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Abstract 

Smartphones have widened the possibilities for low-cost close-range image 

acquisition for three-dimensional (3D) modelling. They allow the rapid acquisition 

of large amounts of data for a wide range of applications. However, the accuracy 

of the models and the automation possibilities depend on the image acquisition 

conditions and application requirements. In this study, the accuracy and reliability 

of the derived photogrammetric 3D models are evaluated on a spherical setup for 

close-range applications (ca. 30 cm). Different numbers of images, network 

configurations, targets, devices and camera calibration methodologies are tested 

and evaluated. Results show that for this close-range application high accuracy 

(0·2 mm) and reliability can be achieved. The number of images did not significantly 

affect the accuracy but was vital for tie-point detection and image orientation. The 

use of artificial targets was found to be the key factor in increasing the final 

accuracy. In contrast, the image calibration strategy and the characteristics of the 

imaging device did not have a great impact on the results. 

KEYWORDS: smartphone, network geometry, calibration, accuracy, reliability. 

INTRODUCTION 

THE PERFORMANCE OF SMARTPHONE CAMERAS has greatly increased over the past few 

years. Although their quality is still a limitation for obtaining of highly accurate images, 

they have the great advantage of being totally portable and are almost always to hand. 

Currently, they offer a low-cost option for close-range photogrammetric applications, 

including the creation of 3D models for a wide range of purposes, including structural 

monitoring (Wang et al., 2012), geomorphology (Micheletti et al., 2015), creative industries 

(Nocerino et al., 2017) and medical applications (Abreu de Souza, et al. 2012; Hellwich et 

al., 2016; Hernandez & Lemaire, 2016), among others. Other low-cost non-metric cameras, 
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such as webcams, have also been used for close-range modelling (Chong and Brownstein, 

2010). 

Smartphone video (more specifically slow-motion video) is a useful tool for acquiring 

large numbers of images, suitable even for fast moving objects. These images can be used 

for the creation of 3D models of moving objects (Barbero-García et al., 2017). With an 

image acquisition speed of 240 frames per second (fps) of many smartphones (still far 

beyond the ultra-high-speed cameras that reach up to 2000 fps), the computational cost is 

the main limitation given the number of images to be used for 3D modelling. 

Despite their advantages, smartphone cameras present high internal instability that 

hampers their correct calibration. This problem is common to all non-metric digital cameras 

(Fraser, 2013), but is especially exacerbated when working with smartphones. The 

radiometric accuracy of smartphone cameras is lower than that of single-lens reflex (SLR) 

cameras but, despite their limitations, studies have concluded that these cameras can be 

used for photogrammetric tasks with a required accuracy of 1:10 000 (Akca and Gruen, 

2009). 

The development of useful tools, which could allow non-expert users to obtain 

accurate 3D models for different purposes, requires a high degree of automation 

(Remondino et al., 2014). However, most of the available automatic low-cost solutions 

provide low repeatability and reliability (Remondino et al., 2012). The development of fully 

automatic and reliable solutions for specific applications requires an extensive knowledge 

of the factors affecting the quality of the 3D models created using smartphones or other 

similar imaging devices, such as tablets. The most important factors include the 

determination of the ideal geometric network, the selection of the best video frames and 

their optimal number, as well as the accuracy requirements for camera calibration. These 

parameters can vary greatly depending on the characteristics and limitations of the image 

acquisition process for a specific application (such as moving or static target feature, 

camera-to-object distance, without forgetting the lighting conditions) and the required 

accuracy of the final 3D model. 

The traditional working pipeline in photogrammetry includes a low number of images 

and the manual identification of tie points. In contrast, the automatic processes that are 

common nowadays require a large number of images and, therefore, short baselines. The 

high overlap allows the use of feature-detection algorithms such as the scale-invariant 

feature transform (SIFT; Lowe, 1999) and speeded-up robust features (SURF; Bay et al., 

2007), so that tie points are detected automatically. The high speed of image acquisition 

also points to hyper-redundancy as a way to improve accuracy and compensate for the lack 

of internal stability. Some authors have studied the influence of hyper-redundancy and 

suggest using it as a tool to improve accuracy when the additional work to extract a large 

number of images is not an issue (Fraser et al., 2005). Current technologies, such as video, 

provide huge quantities of data. Therefore, the accurate determination of the number of 

images required for modelling, and the consequent filtering out of redundant images, has 

also become a necessity (Alsadik, et al., 2015). 

