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Abstract

First, we propose a deterministic age-structured epidemiological model to study the diffusion of
e-commerce in Spain. Afterwards, we determine the parameters (death, birth and growth rates)
of the underlying demographic model as well as the parameters (transmission of the use of e-
commerce rates) of the proposed epidemiological model that best fit real data retrieved from the
Spanish National Statistical Institute. Motivated by the two following facts: first the dynamics
of acquiring the use of a new technology as e-commerce is mainly driven by the feedback af-
ter interacting with our peers (family, friends, mates, mass media, etc.), hence having a certain
delay, and second the inherent uncertainty of sampled real data and the social complexity of the
phenomena under analysis, we introduce aftereffect and stochastic perturbations in the initial de-
terministic model. This leads to a delayed stochastic model for e-commerce. We then investigate
sufficient conditions in order to guarantee the stability in probability of the equilibrium point
of the dynamic e-commerce delayed stochastic model. Our theoretical findings are numerically
illustrated using real data.

Keywords: Delayed stochastic nonlinear system of differential equations, age-structured
epidemiological model, Lyapunov stochastic stability analysis, e-commerce diffusion model.

1. Introduction1

Electronic commerce (in short e-commerce) is the use of advanced electronic technology2

for a wide range of on-line business activities for goods and services. E-commerce is gradually3

extending to the economic mainstream and business core aspects. E-commerce has provided4

a new way of doing business all over the world using the Internet. Modelling the diffusion of5
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e-commerce is extremely important for business investors and policymakers for effective plan-6

ning and better understanding the dynamics of this complex transactional process. A number7

of mathematical models have been proposed to study e-commerce using different approaches.8

Here, we highlight contributions based upon Making-Decision Theory mainly oriented towards9

the design of recommender systems [1, 2] and the measure of quality quality of services and10

business [3, 4]. These contributions rely on operational research (decision making support sys-11

tems, multi-criteria optimization, etc.) and statistical techniques (bayesian analysis, Petri nets,12

etc.). Pioneering contributions dealing with the social diffusion of new technologies using math-13

ematical models based on differential equations include [5, 6, 7]. From the point of view of14

dynamical systems, the study of e-commerce has been analysed in a few contributions. In [8]15

the authors present a competition model of e-commerce sites and they perform a planar quali-16

tative analysis. Afterwards, Li Yanhui and Zhu Siming explored the effects of competition in17

e-commerce web sites via mathematical models based on ordinary differential equations, [9, 10].18

These interesting studies include a qualitative equilibrium analysis and numerical simulations19

of the competition dynamics. In [11] some of the authors of the present paper proposed an20

age-structured compartmental mathematical model (similar to the ones used to model epidemics21

[12]) to describe the dynamics of e-commerce using real data from the Spanish National Statisti-22

cal Institute (INE). This study is performed by combining two mathematical models, the first one23

is a demographic model providing certain demographic parameters required in the formulation24

of the second model, which is addressed to describe the diffusion of e-commerce. According to25

the available data from the Spanish INE, population was divided into six cohorts. The results26

obtained in [11] are quite good despite predictions were performed on the horizon 2010–2012 by27

fitting sampled data corresponding to only three available years at that time (2006–2008). The28

inclusion of the age-structured model is a difficult issue that we are going to consider in this29

paper. Some interesting contributions where the age structure has been considered in the context30

of mathematical modeling, can be seen, for example, in [13, 14, 15, 16].31

We are aware that significant features of e-commerce are not contained in the formulation32

of the mathematical model proposed in [11]. On the one hand, according to [17], our habits are33

influenced by the habits of the people in our social network. This can be also applied to the habit34

of the use of e-commerce that can be transmitted by peer pressure or social contact among family,35

friends, mates, etc. However, the adoption of this technology does not take place immediately36

after such encounters, but it requires a certain time lag (delay). On the other hand, the success of37

contagion depends on a number of complex human and business factors whose nature is random38

