix which has been tested to prepare an 

acellular tissue patch for cartilage regeneration [142].  

Interestingly, OA chondrocytes internalize EVs from BM-MSCs leading to the 

upregulation of aggrecan and type II collagen. In addition, gene expression of IL-1, IL-6, IL-8 

and IL-17 as well as collagenase activity induced by TNFα were significantly reduced [143]. It 

has also been reported that EVs from mouse BM-MSC exert anti-apoptotic effects in 

chondrocytes and immunosuppressive effects in macrophages. In vivo administration of these 

EVs partly protected cartilage and bone in the murine collagenase model of OA [144]. We have 

provided evidence that microvesicles and exosomes from human AMSC CM exert anti-

inflammatory and protective effects in OA osteoblasts [145] and chondrocytes (our unpublished 

results) in vitro. Anti-inflammatory and chondroprotective effects of EVs derived from AMSCs 

have also been described in murine cells [146].  

The release of pro-inflammatory mediators and reactive oxygen species can result in 

mitochondrial changes, inflammation, oxidative stress and DNA alterations which can induce 

premature senescence [37]. We have recently shown that microvesicles and exosomes from 

human AMSCs reduce the production of inflammatory mediators, mitochondrial membrane 

alterations and oxidative stress in OA osteoblasts which results in the down-regulation of cell 

senescence [145] (Figure 2). 

 Different studies have demonstrated that EVs enhance skeletal muscle [147], bone [148] 

and cartilage [142] regeneration. Administration of AMSC EVs in a model of skeletal muscle 

injury reduced the inflammatory response and accelerated the muscle regeneration process [97]. 

BM-MSC-derived EVs led to bone formation in calvarial bone defects with an essential role for 

miR-196a in the regulation of osteoblastic differentiation [148]. Injection of exosomes from 

human induced pluripotent stem cell-derived MSCs (iPS-MSCs) by intravenous route prevented 
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osteonecrosis induced by steroid in rats. This treatment activated the phosphatidylinositol 3-

kinase (PI3K)/Akt signaling pathway on endothelial cells leading to local angiogenesis [149]. 

Protective effects of these type of exosomes were also observed in an ovariectomized rat model 

[150] and, in combination with a tricalcium phosphate scaffold, in rat calvarial bone defect. In 

vitro studies showed that these exosomes can be internalized into BM-MSCs and enhanced the 

proliferation, migration, and osteogenic differentiation of these cells. Activation of the PI3K/Akt 

signaling pathway by exosomes likely plays an important role in these effects [151].  

 Intraarticular injection of exosomes obtained from human ESCs has been shown to 

completely restore cartilage and subchondral bone in a model of osteochondral defects in rats 

[152]. In another study, exosomes secreted by human synovial MSCs were internalized by human 

chondrocytes in vitro and induced proliferation and migration but reduced extracellular matrix 

production. These effects were due to the high Wnt5a and Wnt5b expression in these cells which 

activated YAP and led to the suppression of SOX9 expression. In vivo intraarticular injection of 

exosomes resulted in a weak protective effect in the rat OA model established by transecting the 

medial collateral ligament and the medial meniscus [153]. In another OA model in mice injected 

with collagenase, intraarticular administration of human synovial MSC exosomes significantly 

attenuated OA progression. In the same model, injection of exosomes from human iPS-MSCs 

had a superior therapeutic effect. Therefore, these cells may be a better source of exosomes for 

cartilage repair with other advantages as they can be induced from patient-specific adult somatic 

cells such as peripheral blood cells without an invasive harvesting and with a high yield. In 

addition, autologous cells can be used overcoming ethical issues and immune activation [154]. 

 Some treatments using EVs from other sources may also be useful in OA. As an example, 

EVs from autologous conditioned serum have been shown to protect human OA cartilage from 

glycosaminoglycan loss in basal conditions and in the presence of IL-1β [155]. There is an 
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ongoing observational study that evaluates the characteristics of autologous platelet-rich plasma 

(PRP) in the therapy and treatment of musculoskeletal pain and OA. This study will test the 

hypothesis that PRP characteristics, such as platelet and microparticle content and composition 

can be predictive for clinical outcome for PRP treatments (NCT02726464). 

