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Abstract

One of the challenges of robotics is to develop control systems capable of quickly

obtaining intelligent, suitable responses for the regularly changing that take place in

dynamic environments. This response should be offered at runtime with the aim of

resume the plan execution whenever a failure occurs. Automated classical planning

works on deliberative tools to calculate plans that achieve operation goals. The term

reactive planning addresses all the mechanisms that, directly or indirectly, promote

the resolution of failures during the plan execution. Reactive planning systems work

under a continual planning and execution approach, i.e., interleaving planning and

execution in dynamic environments.

Most of the current research puts the focus on developing reactive planning sys-

tem that works on single-agent scenarios to recover quickly plan failures, but, if

this is not possible, we may require more complex multi-agent architectures where

several agents may participate to solve the failures. Therefore, continual planning

and execution systems have usually conceived solutions for individual agents. The

complexity of establishing agent communications in dynamic and time-restricted

environments has discouraged researchers from implementing multi-agent collabo-

rative reactive solutions.

In line with this research, this Ph.D. dissertation attempts to overcome this gap

and presents a multi-agent reactive planning and execution model that keeps track

of the execution of an agent to recover from incoming failures.

Firstly, we propose an architecture that comprises a general reactive planning

and execution model that endows a single-agent with monitoring and execution
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capabilities. The model also comprises a reactive planner module that provides the

agent with fast responsiveness to recover from plan failures. Thus, the mission of an

execution agent is to monitor, execute and repair a plan, if a failure occurs during

the plan execution.

The reactive planner builds on a time-bounded search process that seeks a recov-

ery plan in a solution space that encodes potential fixes for a failure. The agent gen-

erates the search space at runtime with an iterative time-bounded construction that

guarantees that a solution space will always be available for attending an immediate

plan failure. Thus, the only operation that needs to be done when a failure occurs

is to search over the solution space until a recovery path is found. We evaluated the

performance and reactiveness of our single-agent reactive planner by conducting

two experiments. We have evaluated the reactiveness of the single-agent reactive

planner when building solution spaces within a given time limit as well as the per-

formance and quality of the found solutions when compared with two deliberative

planning methods.

Following the investigations for the single-agent scenario, our proposal is to ex-

tend the single model to a multi-agent context for collaborative repair where at

least two agents participate in the final solution. The aim is to come up with a

multi-agent reactive planning and execution model that ensures the continuous and

uninterruptedly flow of the execution agents. The multi-agent reactive model pro-

vides a collaborative mechanism for repairing a task when an agent is not able to

repair the failure by itself. It exploits the reactive planning capabilities of the agents

at runtime to come up with a solution in which two agents participate together, thus

preventing agents from having to resort to a deliberative solution. Throughout the

thesis document, we motivate the application of the proposed model to the control

of autonomous space vehicles in a Planetary Mars scenario.

To evaluate our system, we designed different problem situations from three
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real-world planning domains. We tested the reactiveness and performance of our ap-

proach along a complete execution of the tasks from the planning domains, demon-

strating that our model is a very suitable multi-agent mechanism to fix failures that

represent slight deviations from the main course of the plan.

Finally, the document presents some conclusions and also outlines future re-

search directions.
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Resumen

Uno de los desaf́ıos de la robótica es desarrollar sistemas de control capaces de

obtener rápidamente respuestas adecuadas e inteligentes para los cambios con-

stantes que tienen lugar en entornos dinámicos. Esta respuesta debe ofrecerse al

momento con el objetivo de reanudar la ejecución del plan siempre que se pro-

duzca un fallo en el mismo. La planificación clásica automática trabaja con her-

ramientas deliberativas para calcular planes que consigan los objetivos. El término

planificación reactiva aborda todos los mecanismos que, directa o indirectamente,

promueven la resolución de fallos durante la ejecución del plan. Los sistemas de

planificación reactiva funcionan bajo un enfoque de planificación y ejecución con-

tinua, es decir, se intercala planificación y ejecución en entornos dinámicos.

Muchas de las investigaciones actuales se centran en desarrollar planificadores

reactivos que trabajan en escenarios de un único agente para recuperarse rápidamente

de los fallos producidos durante la ejecución del plan, pero, si esto no es posible,

pueden requerirse arquitecturas de múltiples agentes y métodos de recuperación

más complejos donde varios agentes puedan participar para solucionar el fallo. Por

lo tanto, los sistemas de planificación y ejecución continua generalmente generan

soluciones para un solo agente. La complejidad de establecer comunicaciones entre

los agentes en entornos dinámicos y con restricciones de tiempo ha desanimado a los

investigadores a implementar soluciones reactivas donde colaboren varios agentes.

En ĺınea con esta investigación, la presente tesis doctoral intenta superar esta

brecha y presenta un modelo de ejecución y planificación reactiva multiagente que

realiza un seguimiento de la ejecución de un agente para reparar los fallos con

ix



ayuda de otros agentes.

En primer lugar, proponemos una arquitectura que comprende un modelo gen-

eral reactivo de planificación y ejecución que otorga a un agente capacidades de

monitorización y ejecución. El modelo también incorpora un planificador reactivo

que proporciona al agente respuestas rápidas para recuperarse de los fallos que se

pueden producir durante la ejecución del plan. Por lo tanto, la misión de un agente

de ejecución es monitorizar, ejecutar y reparar un plan, si ocurre un fallo durante

su ejecución.

El planificador reactivo está construido sobre un proceso de busqueda limitada

en el tiempo que busca soluciones de recuperación para posibles fallos que pueden

ocurrir. El agente genera los espacios de búsqueda en tiempo de ejecución con

una construcción iterativa limitada en el tiempo que garantiza que el modelo siem-

pre tendrá un espacio de búsqueda disponible para atender un fallo inmediato del

plan. Por lo tanto, la única operación que debe hacerse es buscar en el espacio

de búsqueda hasta que se encuentre una solución de recuperación. Evaluamos

el rendimiento y la reactividad de nuestro planificador reactivo mediante la real-

ización de dos experimentos. Evaluamos la reactividad del planificador para con-

struir espacios de búsqueda dentro de un tiempo disponible dado, asi como támbien,

evaluamos el rendimiento y calidad de encontrar soluciones con otros dos métodos

deliberativos de planificación.

Luego de las investigaciones de un solo agente, propusimos extender el mod-

elo a un contexto de múltiples agentes para la reparación colaborativa donde al

menos dos agentes participan en la solución final. El objetivo era idear un modelo

de ejecución y planificación reactiva multiagente que garantice el flujo continuo e

ininterrumpido de los agentes de ejecución. El modelo reactivo multiagente pro-

porciona un mecanismo de colaboración para reparar una tarea cuando un agente

no puede reparar la falla por śı mismo. Explota las capacidades de planificación

reactiva de los agentes en tiempo de ejecución para encontrar una solución en la

que dos agentes participan juntos, evitando aśı que los agentes tengan que recurrir
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a mecanismos deliberativos. Durante todo el documento de la tesis, motivamos la

aplicación del modelo propuesto para el control de veh́ıculos espaciales autónomos,

escenario de los robots de Marte.

Para evaluar nuestro sistema, diseñamos diferentes situaciones en tres dominios

de planificación del mundo real. Probamos la reactividad y el rendimiento de nue-

stro enfoque a lo largo de una ejecución completa de las tareas de los dominios de

planificación, demostrando que nuestro modelo es un mecanismo multiagente ade-

cuado para reparar fallos que representan una pequeña desviación en la ejecución

del plan.

Finalmente, el documento presenta algunas conclusiones y también propone fu-

turas ĺıneas de investigación posibles.
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Resum

Un dels desafiaments de la robòtica és desenvolupar sistemes de control capaços

d’obtindre ràpidament respostes adequades i intel·ligents per als canvis constants

que tenen lloc en entorns dinàmics. Aquesta resposta ha d’oferir-se al moment amb

l’objectiu de reprendre l’execució del pla sempre que es prodüısca una fallada en

aquest. La planificació clàssica automàtica treballa amb eines deliberatives per a cal-

cular plans que aconseguisquen els objectius. El terme planificació reactiva aborda

tots els mecanismes que, directa o indirectament, promouen la resolució de fallades

durant l’execució del pla. Els sistemes de planificació reactiva funcionen sota un

enfocament de planificació i execució cont́ınua, és a dir, s’intercala planificació i

execució en entorns dinàmics.

Moltes de les investigacions actuals se centren en desenvolupar planificadors

reactius que treballen en escenaris d’un únic agent per a recuperar-se ràpidament

de les fallades prodüıdes durant l’execució del pla, però, si això no és possible,

poden requerir-se arquitectures de múltiples agents i mètodes de recuperació més

complexos on diversos agents puguen participar per a solucionar la fallada. Per tant,

els sistemes de planificació i execució cont́ınua generalment generen solucions per

a un sol agent. La complexitat d’establir comunicacions entre els agents en entorns

dinàmics i amb restriccions de temps ha desanimat als investigadors a implementar

solucions reactives on col·laboren diversos agents.

En ĺınia amb aquesta investigació, la present tesi doctoral intenta superar aque-

sta bretxa i presenta un model d’execució i planificació reactiva multiagent que

realitza un seguiment de l’execució d’un agent per a reparar les fallades amb ajuda
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d’altres agents.

En primer lloc, proposem una arquitectura que comprén un model general re-

actiu de planificació i execució que atorga a un agent capacitats de monitoratge

i execució. El model també incorpora un planificador reactiu que proporciona a

l’agent respostes ràpides per a recuperar-se de les fallades que es poden produir

durant l’execució del pla. Per tant, la missió d’un agent d’execució és monitorar,

executar i reparar un pla, si ocorre una fallada durant la seua execució.

El planificador reactiu està constrüıt sobre un procés de cerca limitada en el

temps que busca solucions de recuperació per a possibles fallades que poden ocórrer.

L’agent genera els espais de cerca en temps d’execució amb una construcció itera-

tiva limitada en el temps que garanteix que el model sempre tindrà un espai de

cerca disponible per a atendre una fallada immediata del pla. Per tant, l’única op-

eració que ha de fer-se és buscar en l’espai de cerca fins que es trobe una solució

de recuperació. Avaluem el rendiment i la reactivitat del nostre planificador reactiu

mitjançant la realització de dos experiments. Avaluem la reactivitat del planificador

per a construir espais de cerca dins d’un temps disponible donat, aix́ı com també,

avaluem el rendiment i qualitat de trobar solucions amb altres dos mètodes deliber-

atius de planificació.

Després de les investigacions d’un sol agent, vam proposar estendre el model

a un context de múltiples agents per a la reparació col·laborativa on almenys dos

agents participen en la solució final. L’objectiu era idear un model d’execució i plani-

ficació reactiva multiagent que garantisca el flux continu i ininterromput dels agents

d’execució. El model reactiu multiagent proporciona un mecanisme de col·laboració

per a reparar una tasca quan un agent no pot reparar la falla per si mateix. Explota

les capacitats de planificació reactiva dels agents en temps d’execució per a trobar

una solució en la qual dos agents participen junts, evitant aix́ı que els agents hagen

de recórrer a mecanismes deliberatius. Durant tot el document de la tesi, motivem

l’aplicació del model proposat per al control de vehicles espacials autònoms, esce-

nari dels robots de Mart.
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Per a avaluar el nostre sistema, dissenyem diferents situacions en tres dominis

de planificació del món real. Provem la reactivitat i el rendiment del nostre enfoca-

ment al llarg d’una execució completa de les tasques dels dominis de planificació,

demostrant que el nostre model és un mecanisme multiagent adequat per a reparar

fallades que representen una xicoteta desviació en l’execució del pla.

Finalment, el document presenta algunes conclusions i també proposa futures

ĺınies d’investigació possibles.
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Chapter 1

Motivation

“Everything is within your power, and your power is within you.”

(Janice Trachtman)

Much of the research on Artificial Intelligence (AI) planning is aimed at generat-

ing domain-independent planning technology [42] in a great variety of industries

applications such as manufacturing [68], route planning [99, 21], military and civil-

ian coalition operations [83], space exploration [19], and so forth. Inside the AI

planning community, the application of planning to industry gives rise to special-

purpose systems, which are expensive to extend to other cases, where automated

planning and plan execution need to be integrated. While the primary focus of au-

tomated planning is on deliberative tools to calculate plans that achieve operation

goals, the focus of plan execution is on developing control methods over relatively

short time spans to ensure the plan actions are executed stably [10]. The term re-

active planning [75] has been used to address all the mechanisms that, directly or

indirectly, promote the resolution of failures in planning and execution. planning

and execution are systems that work under a continual planning approach [16], i.e.

interleaving planning and execution in a world under continual change.

Reactive planning is proposed as one key mechanism in fast failure resolution.

Reactive planning differs from classical planning in two aspects. First, it operates in
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a timely fashion and hence is extremely important with highly dynamic and unpre-

dictable environments. Second, it computes just one next action in every instant,

based on the current context. The Reactive planners often (but not always) exploit

reactive plans, which are stored in complex structures. Classically, reactive planning

has been approached from different perspectives [18]: 1) responding very quickly

to changes in the environment through a reactive plan library that stores the best

course of action to each possible contingency, 2) choosing the immediate next action

on the basis of the current context, and 3) using more complex structures in order

to handle execution failures or environmental changes. The approach 1), used by

early planning and execution systems [47], implies storing a plan for each possible

state of the world, an option which is not affordable in highly dynamic environ-

ments. The hierarchical control structures is the approach followed by the models

that emphasize reactiveness, computing just one next action in every instant based

on the current context [30, 72]. They provide, to an executor agent, a deliberative

mechanism to choose the immediate next action when a quick response is required

in unpredictable environments [17].

Multi-Agent Planning (MAP) systems are extensions of planning and execution

single-agent frameworks for distributed problem solving [113, 108, 65]. One com-

mon characteristic of MAP architectures is that the multi-agent infrastructure is

specifically used for supporting the deliberative machinery (planning) whereas the

need for reactive mechanisms (plan execution) is basically relegated to the indi-

vidual agent level. Thus, when an executor agent encounters a failure during plan

execution it must be capable of repairing it by either chooses the immediate next

action, or by having task assessors that abstractly plan how to accomplish the failed

task [65], or by consulting a plan library of predefined, static plans [98] (previous

explained approaches 1, 2, and 3).

Despite the fact that reactive planning has been studied since the 90’s decade,

there is still a wide range of problems whose solution has not been treated in the

literature.
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On the one hand, nowadays planning control applications need to rely on a

robust plan execution capable to return a reactive response that repairs the non-

executable part of the plan and allows the flow of the execution to engage with the

rest of the (executable) plan. Under these premises, reactive planning as the utiliza-

tion of a library of reactive plans that accounts for all possible contingencies in the

world is unaffordable; and abstract repair plans are not sufficient nor executable.

Other approaches resort to reactive model-based programming languages to com-

bine the flexibility of reactive execution languages and the reasoning power of delib-

erative planners, and thus automate the process of reasoning about low-level system

interactions [114, 32]. However, these approaches require the programmer specif-

ically design the plans and contingencies that will ensure a high degree of success

in each particular application. We argue that most reactive planning approaches,

even though they care about fast resolution with completed plan library structures,

have never exploited the idea of providing quick deliberative responses by using

more complex structures that consider more deliberative (long horizon) responses

rather than short-term reactiveness. In practice, they react to a change or failure

but they do not guarantee a response within a limited time. Hence, they have not

focused on the particularities of operate over bounded-size structures which have

been generated within a limited time. The design of new computational approaches

for reactive planning in bounded-size structures may lead to provide runtime delib-

erative responses in any domain applications.