(social contacts, purchase behavior, personality, confidence, impulsiveness, technology integra-39

tion, etc., [18, 19]). Furthermore, real data required to fit the proposed model contains sampling40

errors and hence uncertainty. These reasons aim us to propose an epidemiological model to de-41

scribe the dynamics of the use of e-commerce in Spain that considers in its formulation both42

delay and randomness. There are two main approaches to deal with delay: first, random frac-43

tional differential equations [20] and second, random delay differential equations [21]. In this44

paper, we follow the latter approach. As it has been reported in previous contributions [11], the45

use of technologies, and in particular the e-commerce, is strongly related to the age of users. This46

key feature must be taking into account in the mathematical formulation as we did in our previ-47

ous contribution [11]. At this point is important to point out that we have made the decision of48

aggregating data from Spanish INE into two subpopulations, Group 1: persons aged 15−44 years49

old (y.o.) and Group 2: persons aged 45 − 74 y.o. Apart from the feasibility of the subsequent50

mathematical treatment of the mathematical model, this decision has been made in agreement51

with the significant differences of the use of e-commerce between these two age groups found52
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in data collected from Spanish INE [22, 23]. Furthermore, it can be checked from this statis-53

tical source that the percentage of people younger than 14 y.o. and older than 74 y.o. buying54

by the Internet is practically negligible. Thus, in this paper we propose a mathematical model55

for studying the dynamics of e-commerce that combines the aforementioned bare-bones factors:56

an underlying age-structured demographical model, peer-pressure (contagion) to account for the57

diffusion of this technology, delay and randomness effects.58

As we will see later, we consider uncertainty via stochastic perturbations from the equilib-59

rium point since our model must be able to capture eventual changes that may happen about the60

steady point because of social and business factors affecting the dynamics of the e-commerce.61

This is a key issue in our subsequent analysis both from a practical and theoretical standpoints.62

Indeed, if the mathematical model is reliable, it is expected the numerical results in real-world63

(using real data of Spanish e-commerce) remain stable except perhaps in the case of large per-64

turbations while the stability analysis has an intrinsic mathematical interest. Both questions lead65

to investigate the maximum size of stochastic perturbations in order to guarantee the stochastic66

stability of the equilibrium point.67

More specifically, we will assume that the dynamics of e-commerce model with delay is68

exposed to additive stochastic perturbations of White Noise-type that are directly proportional to69

the deviation of the current state of the system from the steady state or equilibrium point. From70

a mathematical modelling standpoint and, on the basis of the Limit Central Theorem, it must be71

pointed out that the large number of independent random factors, previously mentioned, that may72

affect the dynamics of e-commerce diffusion supports the consideration of White Noise process73

which is a Gaussian stationary process with constant spectral density [24, 25]. Such type of74

stochastic perturbations first was proposed in [26, 27]. One of the key points of this hypothesis is75

that the equilibrium point is the solution of the stochastic system too. In this case, the influence76

of the stochastic perturbations on the considered system is small enough in the neighborhood of77

the equilibrium point and big enough if the system state is far enough from the equilibrium point.78

The considered nonlinear system is then linearized in the neighborhood of the positive equi-79

librium point, and sufficient condition for asymptotic mean square stability of the zero solution80

of the constructed linear system is obtained via the Kolmanovskii-Shaikhet general method of81

Lyapunov functionals construction (GMLFC), that is used for stability investigation of stochastic82

functional-differential and difference equations [28, 29, 30, 21]. This way of stability investiga-83

tion was successfully used in different mathematical models formulated via systems with delays:84

SIR epidemic model [26], predator-prey model [27, 31], social epidemic models [32, 33] and85

Nicholson blowflies model [34], for example.86

On the basis of the aforementioned approach, the main objective of this paper is twofold.87

First, from an applied standpoint, to propose a mathematical model able to describe the diffu-88

sion of e-commerce in Spain using real data and, second, from a mathematical point of view,89

to perform a stability analysis of the equilibrium by delay and stochastic perturbations. As a90

consequence, the new model can be regarded, in some aspects, as an extension of the one pre-91

sented in [11] since in its formulation it includes delay and randomness, but reducing the number92

of subpopulations of the underlying demographic model. As currently the available statistical93

data compiled by the Spanish INE has been updated and enlarged with respect to the ones used94

in [11], the fitting of the new proposed model is expected to be better and, therefore also our95

updated predictions.96

This paper is organized as follows. In Section 2 the deterministic dynamic model of the e-97

commerce with delay is built including the underlying demographic model. Parameters of this98

deterministic model are adjusted using real data of the use of e-commerce in Spain. Section 399
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is devoted to compute the equilibrium points of this deterministic model. In Section 4 we in-100

troduce randomness into the age-structured mathematical model for e-commerce with delay and101

key stochastic tools that are required to complete later the stability analysis are shown. Section 5102

is addressed to provide sufficient conditions for stability in probability of the equilibrium point103

of the delayed stochastic model. In Section 6, we carry out numerical simulations of the delayed104

stochastic model using real data from Spanish INE showing agreement with our theoretical find-105

ings. Conclusions are drawn in Section 7.106

2. Deterministic age-structured mathematical model for e-commerce with delay107

This section is divided into two parts. Subsection 2.1 is addressed to introduce the under-108

lying demographic model, while Subsection 2.2 is devoted to construct a mathematical model109

with delay, which integrates the demographic one for describing the dynamics of e-commerce in110