 Further studies are necessary to establish the mechanisms underlying the regenerative 

effects of EVs but these microparticles contain many regulatory molecules that may be 

transferred to target cells and contribute to their biological effects. It has been suggested that EVs 

delivery to damaged tissue may contribute to epigenetic reprogramming of target cells [156,157]. 

MSC EVs repair ability can depend on the restoration of cartilage homeostasis. In OA, there is 

chondrocyte loss or cellular senescence induced by abnormal mechanical stress, inflammation, 

oxidative stress and mitochondrial dysfunction [158,159]. EVs may transfer to chondrocytes 

glycolytic enzymes such as phosphoglucokinase and pyruvate kinase, and ATP generating 

enzymes such as adenylate kinase and nucleoside-diphosphate kinase that may compensate the 

reduced mitochondrial ATP production in OA chondrocytes. In addition, MSC EVs contain 

CD73 which is able to convert the extracellular ATP released by injured tissues to adenosine. It is 

known that EVs induce cell proliferation through adenosine-mediated phosphorylation of 

extracellular signal-regulated kinase (ERK)-1/2 and Akt [160].  

 On the other hand, the regulation of immune cells and the pro-inflammatory environment 

plays an important role in tissue regeneration. M1 polarized synovial macrophages from OA 

patients secrete factors inhibiting MSC chondrogenesis [161] whereas MSCs can induce M2 

polarization which reduce inflammation and improve cartilaginous tissue regeneration [162]. As 

EVs can exert immunomodulatory and anti-inflammatory effects, it is likely that these properties 

contribute to joint protection and repair. 
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 MSC-derived EVs contain a wide range of miRNAs which may facilitate intercellular 

communication and contribute to different phases of the healing process [97,163]. Many of these 

miRNAs are involved in signal transduction, cartilage metabolism and OA progression. For 

instance, mir-23b is a mediator of chondrocyte differentiation of human MSCs [164] and miR-

221 and miR-92a may contribute to the regulation of cell proliferation and differentiation of 

chondroprogenitor cells [165-167]. It is also known that key catabolic enzymes such as 

aggrecanase-2 and metalloproteinase-13 are the target of miR-125b and miR-320, respectively 

[168,169]. The expression of miR-320 is reduced in OA cartilage compared with normal 

cartilage. This miRNA regulates chondrogenesis and IL-1β-stimulated catabolic effects in mouse 

chondrocytes [169]. Another miRNA with therapeutic potential in OA is miR-140, which 

regulates cartilage homeostasis and development [170]. Interestingly, modification of synovial 

MSCs to overexpress miR-140-5p improved EV properties in vitro and in vivo leading to a 

significant inhibition of cartilage degradation in a surgical model of knee OA in rats [153]. All 

together these data support the interest of EVs containing miRNAs with beneficial effects on 

joint metabolism to develop potential therapeutic approaches in OA.  

 

 

5. Extracellular vesicles in the physiopathology of joint conditions 

 

 EVs mediate cell communication in pathological states and may act as signaling 

structures involved in the induction and amplification of immunity and inflammation. Therefore, 

some EVs can play a pathogenic role in joint conditions (for extensive reviews see refs. [171-

176]). EVs may exert different roles in inflammation depending on the cell source, cell target and 

the environment where they can be influenced by multiple factors. Some studies have revealed 
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that EVs are a component for autocrine and/or paracrine stimulation although they may also 

initiate counter-regulatory mechanisms which potentially contribute to the resolution of 

inflammation. In this context, EVs released by activated human monocytes have been shown to 

activate NF-κB and production of cytokines and oxygen radicals which may lead to the 

amplification of the inflammatory response. At the same time, these EVs are able to enhance 

PPAR-γ expression which is involved in the control of inflammation [177]. It is also known that 

EVs from T cells can modulate the effects of TNFα, suggesting a cross-talk between cytokines 

and EVs. Besides promoting the induction of inflammation, treatment with EVs significantly 

upregulated a number of anti-inflammatory genes [83]. 

