
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/120337

Pastor-Jabaloyes, L.; Arregui De La Cruz, F.; Cobacho Jordán, R. (2018). A filtering
algorithm for high-resolution flow traces to improve water end-use analysis. Water Science &
Technology: Water Supply. 19(2):451-462. https://doi.org/10.2166/ws.2018.090

http://doi.org/10.2166/ws.2018.090

IWA Publishing



(Initial page layout) 

 
 

A filtering algorithm for high-resolution flow traces to improve 
water end-use analysis 
 
 
L. Pastor-Jabaloyes*, F.J. Arregui* and R. Cobacho* 
 
 
* ITA-Grupo de Ingeniería y Tecnología del Agua, Dpto. de Ingeniería del Agua y Medio Ambiente, 
Universitat Politècnica de València, Camino de Vera s/n, València 46022, Spain  
(E-mail: laupasja@ita.upv.es; farregui@ita.upv.es; rcobacho@ita.upv.es) 
 
 
Abstract 
One of the main difficulties encountered when designing automatic tools for water end use identification is the 
inherent noise present in recorded flow traces. Noise is mainly caused by the inability of the monitoring 
equipment to accurately register water consumption and data-loggers to register, without distortion, the signal 
received from the water meter. A universal filtering algorithm has been developed to remove noise and simplify 
water consumption flow traces with the aim of improving future automatic end use identification algorithms. 
The performance of the proposed filtering methodology is assessed through the analysis of 21,647 events. 
Water consumption data were sourced from two different water end use studies, having consumers and 
monitoring equipment with dissimilar characteristics. The results obtained show that the algorithm is capable 
of removing an average of 70% of the data points that constitute the flow traces of the complex events 
examined. The simplified flow traces allow for faster and more accurate disaggregation and classification 
algorithms, without losing significant information or distorting the original signal. The ability of the proposed 
filtering algorithm to fit the original flow traces was benchmarked using the Kling-Gupta efficiency coefficient, 
obtaining an average value above 0.79. 
 
Keywords 
Filtering; water end use event; water micro-component; smart metering data; residential water flow trace 
disaggregation 

 
 
INTRODUCTION  
Sustainability in the use of water resources has been an international concern for many years. There 
is a clear need to promote efficient water usage in urban areas (UNEP, 2011) in order to face future 
challenges driven by an increasing population demand and a decreasing amount of water resources 
of the required quality. Demand side management strategies can be a useful instrument for reducing 
water consumption if they are properly designed and implemented.  
 
A more accurate characterization of residential demand is a powerful tool that gives effective support 
to water demand modelling and management (Buchberger and Wells, 1996; Guercio et al., 2001; 
Alvisi et al., 2003; García et al., 2004; Blokker et al., 2010; Creaco et al., 2015, 2016). The 
development of high resolution smart meters facilitates a more accurate and detailed characterization 
of water consumption profiles (Cominola et al., 2015). Frequent readings of the meters, 
approximately every second, can even provide how water is used by the different appliances (end use 
identification) inside the house (DeOreo et al., 1996; Mayer et al., 1999; Cubillo et al., 2008; Beal 
and Stewart, 2011). This information can also be employed to develop more accurate forecasting 
models (Bennet et al., 2013; Makki et al., 2015) or even provide ad-hoc feedback to each customer 
and promote behavioural changes towards efficiency (Fielding et al., 2013). Unfortunately, with the 
available technology, these studies involve a considerable investment in human and capital resources. 
As a result, such an approach is not economically viable for large samples (Nguyen et al., 2013a) and 
it is necessary to develop automatic processing tools to disaggregate and categorize high resolution 
consumption data into individual (single-use) water end use events. 
 
Filtering of water flow traces is the preliminary step to develop automatic water end use 
disaggregation and classification algorithms. The main objective of this first step is to simplify the 
flow traces and to accurately identify the start and end of each water consumption event (which can 



be overlapped with other uses in the household) by means of changes in the flow rate gradient. 
Filtering of the flow signal is crucial because it decreases the complexity of the algorithms that will 
be needed to disaggregate overlapped into single-use events. The disaggregated single-use events 
define the consumption characteristics associated to the various end uses present in the household, 
and these particular characteristics of the disaggregated consumption events are the input data to train 
forthcoming classification algorithms. 
 