Spain.111

2.1. Demographic model112

Age of individuals is a key feature that must be taken into account in the mathematical mod-113

elling of e-commerce [35]. In order to set that the corresponding delayed stochastic model be114

mathematically tractable but retaining the main features of the underlying demographic model,115

we have made the decision of aggregating population data collected from the Spanish INE into116

two cohorts [22], people aged between 15 − 44 y.o. and between 45 − 74 y.o. The division117

into these two specific cohorts has been made because the significant differences in the use of118

e-commerce according to available data reported by the Spanish INE [23]. Therefore, let us119

define:120

• Group 1 (G1(t)): Percentage of Spanish population between 15 and 44 y.o. at the time121

instant t (in years).122

• Group 2 (G2(t)): Percentage of Spanish population between 45 and 74 y.o. at the time123

instant t (in years).124

According to [12], the following system of differential equations describes the demographic125

evolution in each t for the two different age groups,126  Ġ1(t) = µ −c1G1(t) − d1G1(t),
Ġ2(t) = c1G1(t) − d2G2(t),

(1)

where µ is the yearly birth rate (assuming that yearly death rate of people under 14 y.o. is127

negligible), c1 is the yearly growth rate from G1(t) to G2(t), d1 is the yearly death rate in the first128

group G1(t) and d2 is the rate of people coming out from the second group G2(t) of people aged129

between 45− 74 y.o, by death or because they become older than 74 y.o. If we assume that G1(t)130

and G2(t) are constant over the time, then, their derivatives Ġ1(t) = Ġ2(t) = 0 and from the first131

equation of (1), we have that132

c1G1 = µ − d1G1 =⇒ c1 =
µ

G1
− d1. (2)

Now, from the second equation of (1), we obtain133

c1G1 = d2G2 =⇒ µ − d1G1 = d2G2 =⇒ d2 =
µ − d1G1

G2
. (3)

4



Example 2.1. From Spanish INE [22], the average birth rate µ, the average death rate for peo-134

ple in the group G1, d1, the average percentage of people in the age groups G1 and G2, in the135

period 2007 − 2015 are µ = 0.010110, d1 = 5.7333 × 10−4 G1 = 0.5495 and G2 = 0.4505.136

Then, from (2) and (3), c1 = 0.0178252 and d2 = 0.0217424.137

With the obtained values of c1 and d2, the proportion of the subpopulations G1 and G2 remain138

constant over the time.139

2.2. Electronic commerce model with delay140

In this section, we propose a mathematical model for describing the dynamics of the use of141

e-commerce in Spain. As we will see later, in the formulation of this model we will consider the142

key feature of delay that takes place in the contagion process among peers (users and non-users)143

to spread the use of this technology. Furthermore, it must be noticed that this model is built on144

the basis of the demographic model (1).145

Group G1 (15 − 44 y.o.) Group G2 (45 − 74 y.o.)
Time No use e-commerce Use e-commerce No use e-commerce Use e-commerce

t1 = Dec 2007 0.4154 0.1415 0.3823 0.0608
t2 = Dec 2008 0.3955 0.1790 0.3822 0.0433
t3 = Dec 2009 0.3652 0.2039 0.3755 0.0554
t4 = Dec 2010 0.3425 0.2158 0.3781 0.0636
t5 = Dec 2011 0.3242 0.2284 0.3730 0.0744
t6 = Dec 2012 0.2891 0.2546 0.3716 0.0847
t7 = Dec 2013 0.2668 0.2661 0.3718 0.0953
t8 = Dec 2014 0.2258 0.2958 0.3568 0.1216
t9 = Dec 2015 0.1891 0.3230 0.3459 0.1412

Table 1: Data of use of e-commerce in Spanish during the period 2007 − 2015. Data are aggregated in two groups
depending on the age of the users: Group 1 (G1) and Group 2 (G2) are made up of people aged between 15 − 44 and
45 − 74 years old (y.o.), respectively. Source [23].

