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ABSTRACT 8 

Latitude-longitude grids are frequently used in geosciences for global numerical modelling 9 

although they are remarkably inhomogeneous due to meridian convergence. In contrast, 10 

Fibonacci lattices are highly isotropic and homogeneous so that the area represented by 11 

each lattice point is virtually the same. In the present paper we show the higher 12 

performance of Fibonacci versus latitude-longitude lattices for evaluating distortion 13 

coefficients of map projections. In particular, we obtain first a typical distortion for the 14 

Lambert Conformal Conic projection with their currently defined parameters and 15 

geographic boundaries for Europe that has been adopted as standard by the INSPIRE 16 

directive. Further, we optimize the defining parameters of this projection, lower and upper 17 

standard parallel latitudes, so that the typical distortion for Europe is reduced a 10% when 18 

they are set to 36º and 61.5º, respectively. We also apply the optimization procedure to the 19 

determination of the best standard parallels for using this projection in Spain, whose values 20 

remained unspecified by the National decree that commanded its official adoption, and 21 

obtain optimum values of 37º and 42º and a resulting typical distortion of 828 ppm. 22 

 23 

Keywords: Fibonacci lattices; Lambert Conformal Conic projection; standard parallels; 24 

optimization. 25 

1. Introduction 26 

The effective evaluation of scalar models for a particular area is an issue frequently encountered in 27 

geosciences. The standard approach is to use regular latitude-longitude lattices, which are 28 

conceptually simple and generally easy to implement in any software. They suffer, however, from 29 

fundamental problems especially associated with the meridian convergence, which often make 30 

them ineffective for the evaluation of the model in the geographic area under study. 31 

 32 

In the last decades, some alternatives to latitude-longitude lattices have been proposed for global 33 

numerical modelling, which have some desirable properties such as higher geometrical regularity 34 

and isotropic spatial resolution as well as ease of parallelization (Purser 1999). They generally 35 

require a lower number of lattice points than standard latitude-longitude lattices to obtain results of 36 

the same quality. Among them, Fibonacci lattices have emerged as powerful tools to enhance 37 

numerical effectiveness due to their virtual uniformity and isotropic resolution (Swinbank and 38 

Purser, 2006). 39 

 40 

While the regular hexagonal lattice provides optimal sampling for the plane (Conway and Sloane, 41 

1998), it is impossible to arrange regularly more than 20 points on the sphere let alone on the 42 

ellipsoid. The usual latitude-longitude lattice is highly inhomogeneous and far from the desired 43 

situation where every point represents almost the same area, which can be virtually obtained with 44 

the use of a Fibonacci lattice, a mathematical idealization of natural patterns with optimal packing. 45 

González (2010) takes advantage of this feature and applies Fibonacci lattices to the problem of 46 

area determination by means of point counting, obtaining results with at least 40% error reduction 47 

when compared to the use of latitude-longitude lattices. Other applications of Fibonacci lattices can 48 

be found in disparate fields as shallow water modelling, climate models and three-dimensional 49 

numerical weather prediction (Swinbank and Purser, 2006) including tornado outbreak prediction 50 

(Sparrow and Mercer, 2016), air traffic networks (Monechi et al. 2015), electron paramagnetic 51 
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resonance (Crăciun, 2014) and approximation of spherical integrals for image sampling (Marques 52 

et al. 2013). 53 

 54 

In the present paper we propose to apply Fibonacci lattices first as a tool to evaluate map projection 55 

distortions and then to optimize their defining parameters so that the resulting map projection has 56 

minimum distortion for a particular area of use. More specifically, starting from Airy (1861) and 57 

Jordan (1896)'s measures of distortion, we will define an optimization function based on the square 58 

mean deviation from unity of the scale distortion coefficient of a conformal map projection over a 59 

representative Fibonacci lattice of the area under study and compute its optimum. Since Conic Map 60 

projections are suitable for mid-latitude regions with predominant East-West extension (Snyder, 61 