On the other hand, most reactive planners have focused on single-agent scenar-

ios where agents are capable of repairing their own plan failures, but, if this is not

possible, more complex multi-agent scenarios may be required. For instance, in the

Mars planning domain, which stems from a real-world problem that NASA is deal-

ing with in some research projects on space exploration [67, 94], a rover that works

on the Martian surface may lose capabilities [102, 64] (e.g. reduced mobility due

to wear and tear on motors or mechanical systems, reduced power generation due

to battery degradation, accumulated dust on solar arrays), as happened with the
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Spirit and Opportunity rovers. If there is a plan failure and the rover is not able

to repair it by its own repairing mechanism, the rover, before communicating to

Earth ( the communication has a long delay of at least 2.5 minutes, and at most 22

minutes), may cooperate with other rover or spacecraft in order to perform a joint

repair. This property grants a high degree of reactivity and robustness as it always

attempts first to repair failures at runtime, either individually or collectively, before

resorting to replanning, i.e., asking the deliberative planner for a new executable

plan. Therefore, we consider it to be of extreme importance.

Hence, this thesis pursues computational solutions for both complex scenarios:

recovering plan failures by self-reactive planning techniques during execution, and

solving plan failures with a collaborative approach between agents when the agent

is not able to repair the plan by himself. This thesis has been developed under the

umbrella of several research projects in domain-independent frameworks for single

and multi-agent systems. Reactive planning and execution, more specifically, the

research carried out in this thesis plays a significant role in those research projects.

This thesis is developed under the framework of the following research projects

funded by the Spanish Government:

• “PELEA: A domain-independent framework for Planning, replanning, moni-

toring, Execution, and LEArning” under grant TIN2008-06701-C03-01 (Main

Researcher: Eva Onaindia, from 2008 to 2011). PELEA includes components

that allow the agent to dynamically integrate deliberative planning and re-

planning, execution, monitoring and learning techniques. In full reactive ap-

plications, the learning and deliberative planning and replanning components

might not be needed or can be used very rarely to set up the initial plan to

carry out. The work of this thesis aims to provide reactive planning and exe-

cution mechanisms for a PELEA agent.

• “Multi-agent PlanInteraction” under grant TIN2011-27652-C03-01-AR (Main

Researcher: Eva Onaindia, from 2011). In this project, we aim to analyze
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1.1 Objectives

processes where groups of agents aim to cooperate to solve plan failures while

considering their own interests. Agents share common information at the

recovery process. However, each agent may have different personal situations

that are possibly in conflict. Agent-based repairing techniques are a subset of

the scenarios studied by the Multi-agent PlanInteraction project.

Additionally, the work of this thesis could have not been possible without the

predoctoral fellowship program FPI (BES-2009-013327) and the short stay (EEBB-

I12-04550) made at NASA for the same FPI program granted by the Spanish Gov-

ernment.

1.1 Objectives

The general objective of this Ph.D. dissertation is to develop a new Multi-Agent Re-

active Planning and Execution model that includes a multi-agent reactive technique

to recover from plan failures with the help of other agents. Specifically, we deal with

an unexplored point of view, which consists of solving plan failures with a collabo-

rative repair approach between agents. It is reasonable to assume that the agents

need to share some information to collaborate with other agents. For that purpose,

we propose the following specific objectives:

1. State-of-the-art in reactive planning and execution: It is necessary to sur-

vey, classify, and review the existing literature on automated reactive planning

and related topics.

(a) Review related architectures for single-agent and multiple-agents.

(b) Examine the concept of reactive techniques with single-agent and multiple-

agents.

(c) Analyze the shortcomings of the techniques proposed in the literature for

reactive planning and execution.
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1.1 Objectives

2. Single-agent reactive planning and execution model: In this objective, we

develop a domain-independent reactive model which requires special features

due to the limited resources of the executor agents that are usually employed.

The model should include a reactive planner. Even though reactive planners

in AI care about fast resolution, they have not focused on providing quick re-

sponses with complex structures that the agent generates at runtime within

a limited time. Therefore, it is necessary to propose and validate a computa-

tional model for a single-agent reactive planning and execution.

(a) Propose a general domain-independent reactive planning and execution

model.

(b) Propose a general reactive planning technique that employs reactive struc-

tures to recover from plan failures in a fashion response.

(c) Validate the computational efficiency of the proposed mechanism, and

compare it with both a general and well-known deliberative planner

(LAMA planner [89]), and a plan-adaptation mechanism.

3. Multi-agent reactive planning and execution model: As far as we are con-

cerned, the topic of multi-agent reactive planning and execution is introduced

in automated reactive planning with this Ph.D. dissertation. The multi-agent

repair is a complex process since the agent should solve the plan failure with

the other agents, as fast as possible, before resulting to a replanning mecha-

nism. Therefore, due to its novelty, we put a particular emphasis on exploring

this type of complex solution to solve failures with a collaborative approach.

We aim to propose a general multi-agent computational model for recovery

from plan failures and analyze the impact of the conditions of the environ-

ment on agents performance.

(a) Identify and analyze the workflow of information necessary that may

help agents to perform successfully in multi-agent recovery process.
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1.2 Contributions

(b) Propose a general protocol and define information to share.

(c) Validate the optimal performance when the multi-reactive model is en-

abled and compare the computational efficiency of the multi-reactive

model with other centralized systems.

1.2 Contributions

Our main contribution is a repair mechanism that allows execution agents to reac-

tively and collaboratively attend a plan failure during execution. Specifically, it is

a multi-agent reactive repair planner that employs bounded-structures to respond

in a timely fashion to a somewhat dynamic and unpredictable environment. The

multi-agent reactive planner allows execution agents to perform a general model,

which enables a group of two agents to act coherently, overcoming the uncertain-

ties of complex, dynamic environments to repair failures or inconsistent views of

the world state. After defining a set of incidences of breakdowns for the different

domains, this approach will be compared with some deliberative planner to study

how fast the reactive planner generates a solution.

1.3 Document structure

The thesis is divided into five main parts. First, some theory behind planning and

execution architectures, reactive planning, recovery and diagnosis, plan coordina-

tion, and multi-agent plan execution are discussed. Second, the single-agent reac-

tive planning and execution model is presented and some test and evaluations are

discussed. Next, the single-agent model is extended to a multi-agent context and

some evaluations of this multi-agent model are presented and discussed. Finally, we

discuss some conclusions and present some future works.
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Chapter 2

State of the art in planning and

execution

“Study the past if you would define the future.”

(Confucius)

This chapter summarizes the literature on the principal research works related

to the topics addressed in this Ph.D. dissertation. Particularly, we divide the state-

of-the-art presentation in two main blocks:

1. Planning and execution architectures. The underlying framework of the

model presented in this Ph.D. is a multi-agent planning and execution ar-

chitecture which was developed within two research projects: PELEA, de-

voted to the design of a single-agent planning and execution architecture, and

PlanInteraction, an extension of PELEA to a multi-agent environment. The first

part of this document will cover the most significant planning and execution

architectures, starting from the basic or single-agent architectures and then

presenting some multi-agent system architectures.
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2.1 Planning and execution architectures

2. Approaches to planning and execution. The ultimate objective of our plan-

ning and execution model is that agents cooperatively repair a failure in one of

the agents’ plan, if possible. We will revise in this subsection the most relevant

single-agent approaches to plan repair and replanning as well as presenting

some discussion on how they cam be extended to a multi-agent environment.

Unlike deliberative planning, planners that calculate a plan at execution time

must return a timely and promptly response. This area of research is com-

monly referred as to reactive planning and execution. The second block of this

chapter is devoted to revise the main approaches of reactive planning and

execution found in the literature for single and multi agent environments.

2.1 Planning and execution architectures

Planning and execution systems work under a continual planning approach [16],

interleaving planning and execution in a dynamic world with continual change.

Most of the existing approaches employ an architecture where an executor agent

has a deliberative mechanism that allows the agent to choose the next immediate

action during the execution of a plan in an unpredictable environment [17]. In

other words, using a plan library, they calculate the next action at every time instant

based on the current context [72]. Other planning and execution systems, however,

design an architecture that integrates Planning, Execution and Monitoring inside

the executor agent.

In this section, we will survey the most relevant architectures that interleave

planning and execution in single-agent and multi-agent systems.

2.1.1 Single-agent frameworks

One of the main challenges addressed by the planning and execution community

is the problem to design the framework that integrates Planning, Execution and
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2.1 Planning and execution architectures

Monitoring inside an executor agent. Using expressive frameworks to implement an

executor agent with these three behaviors is one of the key aspects of an efficient

planning and execution system. In this section, we will study the most relevant

frameworks that interleave planning and execution in single-agent systems.

2.1.1.1 Task Control Architecture

The Task Control Architecture (TCA) [101] is one of the first planning and execution

architectures that has widely influenced most of the planning and execution works

since the 90’s. A robot agent built with TCA consists of task-specific modules, and

a general purpose, reusable central control module. The task-specific modules pro-

cess all robot-dependent information while the central control module is responsible

for supervising and routing messages between the task-specific modules as well as

maintaining the information of control. More concretely, TCA is a distributed archi-

tecture with a centralized control, which is the main limitation of this architecture

because the central process may become a bottleneck. However, TCA offers facili-

ties to implement the modules with different programming languages and puts the

emphasis principally on the execution, monitoring and exception handling.

2.1.1.2 Distributed Architecture for Mobile Navigation

The Distributed Architecture for Mobile Navigation (DAMN) [92] is another archi-

tecture developed under the same concept as TCA. In DAMN, multiple modules

concurrently share the control of the agent’s devices. The modules vote for actions

that satisfy their goals and asynchronously communicate the results to the central

module at a rate adequate for the particular selection and execution of the actions.

The central module, with no regard to the level of planning involved by each mod-

ule, selects the appropriate actions based on the modules’ votes and execute them.

There can also be many independent central modules, each one responsible for the

control of a different device. The independent central modules can run in parallel
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2.1 Planning and execution architectures

and communicate with each other, if necessary, for flexible coordination. In such

a case, a central high-level module is required to control the information from the

independent central modules.

2.1.1.3 BEhavior-based Robot Research Architecture

BEhavior-based Robot Research Architecture (BERRA) [66] is a three-layer archi-

tecture: the deliberative layer, which works as a deliberative planner; the task exe-

cution layer, which performs the monitoring process, verifying the correct execution

of the action; and the reactive layer that is an executor of actions. The delibera-

tive layer has two modules, the human-robot interface (HRI) and the planner; the

task execution layer has also two modules, the task execution supervisor and the

localizer modules; and the reactive layer contains three modules, the behaviors, the

resources and the controllers modules. More specifically, the modules of each layer

are responsible of:

1. Deliberative layer:

• The HRI understands gesture and speech and also has a voice synthesizer

for feedback.

• The planner decomposes commands from the HRI in states.

2. Task execution layer:

• The task execution supervisor module (TEM) receives information from

the planner and translates it into a configuration of reactive components.

It also informs the controllers which behaviors should send data to them.

• The localizer tracks the robot position.

3. Reactive layer:
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2.1 Planning and execution architectures

• The behaviors control the sensors and actuators and can accept connec-

tions from the controllers. They receive data from the TEM and inform

this module, if necessary, about the success or failure of an action.

• Resources are for sharing sensor data. Clients of resources are behaviors

or other resources. Clients must establish a connection with the resource

to obtain information from a resource.

• The controllers are in charge of sending the actions to the actuators and

receive the results data from the behaviors. Data coming from behaviors

are used to produce the control signal to be sent to the actuators.

The BERRA architecture contains modules for deliberative planning, executing

actions and monitoring but it does not accommodate a reactive planning module.

2.1.1.4 Tripodal schematic control architecture

The tripodal schematic control architecture [60] is also three-layer architecture like

BERRA. The three layers with their functionalities are:

• Deliberative layer: the main tasks of the deliberative layer are to provide an

interface with the user and to execute the centralized planning mechanism. It

works in a high-level configuration.

• Sequencing layer: this layer consists of asynchronous and nonrealtime com-

ponents that are classified into two groups. The first group is the process

supervisor and configuration of low-level tasks. The second group is the in-

formation part that implement complex algorithms to extract data from sen-

sors. Communication between components can be done synchronously or

asynchronously.

• Reactive layer: the reactive layer handles hardware and real-time compo-

nents. It works as a coordinator that decides in real-time the low-level com-

mand to execute in the hardware.
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2.1 Planning and execution architectures

The main problem of the architecture is that it lacks a component that allows

recovering the plan failure whenever it occurs. The reactive layer works only trans-

lating and executing high-level tasks to low-level tasks. Thus, when a plan failure

occurs it goes to replanning by calling the deliberative layer. Another problem is

that the deliberative planner is inside the executor agent which in many cases is

unaffordable because the deliberative planner can take too much time to generate

a plan for execution. Moreover, in this architecture, the deliberative planner is a

centralized planning mechanism meaning that the planning process computes the

solution plan of the agent from a global point of view.

2.1.1.5 Teleo-Reactive EXecutive architecture

The Teleo-Reactive EXecutive (T-REX) [71] combines planning and state estimation

techniques within a hybrid executor. It integrates primitive robot actions into higher

level tasks. An executor agent works as a coordinator of a set of modules that

encapsulates all details of how to accomplish their objectives. The executor agent

has three different modules:

1. The mission manager generates necessary actions automatically by using a

planner.

2. The navigator and science operator manager translate high-level directives

into executable commands depending on the current system state.

3. The executive manager encapsulates access to commands and state variables

sensing from the environment.

T-REX represents and reasons about plans with a constraint-based temporal

planning paradigm. A timeline represents all the states in the past, present, and fu-

ture. This is an interesting feature though not particularly valuable when a reactive

response is required and attention must be put on the next action to be executed.
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2.1 Planning and execution architectures

T-REX provides not only a robust and safe execution but also high-level program-

ming capabilities and goal-directed commanding through its onboard planner.

2.1.1.6 PELEA: single-agent planning and execution architecture

PELEA [7, 52] follows a continuous planning approach but, unlike other approaches [77,

20], it allows planning engineers to easily generate new applications by reusing and

modifying the components as well as a high flexibility to compare different tech-

niques for each module or even incorporate one’s own techniques. It includes com-

ponents to dynamically integrate planning, execution, monitoring, replanning and

learning techniques. PELEA provides two main types of reasoning: high-level and

low-level (mostly hardware). These two planning levels offer two main advantages:

1) both levels can be easily adapted to the requirements of the agent; and 2) re-

planning can be applied at each level, which grants a greater degree of flexibility

when recovering from failed executions. It also enables the addition of more levels

to allow developers for a more hierarchical decision process. We will consider only

the high level reasoning of PELEA in this PhD Dissertation as it is sufficient to tackle

most problems, as it has been shown in many robotics applications.

Figure 2.1 shows the main components of PELEA. PELEA is controlled by a

module, called Top-level control, which coordinates the execution and interaction

of the Execution and Monitoring components. In the following, the life-cycle of the

architecture is described.

• Execution module. The Execution is the starting point of the architecture, and

it is initialized with a planning task, which current state is read from the envi-

ronment through the sensors. The environment is either a hardware device, a

software application, a software simulator, or a user. The Execution is respon-

sible of reading and communicating the current state to the rest of modules as

well as executing the actions of the plan in the environment.
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Figure 2.1: Architecture of a PELEA agent.

• Monitoring module. The main task of the Monitoring is to verify that the ac-

tions are executable in the current state before sending them to the Execution.

The planning task is sent by the Execution to the Monitoring. The Monitoring

calls the Decision Support, which in turn calls the Deliberative Planner, to

obtain a plan and the info to monitor. The actions in the plan are directly

sent to the executor. Once the actions are executed, the Monitoring receives

the necessary knowledge (current state, problem and domain) from the Exe-

cution. When the Execution reports the Monitoring the state resulting from

the execution of some action of the plan, the process called plan monitoring

starts. This process verifies whether the values of the variables of the received

state match the expected values or not. As a first step, the Monitoring checks

whether the problem goals are already achieved in the received state. If so,

the plan execution finishes; otherwise, the Monitoring checks whether the

received state matches the expected state or not (with the info to monitor re-

ceived by the Decision Support) and determines the existence of a plan failure
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or not.