In Table 1, we can find data retrieved from Spanish INE [23] about the users and non-users146

of the e-commerce, per age group, from 2007 to 2015 in Spain.147

In order to state the mathematical model, now we introduce the following notation:148

• Ni = Ni(t), i = 1, 2, denotes the percentage of people belonging to group Gi = Gi(t), who149

have not used e-commerce at the time instant t (in years).150

• Yi = Yi(t), i = 1, 2, denotes the percentage of people belonging to group Gi = Gi(t), who151

have used e-commerce at the time instant t (in years).152

For the first (i = 1) age group of 15 − 44 y.o., we assume that a non-user of e-commerce at153

the time instant t, N1(t), becomes a user of this technology because the influence (contagion) of154

their peers that are users of e-commerce, Y1(t). This process is modelled via the non-linear term155

β1N1Y1. Therefore, we implicitly assume Population Mixing, a usual hypothesis in continuous156

epidemiological models [12, 36]. The parameter β1 represents the contagious or diffusion rate157

of e-commerce. This parameter embeds the probability that encounters among peers (users Y1(t)158

and non-users N1(t)) be successful. A similar reasoning applies to the second (i = 2) age group159

45 − 74. To formulate the mathematical model, we write the instantaneous variation of the160
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percentage of non-users and users of e-commerce at the time instant t for each age group, N′i (t)161

and Y ′i (t), i = 1, 2, using the so-called Balance Mass Principle, widely applied in Mathematical162

Epidemiology, to model the spread of a disease [36]. Also we are going to assume, in order to not163

increase the complexity of the model, that the non-users of e-commerce can only be contagied by164

peers of the same age group.Then taking into account the underlying demographic model (which165

involves the parameters µ, c1, d1 and d2), the dynamics of the e-commerce can be stated via the166

following system of non-linear differential equations167 
Ṅ1(t) = µ − c1N1(t) − d1N1(t) − β1N1(t)Y1(t),
Ẏ1(t) = β1N1(t)Y1(t) − c1Y1(t) − d1Y1(t),
Ṅ2(t) = c1N1(t) − d2N2(t) − β2N2(t)Y2(t),
Ẏ2(t) = c1Y1(t) − d2Y2(t) + β2N2(t)Y2(t).

(4)

In Fig. 1 we can see the diagram of the proposed age-structured mathematical model for the168

diffusion of e-commerce in Spain. According with the demographic model (1), N1(t) + Y1(t) =169

G1(t) = constant and N2(t) + Y2(t) = G2(t) = constant, and170

N1(t) + Y1(t) + N2(t) + Y2(t) = 1. (5)

N1 Y1

N2 Y2

d1 d1

d2 d2

β1N1Y1

β2N2Y2

c1 c1

µ

Figure 1: Compartmental diagram of the dynamic model for e-commerce in Spain given in (4). The boxes represent the
subpopulations and the arrows represent the transitions among subpopulations.

171

Taking into account (5), model (4) can be rewritten in the following equivalent and simplified172

form173 
Ṅ1(t) = µ − c1N1(t) − d1N1(t) − β1N1(t)Y1(t),
Ẏ1(t) = β1N1(t)Y1(t) − c1Y1(t) − d1Y1(t),
Ṅ2(t) = c1N1(t) − d2N2(t) − β2N2(t) (1 − N1(t) − Y1(t) − N2(t)) .

(6)

Starting with the deterministic model (6) and using Particle Swarm Optimization (PSO) tech-174

nique [37], we can estimate the diffusion parameters β1 and β2 that best fit, in the mean square175
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sense, data given in Table 1, to model (6). Estimates obtained for these two parameters are176

β1 = 0.348385, β2 = 0.061091.177

As indicated in Section 1, it is assumed that the adoption of e-commerce technology by a non-178

user takes place by contagion of his/her peers. This contagion happens after (physical or virtual)179

encounters between non-users and users, thus requiring a certain lag time. This fact motivates180

the introduction of delays to model this key feature. Of course, it must be noticed that not all181

encounters between peers are successful. The probability of success is implicitly embedded in182

the contagion parameters βi, i = 1, 2. These facts lead us to introduce delay in the initial model183

(6) using the approach developed in [21]. Then, model (6) is transformed into the following one184 