1987; Savric and Jenny, 2016), they have often been required or recommended by national 62 

mapping agencies or international consortiums. In particular, the Lambert Conformal Conic 63 

projection was proposed, first, by EuroGeographics, the consortium of European national mapping, 64 

cadastral and land registry authorities (Annoni et al., 2003) for conformal representations of 65 

Europe, and then adopted by INSPIRE D2.8.I.1 (2014), the European Commission directive for 66 

spatial information, as the standard for conformal mapping in Europe. We want now to evaluate the 67 

distortions this projection introduces, first, and then investigate whether the definition of other 68 

standard parallels than the two recommended by EuroGeographics and then adopted by INSPIRE, 69 

produces significantly better results. As an additional example, we will also apply our methods to 70 

the particular case of Spain, where the Lambert Conformal Conic projection has been officially 71 

adopted for land representation at mapping scales of 1:500.000 or lower (Gobierno del Estado 72 

Español, 2007). This decree does not fix, however, the standard parallel latitudes to be used, so we 73 

will compute the ones that minimize the resulting distortions by means of our method based on 74 

Fibonacci lattices. 75 

2. Methods 76 

2.1. Latitude-longitude lattices  77 

 78 

For a given geographic domain, a latitude-longitude lattice is easily constructed after the definition 79 

of a grid step , so that points are generated for all pairs that can be formed with (min, min + , min 80 

+ 2, ...) (all latitudes lower than the maximum possible latitude) and (min, min + , min + 2, ...) 81 

(all longitudes lower than the maximum possible longitude). Due to the meridian convergence the 82 

distribution of points is denser in polar areas, which makes the lattice remarkably inhomogeneous. 83 

 84 

When we use latitude-longitude lattices we normally need a considerably large number of sampling 85 

points in the area (small step size ) to obtain a stable value that does not depend significantly on 86 

the number of sampling points. Even then the value may oscillate a bit. We can improve the 87 

performance of latitude-longitude lattices by using a weighting function so that the abundance of 88 

points at higher latitudes is compensated by a lower weight in the computation. Following 89 

González (2010) in order to compensate for higher density at higher latitudes we must use for every 90 

lattice point i the weight function 91 

 92 

iiw cos                  (1) 93 

 94 

 95 

2.2. Fibonacci lattices 96 

 97 

Contrary to latitude-longitude lattices, a Fibonacci lattice has the property of regular isotropic 98 

distribution. It bears its name from Leonardo Pisano, alias Fibonacci, a medieval mathematician 99 

who discovered the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21... in which every number (starting from the 100 

third) is the sum of the previous two. This series, initially developed by Fibonacci to account for 101 

the population of rabbit breeding in the different generations, appears in many biological systems 102 

(such as branching and arrangement of leaves in plants and trees, petal flowering, beehives, etc.) as 103 

well as in chemical composition of materials, music theory and other apparently detached areas 104 
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such as economic theory (see e.g. Koshy, 2001). As the series progresses to infinity, the ratio 105 

between consecutive numbers, Fi and Fi+1, approaches the so-called golden ratio  106 

 107 

Φ
F

F

i

1i

i
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
lim                   (2) 108 

 109 

 110 

This golden ratio is the number whose inverse is the number itself minus one 111 

 112 
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 114 

The Fibonacci lattice is generated by a spiral with evenly spaced points, being the longitudinal turn 115 

between consecutive points defined by 360º-1  222.5º or by its complement to 360º, i.e. 360º(1–116 

-1) = 360º-2  137.5º. Following González (2010) we generate a Fibonacci lattice with 117 

longitudinal turns between consecutive points of 360º-1, if, given a natural number N, we compute 118 

the set of geographic coordinates for points N N 0, ..., 1,N N,i ,1   as 119 

 120 
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                (4) 121 

