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ABSTRACT 10 

Calibration factors are applied in the Highway Safety Manual predictive method for rural two-11 

lane, two-way roadway segments to adjust the estimate for local conditions. This research aims to 12 

evaluate and recommend improvements related to the estimation of these calibration factors. An 13 

aggregated and disaggregated analysis was performed to study the influence of different 14 

calibration factors on the prediction of the number of crashes in North Carolina. As a result, those 15 

calibration factors based on both types of road elements (horizontal curves and tangents) led to 16 

overestimating and underestimating the number of crashes on tangents and horizontal curves, 17 

respectively. Furthermore, the calibration factors based on fatal-and-injury crashes allowed a more 18 

accurate estimation of the predicted number of crashes than those calibrated considering all 19 

severity levels. Therefore, it is recommended to apply a different calibration factors for each type 20 

of road element and each type of crash severity. 21 

22 
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INTRODUCTION 23 

In 2010, the American Association of State Highway and Transportation Official (AASHTO) 24 

released the Highway Safety Manual (AASHTO, 2010). The Highway Safety Manual (HSM) is 25 

the product of more than 10 years of effort and thousands of hours to develop fact-based analytical 26 

tools and techniques to quantify the potential safety impacts of planning, design, operations, and 27 

maintenance decisions (Xie et al., 2011). Part C of the HSM contains the predictive methods for 28 

rural two-lane roads, rural multilane highways, and urban and suburban arterials. The main purpose 29 

of the predictive methods in Part C of the HSM is to estimate the average crash frequency for 30 

existing conditions, alternatives to existing conditions, or proposed new roadways. 31 

The HSM predictive method is based on three components to estimate the predicted number of 32 

crashes at a site: 33 

1. Base model, which is a Safety Performance Function (SPF), 34 

2. Crash modification factors (CMFs) to adjust the estimate for site-specific conditions, which 35 

may be different from the base conditions, and 36 

3. A calibration factor (C) to adjust the estimate for local conditions. 37 

These components are combined in the following general form: 38 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑁𝑠𝑝𝑓 · ∏ 𝐶𝑀𝐹𝑖

𝑛

𝑖=1

· 𝐶          (1) 39 

where Npredicted is the predicted average number of crashes for a specific site; Nspf is the predicted 40 

number of crashes determined for base conditions; CMFi are the crash modification factors for a 41 

specific site; and C is the calibration factor to adjust the predicted number of crashes for local 42 

conditions. 43 

The SPF for rural two-lane, two-way roadway segments is defined as follows: 44 



𝑁𝑠𝑝𝑓 = 𝐿 · 𝐴𝐴𝐷𝑇 · 365 · 10−6 · 𝑒−0.312          (2) 45 

where Nspf is the total number of crashes considering all types of crashes and severities; L is the 46 

length of the roadway segment (miles); and AADT is the annual average daily traffic volume 47 

(vehicles per day). 48 

The HSM proposed a total of 12 CMFs for rural two-lane, two-way roadway segments, which are 49 

defined in Table 1. In addition, the calibration factor (C) is calibrated based on the ratio between 50 

the total number of observed crashes and the sum of the predicted number of crashes on all 51 

homogeneous segments based on a sample of locations for a given roadway type in a jurisdiction. 52 

The HSM predictive method was developed on the basis of data from a subset of states. Thus, 53 

several studies have been carried out to identify the calibration factor for other states (Xie et al., 54 

2011; Findley et al., 2012a; Brimley et al., 2012; Lubliner, 2011; Williamson and Zhou, 2012; 55 

Mehta and Lou, 2013; Shin et al., 2015a; Smith et al., 2017; Srinivasan et al., 2016; Srinivasan et 56 

al., 2011), to study the sample-size needed to calibrate the models (Banihashemi, 2012; Trieu et 57 

al., 2014; Shin et al., 2015b; Alluri et al., 2016; Shirazi et al., 2016), and to compare this method 58 

with the use of jurisdiction-specific SPFs (Srinivasan and Carter, 2011; Brimley et al., 2012; Mehta 59 

and Lou, 2013; Smith et al., 2017; Srinivasan et al., 2016; Lord et al., 2010; Lu et al., 2014; Li et 60 

al., 2017). 61 

As a result, these studies identified different weaknesses of the HSM predictive method for rural 62 

two-lane, two-way roadway segments, which can be grouped into the following issues: (i) 63 

Influence of risk exposure, (ii) Homogeneity of road segments, (iii) Crash modification factors, 64 