Currently, there are three commercial software packages available for residential end use 
disaggregation and classification: Trace Wizard® (DeOreo et al., 1996), Identiflow® (Kowalski and 
Marshallsay, 2003) and BuntBrainForEndUses® (Arregui, 2015). These tools are not completely 
described in the scientific literature, and there is not detailed published information about the type of 
water flow trace processing algorithms employed. An alternative approach to end use identification 
was proposed by Larson et al. (2012). This unconventional approach relies on data collected through 
pressure sensors instead of water meters. Even though in this case the filtering strategies utilised are 
explained in detail, the type of signal - pressure instead of flow rate - is completely different and the 
filtering methodology cannot be directly applied to consumption flow traces. The development of the 
filter presented in this paper has taken the work conducted by Nguyen et al. (2013b) as a starting 
point: the approach known as gradient vector filtering technique. However, the direct application of 
the technique by Nguyen et al. (2013b) to the consumption data available in this study was not 
possible because: 1) the purpose of the gradient analysis conducted by the mentioned authors was to 
detect the start and end of an event and not to filter the flow trace 2) the available raw flow trace 
signals were too noisy to use Nguyen et al. (2013b) gradient filtering algorithms. The reason for these 
dissimilarities in noise levels can be found in the equipment employed to measure and register water 
consumption, which had quite different specifications to the one used by Nguyen et al. (2013b). 
Therefore, further development of the existing filtering algorithms was needed to make them 
applicable to noisier flow traces. 
 
The new filter developed by the authors improves flow trace gradient analysis and enhances signal 
processing, accounting for volume and flow rate changes. The filter is structured in four stages: noise 
reduction, gradient analysis, identification of sequences of homogeneous gradients, and volume 
adjustment. R (R Core Team, 2013) was the programming language selected to write the algorithm 
code. The filter uses 10 configuration parameters that provide the flexibility to solve a wide variety 
of consumption events. An automatic calibration procedure that finds the best combination of 
configuration parameters of the filter was developed (Pastor-Jabaloyes et al., 2018). The applicability 
of the proposed algorithms was tested on two different sets of flow traces extracted from two different 
end use studies (in total, 21,647 sampled consumption events). The performance of the filter was 
assessed through four indicators: volume error, Kling-Gupta efficiency or KGE coefficient (Gupta et 
al., 2009), reduction in the number of points used to define the event, and savings in memory 
requirements. To gain a better understanding of the numerical performance indicators of the filter, an 
additional visual inspection of 52 events, selected according to three parameters of complexity, was 
conducted.  
 
METHODS 
 
Filter architecture 
Essentially, the filtering algorithm has to emulate the mental simplifications carried out by a human 
analyst. For example, when overlapped events are manually disaggregated, a human analyst does not 
confuse the flow rate changes due to signal noise with those related to the start or the end of a single 
event. Ignoring the first type of changes - caused by noise in the flow signal - while maintaining the 
second type - caused by overlapped uses of water - involves a simplification of the flow trace that the 



filtering algorithm has to overcome. To successfully achieve this objective, the first stage of the filter 
calculates the physical characteristics of the water flow trace (e.g. gradient change or flow rate change 
magnitude). Then, these characteristics are compared with predefined thresholds. Finally, a 
simplification of the flow trace will be applied provided that certain conditions on the established 
thresholds are satisfied. In total, 10 thresholds have been defined, which are the input parameters of 
the filtering algorithm. 
 

 
Figure 1. General structure of the filtering process. 
 