 122 

The function mod(i,) returns the remainder of the division of i by , eliminating thus the 123 

unnecessary turns of the spiral (i.e. additive values of 360º for each spiral turn). The geographic 124 

coordinates i, i that are obtained by means of Eq. (4) for every point i of the lattice are given in 125 

degrees. This results in 2N+1 total points for the lattice, being each of them located in a different 126 

latitude, which provides a much more homogeneous sampling than the case of the latitude-127 

longitude lattice. Just for the purpose of illustration we depict in Fig. 1 the results of a latitude-128 

longitude lattice over a sphere with 180 points ( = 20º) and in Fig. 2 the results of a Fibonacci 129 

lattice over a sphere with 179 points (Fibonacci lattices always have an odd number of points). 130 

While in Fig. 1 a high point density in polar areas contrasts with a quite sparse distribution of 131 

points near the equator,  in  Fig. 2 we have a much more uniform point density. 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

Fig. 1. Latitude-longitude lattice (180 points)  Fig. 2. Fibonacci lattice (179 points) 145 

 146 

 147 

2.3. Distortion measures 148 

 149 

When we want to project a spherical surface onto a plane, distortions of several type will inevitably 150 

occur due to the fact that the sphere has a finite radius of curvature whereas the plane has an 151 

infinite one. This is also the case when the source reference surface is an ellipsoid. Distortions in 152 

the map projection are normally classified into linear distortions, areal distortions and angular 153 

distortions (Snyder, 1987). Some projections have been devised to avoid a particular type of 154 

Código de campo cambiado
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distortion (e.g. so-called conformal projections avoid angular distortions and so-called equal-area 155 

projections avoid areal distortions), others have been designed for a compromise of approximate 156 

preservation of all properties (they yield tolerable errors in all linear, angular and areal measures), 157 

but none of them is completely free from distortions, so that instead of a perfect map projection for 158 

universal use we can find many different map projections each of them devised for a particular 159 

purpose and geographic area (Snyder, 1987; Canters and Decleir, 1989). 160 

 161 

Conformal projections are currently used for producing official cartography such as national 162 

topographic maps. They preserve angles but suffer from different distortions in length and area. For 163 

a pair of infinitesimally close points i and j, we can define the linear distortion coefficient k1 as the 164 

ratio of the projected distance ds' to the original distance on the sphere or ellipsoid surface ds and 165 

obtain, after some derivations using differential geometry (Baselga, 2014), that 166 

 167 

     
22222

λλ
22

λ

2

λ
222

1

dλcosνdρ

dλdyyxx2dλyxdyx

ds

ds'
k



 




            (5) 168 

 169 

where d and d are the geographic coordinate differences between the infinitesimally close points 170 

so that j = i + d, j = i + d; x, y, x and y denote partial derivatives (evaluated all of them 171 

in point i) of the functions defining the map projection x = x(, ) and y = y(, )  respect to  and 172 

; and  and  are the principal radii of curvature of the ellipsoid (R for the case of a sphere). The 173 

linear distortion coefficients for the particular cases d = 0 (distortion along meridian) and d = 0 174 

(distortion along parallel) are customary denoted by h and k respectively (Snyder, 1987). They can 175 

be easily computed as 176 

 177 





22

_ )0(
yx

dkkh 1meridian1


        (6) 178 



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yx
dkkk

2

λ

2

λ

1parallel1


 0)(_        (7) 179 

It is well-known (Snyder, 1987) that in a conformal projection, given a point i, the linear distortion 180 

coefficient is independent of the direction ij (in contrast, for a non-conformal projection, length 181 

distortion is dependent on the coordinates of i as well as on the bearing from i to j).  182 

 183 

Therefore, for a point i in a conformal projection we have k1 = h = k regardless of the situation of 184 

the nearby point j (the linear distortion coefficient is independent of direction). For a conformal 185 

projection it is also well-known (Snyder, 1987; Rajakovic and Lapaine, 2010) that the areal 186 

distortion coefficient k2 – ratio of the projected differential area dS' to the original area on the 187 

ellipsoid or sphere dS – equals k1 squared 188 

 189 

2

12 k
dS

dS'
k                    (8) 190 

 191 

Other general measures of distortion include Tissot's ellipses (Snyder, 1987; Bauer-Marschallinger 192 

et al., 2014) and derived measures (e.g. averaged ratio between complementary profiles, Yan et al., 193 