 The stimulation of immune responses by EVs in certain situations can initiate or 

exacerbate autoimmune diseases. EVs may exert immunostimulatory effects by a number of 

mechanisms. EVs express different molecules of the parent cells and may transfer antigens, MHC 

molecules and costimulatory molecules to immune cells. As an example, DCs produce EV-

associated MHC class I complexes which are transferred to other naive DCs for efficient CD8+ T 

cell priming which can be viewed as an amplification process for DC-mediated CTL responses 

[178]. Similarly, EVs from both human and murine B lymphocytes are able to induce antigen-

specific MHC class II-restricted T cell responses. These studies support the view that EVs 

produced by APCs may act as vehicles for MHC class II-peptide complexes involved in 

maintenance of long-term T cell memory or T cell tolerance [179].  

 Synovial EVs formed in an inflammatory environment may stimulate articular cells to 

release more inflammatory mediators and degradative enzymes and thus contribute to articular 

damage [27,180]. Some EVs can also contain degradative enzymes and therefore EVs released by 

rheumatoid synovial fibroblasts degrade aggrecan in a tissue inhibitor of metalloproteinase-3-

sensitive manner which may facilitate cell invasion through aggrecan-rich extracellular matrices 
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[181]. Similarly, hexosaminidase activity is found to be associated with RA synovial fibroblast-

derived EVs [180]. On the other hand, it has been reported that EVs released by chondrocytes 

contribute to pathologic mineralization of cartilage in musculoskeletal pathologies such as OA 

[182] and their secretion is regulated by autophagy [183].  

 More studies are necessary to dissect EV signaling pathways and molecular mechanisms 

in the physiopathology of joint conditions. As EVs produced by some cell types may be 

mediators of the pathophysiological changes that occur in the joint environment, a therapeutic 

strategy may be the inhibition of production and release, modification of harmful content or 

elimination of microparticles contributing to pathological processes [184].  

 

 

6. Extracellular vesicles as biomarkers of joint disease 

 

 There is a considerable interest in identifying noninvasive specific biomarkers which may 

reflect the alterations in joint tissues. At present, prognostic tools especially for OA and 

spondyloarthritis are still lacking. Early identification of predictive markers is crucial to address 

the risk, the presence, the evolution and the response to treatment in chronic joint conditions 

[185]. The release of EVs into the extracellular space allows to examine them in body fluids as 

novel candidates for disease biomarkers to use in diagnosis, prognosis and treatment. Of note, in 

situations where the same biomarker molecules can be indicative of more than one condition, 

EVs would be the method of choice to trace the cell type causing the alteration. These 

microparticles can be immuno-isolated based on recognition of a significantly enriched protein 

on the membrane surface [186]. 
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 Serum EVs are enhanced in RA. In particular, endothelial EVs have a deleterious effect 

on endothelial cell function and may be a marker of vascular damage [187] while platelet-derived 

EVs levels may be related to disease activity [188]. Nevertheless, circulating EVs exposing 

complement components, C reactive protein or serum amyloid-P are elevated in early active RA 

although effective drug treatments do not decrease their levels suggesting a limited value as 

biomarkers [189]. 

Other reports indicate that serum EVs may be useful as additional markers of disease 

activity in patients with RA. For instance, differences in EV levels of amyloid A and lymphatic 

vessel endothelial hyaluronic acid receptor-1 have been found between the clinical remission and 

non-clinical remission groups [190]. In addition, high expression of Hotair has been 

demonstrated in blood mononuclear cells and serum EVs of RA patients whereas a lower level of 

Hotair was detected in differentiated osteoclasts and rheumatoid synoviocytes [191]. Platelet EVs 

are also elevated in RA and other inflammatory arthritis synovial fluid compared with OA and 

may play a role in the amplification of the inflammatory process. In this respect, collagen 

receptor glycoprotein VI has been identified as a key trigger for platelet EV generation in arthritis 

[192].  

 Synovial EVs contain citrullinated proteins, which are known autoantigens and 

biomarkers in RA [193]. In synovial fluid from RA patients, the number of microvesicles positive 

for receptor activator of NF-κB and its ligand are increased as well as CD3+ and CD8+ 

microvesicles which might reflect a locally enhanced activation of CD8+ T cells [21]. In 

addition, CD4+ T-cell-derived CD161+CD39+ and CD39+CD73+ EVs in synovial fluid have 

been recently proposed as reciprocal biomarkers for RA [194]. 