Another common subject of study in photogrammetry is the possibility of accurate 

self-calibration, especially for digital cameras with poor internal stability. Although self-

calibration, conducted simultaneously with the 3D-modelling process, is considered a 

powerful tool, a separate calibration process using a setup that ensures good image 

geometry is still recommended in many cases. A primary reason behind this is that the 
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optimal network for 3D reconstruction is usually not the best for camera calibration 

(Remondino and Fraser, 2006). 

Lastly, it is important to take into account the variety of capabilities and characteristics 

of different smartphone cameras. Resolution and maximum frame rate vary greatly between 

devices, providing very different results. 

This study assesses the different settings that can affect the creation of accurate 

smartphone 3D models for spherical objects in close-range applications. Spherical objects 

were selected as the final goal is to find the optimal setup for a specific application, namely 

the creation of 3D models for cranial deformation analysis in infants. In this application, 

the object to be modelled (the infant’s head shape) is usually in movement and image 

acquisition is carried out by a doctor in a limited time frame (Barbero-García et al., 2017). 

However, as the real photogrammetric data-acquisition conditions are hard to assess and 

replicate, this study deals with a sphere whose shape emulates an infant’s head. Therefore, 

it is possible to take as many shots as necessary in order to replicate the different conditions 

that can be encountered in real-life projects, usually in either a hospital or a clinic. 

A wide range of conditions were tested to determine the ideal network and setup. Due 

to the type of application, the setup was a simplification of real clinical conditions. Different 

numbers of image sets (19 to 95) were used to generate different models in order to evaluate 

the effect of hyper-redundancy. In addition, the influence of both (separate) camera 

calibration and (integral) self-calibration were tested, as both were performed for each of 

the network designs. The use of well-defined automatic coded markers as a tool to improve 

reliability and accuracy (Fraser, 1997; Luhmann et al., 2016) was also evaluated. Two 

different smartphones, with different camera characteristics, were tested. Reference data 

was obtained using a calibrated high-end SLR camera.  

The coordinates of a set of control points were calculated for each of the created 

models. The distances between each pair of coordinates were calculated too; the differences 

from the reference data were then obtained. The completeness of the models was also 

evaluated. 

The results of the study will be useful for the automation of the process and the 

creation of clear guidelines that will allow users (namely doctors) to successfully carry out 

the image acquisition. 

METHODOLOGY 

The evaluation of different parameters for 3D modelling, including network design, 

number of images, use of targets and calibration methodology, will drive the selection of 

the best methodology for 3D modelling close-range spherical objects, at an approximate 

camera-to-object distance of 30 cm with low imaging texture. Two smartphones were 

tested to assess the methodology: a Samsung Galaxy S7 Edge and a Samsung Galaxy Trend. 

The former can be considered a high-end smartphone; the latter a more conventional and 

cheaper smartphone. A high-end SLR camera, a Canon EOS-1Ds Mark III, was used to 

determine highly accurate coordinates of the discrete targeted points after self-calibration. 

These targeted points acted as control points and were used as reference data for 3D 

assessment.  

The first step of the photogrammetric data processing started with the geometric 

calibration of each camera, to determine both the interior and the exterior orientation 

parameters, as well as the additional parameters. The setup consisted of: (1) one horizontal 
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and two vertical panels (in an L-shaped configuration), all of them with several targets 

already included on them, as well as additional coded targets); (2) the sphere to be 

modelled; and (3) a calibrated ruler. The data was processed using the in-house 

photogrammetric software FOTOGIFLE (Lerma et al., 2010, 2014), which allows users to 

determine the quality of all the estimates (interior and exterior orientation parameters, and 

object coordinates). 

After the geometric calibration, one video of the object to be modelled was taken with 

each smartphone. Next, the Agisoft PhotoScan software was used to create several models 

for each video, varying the number of images, the presence of markers (targets) and the 

geometric calibration of the cameras (Fig. 1).  

 

 
FIG. 1. Methodology workflow for calibration and 3D assessment. 