(iv) Calibration factor, (v) Crash reporting thresholds, (vi) Functional form, and (vii) Sample-size. 65 

Regarding the calculation of calibration factors, the HSM assumes a proportional relationship 66 

between the number of predicted crashes under base conditions (Nspf) and the number of predicted 67 



crashes in a specific jurisdiction or state (Npredicted). Table 2 shows the calibration factors for rural 68 

two-lane, two-way roadway segments in some states of the United States. The interpretation of 69 

these calibration factors must be executed carefully, because each state has varying crash reporting 70 

thresholds, weather conditions, animal populations, and terrain that may contribute to its local 71 

crash performance in unique ways.  These calibration factors should not be compared directly, but 72 

can provide useful insight about the potential variation between geographic areas, crash patterns, 73 

and driver population characteristics.  The variability between these calibration factors could be 74 

indicative of the importance of accurate calibration factors for a specific jurisdiction. 75 

Although all previous studies indicate that a calibration factor is needed to adjust the predicted 76 

number of crashes for local conditions, some studies concluded that the relationship between Nspf 77 

and Npredicted might not be proportional. Regarding this, Srinivasan et al. (2016) proposed the 78 

following function to adjust the estimate for local conditions: 79 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑎 · (𝐻𝑆𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑏          (3) 80 

Likewise, the relationship between Nspf  and Npredicted for rural two-lane, two-way roadway 81 

segments might depend on the type of the alignment as well as on the level of crash severity. 82 

Findley et al. (2012) found significant differences between the calibration factor for horizontal 83 

curves and tangents (Table 2). In addition, Xie et al. (2011) identified a substantial difference 84 

between the calibration factor based solely on fatal-and-injury crashes and based on all types of 85 

severity. This phenomenon is closely related to the crash reporting threshold and the distribution 86 

of crash types in each state. 87 

The HSM predictive method estimates the total number of crashes for rural two-lane, two-way 88 

roadway segments, i.e., this prediction includes all types of crashes and severities. However, each 89 



state has its own crash reporting thresholds, which has an important effect on the transferability of 90 

the crash data (Xie et al., 2011; Shin et al., 2015a). 91 

In North Carolina, if people are involved in a crash but there are no injuries, the drivers are 92 

typically responsible for reporting the crash. Nevertheless, private citizens have to report the crash 93 

within 72 hours if they are involved in a crash that results in injury, death, or more than $1,000 of 94 

damage to their vehicles. This reporting approach differs in other states (Table 3). In this way, a 95 

reported crash in Washington and California might not be reported in North Carolina. This 96 

phenomenon, called underreporting, might lead to biased results and a difficult interpretation of 97 

the phenomenon (Yamamoto et al., 2008). Thus, some researchers recommend considering only 98 

fatal-and-injury crashes for the calibration of SPFs (Xie et al., 2011; Shin et al., 2015a). 99 

Thus, this research aims to study how the type of road alignment and crash severity influence the 100 

calculation of calibration factors and, consequently, the prediction of road crashes. 101 

OBJECTIVES AND HYPOTHESES 102 

The main objective of this research was to overcome the weaknesses related to the calculation of 103 

the calibration factors on rural two-lane, two-way roadway segments through the HSM predictive 104 

method. As mentioned above, the relationship between the number of predicted crashes under base 105 

conditions (Nspf) and the number of predicted crashes in a specific jurisdiction or state (Npredicted) 106 

might depend on the type of alignment as well as on the level of crash severity (Findley et al., 107 

2012a; Xie et al., 2011). 108 

Thus, several calibration factors were obtained and analyzed for different crash severities and types 109 

of road elements. The comparison between these calibration factors was carried out through an 110 

aggregated and disaggregated analysis. The aggregated analysis was focused on the prediction of 111 



the number of crashes on entire road segments, whereas the disaggregated analysis was carried out 112 

according to the type of road element, i.e., horizontal curve and tangent. 113 

This study was based on two main hypotheses. The first one is that the calibration factor varies 114 

depending on the severity of road crashes, whereas the second one is that a calibration factor based 115 

on both types of road elements (horizontal curves and tangents) is not able to properly assess road 116 

safety on each type of road element. Therefore, a calibration factor for each type of road crash (by 117 

injury severity) and each type of road element will allow engineers to more accurately estimate the 118 

number of crashes on rural two-lane, two-way roadway segments. 119 

METHODOLOGY 120 

This research was focused on the analysis of the HSM predictive method through different 121 