2016). However, for the case of a conformal projection (no angular distortion, linear distortion k1, 194 

areal distortion k2 = k1
2 and Tissot's ellipses degenerated to circles of radius k1) it seems sensible to 195 

study only k1 and, in particular, its typical deviation from the optimum value 1, as we will see next. 196 

 197 

Different optimization criteria have been proposed in the past, including the minimization of 198 

extreme linear distortions (Rajakovic and Lapaine, 2010) and minimization of several distortion 199 

estimators, such as the one introduced by Gilbert (1974) as 200 

 201 
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 
22

2

'

'
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ss
EG


                                (9) 202 

 203 

where s and s' are the original distance on the sphere or ellipsoid surface and the projected distance, 204 

respectively, to be obtained and averaged over a sufficiently large number of randomly selected 205 

pairs of points in order to obtain an overall estimator of the distortion for the projection. 206 

 207 

By virtue of Eq. (5) we can write 208 

 209 

 
s

11 skdsks
0

'                  (10) 210 

 211 

where in the last equality we have denoted by k1 the average linear distortion factor in the line 212 

(mean value theorem for integrals), so that substitution of Eq. (10) into Eq. (9) permits us to write 213 

   

1

1

1

1
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k

sks

sks
E

2
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1




                                 (11) 214 

 215 

In the same fashion, Peters (1975) proposed the use of his estimator 216 

 217 

'

'

ss

ss
EP




                     (12) 218 

 219 

which, again, using Eq. (10) we can transform (Canters, 2002) into 220 

 221 

1

1

P
k

k
E






1

1
                   (13) 222 

 223 

Other classic distortion estimators include the integral evaluation of Airy (1861) and Jordan 224 

(1896)'s measures, given respectively by  225 

 226 

    22
11

2

1
 iiA2 bae                    (14) 227 

 228 

being ai and bi the maximum and minimum linear distortion coefficients at the sample point, and 229 

 230 
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



dke 1iJ

22

0
1

2

1
                     (15) 231 

 232 

For conformal projections (ai = bi = k1i) these are respectively simplified to 233 

 234 

 21 1iA2 ke                          (16) 235 

 236 

and 237 

 238 

 21 1iJ ke                                       (17) 239 

 240 

 241 

In practice the mean distortion value can be calculated by dividing the region into n smaller areas, 242 

determining the value for the midpoint of each and computing the average value (Canters, 2002). 243 
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This discrete evaluation can be interpreted as an approximation, depending on the number and 244 

distribution of the points, to the computation by using integrals . 245 

 246 

We can therefore characterize the overall linear distortion of a projection by computing the squared 247 

differences of the linear distortion factor k1 with respect to 1 – Airy and Jordan's measures for the 248 

case of conformal projections – for a given (large) set of n sample points, obtaining thus a typical 249 

measure for the distortion k1 as 250 

 251 





n

1

21)(
1

Δ
i

i11 k
n

k                           (18) 252 

 253 

The formula remembers that of the standard deviation only taking here 1 (the optimum value for k1) 254 

instead of the average value of the sample. It will be referred to by the name of typical distortion 255 

and used as optimization function for the subsequent computations. It may be worth noting that a 256 

simple arithmetic mean of the differences of the linear distortion factor k1 with respect to 1 might 257 

not give meaningful information about the possible distortions since large positive values could be 258 

cancelled out by large negative values and is therefore not recommended. For the case of weighted 259 

latitude-longitude lattices – weight according to Eq. (1) – the corresponding function to be used is 260 

 261 
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i

i

i1i
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 263 

 264 

2.4. Optimization method 265 

 266 

Map projections have some parameters (e.g. latitude of standard parallels) that have to be carefully 267 

selected in order to minimize the inevitable resulting distortions. The question of finding the best 268 

values for some parameters that yield the optimum value for a derived function is called an 269 

optimization problem. In general form, the optimization problem, i.e. the determination of the 270 

optimum vector x within a prescribed search domain D that makes the objective function f reach 271 

the global minimum, is formulated as 272 

 273 





D 

)f( 

x

x

subject to

min
                   (20) 274 

In our present case, the so-called objective function f will be Eq. (18) for some variables to 275 

optimize x (e.g. latitude of standard parallels) in the desired domain D (defined by some boundaries 276 

for the area of interest or, simply, the entire Earth). 277 

 278 

One of the most successful methods devised for solving optimization problems is the Simulated 279 