The info to monitor parameter, provided by the Decision Support, comprises

the information that needs to be monitored to guarantee a successful plan exe-

cution. Specifically, it includes: i) the variables to be monitored, i.e. those that

are directly related to the plan, ii) the time at which the variable is generated,

and the earliest and latest time at which the variable will be used, respectively;

and iii) the value range for each variable, denoting the set of correct values

that the variables can take on.

• Goal & metric generation module. The goal & metric generation module is de-

signed to automatically select the new goals and metrics to be used according

to the current state of the execution. This module is invoked by the Moni-

toring in case the system decides to change dynamically the goals or metrics

along the plan execution. A common use of this module is for oversubscription

problems [103], where not all goals can be satisfied. This problem is generally

solved by choosing some goals and discarding others either online or offline.

• Decision support module. It selects the variables to be observed by the Moni-

toring during the plan monitoring (info to monitor), and takes a decision of

repairing the current plan or re-planning from scratch when the Monitoring

detects a plan failure. The decision between repairing or replanning is done

through the application of an anytime plan-adaptation approach [45], which

uses a regressed goal-state heuristic. A regressed goal state is a tuple of the

form G = 〈L, t〉 where L is the set of atoms, i.e. values of the state variables,

and t is the time of G, which usually coincides with the start time of one ac-

tion (sequential planning) or more than one action (parallel planning). The

heuristic estimates the best G according to parameters as the cost or stability

of the estimated plan. Then a new problem from the current state S to the

selected regressed goal state is generated and the planner is invoked. Note

that the first G is the one from which the whole original plan can be reused;
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the subsequent goal states represent reachable states from which to reuse ever

decreasing parts of the original plan; and the final G entails no reuse of the

plan at all.

The Decision Support is capable of deciding between replanning or repairing

in a timely fashion. It uses an algorithm with anytime capabilities whereby a

first solution plan is rapidly returned, and the solution quality may improve

if the algorithm is allowed to run longer [45]. The heuristic takes a balanced

response between metric (cost or makespan) and plan stability (part of the

original plan that can be reused in the new solution plan) [40]. Plan stability

is one of the principal reasons for claiming the preference of plan repair over

the alternative of replanning. The heuristic estimates an approximate plan

Πreplan (a plan from S to the last regressed partial state Gn discarding the

whole original plan), and a plan Πrepair (a plan from S to the G1 keeping the

whole original plan). If cost(Πreplan) < cost(Πrepair) or stability(Πreplan) >

stability(Πrepair) then replanning is chosen as the preferred option. Otherwise,

the algorithm analyzes the cost and stability of the subsequent regressed goal

states (G2,. . . , Gn−1) and maintains the best regressed goal state computed

so far until time expires. Once a goal state Gi is selected, the Deliberative

Planner is invoked with the initial state S and goal state Gi. The returned

plan is concatenated with the plan tail of the original plan taking into account

the causal links and time constraints.

On the other hand, the Decision Support Module computes the info to mon-

itor through an extension of the goal regression method proposed in [44],

which is inspired by the mechanism used in triangle table defined in [36].

This mechanism is only used so far to monitor the correct plan execution.

The Decision Support also communicates the Monitoring with the Delibera-

tive planner module and retrieves training instances from the execution and

the plans to be sent to the Learning module.
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• Deliberative planner module. It receives a planning task and generates a plan.

This module is invoked when the Decision Support has to fix (repair/replan)

a plan. In this latter case, the state of the planning task will be the current

observed state. Several planners have been successfully used for this module:

LPG-TD [48], CRIKEY [23], TFD [33] and LAMA [90].

• Learning module. It infers knowledge from a training set sent by the Decision

Support module. The knowledge can be used either to modify the domain

planning model or to improve the planning process (heuristics). Apart from

the different levels of reasoning, PELEA may also learn from past executions

and reason about the current problem to improve its efficiency.

The components run as separate processes and communicate through sockets.

The inputs are defined by the PDDL domain language. The knowledge exchanged

among components follows the domain-independence principle with domain-independent

APIs (through XML). Here lies the generality of PELEA; one can exchange a com-

ponent and PELEA will continue working as it is, maintaining the XML APIs and

their semantics, which are the standard ones in planning: actions, goals, states and

plans.

2.1.2 Multi-agent frameworks

In this section, we highlight the most relevant planning and execution architectures

that were adapted or applied to a multi-agent context. The frameworks that we

present here are mostly related to general problem solving and are aimed at co-

ordinating activities of several agents in dynamic environments, with no particular

focus on planning and execution. However, we believe it is worth revising some of

the most outstanding architecture prototypes that somehow combine planning and

execution functionalities.

An agent is a physical or virtual entity that can act, perceive its environment

(in a partial way) and communicate with others, it is autonomous and has skills to
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achieve its goals. An agent is regarded as an entity that is constantly executing in

an context, interacting with other agents, and it is able to react to changes in the

environment by reasoning. A Multi-Agent System (MAS) comprises an environment,

objects and entities or agents (the agents being the only ones to act), relations

between all the entities, a set of operations that can be performed by the entities

and the changes of the universe in time and due to these actions [34]. A MAS is

thus defined as the environment shared by several agents that interact for solving

either a private or public task.

A MAS approach is adopted when the task is too complex to be solved as a

monolithic application or because none of the agents have a complete view of the

problem. This typically occurs when there exist specialized agents and/or the prob-

lem information is distributed. In either case, a development tool for MAS and

a common language for agents to interact and communicate with each other are

required when building a MAS.

In this section, we summarize the most relevant languages and platforms for the

construction of a MAS. A former survey on the programming languages and tools

for MAS can be found in [14].

2.1.2.1 Agent Communication Languages

Agents communicate with each other in order to exchange information. When com-

municating with other agents, an agent uses a specific Agent Communication Lan-

guage (ACL). Much work has been done in developing ACLs that are declarative,

syntactically simple and readable by people.

The Knowledge Query and Manipulation Language (KQML) is one proposed

standard of ACL for exchanging information and knowledge among software agents.

This proposal is part of the ARPA Knowledge Sharing Effort aimed at develop-

ing techniques and methodologies for building large-scale knowledge bases which
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are sharable and reusable [37]. KQML is both a message format and a message-

handling protocol to support run-time knowledge sharing among agents. KQML

provides an extensible set of performatives, which defines the permissible opera-

tions (speech acts) that agents perform on each other’s knowledge and goal stores.

Higher-level models of interagent interaction such as contract nets and negotiation

are built using the performatives. Additionally, KQML provides a basic architecture

through a special class of agent called communication facilitator which coordinates

the interactions of other agents to support knowledge sharing.

The Coordination Language (CooL) [11] is another ACL proposal which relies

on speech act theory-based communication for describing a coordination protocol

based on a multi-agent plan. CooL integrates the agents dialog in a structured

conversation framework that captures the coordination mechanisms that agents are

using when working together. Other languages like AgentTalk introduce an inher-

itance mechanism into the protocol description to incrementally define new pro-

tocols based on existing ones and implement customized protocols to suit various

application domains [63].

The aforementioned ACLs were later superseded by the FIPA-ACL proposal [85,

1], supported by the Foundation for Intelligent Physical Agents (FIPA). FIPA-ACL is

likely to be the most widely used ACL and has become de facto a standard ACL in

MAS.

In summary, ACLs provide the necessary functionalities for defining communi-

cation protocols in MAS and for agents to exchange information, thus enhancing

relevant aspects such as agent collaboration. The agent-to-agent language commu-

nication is key to realizing the potential of the agent paradigm, just as the human

language was key to the development of human intelligence and societies.
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2.1.2.2 Platforms for building Multi-Agent Systems

Here we present some of the most recent and significant multi-agent platforms for

building a MAS, highlighting the communication capacities of the platforms.

AgentScape [3] is a middleware layer that supports large-scale agent systems.

It is a natural extension of logic programming for the BDI [98] agent architecture,

and provides an elegant abstract framework for programming BDI agents. The ratio-

nale behind the design decisions are (i) to provide a platform for large-scale agent

systems, (ii) support multiple code bases and operating systems, and (iii) inter-

operability with other agent platforms. The AgentScape model also defines services

which provide information or activities on behalf of agents or the AgentScape mid-

dleware. AgentScape is adaptive and reconfigurable and it can be tailored to a

specific application (class) or operating system/hardware platform.

JADE (Java Agent Development Environment) [5] is a framework to easily de-

velop intelligent multi-agent system applications in agreement with the FIPA speci-

fications. JADE is an Open Source project which purpose is to simplify development

of agents while ensuring standard compliance through a comprehensive set of sys-

tem services and agents. The JADE system can be split into several hosts where

each host executes only one Java Virtual Machine and implements an agent as one

Java thread. Parallel tasks can be executed by one agent and are scheduled by JADE

in a cooperative way. We can describe the JADE system from two different points of

view: (i) JADE helps application agents to exploit some feature covered by the FIPA

standard specification, like message passing or agent life cycle management and (ii)

JADE is a Java framework that helps programmers to develop agent applications

with the FIPA standard through object oriented abstractions.

EVE is a web-based agent platform [4] that is open and dynamic, i.e. agents can

live and act from anywhere – in the cloud, on smartphones, robots and others.

The agents communicate with each other using existing protocols (JSON-RPC) over
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existing transport layers (HTTP, XMPP), offering a simple platform solution. EVE

defines an agent as a software entity that represents existing, external, sometimes

abstract, entities such as human beings, physical objects, abstract goals. The agent

runs independently of the entity it represents. This autonomous behavior requires

a set of capabilities which are: (i) time independence, (ii) the possibility to keep

in memory a model of the state of the world and (iii) a common language to com-

municate between agents. The time independence capability provides requests at

scheduled times, thus instantiating the agent at any given time. The reason for giv-

ing a separate memory capability to the agents is that, in most implementations,

EVE agents have a request based lifecycle. The agent is instantiated to handle a

single incoming request and is destroyed again as soon as the request has been han-

dled. Only the externally stored state is kept between requests. The agent identity

is formed by the address of its state, not by an in-memory, running instance of some

class.

JASON [6] is an interpreter for an extended version of AgentSpeak [87]. It imple-

ments the operational semantics of that language, and provides a platform for the

development of multi-agent systems, with many user-customisable features. JASON

is available Open Source, and is distributed under GNU-LGPL. The performatives

that are currently available for agent communication in JASON are largely inspired

by KQML. Some of the features available in JASON are (i) communication between

agents based on speech-act, (ii) plan annotations that can be used to elaborate

decision selection functions, (iii) fully Java customisable selection functions, trust

functions, and overall agent architecture (perception, belief-revision, inter-agent

communication, and acting), (iv) clear notion of multi-agent environments (this

can be a simulation of a real environment) and other features.
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MAGENTIX2 [107] is an agent platform for open Multiagent Systems which main

objective is to develop technologies to cope with the (high) dynamism of the sys-

tem topology and with flexible interactions, which are both natural consequences of

the distributed and autonomous nature of the components. In this sense, the plat-

form supports flexible interaction protocols and conversations among agent organi-

zations. It provides support at three levels: (i) Organization level, technologies and

techniques related to agent societies; (ii) Interaction level, technologies and tech-

niques related to communications between agents; and (iii) Agent level, technolo-

gies and techniques related to individual agents (such as reasoning and learning).

In order to offer these support levels, MAGENTIX2 is formed by different building

blocks, and provides technologies to the development and execution of MAS. Ma-

gentix2 uses the Apache Qpid implementation of AMQP as a foundation for agent

communication. This industry-grade open standard is designed to support reliable,

high-performance messaging over the Internet. It facilitates the inter-operability be-

tween heterogeneous entities. MAGENTIX2 allows heterogeneous agents to interact

to each other via FIPA-ACL messages, which are exchanged over the AMQP stan-

dard. Thus, MAGENTIX2 agents use Qpid client APIs to connect to the Qpid broker

and to communicate with other agents at any Internet location. MAGENTIX2 incor-

porates conversational agents, which is a class of agents called CAgents. CAgents

allow the automatic creation of simultaneous conversations based on interaction

protocols. It also provides native support for executing JASON agents. Moreover,

JASON agents can benefit from the reliable communication and tracing facilities

provided by MAGENTIX2.

2.1.2.3 Architectures for Multi-Agent Systems

Our interest lies in systems that integrate planning and execution in a multi-agent

context and, specifically, on distributed cooperative systems [97]. Hence, in this

section, we present the most relevant multi-agent architectures related not only to
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planning and execution but to agent problem-solving in general.

Generalized Partial Global Planning [29] and its hierarchical task network rep-

resentation TÆMS [28, 65] (GPGP/TÆMS) was developed as a domain-independent

framework for on-line coordination of the real-time activities of small teams that

cooperate to achieve a set of high-level goals. GPGP/TÆMS is primarily con-

cerned with scheduling activities (coordination) rather than the dynamic specifi-

cation and planning of evolving activities or the accomplishment of a common goal.

In GPGP/TÆMS, each agent has a partial global plan and their local view of the ac-

tivities they intend to pursue. In order to build and refine each partial global plan,

agents communicate their local plans to the rest of agents. Coordination is achieved

in terms of coordinating a distributed search of a dynamically evolving goal tree.

The focus of GPGP is on the distributed resolution of temporal and resource

interaction between distributed tasks. TÆMS is an abstract model of the agent

problem-solving activities that allows to abstract the internal representation of the

domain problem solver into a TÆMS task structure for use by GPGP. GPGP/TÆMS

deals with high-level coordination issues (scheduling and task selection) involving

decisions for each agent about what subtasks of which high-level goals it will ex-

ecute, the level of resources it will expend in their execution, and when they will

be executed. GPGP/TÆMS is thus most appropriate for soft real-time applications

operating in dynamic and resource-bounded environments where there are complex

interdependencies among activities occurring at different agents.

The type of high-level coordination of GPGP/TÆMS is very different from the

type of low-level, local and fine-grained coordination that commonly occurs when

a protocol is created among agents to synchronize their activities. In frameworks

such as CooL [11] and AgentTalk [63] the emphasis is on the flow of messages and

how the dialog between agents is structured. Such frameworks generally combine

finite state machines with enhancements, e.g. exceptions, to support a flexible and

explicit specification of a communication process. In contrast, in GPGP/TÆMS the
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focus is on a domain-independent and quantitative evaluation of the interactions

among tasks and the dynamic formation of temporal constraints to resolve and to

exploit these interactions.

GPGP coordination is about exchanging the necessary information for a group

of agents to analyze their activities so as to reformulate their local problem solving

based on an understanding of the relevant activities of other agents; the purpose

of this reformulation is to produce with fewer resources higher-quality solutions

from the perspective of the group’s problem-solving goals. While GPGPcontains

protocols that define the exchange of messages and the flow of the conversation,

the emphasis is not on the machinery for specifying the protocols but on the content

and timeliness of the information that must be exchanged in order to create group

performance that approximates what would be obtained if control of agent activities

was centralized and done in an optimal manner. Particularly, it was a pioneer in the

investigation of task/goal scheduling, resource allocation and timing constraint in

MAS.

The REsuable Task Structure-based Intelligent Network Agents (RETSINA) [108]

is a multi-agent infrastructure which consists of an open society of three differ-

ent reusable agent types (interface agents, task agents and resource agents) that

can be adapted to address a variety of domain-specific problems. The agents self-

organize and cooperate in response to task requirements. The interface agents in-

teract with the user, receive user input and display results; the task agents help

users perform tasks by formulating problem-solving plans and carrying out these

plans through querying and exchanging information with other software agents;

and the resource agents provide intelligent access to a heterogeneous collection of

information sources. Each agent draws upon a complex reasoning architecture that

provides three crucial characteristics of the overall framework: (i) a multi-agent

system where agents asynchronously collaborate with each other and their users,
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(ii) agents actively seek out information and (iii) the information gathering is seam-

lessly integrated with problem solving and decision support. The RETSINA frame-

work is implemented in Java and is being used to develop distributed collections of

intelligent software agents that cooperate asynchronously to perform goal-directed

information retrieval and information integration in support of a variety of decision-

making tasks.