calibration factors obtained in North Carolina (US). A total of 27 two-lane rural road sections 122 

located along NC-96, NC-42, and NC-268 roadways were selected. The horizontal alignment for 123 

each road section was recreated by means of the methodology proposed by Camacho-Torregrosa 124 

et al. (2015), whereas the cross-section of each road element was determined through aerial 125 

images. Crash and traffic data were also obtained. Different calibration factors were developed for 126 

the state of North Carolina for fatal-and-injury crashes and for each type of road element. These 127 

calibration factors were compared with those proposed by Findley et al. (2012) and Smith (2017), 128 

which were calibrated in the same state and based on all injury severity crashes (fatal, injury, and 129 

Property Damage Only crashes), to analyze the influence of the type of crash in the calculation of 130 

calibration factors. It should be noted that the analyses performed in this effort are potentially 131 

limited by the accurate reporting of the location and details of crashes, in addition to whether 132 

crashes are reported to the appropriate law enforcement agency. To the extent possible, the 133 

analyses conducted followed HSM recommendations except where comparisons to alternative 134 



methods are presented.  A variety of analytical and statistical techniques were applied to the data, 135 

which included the calculation of the Mean Absolute Deviation (MAD) and the Root Mean Square 136 

Error (RMSE) and the analysis of Cumulative Residuals (CURE) plots. 137 

DATA DESCRIPTION 138 

Road segments 139 

A total of 27 two-lane rural road sections located in North Carolina with no geometric changes in 140 

the time period selected for crash data were selected for the study. This required the geometric 141 

recreation of approximately 150 km (90 miles) of highway covering 350 horizontal curves and 375 142 

tangents. 143 

Length, radius, and the presence or absence of spiral transition were identified from this geometric 144 

recreation. Lane width, shoulder width and type, number of driveways, and roadside design were 145 

obtained from aerial images for each road element. These road segments are located in the 146 

Piedmont of North Carolina and are assumed to have a grade flatter than 3% (level grade) and do 147 

not contain centerline rumble strips, passing lanes, lighting, or automated speed enforcement. A 148 

superelevation rate that was adequate according to the AASHTO design guide was assumed for 149 

each horizontal curve (Table 4). 150 

Traffic and crash data 151 

Traffic volume and crash data were provided by the North Carolina Department of Transportation 152 

(NCDOT). AADT and the number of reported crashes were identified for each homogeneous road 153 

segment and horizontal curve between 2012 and 2016. 154 

Only reported fatal-and-injury crashes were considered over this period of time. As a result, a total 155 

of 223 reported crashes were analyzed, 130 of which occurred on horizontal curves and 93 on 156 

tangents. It should be noted that the number of locations in this study is much greater than the 157 



HSM recommendation (30-50 locations), even though the total crash threshold recommended by 158 

the HSM is not met (100 crashes per year as a minimum). Property Damage Only (PDO) crashes 159 

are not always reported and, consequently, to consider all types of crashes might lead to biased 160 

results (Xie et al., 2011; Shin et al., 2015a). For this reason, it is more accurate and reliable to 161 

expand the results from the estimated number of fatal-and-injury crashes than to extrapolate from 162 

the total number of crashes (PDO crashes and fatal-and-injury crashes). 163 

Additionally, the crash distribution for rural two-lane, two-way roadway segments in North 164 

Carolina was studied based on the reported crashes on NC-41, NC-42, NC-43, NC-96, and NC-165 

268 highways from 2012 to 2016. These highways have similar characteristics to the road 166 

segments considered in this research regarding cross-section, roadside design, and vertical 167 

alignment (level grade). The main objective was to compare this crash distribution with the crash 168 

distribution contained in the HSM, which is based on crash data from Washington. 169 

According to the crash severity level, both crash distributions were very similar to each other 170 

(Figure 1). The percentage of fatal and injury crashes (pi) was 33.4% and 32.1% for North Carolina 171 

and Washington, respectively. In addition, similar percentages were obtained for single and 172 

multiple-vehicle crashes in total (Table 5). However, the crash distributions were different from 173 

each other according to the disaggregated collision type. To this regard, “collision with animal” 174 

and “rear-end collision” showed greater percentages in North Carolina, whereas “ran off road” and 175 