Annealing (SA) method, originally developed by Metropolis et al. (1953), which emulates the 280 

process of crystalline network self-construction. It has been extensively used in the last years, 281 

particularly in the field of geosciences (e.g. Berné and Baselga, 2004; Santé-Riveira et al., 2008; 282 

Baselga, 2011; Sharma, 2012; Chimi-Chiadjeu et al., 2013; and Soltani-Mohammadi et al., 2016). 283 

We will not delve into the many technicalities of the method and simply refer to specific 284 

publications (e.g. van Laarhoven and Aarts, 1987; Pardalos and Romeijn, 2002). 285 

 286 

We will compare our results with alternative procedures for defining the latitudes of standard 287 

parallels in conic projections, in particular with the 1/6 rule of thumb consisting in placing the 288 

standard parallels at 1/6th of the maximum and minimum latitudes (e.g. Fenna, 2007; and Jenny, 289 
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2012) and the work by Savric and Jenny (2016), which gives polynomial models to determine 290 

standard parallels for three conic projections given the spatial extent of the desired mapped area. 291 

 292 

3. Evaluation of map distortions 293 

 294 

We analyze here the Lambert Conformal Conic projection that was first recommended by 295 

EuroGeographics (Annoni et al., 2003) and then officially adopted by INSPIRE D2.8.I.1 (2014) as 296 

the standard for conformal mapping in Europe. This projection is also the same (including standard 297 

parallels) known as EPSG3034 in the database initially developed by the European Petroleum 298 

Survey Group – and currently maintained by the International Association of Oil & Gas Producers 299 

(OGP) – which has become a standard for the definition of coordinate reference systems 300 

(International Organization for Standardization, 2007). 301 

 302 

This projection is to be used in Europe along with the official reference system ETRS89 with the 303 

defining parameters given in Table 1 (Annoni et al., 2003). 304 

 305 

Table 1 306 

Defining parameters for Lambert Conformal Conic projection for Europe in ETRS89 system and bounding 307 

box as given in (Annoni et al., 2003). 308 

 309 

Parameter Value 

lower standard parallel latitude l 35º N 

upper standard parallel latitude u 65º N 

latitude of (false) grid origin b  52º N 

longitude of (false) grid origin 0 10º E 

False northing N0 2800000 

False easting E0 4000000 

Maximum latitude max 71º N 

Minimum latitude min 27º N 

Maximum longitude max 45º E 

Minimum longitude min 30º W 

 310 

Defining a and b as the major and minor semiaxes of the ellipsoid (ellipsoid GRS80 for the case of 311 

reference system ETRS89), f ellipsoid flattening, and e its first eccentricity, we can subsequently 312 

compute for a point to be projected of latitude  and longitude  (Annoni et al., 2003): 313 

 314 
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 325 

After computation of all the auxiliary quantities we arrive at the linear distortion coefficient k. 326 

(Note: remember the fact that k1 = h = k with Eqs. (5)-(7) since it is a conformal projection). 327 

 328 

Now Annoni et al. (2003) give maximum and minimum linear distortion coefficients in the given 329 

boundaries, respectively 43704 ppm and -34378 ppm, but do not provide a figure for the typical 330 

distortion that could be expected.  We will now use Eqs. (21)-(29) to evaluate the typical distortion 331 