 Differences in miRNA expression in EVs may lead to propose new biomarkers in joint 

conditions [174,195]. In the last years many studies have focused on circulating miRNAs as 
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biomarkers of disease which represent an important part of EV composition (reviewed in [175]). 

The changes in synovial fluid-derived EV miRNA with joint alterations provide a unique 

opportunity to discover candidate biomarkers. Interestingly, studies of miRNA expression in 

synovial fluid EVs from OA patients have shown sex specific changes. Therefore, in female 

patients, miR16-2-3p was upregulated and miR26a-5p, miR146a-5p and miR-6821-5p were 

downregulated while in male patients, miR-6878-3p was downregulated and miR-210-5p was 

upregulated. These results also suggested that estrogen might play an important role in EV 

derived miRNA [196]. Therefore, a gender dimension should be considered in the investigation 

of specific biomarkers for joint conditions. 

 

 

7. Challenges in EV research 

 

 Several nomenclature and methodological challenges have raised concerns among the 

community about the reproducibility and comparability of the different reports published in 

recent years. In particular, the disparity of isolation and characterization approaches, and the lack 

of unified nomenclature and handling criteria are hindering the understanding of EVs biological 

functions [18]. In that regard, organizations such as the International Society for Extracellular 

Vesicles (ISEV) have published guidelines in an increasing effort to integrate the currently 

accepted isolation and characterization methods [18,197].  

 Vesicles shed from the cell plasma membrane are often called microvesicles, 

microparticles or ectosomes, with a sized ranged between 50-100 nm to even few micrometers 

depending on the author’s criteria and the isolation method. Small vesicles secreted from 

multivesicular endosomal bodies are usually called exosomes and classically considered to be 
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under 150 nm in diameter, but most common isolation procedures based on the use of 200-nm 

pore filters and ultracentrifugation, isolate mixed EV populations. In practice, EV classification is 

not clear-cut as microparticles exhibit overlapping similarities in size, morphology, density and 

protein markers of both endosome and plasma membrane [16] and even the presence of different 

subpopulations within the same EVs class has been demonstrated [17,22]. In addition, a single 

cell can release EVs with differences in size, biogenesis and content which can vary depending 

on the cell type and its physiologic state [198].  

 From upstream sample handling to isolation and characterization, there is presently no 

single standardized method to universally obtain pure EV products. Generally, a highly pure EV 

isolate is obtained at the expense of therapeutic potency, yield, cost and/or scalability. These 

considerations are of critical importance when dealing with EVs as therapeutic agents, as 

industrial scale production must deliver an acceptable compromise between purity, activity and 

cost [199]. Currently, characterization efforts have focused on physical properties such as size 

and concentration, and vesicular content in terms of protein, lipid and nucleic acid composition. 

As the smallest EVs reach sizes of 50 nm or even less, current size analysis methods struggle to 

reach this detection limit, making comparisons of different concentrations difficult and 

statistically compromised. 

 Vesicular cargo includes proteins, RNA, DNA, lipids and metabolites, and may be inside 

EVs or on their surface. Subvesicular localization must be considered during characterization 

procedures to avoid artefacts and false positives. Importantly, the isolation method severely 

impacts the purity of EVs and therefore the omics profiles [200] and possible EV applications. 

However, as EV isolates contain disparate populations, current data should be considered as an 

average of the RNA content of all EV subpopulations. Additionally, most biofluids contain 
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potential contaminants such as RNA- and miRNA-carrying proteins, making analyses difficult to 

decipher even after treatment with RNAses [201]. 

 It is crucial to improve the methods to isolate and characterize the different EV types. 