Intelligent Distributed Execution Architecture (IDEA) [76] is a multi-agent plat-

form used by some NASA’s space vehicles that provides agents with a unified rep-

resentational and computational framework for planning and execution. The main

components of IDEA are:

• Tokens and procedures: a token is the fundamental unit of execution. It

is a time interval during which the agent executes a procedure, which can

be executed when it receives all the input arguments. The time when the

procedure starts is the token start time. At any time during the execution, the

procedure can return the results to the output arguments. The execution of a

procedure is terminated when a status value is returned or the agent interrupts

the token’s execution.

• Virtual machine: contains four main components which provide the basis for

the agents autonomous behavior: the domain model, the plan database, the

plan runner, and the reactive planner. The domain model describes which pro-

cedures can be exchanged with other agents, which procedure arguments are

expected to be determined before a goal is sent to another agent (input ar-

guments) and on which arguments the agent is expecting execution feedback

from some other agent executing the token (output and status arguments).

The Plan Database describes portions of old plans, the tokens currently in

execution, and the currently known future tokens, including all the possible
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ways in which they can execute. The Plan Runner is the core execution com-

ponent of the agent. It is activated asynchronously when either a message

has been received from another agent or an internal timer has gone off. The

Reactive Planner is in charge of returning a plan that is locally executable.

It must guarantee the consistency of token parameters in terms of the plan’s

constraints and support for the token according to the domain model.

• Communication wrapper: defines a simple communication protocol between

separate IDEA agents; an underlying inter-process communication mecha-

nism. It is in charge of sending messages that initiate the execution of pro-

cedures or receive goals that are treated by the agent as tokens.

Coupled Layered Architecture for Robotic Autonomy (CLARAty) [79] is a frame-

work for generic and reusable robotic components that can be adapted to different

robots. It has two layers, the functional layer and the decision layer. The first layer

defines the abstractions of the system and adapts the abstract components to real

or simulated devices, providing the algorithms with low- and mid-level autonomy.

It uses object-oriented system decomposition and employs a number of known de-

sign patterns to achieve reusable and extendible components. The Decision Layer

is in charge of reasoning about global resources and mission constraints, proving to

the systems with high-level autonomy. It reasons globally about the intended goals,

system resources, and the state of the system and its environment. This layer plans,

schedules and executes activity plans. It also monitors the execution, modifying the

sequence of activities dynamically when necessary. The two layers interacts using

a client-server model. The decision layer requests the functional layer about the

availability of system resources in order to predict the resource usage of a given

operation.
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Planning and Execution Framework (PlanInteraction) 1 is a multi-agent plan-

ning and execution architecture where agents autonomously perform science tar-

gets, execute a set of tasks in a simulated or real-world, monitor the plan execu-

tion attending to potential discrepancies, and take decisions for repairing or re-

planning in case of a plan failure. PlanInteraction is implemented by integrating

PELEA [52] agents in an open MAP platform called MAGENTIX2 [106]. An agent in

PlanInteraction can be defined with all the same functionalities of a PELEA agent or

only some of them. Particularly, in this work, we will distinguish between two types

of agents, planning agents and execution agents (see Figure 2.2). A planning agent

is in charge of calculating plans for solving a planning task. An execution agent

comprises all the machinery necessary for monitoring the execution of a plan and

providing a reactive response to a plan failure (this is a new module that we intro-

duce in Chapter 3). Figure 2.2 shows the particular configuration of PlanInteraction

that we use in this Ph.D. dissertation. As we can see, the architecture consists of

three main modules:

simulation

Environment
Real World

control

agents

execution agents

EX

MO

RP

...

planning agents

DP

...

Figure 2.2: Multi-Agent PlanInteraction Architecture. EX: execution; MO: monitor-
ing; RP: reactive planner; DP: deliberative planner.

• Control: is responsible for registering agents in the system, initializing the

internal clock, and controlling the conditions for the system termination. The
1http://planinteraction.cguz.org/

28



2.1 Planning and execution architectures

internal clock manages the time of all agents in the system.

• Simulation: represents the simulated state of the world. It works in the sys-

tem as a simulator agent that provides agents access to the information in the

simulated environment and modifies it through the execution of the actions in

their plans.

• Agents: comprises the set of agents of the problem. An agent in PlanInteraction

represents any combination of the PELEA modules. The composition of mod-

ules in each agent depends on the problem specification and agent’s capabili-

ties.

Hence, the three modules Execution (EX), Monitoring (MO), and Reactive Plan-

ner (RP) are embedded in a single PELEA-like execution agent with capabili-

ties for tracking plan execution and plan monitoring. We can also opt for creat-

ing planning agents that only comprise the Deliberative Planner (DP) module,

thus providing agents with capabilities for planning and repairing plans (this

is the configuration shown in Figure. 2.2).

In some applications, we might even want to have several different Execution

modules but a single Monitoring; for example, a robotics application where

one monitor controls the operations of several robots moving in a shared

space.

In PlanInteraction, we distinguish three different coordination levels:

1. Planning-Planning Coordination between planning agents when they have to

generate jointly a solution plan for a particular task. This happens when the

planning task is defined by multiple entities (agents) which are distributed

functionally or spatially, and capabilities are distributed across the agents do-

mains. The emphasis of this coordination is on the design of a consistent, joint

solution plan among several planning agents before execution.
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2. Execution-Execution Coordination focuses on the coordination between execu-

tion agents when they attempt to solve a plan failure at execution time. Typ-

ically, a plan failure occurs when planning coordination has not been applied

and execution agents attempt to execute their plans in a common environ-

ment, when the environment changes unexpectedly, or when the execution

of an action does not report the expected results. When this happens, agents

attempt to communicate between them to handle the plan failure.

3. Execution-Planning Coordination takes place when execution agents are not

capable of reaching a solution during the execution-execution coordination,

and so they have to resort to their planning agents to find a new plan that

solves the task.

In this PhD dissertation, we will work on coordination levels 2 [55, 53] and 3.

The coordination level 1 is not necessary because each planning agent computes its

individual plan without coordinating with others. More specifically, the emphasis of

this work is on the coordination level 2.

2.2 Approaches to planning and execution

Classical planning techniques are applicable in deterministic and static environ-

ments. Planning in a deterministic environment assumes that the execution of an

action always leads the system to a single other state that reflects the correct ex-

ecution of the action. In addition, if the environment is static, the planner is not

concerned with any exogenous event; that is, the only events or modifications that

can happen in the world are due to the effects of the actions.

Non-deterministic and dynamic environments, in contrast, assume the occur-

rence of exogenous events and the possibly wrong execution of the actions. In

non-deterministic environments where actions can have uncertain outcomes, it may

be useful to model in the plan the fact that a machine component may fail and to
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plan the recovery mechanism to address the failure. This usually requires to model

the domain as an stochastic system defining the probability distribution on each

state transition (probability for each state and action over next states). Markov De-

cision Processes [70] (MDPs) are a widely popular approach to address planning

in non-deterministic environments. MDPs can deal with settings where action out-

comes are uncertain, they are used to model sequential decision-making scenarios

with probabilistic dynamics and they can even be extended to deal with partially

observable worlds. MDPs calculate policies that specify the optimal actions for each

agent for any possible belief state or partially observable state. In general, formal

models for planning under uncertainty are inspired on the use of MDPs and they

differentiate in the implicit or explicit communication actions of the agents and in

the representation of agent beliefs [100].

However, in some scenarios accurate probabilities of the actions outcomes are

not available or the abnormal cases of behaviour can be dealt with at the controller

level. When it is not possible to have a model of the uncertainty in the world, MDPs

are not applicable. Likewise, a Finite State Machine (FSM) can also be used to

model a plan that may result in many different execution paths. A FSM usually re-

quires an explicit modeling of a finite set of plans (states and transitions), although

some approaches address this limitation with a method for deriving finite-state con-

trollers automatically from models [13], and it is particularly aimed at choosing the

next immediate action.

Such as we mentioned in our architecture PlanInteraction of Section 2.1.2.3, the

MAP scenarios we focus on this work picture a set of independent execution and

planning agents. Each execution agent is associated to a planning agent (delibera-

tive planner). Hence, execution agents receive the plans that solve their tasks from

the planning agents, and execute the plans in an unpredictable and shared environ-

ment. Unexpected events and faulty actions may prevent an execution agent from

executing its plan. In such a case, the execution agent resorts to its reactive plan
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repair so as to resume the plan execution as soon as possible (single-agent plan re-

pair) or otherwise the agent can resort to a collective repair process (multi-agent

plan repair). The principal characteristics of our planning scenario are:

• the plans of the execution agents are computed by their associated planning

agents; execution agents seek to execute their plans and achieve the goals of

their tasks

• failures that happen during the plan execution are attended at the controller

level; agents aim to quickly fix the plan failure and resume the execution

• unexpected events and faulty actions may happen frequently; execution agents

adopt a repair mechanism that allows for short-term reactivity but also pre-

serving the achievement of the goals

With these ingredients in mind, we focus on approaches of planning and exe-

cution and, more particularly, in plan repair for short-term reactivity. Whilst there

is a large body of research on automated planning for both single-agent and multi-

agent contexts, most of the techniques put the emphasis in the construction of a

single (joint) plan to solve a task (using centralized approaches). We, however, are

interested in techniques for calculating promptly recovery plans that adapt the plan

under execution to the new context after a failure.

In this section, we revise the principal literature related to the aforementioned

topics and present the main approaches to planning and execution. We particularly

distinguish the techniques that are typically applied within the planning system

(Section 2.2.1) and the ones that are intended to be used at the executive con-

trol (Section 2.2.2). Hence, the first group of techniques have a more deliberative

flavour whereas the second group provide a more reactive nature.

All of the approaches presented in this section are particularly oriented to single-

agent scenarios. In Section 2.2.3, we will extend this analysis to multi-agent con-

texts, including a brief discussion on the advantages and limitations of adapting the
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single-agent approaches to a multi-agent context.

2.2.1 Deliberative plan repair and replanning

This section details the deliberative classical planning techniques that have mostly

influenced this Ph.D. thesis.

When a plan cannot execute due to a variation in the environment or an un-

expected event, two general mechanisms exist for adapting the plan to the new

circumstances, plan repair or replanning. While the former puts the focus on re-

pairing only the affected part of the plan while retaining as much as possible of the

unchanged parts of the plan, replanning triggers a new planning problem with the

current situation of the environment as the new initial state and generates a new

plan from scratch.

Many algorithms exist for repairing or adapting the current plan [40, 35, 45].

Sometimes plan repair and replanning are commonly used as a basic planning and

execution strategy to deal with dynamic domains, working as follows: the agent

receives a plan that achieves the goal under some constraints based on the available

(often incomplete) information. Then, the agent executes the actions of the plan

as long as the plan remains valid. Otherwise, the agent interrupts the execution

and attempts to repair the plan or resorts to replanning. Once the plan is fixed or a

new plan is computed, it is sent to the agent and the execution keeps on until goal

completion. The main drawback is that this solution is unaffordable for systems that

require to react quickly in unpredictable environments. In [69], they employ this

basic planning and execution strategy. Specifically, they have an stationary robot

that waits for a plan. A global planner uses an A∗ algorithm that plans directly in a

two-dimensional cost map and does not consider the movements of the robot [62].

The fact that it does not consider the dynamics of the robot guarantees that the

global planner returns a plan quickly. Nevertheless, the planner is optimistic in the

plans that it creates.

33



2.2 Approaches to planning and execution

Other planning approaches deal with dynamic domains, but they do not offer

quick responses at runtime execution. Contingent planning [84] generates plans

where some branches are conditionally executed depending on the information ob-

tained during the execution. Another approach is conformant planning [58], which

allows to deal with uncertainty on the initial conditions and the action effects with-

out monitoring the plan execution. However, these approaches cannot consider

all possible contingencies and the computation time is often prohibitive. In order

to avoid the computational effort of considering all possible unexpected situations

during planning time, the continual online planning approaches tackle these situa-

tions only when they appear; thus, when pre-computed behaviors are not available,

an additional recovery mechanism has to react quickly to unexpected events.

Gerevini presented in the context of the plan repair the planner LPG-Adapt [49,

50]. The aim of LPG-Adapt is to modify the original plan by adapting it within

limited temporal windows. Each window is associated with a particular subproblem

that contains some heuristic goals facilitating the plan adaptation. A small temporal

window refers to plan repair, and when the length of the temporal window becomes

the length of the whole plan of actions it degenerates into a replanning strategy. In

this latter case, the approach performs worse than replanning from scratch due to

the overhead for building smaller replanning windows (subproblems).

LPG-Adapt represents the current plan through a Graphplan structure [12]. Hence,

instead of searching for a new solution when a failure occurs (as it is usually done

in classical planning), the structure is exploited for reasoning on (and reusing) the

current plan. One of the weaknesses of the approach lies in the construction of

the Graphplan because it requires a (potentially expensive) phase for grounding the

actions at hand, which causes a non-negligible blow-up of the Graphplan structure.

However, the proposed solution represents an efficient approach for a plan compu-

tation.
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In the context of replanning, any deliberative planner could be used. Some valu-

able ideas from deliberative planning can be gathered and adapted to reactive sys-

tems. This is the case of the planner heuristic-based Fast Downward (FD) [57] plan-

ner, which uses a multi-valued representation for the planning tasks instead of the

more common propositional representation. FD makes use of SAS+ like [9] state

variables to model the facts that conform states. For each state variable, FD infers

its associated Domain Transition Graph (DTG), a structure that reflects the evolu-

tion of the value of a variable according to the actions of the task. The information

of the DTGs is compiled into the Causal Graph, which displays the dependencies

between the different state variables. FD applies a best-first multi-heuristic search

which alternates in an orthogonal way the heuristics of FF [59] and its CG [57], a

heuristic estimator calculated utilizing the Causal Graph. A SAS+ representation is

a compact a more efficient way of representing states and as such it can be helpful

in reactive systems.

2.2.2 Reactive planning and execution

Reactive planning and execution is related with dynamic and unpredictable envi-

ronments where failures occur frequently and the execution agent needs to react

quickly. In the following of this section, we focus on reviewing some techniques

that are intended to be used at the executive control.

2.2.2.1 SimPlanner

Sapena and Onaindia [82, 95] developed an integrated tool called SimPlanner for

planning and execution monitoring in a dynamic environment. SimPlanner allows

interleaving planning and execution. The user monitors the execution of a plan,

interrupts the monitoring process to introduce new information from the world and

activates the plan repair process to get it adapted to the new situation. The objective

of SimPlanner is to avoid generating a complete plan each time a failure occurs by
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retaining as much of the original plan as possible.

The plan repair technique used in SimPlanner is based on reachable states and

the construction of a relaxed graph [59] that builds an approximate plan. Specifi-

cally, SimPlanner uses an heuristic function based on a relaxed graph to find an op-

timal reachable state that is used as a subgoal and then builds a plan from the new

situation to the reachable state. Finally, this plan is concatenated with the rest of

the old plan from the optimal reachable state. The repairing module of SimPlanner

returns a recovery plan that is always optimal or close to the optimal solution.