“angle collision” presented higher values in Washington. 176 

This means that the proportion of related crashes (pra) in North Carolina (0.391) is different from 177 

that proposed by the HSM (0.574). This proportion was used to calculate CMF1r and CMF2r and 178 

was estimated as the sum of the percentages related to single-vehicle run-off-the-road, and 179 

multiple-vehicle head-on, opposite-direction sideswipe, and same-direction sideswipes crashes. 180 



Therefore, the values considered in this research for pra and pi were 0.391 and 0.334, respectively. 181 

Additionally, Table 5 allows engineers and practitioners to more accurately estimate the number 182 

of a particular type of crash in North Carolina. 183 

Crash modification factors and calibration factors 184 

The CMFs proposed by the HSM to estimate the number of predicted crashes on rural two-lane, 185 

two-way roadway segments were calculated according to Chapter 10 of the HSM. Table 6 shows 186 

a statistical summary of these factors. 187 

The calibration factor attempts to adjust the predicted number of crashes for local conditions. In 188 

North Carolina, Findley et al. (2012) proposed a calibration factor for each type of road element 189 

(1.33 for horizontal curves and 1.00 for tangents), whereas Smith et al. (2017) proposed a 190 

calibration factor for each region of the state (1.78 for coast, 0.78 for mountain, and 1.21 for 191 

piedmont). These calibration factors were obtained considering all types of severities, i.e., PDO 192 

crashes, injury crashes, and fatal crashes. 193 

However, this study only considers fatal-and-injury crashes, so new calibration factors were 194 

calculated for this type of crashes through the following expression: 195 

𝐶 =
∑ 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐻𝑆𝑀
        (4) 196 

where C is the calibration factor; Nobserved is the number of reported fatal-and-injury crashes; and 197 

Npredicted_HSM is the number of predicted crashes according to Equation 5. 198 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝐻𝑆𝑀 = 𝑁𝑠𝑝𝑓 · ∏ 𝐶𝑀𝐹𝑖

12

𝑖=1

= 𝐿 · 𝐴𝐴𝐷𝑇 · 365 · 10−6 · 𝑒−0.312 · ∏ 𝐶𝑀𝐹𝑖

12

𝑖=1

         (5) 199 

where L is the length of the roadway segment (miles); AADT is the annual average daily traffic 200 

volume (vehicles per day); and CMFi are the CMFs. 201 



A calibration factor was estimated for each type of road segment (horizontal curve and tangent) 202 

and for both road segment types jointly. To avoid the influence of the road segment selection on 203 

the calibration of these factors, each calibration factor was calculated as the average of the 204 

calibration factors obtained from 25 iterations. These iterations were based on the random selection 205 

of the road segments. In addition, to identify how important the sample-size is in the calculation 206 

of the calibration factors, different sample-sizes were considered: 90%, 80%, 70%, 60%, and 50% 207 

of the road segments. This new methodology allows engineers to obtain more accurate calibration 208 

factors and assess how sensitive these factors are regarding crash data.   209 

Table 7 shows how the calibration factors change as a function of the sample-size used in the 210 

analysis for rural two-lane, two-way roadway segments in North Carolina. It should be noted that 211 

the mean values for each type of road segment were very similar between the different sample-212 

sizes and the standard deviation was low. This reveals the high reliability of the calibration factors.  213 

This sensitivity analysis shows that the HSM recommended sample size may not be required to 214 

provide reliable results.  For each of the road segment types, the mean values for the calibration 215 

factor did not change substantially when using a sample size of between 50% and 90% of the full 216 

dataset in this study.  However, the standard deviation did decrease as the sample size increased. 217 

Therefore, to apply a single calibration factor for all types of road segments (C=1.34) might lead 218 

to underestimating the predicted number of crashes at horizontal curves (C=1.57) and 219 

overestimating it on tangents (C=1.15). This research supports the identification of this 220 

phenomenon. 221 

ANALYSIS 222 

This research presents an aggregated analysis, which estimated the number of predicted crashes 223 

on entire road segments, and a disaggregated analysis, which is focused on the study of the number 224 



of predicted crashes on each type of road element, i.e., horizontal curves and tangents. To this 225 

regard, the predicted number of crashes on a certain road segment was calculated as the sum of the 226 

predicted number of crashes for all road elements along the segment. 227 

Both analyses were carried out considering the following parameters of goodness of fit: 228 

i. Mean Absolute Deviation (MAD): 229 

𝑀𝐴𝐷 =
1

𝑛
∑|𝑦𝑖̂ − 𝑦𝑖|

𝑛

𝑖=1

          (6) 230 

ii. Root Mean Square Error (RMSE): 231 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑|𝑦𝑖̂ − 𝑦𝑖|2