Ṅ1(t) = µ − c1N1(t) − d1N1(t) − β1N1(t)
∫ ∞

0
Y1(t − s) dk1(s),

Ẏ1(t) = −c1Y1(t) − d1Y1(t) + β1N1(t)
∫ ∞

0
Y1(t − s) dk1(s),

Ṅ2(t) = c1N1(t) − d2N2(t) − β2N2(t)
∫ ∞

0
(1 − N1 − Y1 − N2)(t − s) dk2(s),

(7)

where ki(s), i = 1, 2, are non-decreasing functions such that
∫ ∞

0 dki(s) = 1.185

3. Existence of equilibrium points186

One of the main mathematical properties that should posses the deterministic non-linear dy-187

namical model is stability. In this section, we calculate equilibrium points (N∗1 ,Y
∗
1 ,N

∗
2 ,Y

∗
2 ) of188

equations (6) that must satisfy the following non-linear system of algebraic equations:189 
0 = µ − c1N∗1 − d1N∗1 − β1N∗1Y∗1 ,
0 = β1N∗1Y∗1 − c1Y∗1 − d1Y∗1 ,
0 = c1N∗1 − d2N∗2 − β2N∗2(1 − N∗1 − Y∗1 − N∗2),

Y∗2 = 1 − N∗1 − N∗2 − Y∗1 .

(8)

It is easy to see that the two first equations of (8) give the following two equilibria: (N∗1 ,Y
∗
1 ) =190

( µ
c1+d1

, 0), that has no practical interest, and191

N∗1 =
c1 + d1

β1
, Y∗1 =

µ

c1 + d1
−

c1 + d1

β1
. (9)

By (9), the third equation (8) can be represented in the form192

(N∗2)2 − AN∗2 + B = 0, (10)

where193

A = 1 − µ
c1+d1

+ d2
β2
, B =

c1(c1+d1)
β1β2

. (11)

Taking into account that N∗1 + Y∗1 < 1 and Y∗1 > 0, one gets194

µ < c1 + d1 <
√
µβ1. (12)
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Thus, from µ < c1 + d1 one derives A > 0. From positiveness of A and B it follows that the
equation (10) cannot have negative roots and by the condition A2 > 4B or

1 +
d2

β2
> 2

√
c1(c1 + d1)

β1β2
+

µ

c1 + d1
,

have two positive roots.195

Lemma 3.1. If the condition (12) holds then A2 > 4B and therefore the equation (10) has two196

roots such that197

N∗21 =
A +
√

A2 − 4B
2

> G2 > N∗22 =
A −
√

A2 − 4B
2

, (13)

where G2 = 1 − µ
c1+d1

.198

Proof : It is evident that A2 = (G2 + d2
β2

)2 ≥ 4 d2
β2

G2. So, it is enough to note that via (11),199

c1G1 = d2G2, G1 =
µ

c1+d1
and (12) we have200

B =
d2G2(c1 + d1)2

µβ1β2
<

d2

β2
G2, (14)

that proves A2 − 4AB > 0. To prove (13) note as A = G2 + d2
β2

, we have that N∗21 > G2 is201

equivalent to
√

A2 − 4B > G2 −
d2
β2

and N∗22 < G2 is equivalent to
√

A2 − 4B > d2
β2
− G2. So, it202

is enough to show that A2−4B > (G2−
d2
β2

)2, that is equivalent to (14). The proof is completed. �203

204

Remark 3.1. Via (13), the positive equilibrium (N∗1 ,Y
∗
1 ,N

∗
2 ,Y

∗
2 ), is defined by (9) and N∗2 = N∗22,205

Y∗2 = 1 − N∗1 − Y∗1 − N∗2 .206

4. Stochastic perturbations, centralization and linearization207

As it has been motivated in Section 1, we assume that the dynamics of the use of e-commerce208

is subject to independent and complex factors whose nature is random. Thus, the equilibrium of209

the proposed mathematical model (4) is also affected by randomness. According to Central210