An extension of SimPlanner was later proposed in [96], where given a state and

a deadline, the planner searches for an action executable in that state, which can

successfully lead to a goal state. The process is repeated, starting from the resulting

state, until the execution of an action reaches the goal state. The scheme is flexible

and can be carried out in an interleaved way along with the execution turning it

into a mix of reactive (it can execute the action during the planning process) and

deliberative (it employs heuristic functions to obtain a complete plan) planner. As a

drawback, SimPlanner does not offer any guarantee that the first initial solution will

be executable, which is a key factor in reactive planning.

2.2.2.2 Task Control Architecture

The Task Control Architecture (TCA) [101] was introduced in Section 2.1.1.1. Here

we focus on the execution control of the architecture.

TCA uses an exception handling mechanism to detect and repair plan failures.

When an exception is triggered, TCA searches up in a task tree, starting from the

node where the exception happened, to find a handler for that exception. The task

tree is not created dynamically and is often domain and context-dependent; i.e., the

same exception may need to be handled differently, depending on the environment

and where the exception occurs. The idea of a pre-calculated search space as a task

tree is interesting and also efficient in systems that require a quick fix at runtime
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when a plan failure arises. Creating the search space dynamically and irrespective

of the domain context is also attractive for planning and execution systems but,

obviously, the process to generate the search space should be time-bounded.

2.2.2.3 Intelligent Distributed Execution Architecture (IDEA)

The multi-agent framework IDEA [38], explained in Section 2.1.2.3, implements the

executive control of an agent with a reactive planner and all agents use the same

reactive planner as their base. The reactive planner is a search process guided by

a simple heuristic-based chronological backtracking engine. As in [49, 50], IDEA

controls the speed of the reactive planner throughout the length of the horizon

(temporal windows in Gerevini) over which the reactive planner is requested to

repair a plan. When the horizon becomes shorter, the size of the reactive planning

problem becomes smaller and so the size of the planning search space to generate.

In other words, the smaller the planning horizon is, the more reactive the executive

control of the agent of IDEA becomes. The horizon reductions in IDEA do not offer

any guarantee to achieve a correct plan execution; that is, building a plan with a

small plan horizon (e.g., one action) can affect future horizons and the achievement

of future goals. The reason is that the reactive planner of IDEA has only visibility on

subgoals and tokens that occur during one planning horizon. Nevertheless, focusing

only on one portion of the plan is an appropriate way of addressing failures in

reactive planning and execution systems.

2.2.3 Multi-agent planning and execution

In general, there are not many approaches in the literature that address the topic of

multi-agent planning and execution. Most of MAP systems tackle the issue of agent

interaction at a planning level, or deal with execution agents but reactive techniques

are implemented at a single-agent level.

Recently, there has been a growing interest in the design of MAP systems [27],
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also boosted by the celebration of the first competition of Distributed and Multiagent

Planners (CoDMAP2). CoDMAP is not concerned with agent execution but only with

the design of techniques and algorithms for multi-agent planning. In CoDMAP, plan-

ners participated in one of the two tracks of the competition, the centralized track

or the distributed track. Most planners that participated in the distributed CoDMAP

track implemented a multi-threaded or distributed search by using TCP/IP protocols

for agents communication [105, 109]. The only planner that used of a middleware

multi-agent platform for providing agents the required communication services is

Forward Multi-Agent Planning (FMAP) [110]. Particularly, FMAP builds upon Ma-

gentix2 [107], a multi-agent platform which was explained when the PlanInteraction

architecture was introduced in Section 2.1.2.3.

In the following, we will put the focus on MAP systems that involve both plan-

ning and execution, specifically highlighting the distribution of the planning infor-

mation across agents, the development of efficient distributed planning algorithms

and the aspects related to agent communication either during planning or execu-

tion.

2.2.3.1 Micalizio and Torasso

Micalizio and Torasso [73] present an approach to team cooperation for plan re-

covery in multi-agent systems. At planning time (before execution), agents are

organized in teams that cannot change during the plan execution. A completely

instantiated multi-agent plan is calculated by a human by exploiting a central plan-

ning tool. Then, a dispatcher module splits the information of the multi-agent plan

in as many sub-plans as available agents. Each team of agents is responsible of

executing some actions of the multi-agent plan to achieve a specific portion of the

global goal. Hence, at each time instant multiple actions are executed concurrently,

and each agent monitors the progress of the sub-plan it is responsible for.

2http://agents.fel.cvut.cz/codmap/
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In case the monitor detects a failure in an action, the agent repairs (if possi-

ble) its own subplan by means of a deliberative replanning mechanism. When this

mechanism is unable to find a recovery plan for the subplan, a team level recov-

ery strategy is invoked. The team strategy is based on the cooperation of agents

within the same team. Specifically, the agent in trouble (requesting agent) asks only

one agent (cooperating agent) to cooperate for recovering from a particular action

failure. The cooperating agent is properly selected by means of the services infor-

mation. In this approach, the service information is one of the effects of an action

which results to be a precondition for other action(s). The services information are

manually shared during the planning time. Another feature of this approach is that

all the agents shared the same knowledge of the environment.

This team recovery approach involves only two agents of the same team, who

have previously shared their information. As a whole, the architecture and con-

trol flow of the approach in [73] works similarly to our PlanInteraction architecture.

However, our interest lies more in the development of an autonomous distributed

system where agents can generate their own initial plan rather than using a delib-

erative central planner. Also, in our approach agents can request collaboration to

any other agent available in the system rather than restricting to only one agent of

a fixed team.

2.2.3.2 Jonge’s approach

Jonge, Roos and van den Herik [24, 25, 26] present a protocol for plan repair in

multi-agent plan execution. Their approach relies upon two general types of plan

diagnosis: one primary plan diagnosis for identifying the incorrect or failed execu-

tion of actions, and a secondary plan diagnosis for identifying the underlying causes

of the faulty actions. The plan-execution health repair is achieved by adjusting the

execution of the agents’ tasks instead of replanning the tasks. In order to tackle this,

the plan diagnosis mechanism provides the information necessary for adjusting the
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plan, determines the agents that must be repaired so as to avoid further failures and

identifies the agents responsible for plan-execution failures.

In Jonge’s approach, adjusting the tasks plan is associated to plan repair through

replanning [93, 112] and to the TÆMS task descriptions [86] for handling uncer-

tainty in plan execution. Moreover, the protocol is conceived as a part of a dis-

tributed continual planning system [86], interleaving planning and execution by

multiple agents. Jonge’s approach assumes that agents have knowledge not only

about their plans but also about the other agents’ plans and applies the repair tech-

nique applies repair within the margins of the current plans.

Specifically, the repair technique is formulated as a constraint satisfaction prob-

lem that follows a 3-stage multi-agent protocol:

1. Local solving. The agents attempt to solve the violated constraints locally

with the condition that variables’ values of agents that are not involved in

a constraint violation are locked, avoiding new conflicts with local recovery

solutions. Any change in variable domains’ values is updated.

2. Communicate new domain. For each constraint in which the agent is in-

volved and for which the related variables have an altered domain, each agent

communicates the new domain to the other agents involved in the constraint.

Subsequently, the agents adjust the local constraints representing the influ-

ences of the plan-constraints. They repeat the two steps until the domains do

not change anymore.

3. Deliberative multi-agent search. Agents agree on the order in which the

agents will search for a value assignment of a variable. The first agent in

the order assigns a value to its variable and communicate it to the agents

involved in the conflicting constraints. Subsequently, these agents adjust their

knowledge and decide the value assignment is valid. If successful, the second

agent in the order searches for a value assignment, and so on. However, if

the value assignment is not accepted, the search process backtracks, and the
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previous agent has to find a new assignment. Eventually, a solution for the

constraint satisfaction problem may be found and subsequently a plan health

repair can be established.

In summary, the planning and execution model of this approach introduces a

novel n-agent process for plan recovery, which is more deliberative than reactive.

Reactiveness comes down to inserting only a small number actions to repair the

plan. However, no results are presented in the papers and so we can regard this

approach more like a proof of concept.

2.2.3.3 Wooldrige and Nicholas’s approach

Wooldridge and Nicholas [115] present a model of cooperative problem solving

(CPS) where some agents recognize the potential for cooperation with respect to

one of their goals through team action. In this approach, agents communicate the

information about their plans at execution time.

The CPS model characterizes the mental states of the agents that lead them to

solicit, and take part in, joint actions. Overall, the process follows the next four

steps:

1. Recognition. The CPS process begins when some agent recognizes the po-

tential for cooperative action. This recognition may come about because an

agent has a goal that it cannot achieve, or the agent has a common goal that

requires a cooperative solution.

2. Team formation. During this stage, the agent that recognized the potential

for cooperative action at the previous step solicits assistance. If this stage is

successful, then it will end with a group of agents having some nominal com-

mitment to collective action. The authors do not present any formal planning

model.
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3. Plan formation. Agents agree to a joint plan, which they believe will achieve

the desired goal. The notation to form the plan is based on a branching-time

tree formed of states connected by arcs representing primitive actions. Paths

through the tree are sequences of actions with some conditions, which may

denote agents, groups of agents, sequences of actions, and other objects in the

environment.

4. Team action. Finally, the agents execute the newly agreed plan of joint action,

which maintain a close-knit relationship. This relationship is defined by a

convention, which every agent follows. In other words, in the plan execution,

each agent play out the roles it has negotiated.

The steps of the CPS process are similar to those used in implementation-oriented

models, like the Contract Net protocol [104]. The main feature of Wooldrige and

Nicholas’s approach is that the agents choose at runtime to work together to achieve

a common goal and they normally execute joint actions. Joint actions are actions

that require two executor agents, for instance, we might find a group of agents

working together to move a heavy object, build a house, or write a joint paper. De-

spite our focus is not on joint actions and voting mechanisms (we assume our agents

are altruistic), the rationale behind the CPS process and the Contract Net Protocol

may be helpful for our purposes, specifically the formation of a cooperative group

of agents for achieving a failed goal of an agent.

As a final remark, this approach identifies a set of critical points where the co-

operation can fail:

• Before forming the team: an agent that has recognized the potential for

cooperation may be unable to form a team.

• During the team formation: the agents may be unable to agree upon a plan

of action.
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• During team execution: cooperation may fail after a plan has been agreed

because of unforeseen circumstances or because one of the agents drops its

commitment to the endeavor.

However, authors do not present any recovery solution (repair or replanning)

when cooperation fails. In this Ph.D. dissertation, we advocate for the idea of offer-

ing recovery solutions for some of the points where the cooperation can fail.

2.2.3.4 GPGP/TAEMS

GPGP/TÆMS [28, 65] is a framework where agents have common knowledge and

use the same technique to achieve common goals, so the utility produced by one

agent has equal value to another agent. Agents in GPGP/TÆMS share the local

view of their plans or activities and a partial global view of the general plan for all

the agents. The partial global view may be incomplete. More specifically, the shared

TÆMS representation is used by the problem-solving, coordination and scheduling

components of the framework to communicate among themselves. The TÆMS rep-

resentation is an enriched representation of a goal tree that includes quantitative

information and temporal sequencing constraints plus more dynamic information

on the state of subgoal scheduling execution. The local view can be augmented by

static and dynamic information about the activities of other agents and the relation-

ship between these activities and those of the local agent; thus, the view evolves

from a local view to one that is more global.

In general, the idea of GPGP/TÆMS of having a local view and a global view is

not affordable in reactive planning and execution because it requires more memory

and time consumption of CPU. Representing the view of the plan with a tree struc-

ture can be very helpful. Normally, searching in a tree structure is faster than other

graph structures like, for instance, a finite state machine structure.

Regarding the recovery process, if a plan failure occurs, the agent uses its delib-

erative planner to recover from the failure. Whenever a solution is not possible with
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the deliberative planner, the agent activates its multi-repair mechanism where the

agent requests assistance from other agents. The other agents employ the local view

and partial global views to find a solution by calling a deliberative planner. A nego-

tiation between the agents is always required. The failing agent only communicates

with those agents having goals that are directly related to its goals.

As a conclusion, Table 2.1 summarizes the main essential features of the ap-

proaches more relevant to multi-agent reactive planning and execution that studied

in this Section.

Table 2.1: Summarize of the approaches more related to multi-agent reactive plan-
ning and execution.

Author Planning time Execution
(before executing)

goals
multi-agent

planning
multi-agent
repairing

approach
team

formation
knowledge

Micalizio [73,
74]

common yes yes deliberative
yes, before
executing

common

Jonge [24] individual yes yes deliberative yes semi

Wooldridge [115]
common yes yes deliberative no common

GPGP/-
TAEM [65]

common yes yes deliberative yes common

our approach
(MARPE)

individual no yes reactive yes individual

In general, the reviewed approaches presented the following features:

• Most of the approaches have common goals because they use a central planner

to generate the initial plan.

• A multi-agent planning technique generates the initial plans. The planning

technique in Jonge’s approach generates a plan for each agent considering the

preconditions that are relevant for the other agents’ plans. In the approaches

of Micalizio [73, 74] and Wooldridge [115], the multi planning technique is

implemented with a central planner agent that determines the best initial plan.
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Our approach, however, accounts for independent agents which have their

own autonomy but that, on the other hand, operate in the same environment.

• The multi-repair process in all the approaches is oriented to deliberative plan-

ning rather than reactive planning. Moreover, all the approaches employ de-

liberative techniques for single repair planning. Deliberative planning is not

affordable in dynamic and unpredictable environments where failures occur

frequently and the execution agent needs to react quickly (reactive planning).

This is the type of environments that motivated the research of this Ph.D.

dissertation.

• Most of the approaches use the concept of team during the plan execution.

• As for knowledge, in most approaches agents have the same common knowl-

edge, and thereby, the same capabilities. In our approach, we stick to the

concept of individual and independent agents that have different knowledge

of the environment and different capabilities. Besides, our purpose is to design

a reactive model that follows this type of agents.

With all this in mind, we define the type of problems that we want to solve in

this Ph.D. dissertation. We are interested in solving problems where:

• Agents have different knowledge and different capabilities.

• Each agent generates its own initial plan, which may conflict with the plan of

the other agents.

• Agents share their capabilities before plan execution.

• A plan failure may be provoked by exogenous events or conflicting plans.

• Each agent repairs its plan failure with a single-agent recovery process, when-

ever possible, that allows to resume its plan execution
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• The cooperative multi-repair process is activated during the plan execution if

the agent is not able to find a solution plan with its recovery process.

• Agents decide when, how and with whom to cooperate with at runtime.

2.3 Conclusions

In this chapter several different planning and execution control architectures have

been analyzed. For this analysis, we classified the architectures into single-agent

and multi-agents architectures. The revision aims to find the desirable features

for improving existing architectures. We have also included in the analysis two

architectures developed in our research group, PELEA, a single-agent planning and

execution architecture, and PlanInteraction, a multi-agent planning and execution

architecture as an extension of PELEA. The two developed architectures allow to

easily add new modules, such as our reactive planner module.

Moreover, some approaches to repair plans have been analyzed. We reviewed

single-agent techniques to recover from a plan failure which are typically applied

within planning systems, and techniques that are intended to be used in the execu-

tive control. The first group of techniques have a more deliberative flavor whereas

the second group provide a more reactive nature. We also extended this analysis to

multi-agent environments.

From the analysis of the multi-agent techniques, some important features have

been identified. Most of the techniques rely on a deliberative multi-recovery pro-

cess and so they are not able to deal with multi-agent reactive execution in planning

applications. Typically, these techniques are applied in contexts in which the knowl-

edge of the problem is common to all the agents and agents feature certain capabili-

ties to detect and repair failures. The conclusions derived from the analysis helps us

motivate and pose the requirements of a new multi-agent reactive planning and ex-

ecution model that incorporates unexplored features such as a multi-agent reactive
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recovery process that is activated during plan execution and allow agents to recover

from plan failures without affecting the plans of other executors of the environment.