The general filtering process has been implemented in a four-stage structure, as shown in Figure 1. 
The first filtering stage aims at removing the flow rate changes that are caused by the flow trace noise. 
Three general types of noise have been identified (Figure 2): (i) pure noise, which is defined as the 
volume below a threshold that is enclosed by two consecutive flow rate changes whose signs are 
opposite; (ii) fissure noise, which is conceptually similar to the previous one, but the changes define 
a gap (i.e. the first flow rate change is negative and the second one is positive); (iii) noise that is 
present at the start and/or the end of a sloping section. Therefore, the volume and gradient associated 
to a flow rate change need to be determined to characterise these types of noise. Given a water flow 
trace expressed as a vector fr=(fr1,fr2,…fri…,frm) in litres per hour (L/h), and recorded at time ti in 
milliseconds (ms), a vector of flow rate change a and a vector of time window tw are defined as: 
 
𝑎𝑎𝑗𝑗 = 𝑓𝑓𝑓𝑓𝑗𝑗+1 − 𝑓𝑓𝑓𝑓𝑗𝑗,    1 ≤ 𝑗𝑗 < 𝑚𝑚 (1) 

 
𝑡𝑡𝑡𝑡𝑗𝑗 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 ,    1 ≤ 𝑗𝑗 < 𝑚𝑚 (2) 

 
Where index j refers to those points of fr that satisfy: 
 
𝑓𝑓𝑓𝑓𝑖𝑖+1 − 𝑓𝑓𝑓𝑓𝑖𝑖 ≠ 0,    1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 (3) 

 
Based on vectors a and tw, the volume vector v is defined as:  
 

�
  𝑣𝑣𝑗𝑗 = �𝑎𝑎𝑗𝑗� ∗ 𝑡𝑡𝑡𝑡𝑗𝑗 ,         𝑖𝑖𝑓𝑓 𝑎𝑎𝑗𝑗 > 0
  𝑣𝑣𝑗𝑗 =  �𝑎𝑎𝑗𝑗� ∗ 𝑡𝑡𝑡𝑡𝑗𝑗−1,    𝑖𝑖𝑓𝑓 𝑎𝑎𝑗𝑗 < 0

 ,    1 ≤ 𝑗𝑗 < 𝑚𝑚 (4) 
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Figure 2. Examples of different types of noise on a raw flow trace (Input). Water flow trace resulting 
from the first filtering stage (Output after 1st filtering stage). 
 
On the other hand, to calculate the gradient vector g (Equation 5), it is necessary to apply a scale 
parameter (p1, ranging from 130 h·ms/L to 170 h·ms/L; default value equal to 150 h·ms/L) to ensure 
that the gradient growth, as a function of the flow rate change, is slow enough for large time windows 
(twi > 6000 ms).  
 
𝑔𝑔𝑗𝑗 = 𝑝𝑝1 ∗ 𝑎𝑎𝑗𝑗 𝑡𝑡𝑡𝑡𝑗𝑗⁄ ,    1 ≤ 𝑗𝑗 < 𝑚𝑚 (5) 

 
Note that Equation 3 implies that the points in the original flow trace for which twk=ti-ti-1=1ms 
(1<k<m) are not considered in the calculation of a, tw, v y g. Besides p1, four more parameters are 
used in the first filtering stage: a) maximum volume (p2) enclosed by pure and fissure noise (ranging 
from 0.1 L to 0.18 L; default value equal to 0.16 L); b) maximum flow rate change (p3) to take into 
account the appearance of fissure noise (ranging from 40 L/h to 120 L/h; default value equal to 80 
L/h); c) maximum gradient difference (p4) expressed in degrees, to identify the start or end of a 
sloping section (ranging from 30º to 75º; default value equal to 40º); and d) percentage of a stepped 
section with slope (p5) that belongs to the first or last flow rate change, which is necessary to avoid 
removing the first or last flow rate change when p5 is exceeded and fissure noise conditions are 
satisfied simultaneously (ranging from 0.001% to 10%; default value equal to 5%). Figure 2 shows 
the output after the first filtering stage.  
 