– Eq. (18) – that is produced in this map projection for the assumed bounding box using different 332 

lattices (of latitude-longitude and Fibonacci types). 333 

 334 

With the use of latitude-longitude lattices we find that we need a very large number of sampling 335 

points in the area (small step size ) to obtain a value for Eq. (18) that is somewhat stable (i.e. that 336 

does not depend significantly on the number of sampling points), and even then the value keeps 337 

oscillating a bit.  338 

 339 

When we use weighted latitude-longitude lattices we find more stable results and a significantly 340 

quicker convergence. However, both unweighted and weighted latitude-longitude lattices are 341 

clearly outperformed by the use of Fibonacci lattices, which yield a very quick and stable 342 

convergence to the final value ppm 24687024687.0Δ 1k Table 2 and Fig. 3 summarize these 343 

results. 344 

 345 

Table 2 346 

Intervals of typical distortion values k1 in terms of different number of lattice points in the area under study 347 

for three types of lattices: latitude-longitude, weighted latitude-longitude and Fibonacci. 348 

 349 

k1 value (ppm) Lat-lon lattice: 

No. of points 

Weighted lat-lon lattice: 

No. of points 

Fibonacci lattice: 

No. of points 

24687  100 ppm 300000 83000 430 

24687  10 ppm - 1000000 6800 

24687  1 ppm - - 27000 

 350 

We stopped the computations when lattices reached a few million sampling points due to their high 351 

computational cost (several minutes in a standard personal computer) therefore some cases in the 352 

table could not even be computed. We can see that by using unweighted latitude-longitude lattices 353 

we have trouble to find a solution value that is stable to the level of 100 ppm. In Fig. 3 we can see 354 

that the main reason is that the estimate we get for k1 is biased due to the unnecessary higher 355 

density of sampling points at higher latitudes. The computation is improved by the use of weighted 356 

latitude-longitude lattices, by which we can reach with effort a solution within 10 ppm. By contrast, 357 

the use of Fibonacci lattices permits us to obtain a quick convergence so that a solution within 1 358 

ppm can easily be obtained by using around 27000 sampling points only. 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado

Código de campo cambiado



9 

 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

Fig. 3. Typical distortion values k1 in terms of different number of lattice points (only up to 10000 points 386 

shown here) using three types of lattices: latitude-longitude (red), weighted latitude-longitude (blue) and 387 

Fibonacci (black). 388 

 389 

We have shown that the typical distortion to be expected for the Lambert Conformal Conic 390 

projection using the parameters and bounding box defined for Europe, Table 1, is 24687 ppm and 391 

that it can be easily obtained with a small number of sampling points if we use a Fibonacci lattice 392 

 393 

 394 

4. Optimization of map projections 395 

 396 

We examine now whether the typical distortion value for the Lambert Conformal Conic projection 397 

can be improved by the use of different standard parallels than the ones conventionally used in 398 

Europe as well as compute the best ones for using the projection in Spain. 399 

 400 

The following new procedure optimizes a map projection by computing the standard parallels that 401 

minimize the typical distortion of the desired area. We understand the question as a global 402 

optimization problem in which the typical distortion k1 has to be minimized for a sufficient and 403 

efficient lattice of the area under study being the standard parallel latitudes the variables to 404 

optimize. 405 

 406 

 407 

4.1. Optimization of Lambert Conformal Conic projection for Europe 408 

 409 

 We see now how the standard parallels included as the defining variables of the Lambert 410 

Conformal Conic projection for Europe, Table 1, can be optimized so that the typical distortion of 411 

the area, Eq. (18) using Eq. (29) as the particular linear distortion coefficient, can be minimized. 412 

We will use here the simulated annealing method as the optimization method (eventually the final 413 

results should be the same by means of other competent optimization method) and a Fibonacci 414 

lattice as efficient sampling set, once we have seen its excellent performance in the previous 415 

section. 416 

 417 

We take into account the specific search domain, i.e. geographic boundaries in Table 1 (44º-wide in 418 

latitude and 75º-wide in longitude), use as the initial solution for the vector to optimize e.g. x0 = 419 

(l0, u0) = (35º, 65º), i.e. the values given in Table 1, and define the corresponding search domains 420 

as l  [min, (min+max)/2] and u  [(min+max)/2, max.]. Given the results obtained in the 421 

previous section and wanting to have typical distortions computed to some 1 ppm, we decide to use 422 

a Fibonacci lattice with 28161 lattice points in the area. The algorithm converges to the optimum 423 

solution after some 100 to 150 iterations only (Figs. 4 and 5). 424 
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 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