In the following chapters, a general reactive planning and execution model that

keeps track of the plan execution of an agent and handles an automated failure

recovery is described. We also describe the multi-agent extension of this model that

enables the continuous and uninterruptedly flow of the agents when a failure arises.
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Chapter 3

Reactive Planning and Execution

Model

“The vast majority of people are unthinking prejudice machines.”

(Stefan Molyneux)

The focus of this chapter is on the development of a reactive planning and exe-

cution system capable of providing fast deliberative responses for repairing a failed

action. Unlike most reactive systems, our system does not simply return the im-

mediate next executable action [38], but it operates over a portion of the plan or

planning horizon. The system also computes at runtime a search space that permits

the agent to continuously repair failures during execution on any action within the

planning horizon.

In this chapter, we propose a general Reactive Planning and Execution (RPE)

model that keeps track of the plan execution of an agent and handles an automated

failure recovery. The RPE system incorporates a reactive planning module that is

exclusively used for plan repair, and it is independent of the deliberative planner

which is used to compute the agent’s initial plan. Unlike the integrated planning

and execution approaches mentioned in Chapters 1 and 2, we propose a highly
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modular and reconfigurable architecture.

This chapter is organized as follows: Section 3.1 describes the architecture in

which the RPE model is embedded. Next, we describe a planetary Mars scenario

which will be used as an illustrative and running example throughout this chapter.

Section 3.3 introduces the planning concepts that are necessary to define the RPE

model, which is explained in detail in Section 3.4. Section 3.4.3.1 explains the

process to estimate the time of the time-bounded deliberative process used by the

reactive planner. Finally, Section 3.5 concludes and outline some discussions.

3.1 Architecture of Planning and Execution

In this section, we present the single-agent architecture which our RPE model relies

upon. Single-agent architectures are aimed at solving problems which feature a

single entity with reasoning and acting capabilities. Specifically, we build on the

single-agent PELEA architecture detailed in Section 2.1.1.6 and we introduce some

modifications and extensions over the PELEA architecture [52].

One first modification is that we split a PELEA agent into a planning agent and

an execution agent as a functional classification, separating the planning capabili-

ties of the agent from its executive machinery. The planning agent integrates the

deliberative components of PELEA, i.e. the Decision Support module and the De-

liberative Planner; and the execution agent features the Execution and Monitoring

modules. In our RPE model, we integrate a Reactive Planner module that endows

the execution agent with fast responsiveness to recover from plan failures. Hence,

the components of an execution agent in our architecture are (see Figure 3.1):

• Execution module. This module offers the same functionalities of the Execution

module defined in a PELEA agent; that is, reading the current world state from

the environment through the sensors, communicating the current state to the

rest of modules as well as executing the actions of the plan.

49



3.1 Architecture of Planning and Execution

• Monitoring module. This module also keeps the same functionalities of the

Monitoring module defined in PELEA, except that the parameters to monitor

(info to monitor) are calculated now by the Monitoring instead of the Decision

Support module. Moreover, when the Monitoring determines the existence of

a plan failure, it informs first the Reactive Planner.

• Reactive Planner module. The Reactive Planner is the new component of our

architecture. It is a planner capable of calculating a fast and reactive response

when it receives notification from the Monitoring about a plan failure. The

Reactive Planner uses a pre-computed search space, called repairing structure,

to promptly find a plan that brings the current state to one from which the

plan execution can be resumed. This will be explained in detail in Section 3.4.

The Execution, Monitoring and Reactive Planner of an execution agent operate

the architecture of the RPE model. The control flow of the architecture is shown

in Figure 3.1. An action plan Π for solving a planning task is calculated by the

planning agent. Π consists of a series of actions to be executed at given time steps,

each of which makes a deterministic change to the current world state. For instance,

let’s assume the execution agent receives the plan Π of Figure 3.2 composed of five

actions [a1, a2, a3, a4, a5]. The agent executes the action a1 at time step t0, a2 at

time step t1, a3 at t2, and so on. The elapsed time from one time step to the next

one defines an execution cycle; i.e., the monitor/repair/execution cycle of an action

execution [46]. An execution cycle is usually interpreted as the minimum latency

interval starting at the current execution time. The model follows several execution

cycles, performing the scheduled action in each cycle until the plan execution is

completed. Initially, the Monitoring module of the execution agent receives the plan

Π from the planning agent. Before sending the first action a1 of Π to execution, the

Monitoring performs two operations:

1. It sends Π to the Reactive Planner, which creates, within a time limit, a repair-

ing structure for a portion of Π of length l called plan window. Thus, l is the
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Environment
real world

(Execution)

(Monitoring)

wait
(time)

plan monitoring

(Reactive Planner)

generate
repairing
structure

plan repair

Execution Agent

Planning Agent

Agent
Execution

Π

Π

Π failure

Π’

action state

acting sensing

plan Π failure

Figure 3.1: Components of the reactive planning and execution architecture and
flow of the information.

number of actions or execution cycles of the plan window. The plan window

defines the planning horizon the Reactive Planner is going to work with. For

example, let’s suppose the Reactive Planner creates a repairing structure for a

plan window of l = 3 ([a1, a2, a3]) for plan Π in Figure 3.2. This structure will

contain information, in the form of alternative plans, to repair a failure that

affects any of these three actions.

2. When the time limit of the Reactive Planner expires, and a repairing structure

t0 t1 t2 t3 t4 t5

a1 a2 a3 a4 a5

Figure 3.2: Example of a plan Π composed of 5 execution cycles
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has been calculated for a particular plan window, the Monitoring checks the

variables of the first action of the window; i.e., action a1 in Figure 3.2. If the

sensed values of a1’s variables match the required values for the action to be

executed, the Monitoring sends the scheduled action to the Execution module

for its execution. Otherwise, a failure is detected and the Monitoring calls

the Reactive Planner, which will make use of the repairing structure to fix the

failing action.

The Monitoring receives the result of the sensing task from the Execution after

the action has been executed, it updates the plan window accordingly by eliminating

the already executed action and proceeds with the next action of the plan window.

Thus, assuming a1 was successfully executed, the plan window will be updated

to [a2, a3], and the Monitoring proceeds with the next action a2, and so on. If a

failure is detected when monitoring a2 or a3, the Monitoring will call the Reactive

Planner, which will use the same repairing structure to calculate a plan that repairs

the failure. This new plan is then concatenated with the rest of actions of Π ([a4,

a5]).

The Reactive Planner is generating the repairing structure for the next plan win-

dow while the Execution is executing the actions in the previous plan window. Thus,

while the system is executing [a1, a2, a3], the Reactive Planner is simultaneously

calculating the repairing structure for [a4, a5]. This ensures there will always be a

repairing structure available to attend a failure in the current plan window. The

flow goes on as long as there is no more actions to execute.

In summary, the architecture of the RPE model implements the Execution and

Monitoring modules of the PELEA architecture inside the execution agent. In ad-

dition, we incorporate a Reactive Planner module that endows the agent with fast

responsiveness to recover from plan failures.
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3.2 Planetary Mars scenario

3.2 Planetary Mars scenario

This section introduces a scenario that we will use as an illustrative and running

example throughout this document to help explain various concepts. The example

describes a Mars domain scenario where a Rover has the mission to analyze some

science targets (rock or soil samples) located in different locations (waypoints) and

to communicate the results of the analysis to a Lander. The Lander is a robot with

a transmission device that allows to communicate faster the results to the Earth.

In other words, the Lander establishes a communication bridge between the Rover

and the Earth. In addition, the Rover can only communicate with the Lander if the

transmission device is located in the Rover and, likewise, it can only analyze science

targets if the instrument to analyze samples is operational.

w1

w2

w3r
s2

s1B

L

Figure 3.3: Initial state of the Mars domain single motivation scenario.

The illustrative example, depicted in Figure 3.3, describes the initial situation of

a particular problem of the Mars domain scenario with one rover B; three waypoints

w1, w2, and w3; one rock sample r; two soil samples, s1 and s2; and a Lander L

which sends the results to the Earth. The waypoint w2 is the initial location of L and

B. L remains always in w2. The rock sample r is located in w3; s1 and s2 are located
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3.3 Planning concepts

in w1 and w3, respectively. The mission of B (goal of the problem) is to analyze the

soil sample s1, communicate from w1 the results to L, and navigate to w2. The rover

B has different capabilities to achieve its mission: navigate from one waypoint to

another waypoint, analyze rock or soil samples, and communicate the results of the

analysis from the specific waypoint to the lander L. Finally, the rover has good maps

to travel between two waypoints.

3.3 Planning concepts

In this section, we formalize the planning concepts necessary to define a planning

task and the structures to store the components of a plan [78].

3.3.1 Planning task

Our planning formalism is based on a multi-valued state-variable representation

where each variable is assigned a value from a multiple value domain (finite domain

of a variable). We use the multi-value variable representation introduced in the

most recent version (3.1) of the Planning Domain Definition Language (PDDL) [41]1,

although we do not make use of the rest of features of PDDL3.1, namely, temporal

information, preferences or constraints.

The multi-value variable representation defines a finite set of variables V, each

associated to a finite domain, Dv, of mutually exclusive values. A variable v ∈ V

is composed of a set of objects that usually represents the property or attribute

of an object of the planning task. For instance, in our Mars scenario, we denote

the variable location of rover B as loc-B2, whose domain of possible values is the

set of waypoints where B can be placed; that is, Dloc-B = {w1, w2, w3}. Addition-

ally, we know that rover B may have maps to travel from w1 to w2. We define the

1PDDL syntax definition introduced in 2008 by M. Helmert (http://ipc.informatik.uni-
freiburg.de/PddlExtension/).

2In PDDL3.1, this variable is represented as (loc B). For sake of simplicity, we will represent a
variable as a compound element with two or more components joined by a hyphen; e.g., loc-B.

54



3.3 Planning concepts

boolean variable map to travel from w1 to w2 as link-w1-w2, whose value domain is

Dlink−w1−w2 = {true, false}.

A variable assignment or object fluent (or just fluent) is a function f on a vari-

able v such that f(v) ∈ Dv, wherever f(v) is defined; i.e. a fluent maps a variable

v (or tuple of objects) to a value d of its associated domain Dv. We represent a

fluent as a tuple 〈v, d〉, meaning that the variable v takes the value d. For exam-

ple, the fluent 〈loc-B,w2〉 indicates that rover B is in the waypoint w23, or the fluent

〈link-w1-w2,true〉 indicates that B has good maps to travel from w1 to w2.

A total variable assignment or state applies the function f to all variables in V.

A state is always interpreted as a complete world state. Appendix A.1.3 shows the

description of the state corresponding to the initial situation of our Mars example.

A partial variable assignment or partial state over V applies the function f to

some subset of V. The goal of a problem is described as a partial state. In our

scenario, the goal of the problem is {〈com-s1-w1,true〉,〈loc-B,w2〉}, where the first

fluent denotes the successful communication of the analysis of sample s1 from w1 to

the lander L4.

Definition 3.1 (Planning task). A planning task is defined as a 4-tuple P =

〈V,A, I,G〉:

• V is the finite set of state variables.

• A is a finite set of actions over V. An action a is defined as a partial vari-

able assignment pair a = 〈pre,eff〉 over V called preconditions and effects,

respectively. A precondition is specified as a tuple 〈v, d〉, and an effect is rep-

resented as 〈v, d′〉, meaning that v changes its value to d′ whenever the action

is executed.

3The same fluent is represented as (= (loc B) w2) in PDDL3.1.
4If the communication fails, the fluent would be 〈com-s1-w1,false〉
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• I is a state that represents the initial state of the planning task

• G is a partial state over V called the goal state of the planning task.

An action plan, Π, that solves a planning task P is a sequence of actions Π

=[a1, ..., an] that applied in the initial state I satisfies the goal state G. The col-

lection of actions in Π is organized in execution cycles or time steps such that one

action is executed at a given time. Hence, Π =[a1, . . . , an] is an ordered sequence

of actions where each ai ⊆ A is the action to be executed at time step i − 1 of the

plan.

Figure 5.5 shows a solution plan for the planning task mission of rover B. The so-

lution plan has four actions which, if successfully executed, will reach the task goals.

Π

a1 (Navigate B w2 w1)
a2 (Analyze B s1 w1)
a3 (Communicate B s1 L w1 w2)
a4 (Navigate B w1 w2)

Figure 3.4: Solution plan of the rover B in the Mars scenario.

An action ai ∈ Π is applicable or executable in a world state S if the fluents con-

tained in S satisfy the preconditions of ai. More formally: ∀〈v, d〉 ∈ pre(ai), 〈v, d〉 ∈

S. When an action ai is executed, we update the value of a variable v by applying

the function ρ(v, ai), defined as:

ρ(v, ai) :=

 d : ∃〈v, d′〉 ∈ eff(ai)

f(v) : otherwise

The function ρ changes the value of v to d if ai has an effect 〈v, d′〉 5. Otherwise,

the value of v remains unchanged. The result of executing ai in a state S is a new
5In PDDL3.1, preconditions are represented with an equal sign (=) and the effects with an assign

command as can be seen in Appendix A.1.1
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state S′ that contains the fluents 〈v, d〉 of S which are not updated by the function

ρ(v, ai) plus the set of new fluents as specified in eff(ai). That is, the result of

applying (the action sequence consisting of) a single action ai to a state S is:

S′ := result(S, [ai]) :=

 ρ(v, ai), ∀v ∈ S : if pre(ai) ⊆ S
undefined : otherwise

(3.3.1)

The Equation 3.3.1 defines result, the state transition function from a state S to

another state S′ after the successful execution of ai. Accordingly, a plan Π can also

be viewed as an ordered sequence of states.

Definition 3.2 (Solution plan as an ordered sequence of states). A solution plan

Π = [a1, . . . , an] for a planning task P is as a chronologically ordered sequence of

states [S0, S1, . . . , Sn], where:

• S0 := I

• G ⊆ Sn

• Si := result(Si−1, [ai])

Executing Π in the initial state I results in a sequence of states [S1, ..., Sn] such

that S1 is the result of applying a1 in I, S2 is the result of applying a2 in S1, and Sn is

the result of applying an in Sn−1. A plan Π is a solution plan iff G ⊆ Sn. The result of

executing Π in a state S can also be recursively defined by result(S,[a1, . . . , an]) =

result(result(S,[a1, . . . , an−1]), [an]).

3.3.2 Representing plan structures

Definition 3.2 views a plan as the result of the successive execution of the actions

of Π in the initial state I of the problem. This is the usual way of interpreting a
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plan in classical planning [78], defining the resulting states after the execution of

the actions at each time step in the plan.

Additionally, we can also interpret a plan from the point of view of the world

conditions (fluents) that are necessary for the plan to be executed. That is, instead

of viewing a plan as the result of its execution, we can view a plan as the necessary

conditions for the execution of the plan actions. A plan can thus also be defined as

a sequence of partial states, rather than world states, which contain the minimal set

of fluents that must hold in the world for executing each action of the plan.

G′

〈loc-B,w1〉

〈com-s1-w1,true〉

〈link-B-w1-w2,true〉

G=G

〈com-s1-w1,true〉
〈loc-B,w2〉

Navigate B w1 w2

by regression from the goals

Figure 3.5: Plan as a sequence of partial states.

Figure 3.5 depicts the last action of the solution plan shown in Figure 5.5 (Ap-

pendix A.1.2 describes the meaning of each variable). G is the goal state G of the

planning task P, a partial state that contains two fluents {〈com-s1-w1,true〉,〈loc-

B,w2〉}. The last action of the plan is the action (Navigate B w1 w2) with precondi-

tions {〈loc-B,w1〉, 〈link-B-w1-w2,true〉} and effects {〈loc-B,w2〉}. Then, the fluents

needed to be able to execute the action and achieve the fluents in G are represented

in state G′. We can observe that G′ does not only contain the fluents that match

the preconditions of the action Navigate but also the fluent 〈com-s1-w1,true〉. This

fluent is a goal of G that is not achieved by the effects of the action Navigate but

at some point earlier in the plan and thereby, 〈com-s1-w1,true〉 must hold in G′ in

order to guarantee that it is satisfied in G.