The second filtering stage carries out a gradient analysis. The gradients obtained after the first filtering 
stage do not allow for a proper identification of the start or end of certain sloping sections. For 
example, in Figure 3-a1 there are two different sloping sections that are identified as a single one 
(discontinuous lines), since the gradients from both sections are high and have the same sign (Figure 
3-a1). The solution adopted to overcome this problem is to consider an auxiliary point in the gradient 
calculation when the flow rate change and time window are both above certain thresholds. If a 
gradient sign change occurs, an extra point is also created. Consequently, four more parameters have 
been defined: a) minimum flow rate change (p6, ranging from 40 L/h to 120 L/h; default value equal 
to 100 L/h); b) minimum time window (p7, ranging from 5000 ms to 14000 ms; default value equal to 
10000 ms); and c) two parameters related to the time window to process short events (duration < 5 
min): minimum time window (p8, ranging from 3000 ms to 11000 ms; default value equal to 6000 
ms) and its percentage of total duration (p9, ranging from 0.001% to 10%; default value equal to 
5%). The results obtained after this second filtering stage can be examined in Figure 3-b1. Once the 
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gradient is corrected, each section is classified as horizontal or sloping. To conduct this classification 
the last parameter of the filter is defined: maximum gradient (p10). Horizontal sections have been 
defined as having slopes below p10, which can range between 3º and 30º (default value equal to 10º). 
 
a1) b1) 

  
a2) b2) 

  
Figure 3. a1) and a2) illustrate the flow trace and gradients after the 1st filtering stage applied to the 
raw flow trace used as an example in Figure 2; b1) and b2) show the flow trace and gradients after 
the 2nd filtering stage. 
 
The third filtering stage detects sequences of sections that have been classified in the same category 
(horizontal or sloping). If the flow rate change of a new sloping section is below p3, it cannot be 
considered the start or end of a single event, then that section is removed. 
 
a) b) 

  
Figure 4. Correction of a sloping section to adjust volume differences between the original and the 
filtered flow trace. 
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The fourth filtering stage corrects the filtered events to match the current volume (area under the flow 
trace) with the volume defined by the original flow trace. Given a time window, the algorithm equates 
the average flow rate of the horizontal sections with the average flow rate of the original flow trace. 
For the sloping sections, the slope is adjusted to balance out the volume differences. Figure 4 
illustrates an example, in which a volume excess of a filtered event (Figure 4-a) is corrected by 
modifying the gradient of a sloping section (Figure 4-b, discontinuous line). The final result of the 
complete filtering is shown in Figure 4-b (Final filter output).  
 
Validation of the filtering process 
Data from two water end used studies, in geographically distant regions, has been used to test the 
filtering algorithm. Besides the demographic and physical characteristics of the households, another 
significant difference between these studies is the type of monitoring equipment installed. In study 1 
(R1), the smart meters were ELSTER Y250 single-jet (maximum flow rate of 5 m3/h) or ELSTER 
Y250M multi-jet (maximum flow rate of 7 m3/h) depending on the type of residential household 
monitored. These meters produce a pulse every 0.04 L and 0.06 L consumed, respectively. Newly 
designed data loggers (Watchmeter, IoTsens) calculated the average consumption flow rate every 3 s. 
This recording mode was chosen to optimize the files size and the transmission to the server via 
GPRS/GSM. On the other hand, in study 2 (R2), a piston type volumetric water meter was used 
(Aquadis+, ITRON), which generates a pulse every 0.1 L. The data logger (Cosmos, SENSUS) 
recorded the occurrence time of each pulse with a resolution of 0.02 s. The significant differences 
between the monitoring equipment and their settings directly affects the water flow traces obtained. 
Flow traces from R1 present a soft noise and stepped flow rate changes. On the contrary, flow traces 
from R2, show rapid flow rate changes and significant signal noise (Figure 5). In order to verify the 
filtering algorithm ability to suit a heterogeneous variety of events, the samples used for validation 
include cases from these two studies.  
 
a) b) 

  
Figure 5. a) example of a stepped flow rate change from R1; b) example of a noisy signal and quick 
flow rate changes from R2. 
 
To validate the methodology, a sample of households from both studies was selected. Average daily 
consumption and presence of continuous leakage were two factors considered. The final sample 
included 20 households - 10 from R1 and 10 from R2. Due to the specific characteristics of the 
households in each study, cases with high average daily consumption and presence of internal leaks 
are more common in R1 (Figure 6). Normally, these two features are correlated with long events and 
a high number of simultaneous water uses; and, in turn, with more complex flow traces. Therefore, 
consumption data from R1 presented more difficulties for the filtering algorithm.   
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Figure 6. Daily consumption for the sample of households taken from studies R1 and R2.   
 