Calibration  

The camera calibration was carried out using a setup of panels with targets, with the 

object to be modelled placed inside the framework defined by the panels (Fig. 2). Although 

the inclusion of the object was not necessary for calibration purposes, it simplified the 

processing as the images for the self-calibration of the SLR camera were also used to create 

the reference 3D model. 

For the Canon SLR camera calibration, a set of images were taken using a tripod and 

standard room illumination. The self-calibration setup included a set of convergent images, 

some of them rotated by 90º, good intersection angles of rays from the object points to the 

camera positions, and a sufficient number of targets well spread across the image format. 

This geometry was chosen to assure a good calibration, as stated by Fryer (2001) and 

Remondino and Fraser (2006). Finally, the images were calibrated using FOTOGIFLE with 

up to 10 additional parameters as proposed by Fraser (1997). A total of 89 circular and 

coded targets were used for the calibration, achieving an average calibration error of 0·26 

pixels and a maximum error of 1 pixel. The resulting targeted points coordinates were set 

as fixed coordinates to calibrate both smartphones afterwards.  

To calibrate the smartphone cameras, a video was recorded with each device. The 

conditions (distance, resolution, lighting…) used for this video calibration were the same 
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as used later for recording and carrying out the subsequent 3D modelling. A set of 11 frames 

from each video were manually selected to satisfy the best possible geometry. Most of the 

required targets were manually identified in each image set, due to the lack of automatic 

recognition by PhotoScan. 

 

FIG. 2. Setup used for camera calibration that includes three orthogonal calibration panels, the sphere to be 

modelled and a calibrated ruler. Additional coded targets were incorporated to strengthen the geometry. 

Three-dimensional Model Setup 

A sphere 18 cm in diameter was used for the tests. This object tries to emulate, in a 

simplified form, an infant’s head modelled for cranial deformation analysis. The clinical 

conditions were also replicated and thus neither special lighting nor a tripod were used. To 

further imitate clinical conditions and facilitate the 3D modelling by adding some texture, 

a fitted cap, similar to those used on the patients, was placed on the sphere. A total of 24 

coded targets, with an approximate diameter of 0·5 cm, were placed on the panels and 

sphere. These coded targets were recognised automatically by the PhotoScan software as 

markers; they were also be used as control points for accuracy calculations. A calibrated 

ruler was placed next to the sphere to allow the scaling of the reference dataset (Fig. 3). 
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FIG. 3. Three-dimensional model setup. 

Reference Data 

A high-accuracy photogrammetric solution was chosen as the best methodology to 

obtain accurate coordinates of the targets. The Canon EOS-1Ds Mark III SLR was used 

with a pixel count of 5616 x 3744, a focal length of 35 mm and ISO speed of 100 (Table I).  

A total of 40 images were taken covering the sphere and targets around it to assure 

the best possible accuracy. A tripod was employed to achieve neat pictures. The setup was 

the same as used for calibration purposes, and the images used for the calibration were also 

included. 29 further images were added, covering the back side of the sphere after removing 

the vertical panels used for calibration. 

The coordinated control points (coded targets) were computed with the software 

FOTOGIFLE, using a bundle adjustment and the camera calibration parameters obtained 

in a previous step during the camera calibration (Fig. 1). Sub-millimetre precision was 

obtained for every control point.  

Image Acquisition 

A video was recorded with each smartphone. The maximum frame rate for each device 

was chosen (Table I). A slow-motion video with a 1280x720 pixel count and 239 fps was 

obtained using the Samsung Galaxy S7 smartphone. No slow-motion functionality was 

available on the Samsung Galaxy Trend Plus. Therefore, a video with a similar pixel count 

and 30 fps was obtained. The length of both videos was under 1 minute. The specifications 

of the cameras can be consulted in Table I, although not all the parameters are provided by 

the manufacturer for the Samsung Galaxy Trend. 
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TABLE I. Camera parameters. The mode actually used is highlighted in bold. 