This issue is a source of confusion leading to contradictory results but it is also the first necessary 

step for studies of pharmacological activity and therapeutic efficacy. As many factors can 

influence the reproducibility of effects, different steps need to be taken to assure homogenous EV 

preparations and guarantee their efficacy and safety. In the last years, the International Society 

for Extracellular Vesicles (ISEV) has released position papers and the Minimal Information for 

Studies on EVs (MISEV) to help researchers overcome these problems. Furthermore, to increase 

reproducibility and transparency of EV methodologies, the EV-TRACK knowledgebase has been 

recently developed [202]. Strict standardized protocols must be implemented to effectively 

control all aspects of EV production and application, from culture of source cells to medicinal 

product preparation and administration. Qualitative and quantitative EV technologies need to be 

thoroughly validated. New technologies may help to advance this research field. For instance, EV 

uptake can be determined at single cell level using the Cre reporter methodology or 

bioluminescence methods can be employed to determine EV release and uptake and new-omics 

approaches have been incorporated to improve the knowledge of molecular EV components [30]. 

In addition, there is a need for normalization and control in sample collection and methods for 

keeping and transporting EV samples. All these points are essential to detect relevant differences 

between health and disease in clinical studies. It is not surprising that results found in the 

literature showed EV clinical studies of small populations with small portion of large effect size. 

Improved methodologies and study design are needed including larger numbers of samples in 

order to determine whether there is an effect at the population level [203]. 
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 Human EV-based therapeutics is subjected to the regulatory frameworks of biological 

medicinal products covering preclinical development, quality aspects, non-clinical safety 

requirements and the clinical testing. In the context of EV-related therapies and their approval, a 

complete in vitro and in vivo testing must be outlined. This should at least include assays to 

identify and characterize the components of the EV isolate (molecular fingerprinting), potency 

assays to quantify the EV-mediated therapeutic effect, and functional tests to determine their 

mechanisms of action as well as pharmacokinetic and toxicology studies. In the particular case of 

EV research, issues such as localization of molecules —inside the vesicle, embedded in the 

membrane, or associated outside— and mechanisms of cell-EV interaction —mainly vesicle 

internalization or plasma membrane receptor signaling— must be carefully taken into 

consideration for a thorough pharmacological validation [199].  

 For clinical application, compliance with safety standards related to inadvertent microbial 

and viral contamination and GxP standards (Good Manufacturing/Good Laboratory/Good 

Distribution/Good Clinical/Good Scientific Practice or GMP/GLP/GDP/GCP/GSP) is necessary 

for the production and quality control [1]. As a further step, one important hurdle is the ability to 

produce consistent products on a large scale. There is a need of developing clinical-grade robust 

and stable manufacturing processes. 

 

 

8. Perspectives 

 

 Interest in cell-derived EVs has exponentially increased due to their proposed contribution 

to homeostasis and disease, and their potential as future therapeutic and diagnostic tools. In 

particular, EVs have recently received a great deal of attention as a possible better alternative to 
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MSC therapy in autoimmune conditions and tissue regeneration. The induction of immunological 

reset by MSC EVs has become an attractive possibility in RA and other autoimmune conditions. 

while the use of EVs for joint repair and OA could potentially be a better cost-effective therapy 

compared with MSC administration [160]. 

 EVs offer the possibility to develop cell-free therapeutic approaches with less regulatory 

obstacles and clinical risks associated to cell therapies. Besides, they may have potential 

advantages in biomanufacturing, storing and distribution and may represent a more reproducible 

therapeutic tool [90,94]. EVs contain many biomolecules from the parent cells and can have 

advantages compared with cell therapy, as injected cells may die or fail to fully home into the 

lesion while EVs injection allows for a more precise dosing schedule and a better control of 

treatment or suspension of administration. The use of EVs may also eliminate problems such as 

blood vessels occlusion and generation of altered cell phenotypes [160,204].  

 Compared with MSCs, which produce different molecules according to the 

microenvironment leading to complex interactions or can exhibit opposite effects depending on 

the stimulus used to trigger immune cells [205], EVs may lead to results less dependent on the 

environment and more predictable. The content of these microparticles is protected from enzyme 

degradation, and this natural mechanism can be used to deliver active molecules to cells. In this 

respect, EVs are less likely to alter target cells than artificial nanoparticles. The small size may be 

an advantage in relation with the selection of administration routes in comparison with cell 

therapy. In addition, their bi-lipid layer vesicular structure is membrane permeable and their 

surface proteins may confer targeting ability due to their affinity for specific cell membranes or 

extracellular matrix in diseased tissues [79,157,206].  