Limit Theorem, Gaussian distribution is a suitable probabilistic pattern to describe such a type211

of uncertainty. In order to take into account this key feature, henceforth we will assume that212

system (7) is exposed to stochastic perturbations of White Noise type, hence Gaussian, that we213

will denote by (Ẇ1(t), Ẇ2(t), Ẇ3(t)), which are directly proportional to the deviation of system214

state at (N1(t),Y1(t),N2(t)) from the equilibrium point (N∗1 ,Y
∗
1 ,N

∗
2), that is,215 

Ṅ1(t) = µ − c1N1(t) − d1N1(t) − β1N1(t)
∫ ∞

0
Y1(t − s) dk1(s) + σ1(N1(t) − N∗1)Ẇ1(t),

Ẏ1(t) = −c1Y1(t) − d1Y1(t) + β1N1(t)
∫ ∞

0
Y1(t − s) dk1(s) + σ2(Y1(t) − Y∗1 )Ẇ2(t),

Ṅ2(t) = c1N1(t) − d2N2(t) − β2N2(t)
∫ ∞

0
(1 − N1 − Y1 − N2)(t − s) dk2(s) + σ3(N2(t) − N∗2)Ẇ3(t).

(15)
8



Here, W1(t),W2(t),W3(t) are mutually independent standard Wiener processes. The stochastic216

differential equations of system (15) are understood in Itô sense, [38].217

To centralize system (15) in the equilibrium point, let us introduce the change of variable218

X1(t) = N1(t) − N∗1 , X2(t) = Y1(t) − Y∗1 , X3(t) = N2(t) − N∗2 .

Substituting this into (15) and using (8), we obtain219 
Ẋ1(t) = −(c1 + d1 + β1Y∗1 )X1(t) − β1(X1(t) + N∗1)

∫ ∞
0 X2(t − s) dk1(s) + σ1X1(t)Ẇ1(t),

Ẋ2(t) = β1Y∗1 X1(t) − (c1 + d1)X2(t) + β1(X1(t) + N∗1)
∫ ∞

0 X2(t − s) dk1(s) + σ2X2(t)Ẇ2(t),
Ẋ3(t) = c1X1(t) − (d2 + β2Y∗2 )X3(t) + β2(X3(t) + N∗2)

∫ ∞
0 (X1 + X2 + X3)(t − s) dk2(s) + σ3X3(t)Ẇ3(t).

(16)
It is clear that stability of the equilibrium of the system (15) is equivalent to stability of the zero220

solution of the system (16).221

Rejecting the nonlinear terms in (16), we obtain the linear part of the system (16)222 
Ż1(t) = −(c1 + d1 + β1Y∗1 )Z1(t) − β1N∗1 J1(Z2t) + σ1Z1(t)Ẇ1(t),
Ż2(t) = β1Y∗1 Z1(t) − (c1 + d1)Z2(t) + β1N∗1 J1(Z2t) + σ2Z2(t)Ẇ2(t),
Ż3(t) = c1Z1(t) − (d2 + β2Y∗2 )Z3(t) + β2N∗2(J2(Z1t) + J2(Z2t) + J2(Z3t) + σ3Z3(t)Ẇ3(t),

(17)

where223

Ji(Z jt) =
∫ ∞

0 Z j(t − s)dki(s), i = 1, 2, j = 1, 2, 3. (18)

5. Stability of the equilibrium point224

This section is addressed to establish sufficient conditions for asymptotic mean square stabil-225

ity of the zero solution of linear system (17) associated to the nonlinear system (16), that are also226

sufficient conditions for stability in probability of the zero solution of the nonlinear system (16).227

Therefore, such conditions are sufficient conditions for stability in probability of the equilibrium228

point (N∗1 ,Y
∗
1 ,N

∗
2) of system (15), [21].229

Putting Z(t) = col(Z1(t),Z2(t),Z3(t)), rewrite the system (17) in the matrix form230

Ż(t) = AZ(t) + A1J1(Zt) + A2J2(Zt) +
3∑

i=1
CiZ(t)Ẇi(t), (19)

where the matrix Ci has the element cii = σi and all other elements are zeros,231

A =

−(c1 + d1 + β1Y∗1 ) 0 0
β1Y∗1 −(c1 + d1) 0

c1 0 −(d2 + β2Y∗2 )

 ,
A1 =

0 −β1N∗1 0
0 β1N∗1 0
0 0 0

 , A2 =

 0 0 0
0 0 0

β2N∗2 β2N∗2 β2N∗2

 .
(20)

Following the GMLFC for stability investigation of (19), we consider the auxiliary equation232

without memory [21],233

Ż(t) = AZ(t) +
3∑

i=1
CiZ(t)Ẇi(t). (21)
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Note that the first equation of (21) depends on Z1(t) only, the second equation of (21) depends234

on Z1(t) and Z2(t) only, and the third equation of (21) depends on Z1(t) and Z3(t) only. So, using235