Camera Focal 

length 
(mm) 

Maximum 

frame rate 
(fps) 

Effective 

format size 
(mm) 

Pixel count     

(pixels) 

Pixel pitch 

(mm) 

Canon 

EOS-1Ds Mark III 
35  35.94 x 23.96 Still: 5616 x 3744 0·0064 

Samsung 

Galaxy S7 
4·17 239 5.37 x 3.02 

Still: 3840 x 2160 

Video: 1280 x 720 

0·0014 

0·0042 

Samsung 

Galaxy Trend Plus 
Unknown 30 Unknown 

Still: 2048 x 1536 

Video: 1280 x 738 
Unknown 

Network Design  

The determination of the optimal network design is especially important for the 

application of the methodology in real working environments. Under clinical conditions, 

simplicity and speed of data acquisition are vital to present a realistic and useful 

methodology. 

Two different camera configurations were tested: 

(1)  The first network consisted of a single ring of nearly horizontal convergent 

images taken around the object (Fig. 4(a)). Two models were created: (i) using 

26 images; and (ii) using 52 images. 

(2) The second network consisted of two sets of rings taken at different heights 

around the object, together with a third ring of zenithal (nadir) images (Fig. 4(b)). 

Four models were tested: (i) 19 images (9 at low height + 9 at medium height + 

1 at the top); (ii) 26 images (16+9+1); (iii) 52 images (30+20+2); and (iv) 95 

images (55+25+15). 
The model with 19 images (2(i) above) was considered the generic network design, 

similar to the one presented by Kraus (1997) for similar shapes, as it is the one where the 

optimal multi-ray intersection is obtained with as few images as possible. Therefore, the 

other networks should be considered redundant. The set of images for each model was 

manually selected to obtain the optimal geometry.  

In order to evaluate the effect of the calibration, every model was calculated three 

times using different geometric camera calibration methodologies: 

(1) Self-calibration from PhotoScan. 

(2) Fixed interior (inner) calibration from FOTOGIFLE on an optimal network, and 

image orientation in PhotoScan. 

(3) Self-calibration and image orientation in PhotoScan using interior calibration 

parameters from FOTOGIFLE as pre-calibration data. 

For methodology (3), the calibration parameters obtained using FOTOGIFLE were 

imported into PhotoScan in Australis format (Fraser and Edmundson, 2000) and then 

transformed by PhotoScan into its own format. This process was necessary as the 

calibration parameters are defined differently in each software (Drap and Lefèvre, 2016).  

Although different workflows were followed to determine the interior orientation 

parameters, the external orientation was always carried out using PhotoScan. To evaluate 

the effect of the presence of coded targets, every model was calculated both with and 

without them. The whole process consisted, therefore, of a total of 36 3D models (6 
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networks; 3 calibrations; 2 target types) for each smartphone. Every model was scaled using 

five ground control points (GCPs) whose coordinates were extracted from the reference 

data. 

  

 

FIG. 4. Camera network geometry. (a) Single ring of nearly horizontal images at a constant height around the 

object. (b) Three rings of images at different altitudes and employing horizontal, oblique and zenithal (nadir) 

attitudes. 

Model Creation 

In the first place, the images were masked to exclude the background. When using 

images of moving objects in live environments, the background changes its position in 

relation to the object. Therefore, the background must be excluded to allow the creation of 

the 3D model. In this particular case, using the background would allow the identification 

of points outside the object and the results would not represent the true condition that would 

be achieved on site. After masking, some targets were manually identified, as PhotoScan 

was unable to detect all of them automatically. Lastly, the model was created using the 

conventional software pipeline: (1) image orientation; (2) dense matching; and (3) meshing. 

Finally, every model was scaled using the five GCPs whose coordinates were provided by 

the reference model. An additional step was also undertaken: model texturing for 

visualisation purposes. 

Assessment 

The assessment was carried out considering two parameters: (1) the accuracy of the 

targets coordinates; and (2) the completeness of the model. The accuracy of the coordinates 

was evaluated by comparing the distances between targets. For each model, a total of 171 

distances between all possible pairs of targets were calculated. Later, the distances were 

compared to those of the reference dataset. This process, as presented by Luhmann and 

Wendt (2000), does not need registration of the models and, consequently, registration 

errors are avoided.  

The completeness of the models was checked visually. The models were classified as 

complete when the whole sphere was correctly represented, and as not complete when holes 

were apparent in a model (Fig. 5). In addition, a further category was considered for 

incomplete 3D models that presented only small imperfections on the top; these are termed 

‘bare’ models. This latter case is due to the lack of zenithal images during the single ring 

data acquisition (Fig. 4(a)). 
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FIG. 5. Examples of: (a) a complete three-dimensional model; (b), incomplete model; and (c) a model with 

small imperfections (bare). 