The state G′ in Figure 3.5 is called a regressed partial state because it is cal-

culated by regressing the goals in G through the action Navigate. The notion of

a regressed partial state is inspired by the STRIPS triangle table introduced by
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PLANEX [36], a system that was designed as both a plan executor and a plan moni-

tor for Shakey, the Stanford Research Institute robot system. PLANEX was conceived

as a system responsible for monitoring the execution of a plan and supervising the

execution of a sequence of actions.

The core idea of PLANEX is to represent plans in a way that supports monitor-

ing by representing the plan structure in a triangle table that stores a generalized

plan. Specifically, the idea consists in annotating plans with sufficient and necessary

conditions that can be checked at execution time to confirm the validity of a plan.

These conditions correspond to the regression of a fluent f through an action a,

which determine the fluents that must hold prior to a being executed if and only if

f holds after a is executed [88]. Roughly, the regression of f through an action a is

a sufficient and necessary condition for the satisfaction of f following the execution

of a.

Regression is a fundamental tool in automated planning, in which we seek the

conditions needed to reach a state, achieve a fact or perform an action. In the con-

text of classical planning, the work of Rintanen in [91] describes how to compute

the regression of a formula φ through an action a. Rintanen introduces a full regres-

sion definition which is not needed in our case because (1) we assume a restricted

PDDL syntax (no conditional effects or disjunction of preconditions in the actions)

and (2) we already dispose of the sequence of actions of the solution plan so we only

need to regress through these actions. Following Rintanen’s definition of regression,

we present a simplified definition of regressing a set of fluents through an action.

Let a be an action and G a goal state such that eff(a) ⊆ G. The partial

state G′, in which a is executable, is calculated by the regressed transition function

regress(G, a), defined as:

G′ := regress(G, a) := G \ eff(a) ∪ pre(a) (3.3.2)

G′ is a partial state that represents the minimal set of fluents that must hold in
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a world state in order to generate G by means of the execution of a. Notice that G′

includes pre(a) plus the fluents of G that are not produced by eff(a) (G \ eff(a)).

This is the set of fluents that are achieved before G′ in the plan and must keep their

values until G.

This regression computational mechanism has been widely used to monitoring

plan validity and plan optimality during execution [44] as well as in reactive plan-

ning [80].

Now, we can define a plan as a sequence of partial states via the regressed tran-

sition function regress.

Definition 3.3 (Solution plan as an ordered sequence of partial states). Given a so-

lution plan Π = [a1, . . . , an] for a planning task P, the regressed plan for Π is defined

as a chronologically ordered sequence of partial states [G0, G1, . . . , Gn], where:

• G0 ⊆ I

• Gn := G

• Gi−1 := regress(Gi, ai)

A regressed plan [G0, . . . , Gn] derived from Π denotes the fluents that must hold

in the environment at each time step t to successfully execute the actions in Π from

t onwards. In other words, a partial state Gi denotes the set of fluents that must

hold in the world state S at time t = i (Gi ⊆ S) to ensure the sequence of actions

[ai+1, . . . , an] is executable in S, thus guaranteeing the goals in G are achieved.

This definition allows us to discern between the fluents that are relevant for the

execution of a plan and those ones that are not.

Figure 3.6 shows the regressed plan [G0, . . . , G4] derived from the solution

plan shown in Figure 5.5. This plan is calculated by successively applying regress

through the actions of Π. For instance, an effect of the action a2 is the fluent

〈have-B, s1〉 which appears in G2; G1 is the partial state resulting from applying
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G0

〈loc-B,w2〉
〈locs-s1,w1〉

〈link-B-w1-w2,true〉
〈link-B-w2-w1,true〉
〈analyze-B,true〉
〈trans-B,true〉

〈loc-L,w2〉

G1

〈loc-B,w1〉
〈locs-s1,w1〉

〈link-B-w1-w2,true〉
〈analyze-B,true〉
〈trans-B,true〉

〈loc-L,w2〉

G2

〈loc-B,w1〉
〈have-B,s1〉

〈link-B-w1-w2,true〉
〈trans-B,true〉

〈loc-L,w2〉

G3

〈com-s1-w1,true〉
〈link-B-w1-w2,true〉

〈loc-B,w1〉

G4=G

〈com-s1-w1,true〉
〈loc-B,w2〉

a1 a2 a3 a4

by regression from the goalsunderline variables = preconditions of action ai+1

Figure 3.6: Plan as a sequence of partial states for the plan Π of B in the Mars
scenario.

regress(G2, a2), which includes pre(a2) (the fluents which are underlined in node

G1) plus the fluents that are inG2 but are not produced by eff(a2). Therefore, if the

sensor reading returns a world state in which all of the fluents in G1 hold, then ac-

tion a2 is executable in such a world state and accordingly result(result(S,[a2]),[a3, a4]);

if the fluents in G2 occur in the subsequent world state then a3 is executable and

therefore result(result(S,[a3]),[a4]) and so on. The last partial state, G4, comprises

G, the goals of the planning task. In terms of plan monitoring, G4 represents the flu-

ents that satisfy the preconditions of a fictitious final action, af , where pre(af ) = G

and eff(af ) = ∅, i.e. G is monitored by checking the preconditions of af .

3.4 Reactive Planner

In this section, we provide a detailed description of the Reactive Planner module em-

bedded into the RPE model [55, 54]. The design and development of the Reactive

Planner is the main novelty of our RPE model.

Firstly, we must note that execution agents internally work with the same PDDL

encoding of the planning task, thus avoiding a high-level to a low-level translation

of the data. This contrasts with other approaches, specifically devoted to executing

real-world applications such as robotics, that require to translate the high-level plan-

ning language into a low-level language understandable by the execution agents or

robots [39]. Our proposal, however, is a domain-independent model for simulating
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plan execution and reactive planning when a timely repair is needed. Thereby, in

our model, the execution agent is designed to work with the same language of the

planning agent, thus facilitating the communication between the agents and avoid-

ing the overhead of translating the data. Nevertheless, if the RPE is intended to

be used in a real-world application where execution agents are required to work

with low-level data, a high-level to low-level and a low-level to high-level transla-

tion modules could be easily incorporated in the architecture without affecting the

internal behaviour of the RPE model.

The key concept of the Reactive Planner is the repairing structure. Generally

speaking, a repairing structure is a search space composed of partial states that

encodes recovery plans for potential failures that may occur in a portion of a plan

Π, called plan window. We use the term plan window equivalently to the concept

of planning horizon introduced in IDEA [8, 38]. In practice, IDEA never works

with a planning horizon longer than the minimal horizon (one execution cycle) in

order to limit the search space of the planner. This grants IDEA more reactivity but

also provides less information to repair a failure. In contrast, our Reactive Planner

module works with a plan window whose length is delimited by the available time

the planner is given to build up the repairing structure.

3.4.1 Construction of a repairing structure

The Reactive Planner is given a finite amount of time to generate the repairing

structure. First, it estimates the size of the search space that is capable to build

within the available time. Particularly, it estimates the length of the plan window

and the maximum depth of the search space (this estimation process is explained in

detail in Section 3.4.3.1). Once the length of the plan window (l) and the maximum

depth of the search space (m) have been calculated, the Reactive Planner proceeds

with the construction of the repairing structure.
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Definition 3.4 (Repairing structure). Given a planning task P = 〈V, I,G,A〉, and

a solution plan Π =[a1, . . . , an] or regressed plan [G0, . . . , Gn] for P; a repairing

structure T of maximum depth m associated to a plan window of length l of Π

([G0, . . . , Gl]) is defined as follows 6:

1. The root node or partial state at depth level 0 of T is Gl

2. Nodes of T at depth level d + 1 are partial states calculated by applying the

regressed transition function regress over the nodes at depth d; and arcs be-

tween nodes are actions of the planning task.

3. depth(G) <= m,∀ G ∈ T .

The repairing structure T is a search tree composed of partial states whose root

node is Gl, the last partial state of the regressed plan of the window associated to

T . We apply the regressed transition function regress to the root node to generate

the nodes G at the next depth level, depth(G) = 1, and subsequently to generate

the nodes at the next level, depth(G) = 2, and so on until we generate the nodes

at the maximum depth, depth(G) = m. In general, the search space defines a uni-

directional graph where one same node can be reached through more than one path.

We will analyze this feature at the end of this section.

Figure 3.7 shows two repairing structures, T1 and T2, for the regressed plan of

Figure 3.6. T1 is the repairing structure associated to the plan window [a1, a2], or,

equivalently, to the regressed subplan [G0, . . . , G2]. The root node of T1 is G2 and

the maximum depth of T1 is m = 6. A branch in T1 is a sequence of actions or

regressed plan that represents a path from any node of T to the root node G2.

The process of generating a repairing structure T is shown in Algorithm 1. It

6We refer to the depth d of a node G ∈ T as depth(G).
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repairing structure T1 repairing structure T2
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Figure 3.7: Repairing structures for the solution plan of B in the planetary Mars
scenario. [G0, . . . , G4]: plan as partial states for [a1, a2, a3, a4], T1: the repairing
structure associated to the actions [a1,a2], and T2: the repairing structure associated
to the actions [a3,a4].

expands the root node Gl via the application of the regressed transition function

regress(Gl, a) following Equation 3.3.2 (line 6 of the algorithm). The algorithm

is a classical backward construction of a planning space following a breadth-first

search procedure [78], where a node G is expanded until it reaches the maximum

depth limit or it satisfies other pruning conditions (see the paragraph related to the

repeated states and supersets in this same section). The purpose of Algorithm 1 is

to generate all possible sequences of actions of maximum length m that eventually

reach Gl.

In Definition 3.3, we saw that a set of fluents G is regressed through the action a

of a given plan Π. In Algorithm 1, however, we do not have such a plan Π to regress
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the fluents of Gl because the purpose of the algorithm is precisely to find all possible

sequences of actions that allow to reach Gl. In this case, the operation of regressing

the fluents G through an action a of the planning task (a ∈ A) must check whether

a is a relevant action to achieve some fluent f ∈ G or not. An action a is relevant

for G and originates an arc (G′, G) in T , where G′ = regress(G, a), if a does not

cause any conflict with the fluents in G and G′. Specifically, finding a relevant action

a for a given partial state G requires to check two consistency restrictions: (1) that

eff(a) does not conflict with the fluents in G, and (2) that pre(a) does not conflict

with the fluents in the regressed goal state G′.

Input: Generate Search Space(Gl,A,m)
1: Q ← {Gl}
2: T ← {Gl}
3: while Q 6= ∅ do
4: G← extract first node from Q
5: for all {a ∈ A | relevant(G, a) is true} do
6: G′ ← regress(G, a)
7: if G′ /∈ T then
8: if ∃ G′′∈ T | G′′⊂ G′ then
9: mark G′ as superset of G′′

10: else
11: if depth(G′) < m then
12: Q ← Q∪G′

13: set an arc a from G′ to G
14: T ← T ∪ G′

15: return T

Algorithm 1: Generate a repairing structure T from a given partial state Gl up to a
depth m with a set of actions A.

We define a function conflict(Fi, Fj) that given two any sets of fluents, Fi and

Fj , checks whether a conflict between the fluents of Fi and Fj exists or not:

conflict(Fi, Fj) :=

 true : ∃〈v, d〉 ∈ Fi and ∃〈v, d′〉 ∈ Fj and d 6= d′

false : otherwise

(3.4.1)
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The function conflict(Fi, Fj) holds if it exists a variable v in the two set of

fluents Fi and Fj with different values d and d′, respectively. For instance, assuming

two fluents 〈loc-B,w2〉 ∈ Fi and 〈loc-B,w1〉 ∈ Fj , conflict(Fi, Fj) will return true

because the variable loc-B has a different value in the two sets of fluents.

Now, we provide a definition of a relevant action a for a partial state G:

relevant(G, a) :=



((∃〈v, d′〉 ∈ G and ∃〈v, d′〉 ∈ eff(a)) and

true : (¬(conflict(eff(a), G))) and

(¬(conflict(pre(a), regress(G, a)))))

false : otherwise

(3.4.2)

The function relevant(G, a) in Equation 3.4.2, returns true if the action a is

relevant for a node G; i.e., if a achieves a fluent 〈v, d′〉 in G and the rest of effects of

a do not conflict with the fluents in G; and pre(a) does not cause a conflict with the

fluents of the regressed partial state regress(G, a). The relevant function is applied

to every node in T and for each action in the planning task (line 5 of Algorithm 1).

For example, in T1 of Figure 3.7, the actions a1, a2 and a6 are relevant actions for

the root node G2 of T1 because:

1. the effects of these actions generate a fluent of G2 and

2. the rest of effects of the actions do not conflict with the fluents of G2 and

3. the regressed partial states G′1 = regress(G2, a1), G′2 = regress(G2, a2) and

G′3 = regress(G2, a6) do not conflict with pre(a1), pre(a2) and pre(a6), re-

spectively.

Hence, the construction of T follows Algorithm 1, a goal-regression algorithm

that applies regress(G, a) for each relevant action a in a partial state G which has

not reached the maximum depth m yet (lines 4-6 of Algorithm 1). Note that the
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arcs in a repairing structure are displayed in the opposite direction of the node

generation because we want to point out the order of application of the actions (see

Figure 3.7).

Gl

〈com-s1-w1,true〉
〈loc-B,w2〉

G′
2

〈loc-B,w3〉
〈com-s1-w1,true〉

G′
1

〈loc-B,w1〉
〈com-s1-w1,true〉

〈loc-B,w2〉
〈com-s1-w1,true〉

〈loc-B,w3〉
〈com-s1-w1,true〉

Navigate B w1 w2 Navigate B w3 w2

Navigate B w2 w1 Navigate B w3 w1

Figure 3.8: Repeated states with reversible actions and redundant paths.

3.4.1.1 Repeated states and supersets.

The search space T is actually a graph due to the existence of repeated states, i.e.

multiple paths that reach one same partial state during the construction of T . More

specifically, repeated states are originated as a consequence of redundant paths (e.g.

the application of various actions in either order) and reversible actions. Figure 3.8

shows a simple example of reversible actions and redundant paths. It shows a tree

with three partial states Gl, G′1 and G′2 generated by the actions (Navigate B w1

w2) and (Navigate B w3 w2), respectively. For simplicity, in this example, the actions

Navigate have as precondition only the location of the rover B. The node G′1 has two

dashed child nodes which are not inserted in the tree. The left dashed node is a

repeated state of Gl, which is generated by the application of two reversible actions

(Navigate B w1 w2) and (Navigate B w2 w1). The right dashed node is a repeated state
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of G′2 because both contain the same fluents and the path to reach Gl is shorter from

G′2. Repeated states are not inserted in the tree.

Another type of nodes that can be found in a repairing structure are superset

nodes. More formally, a node G′j ∈ T is said to be a superset of a node G′i if

G′i ⊂ G′j . Superset nodes are inserted in the tree but they are not expanded. If G′j

is a superset of a node G′i which is located at an upper depth level, then G′i already

comprises the minimal set of fluents that must hold in the world to be able to reach

the root node. Therefore, superset nodes do not bring any new data with respect to

their subset nodes because if the fluents of superset node G′j hold in the world state

S (G′j ⊆ S), it is obviously the case that G′i ⊆ S, too, and the path from the subset

node G′i to the root node is shorter than the path from G′j to the root node. Superset

nodes are marked as such and inserted in the tree but they are not expanded. For

example, in T1 of Figure 3.7, the node G′9 is a superset of node G′3
7 (G′3 ⊂ G′9).