𝑛

𝑖=1

          (7) 232 

iii. Cumulative Residuals (CURE) Plots: This method consists of plotting the cumulative 233 

residuals for each independent variable. The aim is to graphically observe how well the 234 

function fits the data set. The CURE method has the advantage of not being dependent on 235 

the number of observations, as are many other traditional statistical procedures. In general, 236 

a good cumulative residuals plot is one that oscillates around 0. Thus, a good fit is given 237 

when the residuals do not stray beyond the ±2σ* boundaries. 238 

𝜎∗ = √𝜎𝑖
2 · (1 −

𝜎𝑖
2

𝜎𝑇
2)          (8) 239 

where 𝜎∗ is the limit of the cumulative residuals; 𝜎𝑖
2 is the variance of the cumulative residuals 240 

until the element i; and 𝜎𝑇
2 is the total variance of the cumulative residuals. It should be noted that 241 

the residuals are calculated as the difference between the observed and predicted number of crashes 242 

and must be ordered from lowest to highest value. 243 



Table 8 summarizes the calibration factors studied in this research, which were calibrated in North 244 

Carolina (US). 245 

Crash severity influence 246 

Two comparisons were used to analyze the influence of the type of crash severity on the prediction 247 

of the number of fatal-and-injury crashes. In the first comparison, HSMFindley et al. was compared 248 

with HSMnew, type because both models are based on different calibration factors for each road 249 

element (horizontal curve and tangent), whereas HSMSmith et al. was compared with HSMnew, all, 250 

because both models included a single calibration factor for both types of road element. 251 

All models showed similar values for MAD and RMSE (Table 9). However, the most important 252 

results are provided by the evaluation of the CURE plots. Regarding this, HSMnew, type and HSMnew, 253 

all produced better adjustments than HSMFindley et al. and HSMSmith et al., since the percentage of points 254 

out of the limits of these plots, for both length and AADT, was substantially lower for HSMnew, type 255 

and HSMnew, all. 256 

These results can be graphically observed in Figure 2 (traffic volume) and Figure 3 (segment 257 

length). Although HSMnew, all slightly improved the results obtained through HSMSmith et al., 258 

HSMnew, type showed an important improvement compared to HSMFindley et al.. HSMFindley et al. 259 

underestimates the predicted number of fatal-and-injury crashes for both types of road segments, 260 

i.e., horizontal curves and tangents. Therefore, the use of calibration factors based on fatal and 261 

injury crashes allowed a more accurate estimation of the number of fatal-and-injury crashes than 262 

the application of a calibration factor based on all types of crash severities multiplied by the 263 

percentage associated with fatal and injury crashes (pi). 264 



Road element influence 265 

The influence of the type of road element was studied by comparing HSMnew, type with HSMnew, all. 266 

Although both models showed similar values for MAD and RMSE, the CURE plots indicated that 267 

HSMnew, type can more accurately estimate the number of fatal-and-injury crashes than HSMnew, all, 268 

because HSMnew, type showed a lower percentage of points out of the CURE plot limits (Table 9). 269 

Regarding the aggregated analysis, both models provided a good fit relative to the observed 270 

number of crashes, since the residuals did not stray beyond the CURE plot limits, with the 271 

exception of a few points (Figure 2 and Figure 3). This might lead to the claim that both HSMnew, 272 

type and HSMnew, all can be used to estimate the predicted number of fatal-and-injury crashes on an 273 

entire road segment. However, the disaggregated analysis revealed that HSMnew, type should be used 274 

instead of HSMnew, all because HSMnew, type is able to more accurately predict the number of fatal-275 

and-injury crashes on both types of road elements (horizontal curves and tangents), whereas 276 

HSMnew, all tends to overestimate and underestimate the number of fatal-and-injury crashes on 277 

tangents and horizontal curves, respectively. These results were obtained for both variables of the 278 

CURE plots, i.e., considering both the volume traffic and the road element length. Therefore, 279 

different calibration factors should be calculated for each type of road element to assess road 280 

safety. 281 

The same conclusions were identified by analyzing the results obtained through the calibration 282 

factors proposed by Smith et al. (2017). Although HSMSmith et al. appropriately estimated the 283 

predicted number of fatal-and-injury crashes on an entire road segment, the disaggregated analysis 284 

showed that the number of fatal-and-injury crashes on tangents and horizontal curves were 285 

overestimated and underestimated, respectively. 286 



DISCUSSION 287 

The HSM predictive method estimates the total number of crashes for rural two-lane, two-way 288 

roadway segments, i.e., this prediction includes all types of crashes and severities. However, 289 

various studies suggest that a calibration factor for each type of crash severity can provide more 290 

accurate results (Xie et al., 2011). This research supports this recommendation, since the new 291 

calibration factors based on the fatal-and-injury crashes resulted in a more accurate prediction of 292 

the number of this type of crash than the calibration factors proposed by Findley et al. (2012) and 293 