RESULTS 

Calibration 

Calibration results are presented in Table II. For both smartphone cameras, in addition 

to the elementary interior orientation parameters (x0, y0, f), two radial lens distortion 

parameters were requested (k1, k2), as well as the first decentring lens distortion parameter 

(p1) and the in-plane differential scaling between the horizontal and the vertical pixel 

spacing (b1). Every parameter was checked for statistical determinability and those below 

99% were removed. In total, the Samsung Galaxy S7 required seven additional parameters 

while Samsung Galaxy Trend Plus required nine parameters (two more than the other 

smartphone: p2 – the second decentring lens distortion parameter; and b2 – non-

orthogonality between the x and y axes). The mean of the residuals of the bundle adjustment 

obtained using FOTOGIFLE for the Samsung Galaxy Trend smartphone was below 1·39 

pixels, with an average of 0·36 pixels. For the Samsung Galaxy S7 smartphone calibration, 

the residuals were 1 pixel higher, with an average of 1·36 pixels. These residuals could be 

reduced only by performing an independent calibration for each photograph. However, this 

option was discarded as independent calibration parameters, obtained using an ideal 

calibration network, would not be applicable for the rear-side 3D modelling. Worth noting 

is that the standard deviation of the additional calibration parameters with the Samsung 

Galaxy Trend was always better than on the Galaxy S7 counterpart. The average 

intersection angle was 41·9º for the Samsung Galaxy S7 and 26·3º for the Samsung Galaxy 

Trend. The calibration distortion patterns (Fig. 6) do not show large differences between 

the two devices. 

 

 
TABLE II. Additional calibration parameters and standard deviation () obtained using FOTOGIFLE 

(f, x0, y0 and x, y errors in pixels). 

  Galaxy S7 Trend Plus 

  Mean  Mean  

x0 16·68 0·47 15·65 0·24 

y0 -24·16 0·35 32·61 0·27 



BARBERO-GARCÍA et al. Smartphone-based close-range photogrammetric assessment of spherical objects 

 
f -1029·28 0·44 -1292·32 0·22 

k1 -1·30-07 2·09-09 -1·38-07 6·97-10 
k2 2·50-13 3·70-15 2·20-13 1·36-15 

k3 0 0 0 0 

p1 7·56-07 1·60-07 1·06-06 4·92-08 
p2 0 0 -9·48-07 6·51-08 

b1 0·0235 1·40-04 0·0255 4·71-05 

b2 0 0 0·0017 4·52-05 
Mean error in x 1·36 0·34 

Mean error in y 1·13 0·36 

 

 

 
FIG. 6 Calibration distortion patterns for (a) the Samsung Galaxy S7 and (b) the Samsung Galaxy Trend. 

Three-dimensional Models 

A total of 36 models were created for each device, so 72 models in total. The 

coordinates of the coded targets in each model were obtained by combining automatic and 

manual procedures whenever the fully-automatic solution did not work. Later, the distances 

between every pair of markers were calculated and compared to those of the reference 

dataset derived from the high-end SLR digital camera. The mean difference in distance and 

the 65th percentile are shown in Table III. This table also specifies if the model was 

complete and acceptable (in green); incomplete (in yellow); or the additional ‘bare’ 

category (in blue) for those models that were almost correct but presented small 

imperfections, mainly in the upper area of the object. This bare category was necessary as 

some network designs, that achieved high accuracies, failed to produce useful 3D models 

without any additional processing. Therefore, this bare category highlighted those 3D 

models demanding additional photogrammetric and/or editing processing. In addition, 3D 

models that were not achieved after the automatic photogrammetric workflow are 

highlighted in orange.  
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TABLE III. Accuracy of the models. Mean and 65th percentile (P65) of the differences in distance. Incomplete 
models shown in yellow. Bare models with small imperfections in blue. Complete models in green. Models not 

achieved after the automatic photogrammetric workflow in orange. 