 EVs have a lower immunogenic potential compared with cells [204] and thus allogeneic 

EVs have been reported to be safe and may be an appropriate source for large-scale production 
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[160] in preclinical studies and clinical applications. In this respect, technological advances can 

improve large-scale preparation of EVs. For instance, recent studies have demonstrated that 

microvesicle production by MSCs can be amplified using a 3-D bioprocessing method keeping 

the biological activity of these microparticles [207]. 

 Modification of EVs may improve their properties to regulate different processes. 

Therefore, the parent cells could be primed or genetically modified and then expanded in order to 

produce modified EVs e.g. without histocompatibility antigens to minimize the possibility of 

immune reactions, expressing relevant proteins, lipids or RNA to maximize the pharmacological 

effects, or molecules that facilitate their tropism and retention in damaged tissues or recognition 

by target cells thus improving treatment selectivity. In addition, different approaches e.g. 

integration in a hydrogel-scaffold or chondroitin sulfate sponge are in development to facilitate 

stable long-term delivery to joint tissues [174]. 

 On the other hand, the determination of EVs can be useful as biomarkers of joint diseases 

as the content of microparticles is related to the parent cell and its microenvironment. In this 

respect, miRNA and proteome analyses represent promising approaches.  

 The standardization of isolation and characterization methods is crucial for the 

development of this novel tool. It is apparent that much work both in vitro and in vivo is needed 

in order to better understand the biogenesis, composition, appropriate delivery technique, in vivo 

stability and distribution, internalization, mechanisms of action, efficacy, long-term actions and 

safety of EVs.  

 Although we only focus on limited aspects of EVs, there are new mechanisms to be 

identified which may lead to other potential applications of these microparticles. Taken as a 

whole, the studies outlined in this review reinforce the increasing interest in the field and the 

efforts devoted to understand EV biology. Nevertheless, the complexity of the topic has raised a 
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number of important questions which need to be answered before this novel approach can 

progress to clinical applications in joint conditions. 
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LEGENDS TO FIGURES 

 

Figure 1. Immunosuppressive effects of EVs from MSCs and other cell types. EVs from MSCs 

reduce the proliferation and differentiation of CD8+ T cells, B cells and NK cells while favor the 

differentiation of Treg cells and the switch of pro-inflammatory monocytes and macrophages 

(M1) to an anti-inflammatory phenotype (M2). The effect on CD4+ T cells has not been clearly 

demonstrated. Neutrophil EVs exhibit anti-inflammatory actions on macrophages. EVs from Treg 

cells inhibit Th1 cell proliferation. DC EVs can interact with T cells and APCs to alter their 

function. In inflammatory conditions, EVs inhibit the production of pro-inflammatory mediators 

and enhance that of anti-inflammatory and pro-resolution mediators in different cell types. 

 

Figure 2. Joint protective effects of AMSC EVs. In OA osteoblasts or chondrocytes subjected to 

inflammatory conditions, EVs reduce the production of pro-inflammatory and catabolic 

mediators as well as the induction of DNA damage and cell senescence while the production of 

the anti-inflammatory cytokine IL-10 is enhanced. 
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Method Principle Scalability Advantages Challenges 

Precipitation Precipitant 
agent 

Yes Fast 

Simple 

Low purity 

Protein 
contaminations 

Precipitant 
interferences 

Differential 
ultracentrifugation 

Size No Common 

EV subfractioning 

EV aggregation 

Possible loss of 
function 

Density gradient 
ultracentrifugation 

Density No Common 

EV subfractioning 

High purity 

Gradients may 
interfere with 
EVs’ activity 

Possible loss of 
function 

Time 
consuming 

Ultrafiltration Size Yes High concentration Aggressive 

Bias towards 
pressure-

resisting EVs 

Size exclusion 
chromatography 

Size Yes High purity 

Removal of soluble 
proteins 

Low yield 

Need of further 
concentration 

steps 

Immunoaffinity EV 
phenotype 

No Fast 

High purity 

Low yield 

Expensive 

Bias towards 
known markers-
containing EVs 
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________________________________________________________________________________ 

Table 1.  Best established methods for the isolation of EVs [12-18].  

 

 