Smith et al. (2017), which were obtained considering all types of crash severity. Therefore, 294 

different calibration factors should be developed for each type of crash severity. These efforts led 295 

to a recommendation to develop calibration factors for fatal-and-injury crashes and extrapolate the 296 

results to other types of crash severities. This can help avoid the bias produced by the 297 

underreporting of Property Damage Only crashes. 298 

Most previous studies only analyzed the number of crashes in general terms, i.e., through an 299 

aggregated analysis. This leads to calibration factors that could provide a false confidence in the 300 

results of the number of crashes for entire road segments because the individual prediction on 301 

horizontal curves and tangents is not reliable (Findley et al., 2012a). The disaggregated analysis 302 

showed that to consider a single calibration factor for both types of road elements leads to 303 

overestimating and underestimating the number of fatal-and-injury crashes on tangents and 304 

horizontal curves, respectively. This means that a single calibration factor cannot properly identify 305 

which road elements pose a risk for drivers. Therefore, a specific calibration factor for each type 306 

of road element would allow highway engineers to obtain more reliable results.  The results of this 307 

study show that a substantial difference exists between calibration factors for horizontal curves 308 

and tangents, which suggests that significant improvements in predictive estimates of crashes can 309 



be achieved through applying separate calibration factors for these road elements.  Developing 310 

calibration factors for each road element type may improve reliability of calibration factors over 311 

time and positively affect credibility of the results through lower annual variability in calibration 312 

factor values. 313 

 Additionally, a new methodology to estimate the calibration factors was introduced in this 314 

research. To avoid the influence of the road element selection on the calculation of these factors, 315 

25 random iterations were carried out considering different sample-sizes. This analysis provided 316 

information about the impact of sample size on the appropriate development of the calibration 317 

factors proposed for North Carolina.  This sensitivity analysis shows that the HSM recommended 318 

sample size may not be required to provide reliable results.   319 

Finally, a preliminary study of crash distribution is recommended to apply the HSM predictive 320 

method. According to Xie et al. (2011) and Shin et al. (2015a), the percentage associated with the 321 

number of fatal-and-injury crashes (pi) and the proportion of related crashes (pra) might be 322 

significantly different from those proposed by the HSM, since the driver culture, infrastructure 323 

characteristics, and crash reporting threshold can be different for each state. In fact, the North 324 

Carolina crash distribution is similar to the Washington crash distribution regarding crash severity, 325 

but not when considering the type of crashes. Therefore, values of pi and pra equal to 0.334 and 326 

0.391, respectively, for North Carolina are recommended instead of the application of the 327 

percentages proposed by the HSM. 328 

CONCLUSIONS 329 

New calibration factors for horizontal curves and tangents based on fatal and injury crashes were 330 

developed for North Carolina two-lane rural roads. A total of 27 two-lane rural road sections were 331 

considered in the research, including 350 horizontal curves and 375 tangents. 332 



These calibration factors were compared with those proposed by Findley et al. (2012) and Smith 333 

et al. (2017) to analyze the influence of the type of crash severity and the type of road element on 334 

the prediction of the number of fatal-and-injury crashes through the HSM predictive method. Two 335 

different analyses were considered: aggregated and disaggregated analysis. 336 

As a result, those calibration factors based on both types of road elements led to overestimating 337 

the number of fatal-and-injury crashes on tangents and underestimating fatal-and-injury crashes 338 

on horizontal curves. Likewise, the new calibration factors based on fatal-and-injury crashes 339 

allowed a more accurate estimation of the predicted number of this type of crash than the 340 

calibration factors proposed by Findley et al. (2012) and Smith et al. (2017). 341 

Therefore, it is recommended to use a different calibration factor for each type of road element 342 

and each type of crash severity. This study also suggests using the number of fatal-and-injury 343 

crashes when developing calibration factors to extrapolate the results to other types of crash 344 

severities with the objective of avoiding the bias produced by the underreporting of Property 345 