Fig. 4. Evolution of computed best value k1 (ETRS89-Lambert Conformal Conic projection for Europe). 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

Fig. 5. Differences between current iteration value and final best value for k1 (ETRS89-Lambert Conformal 458 

Conic projection for Europe). 459 

 460 

 461 

We obtain a global optimum at l = 36.06º, u = 61.54º with k1 = 22434 ppm. We obtain an 462 

almost indistinguishable result if we round to the next half-integer the standard parallel latitudes: l 463 

= 36º, u = 61.5º with k1 = 22435 ppm. 464 

 465 

These standard parallel latitudes are not very different from the ones customary used (l = 35º, u = 466 

65º). However, we see a considerable decrease in the typical distortion of around 10% (from 24687 467 

to 22435 ppm). In Table 3 we show the different results we obtain for the typical distortion k1 also 468 

using the 1/6 rule of thumb and Savric and Jenny (2016) method. We also show other measures: 469 

Gilbert and Peters estimators, as well as average, maximum and minimum values of the linear 470 

distortion coefficient. It is worth mentioning that Savric and Jenny (2016)'s method was designed 471 

to optimize the standard parallels on the sphere, while we are using here ellipsoidal equations for 472 

the Lambert conformal conic projection. Savric and Jenny's method also assumes symmetry along 473 

the central meridian for the area of interest; therefore, we had to set symmetrical limits in longitude 474 

for the computation of optimum standard parallels with it, although the final evaluation of typical 475 

distortion was done for the non-symmetrical true area of interest. 476 

 477 

 478 

 479 

 480 

 481 
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Table 3 482 

Different proposals for lower and upper standard parallels (l and u) along with their corresponding typical 483 

distortion (k1), Gilbert and Peters estimators (EG and EP) and average, maximum and minimum values of 484 

linear distortion coefficient (k1avg, k1max and k1min) for Lambert Conformal Conic projection for Europe. 485 

 486 

Source 
l  

(º) 

u  

(º) 

k1 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

INSPIRE D2.8.I.1 (2014) / Annoni 

et al.(2003) / EPSG3034 
35 65 24687 617 11094 -9147 43704 -34378 

1/6 rule of thumb 

(Jenny 2012, Fenna 2007) 
34.33 63.67 23874 576 10673 -8518 54954 -32827 

Savric and Jenny (2016) 37.55 58.68 23925 551 9064 7012 84836 -16988 

Present method 36.06 61.54 22434 496 9514 -496 67600 -24733 

Present method rounded to nearest 

half-integer 
36 61.5 22435 496 9512 -566 68040 -24771 

 487 

The standard parallels determined by our method clearly reduce the typical distortion in the area as 488 

compared with the parallels given by EuroGeographics and the INSPIRE directive (10% distortion 489 

reduction), 1/6 rule of thumb (6% distortion reduction), and Savric and Jenny (2016) polynomials 490 

(6% distortion reduction). Our method yields also the best solution in terms of Gilbert estimator 491 

and average distortion in the area, though it gives a second-best solution for Peters estimator just 492 

after Savric and Jenny's method, which, in turn, yields the highest distortion value in the area 493 

among all the different solutions. Having sought a solution that minimizes the typical distortion, 494 

Eq. (18), entailing minimization of Airy and Jordan estimators, we find a result that is also better 495 

than the alternative methods regarding Gilbert estimator and average distortion. It could be argued 496 

that our solution yields suboptimal values for other measures; however, considering that no single 497 

solution minimizes all values, the definition of the best projection in terms of the one minimizing 498 

the typical distortion as well as being the best in terms of other important distortion measures 499 

(average distortion and Gilbert estimator) seems a judicious one.  500 

 501 

 502 

4.2. Optimization of Lambert Conformal Conic projection for Spain 503 

 504 

We can use the same method to optimize the standard parallels to be used in the official Lambert 505 