Remark 2.7 of [21, p.49], we obtain the following result.236

Lemma 5.1. If237

c1 + d1 + β1Y∗1 >
1
2
σ2

1, c1 + d1 >
1
2
σ2

2, d2 + β2Y∗2 >
1
2
σ2

3, (22)

then the zero solution of the equation (21) is asymptotically mean square stable.238

Remark 5.1. Note that the first inequality in (22) is the necessary and sufficient condition for239

asymptotic mean square stability of the first equation of the system (21).240

Lemma 5.2. Let R ∈ Rn×n be a positive definite matrix, z =
∫

D y(s)µ(ds), where z, y(s) ∈ Rn,241

µ(ds) is some measure on D such that µ(D) < ∞ and the integral is defined in the Lebesgue242

sense. Then243

z′Rz ≤ µ(D)
∫

D
y′(s)Ry(s)µ(ds). (23)

Proof : The inequality (23) follows from the Cauchy-Schwarz inequality:

z′Rz = |R1/2z|2 =

∣∣∣∣∣∫
D

R1/2y(s)µ(ds)
∣∣∣∣∣2 ≤ ∫

D
µ(ds)

∫
D
|R1/2y(s)|2µ(ds) = µ(D)

∫
D

y′(s)Ry(s)µ(ds).

The proof is completed. �244

245

Theorem 5.3. Let A, A1, A2 be matrices defined in (20) and there exist positive definite matrices246

P,R1,R2 such that the linear matrix inequality (LMI) Φ < 0 holds, where247

Φ =

Φ11 PA1 PA2
∗ −R1 0
∗ ∗ −R2

 , Φ11 = PA + A′P + Pσ + R1 + R2, Pσ =

p11σ
2
1 0 0

0 p22σ
2
2 0

0 0 p33σ
2
3

 ,
(24)

pii, i = 1, 2, 3, are the diagonal elements of the matrix P. Then the equilibrium (N∗1 ,Y
∗
1 ,N

∗
2 ,Y

∗
2 )248

of the system (15) is stable in probability.249

Proof : Let L be the generator of the equation (19). For the functional V1(t) = Z′(t)PZ(t) we
have

LV1(t) = 2Z′(t)P(AZ(t) + A1J1(Zt) + A2J2(Zt)) + Z′(t)PσZ(t)

= Z′(t)(PA + A′P + Pσ)Z(t) + 2
2∑

i=1

Z′(t)PAiJi(Zt).

Consider the additional functional250

V2(t) =

2∑
i=1

∫ ∞

0

∫ t

t−s
Z′(τ)RiZ(τ) dki(s), (25)
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and note that by (18), (23) and
∫ ∞

0 dki(s) = 1251

J′i (Zt)RiJi(Zt) ≤
∫ ∞

0
Z′(t − s)RiZ(t − s) dki(s). (26)

So, by (25) and (26) we have

LV2(t) =

2∑
i=1

(
Z′(t)RiZ(t) −

∫ ∞

0
Z′(t − s)RiZ(t − s) dki(s)

)

≤ Z′(t)(R1 + R2)Z(t) −
2∑

i=1

J′i (Zt)RiJi(Zt).

As a result for the functional V = V1 + V2 we obtain

LV(t) ≤ Z′(t)(PA + A′P + Pσ + R1 + R2)Z(t)

+ 2
2∑

i=1

Z′PAiJi(Zt) −
2∑

i=1

J′i (Zt)RiJi(Zt) = η′(t)Φη(t),

where the matrix Φ is defined in (24) and η(t) = col{Z(t), J1(Zt), J2(Zt)}. So, the constructed252

functional V(t) is positive definite and LV(t) via Φ < 0 is negative definite that provides asymp-253

totic mean square stability of the zero solution of the linear equation (19), and at the same time254

stability in probability of the zero solution of the nonlinear system (16), [21], that is equivalent255

to stability in probability of the equilibrium (N∗1 ,Y
∗
1 ,N

∗
2 ,Y

∗
2 ) of the system (15). The proof is256

completed. �257

258

Remark 5.2. (Schur complement). The symmetric matrix
[

A B
B′ C

]
is negative definite if and259

only if the matrices C and A − BC−1B′ are both negative definite.260

Via Schur complement the LMI Φ < 0 is equivalent to the Riccati matrix inequality

PA + A′P + Pσ +

2∑
i=1

(Ri + PAiR−1
i A′i P) < 0.