Damage Only crashes and producing more reliable results. 346 

This research effort was focused on the estimation of the calibration factors, while future research 347 

is expected to analyze the development of state-specific SPFs from the point of view of the 348 

influence of risk exposure, homogeneity of road segments, and the functional form in an effort of 349 

broader HSM predictive method improvements and evaluation. 350 
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Table 1. Crash Modification Factors for rural two-lane, two-way roadway segments. 422 
CMF Description Base condition 

CMF1r Lane width 12 feet (3.66 m) 

CMF2r Shoulder width and type 6 feet (1.83) and paved 

CMF3r Horizontal curves: length, radius, and presence or 

absence of spiral transitions 

None 

CMF4r Horizontal curves: superelevation Varies according to AAHSTO 

CMF5r Grades Level grade 

CMF6r Driveway density 5 driveways per mile 

CMF7r Centerline rumble strips None 

CMF8r Passing lanes None 

CMF9r Two-way left-turn lanes None 

CMF10r Roadside design 3 

CMF11r Lighting None 

CMF12r Automated speed enforcement None 

423 



Table 2. Calibration factors in the United States. 424 
State Calibration factor (C) Research Effort 

Alabama 1.392 Mehta and Lou (2013) 

Arizona 1.079 Srinivasan et al. (2016) 

Florida 1.005 Srinivasan et al. (2011) 

Illinois 1.40 Williamson and Zhou (2012) 

Kansas 1.48 Lubliner (2011) 

Maryland 0.6956 Shin et al. (2015a) 

Michigan 1.278 DOT of Michigan (2012) 

North Carolina 
1.33 (horizontal curves); 1.00 (tangents) Findley et al. (2012) 

1.78 (coast); 0.78 (mountain); 1.21 (piedmont) Smith et al. (2017) 

Oregon 0.74 Xie et al. (2011) 

Utah 1.16 Brimley et al. (2012) 

425 



Table 3. Crash reporting thresholds for some states in the United States. 426 
State Crash Reporting Threshold 

Washington $700 

California $750 

North Carolina $1,000 

Oregon $1,500 

Maryland If any vehicle needs to be towed 

427 



Table 4. Geometric characteristics of the road elements. 428 

Road feature 
Horizontal curves Tangents 

Min. Max. Mean Median St. Dev. Min. Max. Mean Median St. Dev. 

Length (miles) 0.004 0.645 0.135 0.104 0.095 0.003 0.931 0.132 0.073 0.160 

AADT (vpd) 538 7,700 1,885 1,289 1,669 538 7,700 1,946 1,289 1,713 

Radius (feet) 121.9 123,264.8 4,655.6 1,386.5 12,462.6 na na na na na 

Lane width 

(feet) 
8 12 9.937 10 1.058 8 12 9.963 10 1.046 

Shoulder 

width (feet) 
8 12 9.937 10 1.058 2 6 3.139 3 1.233 

Roadside 

Hazard Rating 
2 6 3.106 3 1.210 3 5 3.795 3 0.975 

DD 

(driveways per 

mile) 

0 63.3 11.2 9.0 11.9 0 185.7 18.2 9.7 24.5 

NOTES: 

Min=Minimum; Max=Maximum; St. Dev.=Standard deviation; AADT=Annual Average Daily Traffic; DD=Driveway 

Density; CCR=Curvature Change Rate; na=not applicable; Crashes=Number of fatal-and-injury crashes  

1 mi = 1,609.34 m, 1 ft = 0.3048 m. 

429 



Table 5. Crash distribution: collision type. 430 
Collision type North Carolina HSM 

SINGLE-VEHICLE CRASHES 

Collision with animal 31.3% 12.1% 

Collision with bicycle 0.3% 0.2% 

Collision with pedestrian 0.3% 0.3% 

Overturned 3.3% 2.5% 

Ran off road 32.6% 52.1% 

Other single-vehicle crash 2.8% 2.1% 

Total single-vehicle crashes 70.4% 69.3% 

MULTIPLE-VEHICLE CRASHES 

Angle collision 1.2% 8.5% 

Head-on collision 1.3% 1.6% 

Rear-end collision 19.2% 14.2% 

Sideswipe collision 5.2% 3.7% 

Other multiple-vehicle collision 2.7% 2.7% 

Total multiple vehicle collision 29.6% 30.7% 

TOTAL CRASHES 100.0% 100.0% 

431 



Table 6. Statistical summary of the CMFs. 432 

CMF Description 

Type of road element 

Horizontal Curves Tangents 

Min. Max. Mean St. Dev. Min. Max. Mean St. Dev. 