Conformal Conic projection for Spain. A decree from the Gobierno del Estado Español (2007) 506 

commands that the ETRS89 reference system and the Lambert Conformal Conic projection be 507 

officially adopted for land representation at mapping scales of 1:500.000 or lower, without fixing, 508 

however, the particular latitudes to be used for the standard parallels. We use the same approach, 509 

simulated annealing as optimization method and a Fibonacci lattice for efficient sampling of the 510 

mapped area. As the problem geographic boundaries we use now those from EPSG3429 type area 511 

for "Spain mainland and Balearic Islands", namely min = 35.26º N, max = 43.82º N, min = 9.37º W 512 

and max = 4.39º E. We start with some arbitrary values in the search domain as initial solution e.g. 513 

x0 = (l0, u0) = (min, max); the final solution being independent from this choice. The algorithm 514 

quickly converges to the optimum solution after a few iterations (Figs. 6 and 7).  515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 



12 

 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

Fig. 6. Evolution of computed best value k1 (ETRS89-Lambert Conformal Conic projection for Spain). 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

Fig. 7. Differences between current iteration value and final best value for k1 (ETRS89-Lambert Conformal 557 

Conic projection for Spain). 558 

 559 

We obtain a global optimum at l = 37.07º, u = 42.00º with k1 = 827 ppm and a practically 560 

indistinguishable result if we round to the next integer these standard parallel latitudes: l = 37º, u 561 

= 42º with k1 = 828 ppm. 562 

 563 

We can see in Table 4 that there is a 1.5% distortion reduction for our proposal with respect to that 564 

of Savric and Jenny (2016) and a 7% distortion reduction with respect to that of the 1/6 rule of 565 

thumb. Similarly to the case of Europe (Table 3), our method gives also the best solution in terms 566 

of Gilbert estimator and average distortion in the area, and a second-best for Peters estimator right 567 

after Savric and Jenny's method, which, in turn, yields the highest distortion value in the area 568 

among all different solutions. 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 
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Table 4 584 

Different proposals for lower and upper standard parallels (l and u) along with their corresponding typical 585 

distortions (k1), Gilbert and Peters estimators (EG and EP) and average, maximum and minimum values of 586 

linear distortion coefficient (k1avg, k1max and k1min) for Lambert Conformal Conic projection for Spain. 587 

 588 

Source 
l 

(º) 

u 

(º) 

k1 

(ppm) 

EG 

(ppm) 

EP 

(ppm) 

k1avg 

(ppm) 

k1max 

(ppm) 

k1min 

(ppm) 

1/6 rule of thumb 

(Jenny 2012, Fenna 2007) 
36.69 42.39 883 0.78 394 -311 1581 -1235 

Savric and Jenny (2016) 37.29 41.82 840 0.70 348 145 2027 -779 

Present method 37.07 42.00 827 0.68 356 2 1908 -922 

Present method rounded to nearest integer 37 42 828 0.68 358 -25 1928 -948 

 589 

5. Conclusions 590 

In the present paper we have shown the clear advantages in performance of Fibonacci lattices with 591 

respect to the standards latitude-longitude lattices for numerical evaluation of map distortions. 592 

 593 

We have computed the typical distortion for the Lambert Conformal Conic projection with their 594 

currently defined parameters and geographic boundaries for Europe, adopted as standard by 595 

INSPIRE, resulting in 24687 ppm. Further, we have optimized the defining parameters of this 596 

projection so that the typical distortion for the area of interest (Europe) is reduced a 10%. We 597 

therefore recommend a change in the definition of standard parallel latitudes for the Lambert 598 

Conformal Conic projection in Europe so that lower and upper standard parallels be set to 36º and 599 

61.5º, respectively. 600 

 601 

We also apply the optimization procedure to the determination of the best standard parallels for 602 

using the Lambert Conformal Conic projection in Spain, whose values remained unspecified by the 603 

National decree that commanded its official adoption. We obtain a best pair of standard parallels of 604 

latitudes 37º and 42º for which the typical distortion results in 828 ppm. 605 
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