A two week period of analysis has been chosen for each household, which corresponds to readings 
obtained in Autumn 2015 for R1 and in Autumn 2016 for R2. A total of 21,647 water consumption 
events were recorded. The calibration methodology of the filtering algorithm described in Pastor-
Jabaloyes et al. (2018), which is based on the Elitist Non-Dominated Sorting Genetic Algorithm 
NSGA-II, allows for an automatic selection of the configuration parameters of the filter for each 
event. Numerical indicators of the filter performance were calculated for the 21,647 events analysed. 
To gain a better understanding of the indicators interpretation, a sub-sample of 52 events was selected 
for detailed and visual inspection. In order to include as much diversity of events as possible, three 
parameters were established to quantify the filtering complexity of the events: a) event duration (i1), 
a long duration of an event usually implies overlapping of several water uses; b) number of points 
(i2) that defines the event in the water flow trace, which is higher in those events defined by a noisier 
flow trace; c) maximum flow rate (i3), which is normally higher for overlapped events. 
 
Table 1. Summary of the event characteristics used as input data for the validation process. Size and 
distribution of the sub-sample analysed. 

Group Duration 
(min) 

Original sample 
of events   Sub-sample of events 

  % Total volume  Number of 
points 

Maximum flow 
(L/h) 

Complex 
events 

Number of events 
final sample 

           R1 R2 R1 R2 

Gr1 <0.5 1.2%  >6 >603.8 149 46 2 2 

Gr2 >=0.5 & 
<1.7 4.8%  >10 >729.0 156 107 3 3 

Gr3 >=1.7 & 
<4.7 13.1%  >18 >782.6 190 141 6 6 

Gr4 >4.7 80.9%   >52 >1018.0 232 96 15 15 
 
The first quartile, median and third quartile of duration from the original sample (21,647 events) are 
shown in Table 1. As a result, four groups were considered (Gr1, Gr2, Gr3 and Gr4). For each group, 
the third quartile of the number of points was determined. Then, the events of each group with a 
number of points below their respective third quantile were sifted out. Finally, the third quartile of 
the maximum flow rate was computed for the remaining sample. The events taken into account to 
select the final sub-sample have a maximum flow rate above the third quartile calculated for each 
group. From all the events that satisfy the conditions previously defined, 26 events per study (52 
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events in total) have been randomly chosen. Their distribution for each group is based on the fact that 
75% of the events from the original sample (event duration less than 4.7 min) represent just 19.1% of 
the total volume (Table 1). Therefore, the three first groups have less weight in the size of sub-sample 
analysed. 
 
RESULTS AND DISCUSSION 
The use of a 10 parameter filter ensures the applicability of the filter to almost any type of flow trace 
and water consumption event. For the case study presented, a combination for the 10 parameters  was 
found automatically for each one of the 21,647 events. This was done by applying the calibration 
methodology of the filter described in Pastor-Jabaloyes et al. (2018) that is based on the use of the 
Elitist Non-Dominated Sorting Genetic Algorithm NSGA-II. This methodology automatically finds, 
depending on the specific characteristics of each event, the values of the parameters that need to be 
used by the filter. Therefore, the consideration of 10 parameters does not become a drawback of the 
filter but an advantage as it can be applied to simplify almost any flow trace signal. 
 
The performance of the filter for the 21,647 events was assessed by means of four numerical 
indicators. The first one was the total volume error expressed as a percentage of the volume in the 
original water flow trace. The second indicator was the Kling-Gupta efficiency or KGE (Gupta et al., 
2009). This indicator is a dimensionless index that can range from -Inf to 1, 1 being the best value, 
obtained when a perfect fitting of the original flow trace is reached. It evaluates the ability of the 
filtering algorithm to fit the original water flow trace. R package hydroGOF was used to calculate the 
KGE index. The other two indicators measure the memory savings achieved by filtering the signal: 
the reduction in the number of points (expressed as a percentage), and the reduction in the memory 
requirements (expressed in bytes). 
 