CMF1r Lane width 1 1.1173 1.044 0.02789 1 1.1173 1.044 0.028 

CMF2r 
Shoulder width and 

type 1.031 1.1321 1.066 0.02789 1.024 1.1321 1.066 0.02821 

CMF3r Horizontal curves 1 10.059 1.795 1.36664 1 1 1 0 

CMF4r Superelevation 1 1 1 0 1 1 1 0 

CMF5r Grades 1 1 1 0 1 1 1 0 

CMF6r Driveway density 1 2.8943 1.271 0.36885 1 72.788 1.693 3.76648 

CMF7r 
Centerline rumble 

strips 1 1 1 0 1 1 1 0 

CMF8r Passing lanes 1 1 1 0 1 1 1 0 

CMF9r 
Two-way left-turn 

lanes 1 1 1 0 1 1 1 0 

CMF10r Roadside design 1 1.1429 1.059 0.07002 1 1.1429 1.057 0.06964 

CMF11r Lighting 1 1 1 0 1 1 1 0 

CMF12r 
Automated speed 

enforcement 1 1 1 0 1 1 1 0 

433 



Table 7. Calibration factor for North Carolina. 434 

Type of road 

segment 
Sample-size 

Calibration factor 

Minimum Maximum Mean St. Deviation 

Horizontal 

curves 

90% 1.472 1.725 1.578 0.066 

80% 1.405 1.776 1.573 0.089 

70% 1.294 1.780 1.568 0.121 

60% 1.344 1.798 1.559 0.137 

50% 1.284 1.870 1.582 0.168 

Tangents 

90% 1.088 1.228 1.163 0.036 

80% 0.993 1.291 1.158 0.081 

70% 0.926 1.330 1.143 0.093 

60% 0.979 1.333 1.157 0.095 

50% 0.886 1.371 1.142 0.143 

All 

90% 1.264 1.396 1.344 0.033 

80% 1.248 1.441 1.342 0.053 

70% 1.269 1.435 1.350 0.048 

60% 1.206 1.513 1.339 0.067 

50% 1.169 1.539 1.335 0.094 

435 



Table 8. Calibration factors in North Carolina. 436 
Name of the model Description 

HSMFindley et al. Equation 5 with calibration factors proposed by Findley et al. (2012): 

• Calibration factor for horizontal curves: 1.33 

• Calibration factor for tangents: 1.00 

HSMSmith et al. Equation 5 with calibration factors proposed by Smith et al. (2017): 

• Calibration factor for Coast: 1.78 

• Calibration factor for Mountain: 0.78 

• Calibration factor for Piedmont: 1.21 

HSMnew, type Equation 5 with calibration factors proposed in this research for each type of 

road segment (Table 7): 

• Calibration factor for horizontal curves: 1.57 

• Calibration factor for tangents: 1.15 

HSMnew, all Equation 5 with calibration factor proposed in this research for all types of road 

segments (Table 7): 

• Calibration factor: 1.34  
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Table 9. Parameters of goodness of fit. 438 
(a) Aggregated analysis 

Model MAD RMSE CURE plot (AADT)* CURE plot (L)** 

HSMFindley et al. 1.622 2.487 61.02% 50.85% 

HSMSmith et al. 1.615 2.252 45.76% 35.59% 

HSMnew, type 1.683 2.490 16.95% 8.47% 

HSMnew, all 1.715 2.489 35.59% 27.12% 

(b) Disaggregated analysis – Horizontal curves 

Model MAD RMSE CURE plot (AADT)* CURE plot (L)** 

HSMFindley et al. 0.451 0.748 43.43% 67.14% 

HSMSmith et al. 0.448 0.748 65.71% 72.57% 

HSMnew, type 0.472 0.754 1.71% 58.57% 

HSMnew, all 0.451 0.748 42.29% 67.14% 

(c) Disaggregated analysis – Tangents 

Model MAD RMSE CURE plot (AADT)* CURE plot (L)** 

HSMFindley et al. 0.262 0.570 41.33% 8.80% 

HSMSmith et al. 0.283 0.565 9.87% 17.07% 

HSMnew, type 0.271 0.571 12.00% 5.60% 

HSMnew, all 0.288 0.584 9.07% 13.60% 

*Percentage of CURE plot out of the limits for traffic volume 

** Percentage of CURE plot out of the limits for road segment length 
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