   Single ring models Three ring (horizontal + oblique + nadir) models 

      26 images 52 images 19 images 

(9+9+1) 

26 images 

(16+9+1) 

52 images 

(30+20+2) 

95 images 

(55+25+15) 

 
Interior 

Calibration 
Coded 
targets 

Mean  P65 Mean  P65 Mean  P65 Mean  P65 Mean P65 Mean P65 

S
am

su
n
g

 G
al

ax
y
 S

7
 

PhotoScan 
Yes 0·6 0·6 0·5 0·8 0·3 0·4 0·3 0·3 0·2 0·2 0·2 0·3 

No 0·9 1 0·8 0·9 Not aligned Not aligned 0·9 1 0·8 0·9 

FOTOGIFLE 
Yes 0·4 0·4 0·4 0·4 0·4 0·5 0·4 0·5 0·4 0·4 0·4 0·5 

No 0·6 0·8 0·4 0·5 Not aligned Not aligned 0·8 0·9 0·8 1·1 

FOTOGIFLE 

+ PhotoScan 

Yes 0·1 0·2 0·4 0·4 0·2 0·2 0·1 0·2 0·1 0·2 0·2 0·2 

No 0·5 0·6 0·5 0·6 Not aligned Not aligned 0·6 0·7 0·5 0·6 

S
am

su
n
g

 G
al

ax
y
 T

re
n

d
 

PhotoScan 
Yes 0·5 0·6 0·7 0·8 0·2 0·3 0·2 0·2 0·2 0·2 0·2 0·2 

No Not aligned 0·7 0·8 Not aligned Not aligned 1·4 1·6 0·7 0·8 

FOTOGIFLE 
Yes 0·6 0·7 0·7 0·9 0·7 0·8 0·7 0·8 0·6 0·7 0·7 0·8 

No Not aligned 2·3 2·6 Not aligned Not aligned Not aligned 1·2 1·4 

FOTOGIFLE 

+ PhotoScan 

Yes 0·2 0·2 0·6 0·7 0·1 0·1 0·1 0·1 0·2 0·3 0·2 0·2 

No Not aligned 1·4 1·8 Not aligned Not aligned Not aligned 2·9 3·6 

 
For the Samsung Galaxy S7 and the simple network design with a single ring of nearly 

horizontal images, models were nearly complete but presented small imperfections, mostly 

in the upper part which was not correctly covered by the images. However, the calculated 

distance error was acceptable, being below 1 mm for 65% of the points in every case. The 

results were almost independent of the type of calibration and the presence of targets. For 

the second network design with three rings of imagery, no models were obtained with 19 

images and some problems appeared in areas without targets using 26 and 52 images. In 

the last case which used 95 images, all models were complete; the error was below 1 mm 

in every case and under 0·5 mm whenever targets were used. Despite the differences 

registered in the completeness of the various models, no significant improvement in the 

accuracy of the models was achieved by increasing the number of images. 

For the Samsung Galaxy Trend smartphone, with a significantly less powerful camera, 

no complete models could be obtained with fewer than 95 images. On the one hand, the 

best result was obtained in the 95-image network, using targets and with no fixed 

independent calibration, yielding an average error of 0·2 mm. On the other hand, the error 

increases without targets, the lowest mean being 0·7 mm. 

The influence of the individual parameters is presented in Fig. 6. The usage of coded 

targets is the most important (key) factor to improve accuracy (Fig. 6(a)). The models 

created without targets have a maximum error of 1·4 mm while the models with targets 

have an error below 0·7 mm in every case. Targets also helped to increase the reliability. 

The self-calibration and the fixed FOTOGIFLE calibration provided similar accuracy (Fig. 

6(c)), while the non-fixed calibration, using first the calibration from FOTOGIFLE and 
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afterwards slightly improvements from PhotoScan, provided a significant improvement. 

This type of calibration also improved the reliability slightly. The two different devices 

showed very different reliability values. The Samsung Galaxy S7 provided correct models 

in 40% of the cases while only 10% of the models were correct when using the Samsung 

Galaxy Trend. The accuracy was also significantly better on the S7 device. The two 

network geometries used presented very different results for both accuracy and reliability. 

The one-ring network geometry provided slightly smaller errors in coordinates. 

Nevertheless, the reliability of the results was much better for the three-ring geometry. 
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FIG. 6. Box-and-whisker plots showing the accuracy of the models (using the mean error for each one) grouped 
by: (a) the presence/absence of targets: (c) calibration approach; (e) device; and (e) camera network 

geometry. Reliability of the models for the same set of parameters (b, d, f, h). 