Table 2. Average values of performance indicators per duration group and research by applying the 
filtering algorithm to the 21,647 sampled events. 
 R1  R2 
  Gr-1 Gr-2 Gr-3 Gr-4  Gr-1 Gr-2 Gr-3 Gr-4 
Number of events 4612 3787 5732 2306  1308 1118 1644 1140 
Avg. Duration (min) 0.31 1.02 11.03 20.00  0.18 1.05 3.10 38.80 
Avg. Volume (L) 0.5 2.3 25.2 36.8  1.08 4.9 6.4 31.5 
Avg. volume error (%) 0.007% 0.03% 0.07% 0.13%  0.011% 0.02% 0.12% 0.17% 
KGE 0.86 0.82 0.79 0.80  0.93 0.84 0.909 0.87 
Number of points reduction (%) 17.5% 33.8% 55.8% 63.7%  52.6% 78.2% 63.3% 85.1% 
Memory requirements reduction (bytes) 27 123 1089 1679  230 1283 1711 9552 
Memory requirements reduction (%) 8.5% 24.3% 46.9% 56.5%   35.3% 70.9% 61.2% 81.9% 

 
Table 2 summarizes the average values obtained for the four performance indicators in each duration 
group. As shown, for all four groups, the average volume error of the filtered events is less than 
0.17%. In relation to the goodness of fit, the average KGE values are typically above 0.8 in all groups. 
The performance achieved indicates that the filtering algorithm simplifies water flow traces following 
accurately the shapes defined by the original trace. However, it should be highlighted that the 
objective is not to exactly reproduce the original trace, since imperfections caused by noise in the 
signal must be removed. Thus, reaching a value 1 for the KGE index is not a desirable performance 
of the filter. On the other hand, memory saving indicators show that filter improves as events become 
longer. Results show that, for the most complex events in group Gr4, the percentage of point reduction 
can be as high as 63.7% in R1 and 85.1% in R2. Indicators related to memory requirement savings 
follow a similar trend. Therefore, this filter enables a much more efficient storage, with no 



information losses, of the huge amount of data recorded in water end uses studies. In addition, 
simplified water flow traces can be more easily displayed in a web viewer while minimizing 
slowdown problems, as they are faster to upload and process. 
 

  R1 R2 

Gr-1 

 

a) Volume error=0.023 %; KGE=0.69 b) Volume error=0.033 %; KGE=0.72 

  

Gr-2 

c) Volume error=0.010 %; KGE=0.76 d) Volume error=0.012 %; KGE=0.76 

  

Gr-3 

e) Volume error=0.008 %; KGE=0.75 f) Volume error=0.024 %; KGE=0.82 

  

Gr-4 

g) Volume error=0.092 %; KGE=0.85 h) Volume error=0.007 %; KGE=0.83 

  

   
 

Figure 7. Analysed events per study and duration group that produced lower values of KGE indicator. 
 
Since numerical indicators of the performance of the filter, especially those related to the goodness 
of fit, are difficult to interpret, a more detailed analysis that includes a visual inspection was conducted 
in a sub-sample of 52 events. These events were selected according to three parameters of complexity 

Fl
ow

ra
te

(L
/h

)

0

100

200

300

400

500

600

700

-4 -2 0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

-4 -2 0 2 4 6 8 10 12 14 16

0
100
200
300
400
500
600
700
800
900

1000

-10 0 10 20 30 40 50 60 70 80 90 100
0

100
200
300
400
500
600
700
800
900

1000

-10 0 10 20 30 40 50 60 70 80 90 100

0

200

400

600

800

1000

1200

1400

-20 0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

-20 0 20 40 60 80 100 120

0

200

400

600

800

1000

1200

-100 0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

500 600 700 800 900 1000 1100

Time (s)

Input Output



as previously explained. Table 3 summarizes the average values of the numerical performance 
indicators of the filter for these 52 events. 
 