Example 5.1. Solving LMI Φ < 0 via MATLAB by the values of the parameters µ = 0.010110,261

c1 = 0.0178252, d1 = 5.7333 × 10−4, d2 = 0.0217424, β1 = 0.348385, β2 = 0.061091, G1 =262

0.5495, G2 = 0.4505, it was shown that the equilibrium263

(N∗1 ,Y
∗
1 ,N

∗
2 ,Y

∗
2 ) = (0.052811, 0.496689, 0.019584, 0.430916) (27)

saves stability in probability for σ1 = 0.2890, σ2 = 0.1730, σ3 = 0.3061. In agreement264

with (22), we obtain σ1 <
√

2(c1 + d1 + β1Y∗1 ) = 0.6188, σ2 <
√

2(c1 + d1) = 0.1918, σ3 <265 √
2(d2 + β2Y∗2 ) = 0.3101.266

6. Numerical simulations using real data of e-commerce in Spain267

This section is devoted to carry out simulations of the stochastic model with discrete delay268

h > 0 obtained from (15) by dki(s) = δ(s−h)ds, where δ(s) is Dirac’s function. The model param-269

eters µ, c1, di, βi, i = 1, 2, perturbations σi, i = 1, 2, 3 and equilibrium point (N∗1 ,Y
∗
1 ,N

∗
22,Y

∗
2 ) are270
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given in Example 5.1. Our goal in this section is to check that our simulations are in agreement271

with real data for Spanish INE collected in Table 1. To perform simulations, we will discretize272

the stochastic system with delay (15) by applying an Euler-Maruyama type numerical scheme273

for equations with delay [21, pp. 309–310]. This yields274 
N1,i+1 = N1,i + ∆t

(
µ − c1N1,i − d1N1,i − β1N1,iY1,i−m

)
+ σ1

(
N1,i − N∗1

) (
W1,i+1 −W1,i

)
,

Y1,i+1 = Y1,i + ∆t
(
−c1Y1,i − d1Y1,i + β1N1,iY1,i−m

)
+ σ2

(
Y1,i − Y∗1

) (
W2,i+1 −W2,i

)
,

N2,i+1 = N2,i + ∆t
(
c1N1,i − d2N2,i − β2N2,i(1 − N1,i−m − Y1,i−m − N2,i−m)

)
+σ3(N2,i − N∗2)

(
W3,i+1 −W3,i

)
,

(28)
where ∆t is the step of discretization, m is the discretized delay, i.e. m = h/∆t, N1,i = N1(i),275

Y1,i = Y1(i) and N2,i = N2(i), i = 0, 1, 2, . . . In (28), Wk,i = Wk(i), k = 1, 2, 3, are simulated276

trajectories of the Wiener process (the algorithm of simulation is described in [21, Section 2.1.1]).277

In Figure 2, we show 500 simulations or trajectories of stochastic model with delay formu-278

lated in (15) taking ∆t = 1 year and delay h = 1 year, because one year is the time step. We279

can see that the prediction through the mean of the solution of the proposed model are quite well280

captured in both age groups and for users and non-users of this technology. Finally, it is very281

important to observe that with respect to stability our simulations converge towards the equilib-282

rium point (27), then showing full agreement with our theoretical findings. We have needed to283

plot these simulations beyond 2100 year to illustrate the stability of all the subpopulations of the284

compartmental model, in particular, to subpopulation N2(t) whose stabilization is slower.285
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Figure 2: Simulation of 500 trajectories of the approximated solution stochastic process modelling the dynamics of
e-commerce according to delayed stochastic system (15). Approximations have been constructed using the numerical
scheme (28) taking ∆t = 1 year and delay h = 1 year. Red line represents the average of the trajectories, and the black
one represents the equilibrium point (27).
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7. Conclusions286

In this paper, we have proposed an age-structured mathematical model based on a system287

of non-linear differential equations with delay to describe the dynamics of e-commerce in Spain288

using real data. Our main goal has been to perform an analysis of the stability of the model289

and the dynamics of the spread, obviously subject to many random factors. Therefore, we have290

introduced stochastic perturbations about the equilibrium point and we have established sufficient291

conditions in order to guarantee the stochastic stability. A key point to conduct this kind of292

analysis has been to divide the underlying age-structured model into only two subpopulations by293

aggregating sampled data from the Spanish National Statistical Institute. The theoretical results294

have shown a strong agreement with real data.295
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