BARBERO-GARCÍA et al. Smartphone-based close-range photogrammetric assessment of spherical objects 

 
 

Due to the high influence of the coded targets in the final 3D modelling assessment, 

it is necessary to analyse the results of the different networks and the number of images, 

with and without targets, to obtain meaningful results (Fig. 7). The accuracy was better than 

1 mm for every network geometry and number of images whenever targets were included. 

However, the reliability was really affected by both the geometry and the number of images; 

only the models with 95 images were correct in every case. 

 

FIG. 7. Accuracy (top) and reliability (bottom) for the different network geometries based on the number of 

images, with and without targets. 

DISCUSSION 

Smartphone cameras in slow-motion video mode have proven to be a useful tool for 

the quickly obtaining images that can be used for various close-range photogrammetric 

applications. This study has evaluated the possibilities of two smartphone cameras for close 

range photogrammetry (at approximately a 30 cm camera-to-object distance) and 3D 

modelling of a small spherical object with low image texture. In particular, the effects of 

calibration, hyper-redundancy and the presence of well-defined targets have been 

evaluated. This has been achieved by keeping in mind a particular application: the 

modelling of infants’ heads for cranial deformation analysis. Nevertheless, this close-range 

photogrammetric experience can be extrapolated to various other scenarios that require the 

use of low-resolution sensors imaging small and round objects, for instance industrial 
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applications modelling a series of moving spherical objects, or the documentation of small 

sculptures in cultural heritage with video recording using smartphones.  

The number of images was found to be vital to obtain complete models of acceptable 

accuracy. A high hyper-redundancy photogrammetric approach provided good results in 

almost every situation. For a low number of images, especially for the second network type 

with three rings and using the Samsung Galaxy Trend device, insufficient tie points were 

obtained and image orientation was not possible. Probably an increase in the object’s 

texture would allow completeness of the models with fewer images, as the tie point 

detection would be easier and more successful. The use of coded targets for the image-

orientation step allowed partial models to be obtained in many cases, even when no image 

orientation was possible without them. For well-defined imaging networks of the three-ring 

configuration, the targets improved the accuracy significantly. In a particular case, the mean 

distance changed from 2·9 mm (unacceptable) to 0·2 mm, which turned out to be the 

highest accuracy of all models. The calibration of the cameras was found to be the least 

important aspect of all the parameters evaluated. The calibration methodology (self-

calibration with PhotoScan, camera calibration with FOTOGIFLE, and a combination of 

both) did not improve the final accuracy of the 3D models, even considering both a large 

number of images and a strong geometric network. One single ring of images was not 

enough to recover accurately the internal orientation parameters of the camera, even with 

targets. Therefore, the self-calibration approach can be considered a suitable method for 

slow-motion smartphone video-image acquisition for close-range photogrammetric 

applications, whenever configurations of the three-ring type are considered. 

Different results were obtained for the two devices. The Samsung Galaxy S7, 

equipped with a more powerful camera, provided better accuracy and much higher 

reliability than the Samsung Galaxy Trend. However, both devices achieved good results 

in optimal conditions (high redundancy and coded targets). Therefore, it can be stated that 

acceptable reliability and accuracy can be obtained using most smartphones in the market, 

as long as the network conditions are adequate. 

The network configuration based on the single ring with nearly horizontal images 

(Fig. 4(a)) is only recommended when the number of images to be acquired needs to be low 

and no well-defined targets can be used. For these cases, this geometry improved the chance 

of correct image orientation, but small imperfections in the upper part of the model should 

be expected. These results can be explained since the images cover mainly the medium-

height part of the object, resulting in a high overlap in this area. Because of this fact, the 

feature detection algorithms performed easier and better, allowing the detection of a higher 

number of tie points. 

The hyper-redundancy of the network allows users to achieve complete models even 

with low-resolution cameras and low-texture ojects. However, the larger number of images 

does not significantly affect the accuracy in the coordinates of targets. Results suggest that 

the best methodology for this application is the use of a large number of images (95 or 

more) distributed at different heights around the object. The use of coded targets should be 

considered, even if it requires extra development to automate the methodology. Under these 

conditions, it is possible to obtain an error below 0·2 mm, which can be considered totally 
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acceptable as the most common methodologies currently in use have a precision worse than 

1 mm (Schaaf et al., 2010). 