Table 3. Average values of performance indicators per group that are reached by applying the filtering 
algorithm to the 52 analysed events. 
  Gr1 Gr2 Gr3 Gr4 
Average volume error (%) 0.02% 0.01% 0.20% 0.05% 
KGE 0.807 0.809 0.85 0.93 
Number of points reduction (%) 55.3% 73.8% 77.3% 81.0% 
Memory requirements reduction (bytes) 114.0 1346.7 1904.7 12326.4 
Memory requirements reduction (%) 32.0% 67.7% 71.8% 78.7% 

 
Figure 7 shows examples of eight events from the sub-sample analysed - one per study and duration 
group - presenting lower values of KGE index, which means worse fitting to the original flow trace. 
In all cases, and considering the time scale, the differences between the original and the filtered flow 
traces are negligible. The filtering algorithm is even capable of ignoring small flow rate changes due 
to pressure variations (Figure 7-h) and it does not recognize these changes as the start or end of an 
event.              
 
a1) b1) 

  
a2) b2) 

  
Figure 8. Water flow traces and gradients before (a1 and a2) and after (b1 and b2) filtering. 
 
Filtering the flow signal and smoothing the gradient will also improve the overall performance of 
future disaggregation and classification algorithms that can be developed. This can be seen in Figure 
8 showing a toilet flush (ballcock type) overlapped with two faucets. The gradient calculated on the 
basis of the original water flow trace is extremely erratic (Figure 8-a2): gradient changes due to noise 
are similar to the gradient changes caused by the start or end of a water consumption event. This is 
because the small flow rate changes associated with the noise in the signal occur in a very short time 

0

200

400

600

800

1000

1200

1400

0 15 30 45 60 75 90 105 120 135

Fl
ow

 (L
/h

)

Time (s)
Input

0

200

400

600

800

1000

1200

1400

0 15 30 45 60 75 90 105 120 135

Fl
ow

 (L
/h

)

Time (s)
Output

-90
-75
-60
-45
-30
-15

0
15
30
45
60
75
90

0 15 30 45 60 75 90 105 120 135

G
ra

di
en

t (
de

gr
ee

s)

Time (s)
Input gradient

-90
-75
-60
-45
-30
-15

0
15
30
45
60
75
90

0 15 30 45 60 75 90 105 120 135

G
ra

di
en

t (
de

gr
ee

s)

Time (s)
Output gradient



window. Furthermore, the distortion that takes place around time equal 58 s (Figure 8-a1) divides the 
sloping section in two parts. However, in the filtered flow trace (Figure 8-b1), the start or end of a 
new single event can be easily identified, as signal distortions were removed. However, the shape of 
the original flow trace is maintained regardless of the filtering applied. In other words, the filtered 
flow trace keeps the relevant characteristics of the water consumption appliance, and can be used 
more efficiently by future disaggregation and classification algorithms without compromising their 
effectiveness. 
 
CONCLUSIONS 
Water end use analysis is today a powerful tool in urban water management. However, with the 
metering technologies currently available, any end use study requires a considerable investment in 
capital and human resources. This is the reason behind the efforts for developing automatic tools with 
the objective of disaggregating water flow traces and classifying single-use events. Within this 
research, filtering of flow trace signals is a fundamental preliminary step to improve the efficiency 
and effectiveness of these automatic tools. This paper presents a new universal filtering algorithm 
that can be applied to virtually any flow trace obtained with a variety of metering equipment. The 
performance and adaptability of the methodology has been tested by analysing 21,647 events sampled 
from two different end use studies. The results obtained show that for the most complex events, 63.7% 
for R1 and 85.1% for R2 of the points that define the original water flow trace are removed, saving a 
significant amount of memory and simplifying the following disaggregation and classification 
processes. Shapes and volumes of the original flow traces are maintained, as demonstrated by an 
average KGE values greater than 0.79 and the volume error indicators. Finally, to gain a good 
interpretation of this numerical indicator that measures the goodness of fit, a visual inspection of 52 
events selected according to three parameters of complexity was conducted. 
 
The filtering algorithm presented facilitates the identification of the start and end of overlapped water 
consumption events and, hence, the disaggregation of complex events. As a consequence, more 
effective and efficient strategies based on the simplified filtered water flow traces can be developed. 
Furthermore, the already established strategies can also benefit from this new tool, as the resulting 
flow traces maintain most of the characteristics of the original ones. 
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