CONCLUSIONS 

This paper has assessed the factors affecting the 3D modelling process in order to 

develop fully automatic and accurate solutions for specific close-range applications. The 

usage of smartphones for close range photogrammetry can provide sub-millimetre accuracy 

whenever slow-motion video is selected and camera-to-object distances of up to 30 cm are 

considered.   

The number of images required to obtain a fully automatic image orientation is much 

higher than that needed to obtain high accuracy in classic photogrammetric networks with 

a small number of manually measured tie points and highly convergent shots. The inclusion 

of coded targets (whose measurement and matching can be partially automated) has proven 

to increase significantly the accuracy of the final 3D model. In addition, coded targets 

facilitate enormously the image orientation, and this is independent of whether a low-end 

or high-end smartphone camera is used. Three rings of images with coded targets are 

considered optimal for achieving maximum accuracy with a self-calibration approach, (at 

least for slow-motion smartphone video image acquisition of a spherical object). Last but 

not least, highly redundant overlapping images are required to achieve correct reliability in 

the 3D modelling. 

Further evaluations will be carried out in the future using different cameras, such as 

stable high-speed cameras, that might yield better calibration results and even better metric 

deliverables. 
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Zusammenfassung 

Smartphones haben die Möglichkeiten für kostengünstige Erfassung von 3D-

Modellen im Nahbereich erweitert. Große Datenmengen können in sehr kurzer Zeit 

für eine Vielzahl von Anwendungen erfasst werden. Allerdings hängen die 
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Genauigkeit der Modelle und die Möglichkeiten einer Automatisierung sehr stark 

von den Aufnahmebedingungen und den Anforderungen der Anwendung ab. In 

diesem Beitrag werden Genauigkeits- und Zuverlässigkeitsaspekte der abgeleiteten 

3D-Modelle in einer sphärischen Messanordnung für Nahbereichsanwendungen 

(ca. 30 cm) evaluiert. Unterschiedliche Bildanzahl, Aufnahmeanordnungen, 

Zielmarken, Geräte und Kamerakalibrierungsmethoden werden geprüft und 

ausgewertet. Die Ergebnisse zeigen, dass für diese Anwendung eine sehr hohe 

Genauigkeit (0·2 mm) und Zuverlässigkeit erzielt werden kann. Die Zahl der 

Aufnahmen hat keinen signifikanten Einfluss auf die Genauigkeit, war aber 

Voraussetzung für die Detektion von Verknüpfungspunkten und die 

Bildorientierung. Der Einfluss künstlicher Zielmarken hatte einen entscheidenden 

Einfluss, um die Genauigkeit des Ergebnisses zu erhöhen. Hingegen hatten die 

Strategie zur Bildkalibrierung und die Eigenschaften des Bildaufnahmesystems 

keinen großen Einfluss auf die Ergebnisse.  

 

Resumen 

Los teléfonos inteligentes han ampliado las posibilidades en la toma de imágenes para modelado 

tridimensional (3D) de objeto cercano con bajo coste. Estos dispositivos permiten la obtención de gran 

cantidad de imágenes que pueden usarse en diferentes aplicaciones. La precisión de los modelos y la 
posibilidad de automatización dependen de las condiciones durante la toma de datos y las necesidades de la 

aplicación. En este estudio la precisión y la fiabilidad de los modelos  fotogramétricos 3D se evalúan para 

una aplicación de objeto cercano (30 cm) sobre una superficie esférica. Se ha evaluado diferente número de 
conjuntos de imágenes, la geometría de la red, el dispositivo, la existencia de dianas y la metodología de 

calibración. Los resultados muestran que en esta aplicación de objeto cercano pueden obtenerse altas 

precisiones (0·2 mm) y una alta fiabilidad. El número de imágenes no afecta en gran medida a la precisión 
de los resultados, pero sí a la posibilidad de obtener suficientes puntos homólogos para la creación del 

modelo. El uso de dianas es el factor que más ha aumentado la precisión. Por otro lado, la metodología de 

calibración de la cámara apenas ha mejorado la precisión de los resultados. 

 

 

 