G′3 is a partial state where the rover B and the soil sample are located in the same

location w1 and the action (a2) to analyze the soil is the shortest path to reach the

root node G2.

Algorithm 1 makes two nodes in T be connected by a single path. Since we are

interested in keeping only the shortest (optimal) path between any pair of nodes,

the construction of T neglects repeated states (line 7 in Algorithm 1) and avoids the

expansion of superset nodes (lines 8 and 9). These two pruning techniques allow us

to encode the optimal path between each pair of nodes.

3.4.1.2 Complexity of the construction algorithm.

Another relevant issue in the construction of T is that a set of variables induce a state

space that has a size that is exponential in the set, and, for this reason, planning, as

well as many search problems, suffer from a combinatorial explosion. Even though

nodes in T are partial states that contain far less fluents than world states, the large

7The subset node is represented between brackets []
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size of the repairing structures are sometimes unaffordable for a reactive system.

With the aim of reducing the size of T , when expanding a node G′ we only consider

the actions of the planning task that modify a fluent 〈v, d′〉 of G′ and whose variable

v is a relevant variable; that is, a variable which is involved in the preconditions

or effects of the actions of the plan window associated to T . For instance, given

the repairing structure T1 associated to the plan window [a1, a2] or regressed plan

[G0, G1, G2] in Figure 3.7 and any node G′ ∈ T1, the only actions which are applied

in G′ are those a such that 〈v, d′〉 ∈ (eff(a) ∩ G′) and v is a relevant variable

involved in the set pre(a1) ∪ eff(a1) ∪ pre(a2) ∪ eff(a2). Actually, this set contains

the fluents that may need to be repaired when a failure occurs.

On the other hand, note that in every repairing structure T there always exists

a branch or part of a branch which arcs are labeled with exactly the same actions of

the plan window associated to T . In Figure 3.7, we can observe that the first arc of

the rightmost branch is action a2 and the subsequent arc is labeled with action a1.

Therefore, the partial states G′3 and G′7 are the same as G1 and G0, respectively.

The time complexity of the Algorithm 1 responds to the classical complexity of

the generation of a tree, that is O(bm), where b is the branching factor or maximum

number of successors of any node in the tree.

3.4.2 Finding a recovery plan in a repairing structure

A path or branch in a repairing structure T associated to a plan window [G0, . . . , Gn]

represents a (regressed) plan to reach the root node Gl. Specifically, a path is inter-

preted as a recovery plan that leads the current world state to another state from

which the execution of the plan Π can be resumed. Given the current world state

S, the idea is to find a partial state G′ in the tree T such that G′ ⊆ S. Then, the

path from G′ to Gl is the sequence of actions that when executed in S will result

in a world state S′ such that Gl ⊆ S′; consequently, the execution of Π can be re-

sumed from Gl onwards. In Figure 3.7, assuming that S is the current world state
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and action a1 of Π fails (a1 being comprised in the plan window [a1, a2] associated

to T1), the Reactive Planner will use T1 to find a recovery path. Let’s suppose that

G′16 ⊆ S; applying the plan [a1, a4, a8, a6] in S will reach the root node G2, from

which the rest of Π, [a3, a4], can be executed; or, if it were the case that G′18 ⊆ S, the

application of the sequence of actions [a7, a4, a1, a2] in S will reach the root node

G2, from which the rest of Π, [a3, a4], can be executed. Hence, all recovery plans

in T1 have one thing in common: they eventually guide the execution of the plan

towards G2, the root node of T1.

In the following, we will thoroughly explain the process to find a recovery path

when a failure occurs during the execution of a plan and we will show how this

process applies to our Mars scenario.

3.4.2.1 Iterative recovery process

Let Π=[a1, . . . , an] be the plan under execution and [ai, . . . , al] or, equivalently,

[Gi−1, . . . , Gl], the plan window of Π associated to a repairing structure T ; and let

us also suppose that the preconditions of ai do not hold at the time of execution

when the current world state is S. The Reactive Planner applies an iterative process

over the partial states of the plan window [Gi−1, . . . , Gl] until a path from one

of these partial states to a node G′ ⊆ S is found in the tree T . Specifically, at

each iteration, the process works with one partial state of Gi−1, . . . , Gl, finds the

corresponding partial state in T (we will refer to this node in the tree as G′t) and

then it goes all the way down through the descendents of G′t until it finds a node G′

that satisfies G′ ⊆ S, if possible:

1. if G′t=Gi−1 and a descendant node G′ of G′t is found, then applying the path

from G′ to G′t in S will lead a new state S′ in which ai is executable; otherwise

2. ifG′t=Gi and a descendant nodeG′ ofG′t is found, then applying the path from

G′ to G′t in S will lead a new state S′ in which ai+1 is executable; otherwise
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3. continue until G′t=Gl

Hence, the idea is to find a node G′ ∈ S in the repairing structure such that the

application of the sequence actions between G′ and the root node will eventually

reach a node which is equal to the partial state Gi−1 of the plan window in which

ai is executable; or a node equal to Gi in which ai+1 is executable; or, ultimately, a

node equal to Gl, in which case the recovery path from S to reach the root node Gl

is a path which does not contain any of the actions of the plan window.

The iterative process to find a recovery path is shown in Algorithm 2. When

the action ai of the plan window [ai, . . . , al] fails, Algorithm 2 is activated with the

repairing structure T , the regressed plan [Gi−1, . . . , Gl] associated to T and the set

of fluents of the current world state S. The algorithm successively iterates over the

partial states in Gi−1, . . . , Gl, finds such a state in the tree (G′t) and then tries to

find a node G′ ⊆ S from G′t
8. The process stops when some G′ is found from any

of the partial states of the plan window, in which case the path from G′ to G′t is con-

catenated with the plan from G′t to the root node Gl. If no G′ is found for any state

of the plan window, this means that T does not comprise the necessary information

to find a recovery path, in which case the planning agent is invoked to perform a

replanning task that calculates a new plan from scratch.

Input: Iterative Search Plan(T , S, [Gi−1, . . . , Gl] )
1: Π’← ∅
2: Q ← {Gi−1, . . . , Gl}
3: while Q 6= ∅ and Π’ = ∅ do
4: n← pop node from Q
5: G′t ← find n in T
6: if ∃ descendant G′ of G′t | G′ ⊆ S then
7: Π’← concatenate path from G′ to G′t to the plan from G′t to Gl
8: return Π’

Algorithm 2: Iterative algorithm to find a recovery path

8The algorithm applies a modified breadth-first search that prunes the already descendant nodes
in subsequent iterations.
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3.4.2.2 Working on the Mars scenario

Let’s see now how the iterative process applies to our Mars scenario. Consider the

plan Π=[a1, a2, a3, a4] of Figure 5.5, the plan window [a1, a2] associated to T1 in

Figure 3.7 ([G0, . . . , G2]) and that the preconditions of a1=(Navigate B w2 w1) are

not satisfied in S. Notice that a failure that occurs in the first action of a plan

is always due to an exogenous event and not to an erroneous execution of the

preceding action in the plan. Let’s assume a1 is not executable because a windstorm

hits the rover producing an unexpected wrong location of rover B, no longer being

at w2 but at w3.

• First iteration (G0). Algorithm 2 finds G0 in T1 (G0=G′7 in T1) and searches

for a descendent node G′ of G′7 that satisfies G′ ⊆ S. The nodes that are

reachable from G′7 are G′12, G′13, G′17, G′18 and G′21. If none of these states

match the current world state S, that is G′12 * S and G′13 * S and G′17 * S

and G′18 * S and G′21 * S, then it means no plan repair actually exists to

reach G′7 from S in T1, and, hence, there is no way to get rover B back to w2

from w3.

• Second iteration (G1). Assuming there is no solution to move rover B back

to w2, the Reactive Planner locates the next partial state G1 in the tree (node

G1=G′3 in T1), a node in which rover B is in w1 in order to analyze the soil.

Hence, for every descendant node of G′3 (excluding G′7 and its descendant

nodes which were already explored in the previous iteration), the Reactive

Planner checks whether it exists G′ ⊆ S, in which case the Reactive Planner

will return the plan from G′ to G′3. Let’s assume that G′=G′8 so a path that

reaches G′3 from S actually exists. This path comprises the action a6, (Navigate

B w3 w1), which moves rover B from w3 to w1. Then, the algorithm returns the

recovery plan [a6], concatenated with [a2] (analyzing the soil sample) and

the Reactive Planner will then append the rest of the actions of Π ([a3, a4]).
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3.4.2.3 Discussion

Two issues related to for finding a recovery path are worth mentioning here. First,

it is important to highlight that the choices to find a plan increase when the partial

state to reach is closer to the root node of the tree. This can be graphically observed

in Figure 3.9. The left figure shows a tree T of depth m associated to a plan window

of length l = 3. The first iteration of Algorithm 2 is aimed at finding a node G′ that

reaches a node equal to G0. In such a case, actions a1, a2 and a3 will be included

in the recovery plan, and consequently, Algorithm 2 restricts the space to search to

h levels of the tree, the shadowed portion of the tree in the figure. However, the

objective of the second iteration of Algorithm 2 is to find a path that reaches a node

equal to G1 (right figure), in which case the recovery path will only comprise the

actions a2 and a3 of the plan window, and choices to find a state that matches S

increase as well as the choices of finding a recovery path to reach G1. In conclusion,

the farther the partial state of the plan window from the root node, the fewer plan

repair alternatives but, however, the recovery plan guarantees more stability with

respect to the original plan because it will include more actions of the plan window.

In contrast, if the partial state is closer to the root node then the search space to find

a recovery path is bigger so there are more choices to find it although the plan found

might not keep any of the actions of the plan window. Clearly, the more flexibility,

the less stability.

Secondly, it might happen that no recovery plan at all is found. Notice that the

tree has a limited size in terms of l and m, which is determined by the available time

to build the tree, and the information included in the tree may not be sufficient to

solve all the potential contingencies. The principle underpinning reactive systems

is that of providing a prompt reply, and this requires to work with bounded data

structures. Moreover, reactive responses are applied when slight deviations from the

main course of actions occur. A major fault that makes a variable take a value that

is not considered in the repairing structure would likely need a more deliberative
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Figure 3.9: Repairing structures abstract.

response.

In general, the higher the value of the plan window length l, the more partial

states or choices to find a recovery plan; and the deeper the tree, the longer the

recovery plans comprised in T . The minimum value of m must be l+1 in order

to ensure that the tree comprises at least one action that repairs the first action of

the plan window associated to T . Finally, since nodes in the search tree are partial

states, our RPE model only handles the minimal data set that is necessary to carry

out a repairing.

3.4.3 Calculating repairing structures for a solution plan

The number of repairing structures necessary to keep track of the execution of a

plan Π depends on the available time the Reactive Planner has to create the search

trees, which, in turn, delimits the size of the trees. The size of a repairing structure

T is subject to two parameters, the plan window length l associated to T , and the

maximum depth limit m of the search tree. For example, in Figure 3.7, the length of

the plan window of T1 is l = 2 and the depth limit of T1 ism = 6, values which result

from the time limit the Reactive Planner is given to build T1; as for T2, the length of

the plan window is l = 2 and maximum depth m = 5, values which likewise depend
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on the available time the Reactive Planner has to build T2.
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Figure 3.10: Iterative time-bounded construction to generate repairing structures

The process to generate the various repairing structures for a plan Π is an itera-

tive time-bounded construction process composed of three steps as depicted in Fig-

ure 3.10 (green boxes). When the Reactive Planner receives the initial plan Π from

the Monitoring module, it translates Π into a sequence of partial states [G0, . . . , Gn]

using the Definition 3.3 and starts the iterative time-bounded process:

• First iteration [G0, . . . , Gn]: In the first iteration, the Reactive Planner is

given a time limit of one execution cycle; i.e., the value of ts is equal to one

cycle time. Then, it performs the following steps:

1. Estimates the values of l and m for T1 (the process to estimate the size of

a repairing structure is explained in Section 3.4.3.1).

2. It generates T1 for the plan window [G0, . . . , Gl] with maximum depth

m as explained in Section 3.4.1.

3. If Gl 6= Gn then at least a second repairing structure is needed to cover

the entire plan Π. In this case, the Reactive Planner proceeds with the

generation of T2.
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• Subsequent iterations [Gl, . . . , Gn]: The available time for building the sec-

ond and subsequent repairing structures is subject to the time the Execution

will need to execute the actions in the preceding window. Specifically, the

value of ts for building a repairing structure Ti other than T1 is set equal the

time of as many execution cycles as number of actions covered by the preced-

ing repairing structure Ti−1. Thus, the Reactive Planner:

1. Estimates the size l′ and m′ of T2.

2. Generates T2 for [Gl, . . . , Gl+l′] with maximum depth m′;

3. If Gl+l′ 6= Gn then the Reactive Planner proceeds with the generation of

the next repairing structure for the remaining actions of the plan.

Otherwise, ifGl+l′=Gn, then this is the last iteration of the time-bounded

construction process, the one that builds a repairing structure that in-

cludes Gn. At this point, the construction process finishes since all the

actions in the initial plan Π are covered in some repairing structure.

Notice that the more actions in the plan window associated to T , the longer the

time ts the Reactive Planner will have to create the next repairing structure and,

in principle, the longer the plan window of the new search space. Moreover, if an

iteration does not use up all the time to build T , the remaining time is added to the

next ts, thus giving more time for the construction of the next repairing structure.

Another important remark is that during the construction of T1, the plan execu-

tion is idle until T1 is built whereas for the subsequent structures, the time-bounded

process is building Ti while the actions of the plan window of Ti−1 are being exe-

cuted. This iterative working scheme gives our model an anytime behaviour, thus

guaranteeing the Reactive Planner can be interrupted at anytime and it will always

have a repairing structure available to attend an immediate plan failure.
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3.4.3.1 Estimating the size of the repairing structure

Our main objective is to guarantee that T is generated within ts so that T is always

available when a failure arises. That is, we want to ensure that the search space for

the upcoming actions is available when the Execution module starts the execution

of such actions. If we can ensure that some T always exists when an action is being

executed, then the only operation that needs to be done to repair an action failure

is to find a recovery plan in T .

The time limit ts to build some T is determined by the time of an execution cycle

and the number of execution cycles (actions) in the plan window of the preceding

repairing structure. The cycle time depends on whether we are dealing with a

simulated or real system and the characteristics of the domain. Some domains

may require a relatively large execution cycle time (e.g., 10 sec.), but others may

be much shorter (e.g., 10 ms.). In our experiments of Chapter 4, we will assume an

execution cycle time of 1000 ms.

In order to guarantee that T is created within ts, we estimate the time to gener-

ate T with respect to some selected l and m through an estimating function δ(l,m)

that predicts the value of the real time to generate T by using a regression model.

The regression model is calculated off-line because a training and testing stages are

required to fit the model (see Chapter 4).

{l,m} = arg max

l ∈ [2, x],m ∈ [l + 1, y]

δ(l,m) < ts

δ(l,m)

(3.4.3)

The Reactive Planner uses Equation 3.4.3 to find the values of l and m for which

δ(l,m) attains its largest value within the time limit ts. Through this maximization

process we compute for every pair of values of l and m whether or not the value of

δ(l,m) is smaller than ts. The initial values are l = 2 and m = l + 1 = 3 because we

want to build a repairing structure that comprises at least two actions of the original

plan (l = 2) and at least one action to repair the first action of the plan window is
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required (m = 3). The value of m is progressively increased by 1 until δ(l,m) > ts.

Then, the value of l is increased by 1 and m resets to l + 1. The upper bounds of

the parameters l and m (x and y, respectively, in Equation 3.4.3) are conditioned

accordingly to the value of ts. More specifically, the overall process is as follows:

1. Initially, set l = 2 and m = 3.

2. Progressively, increase the value of m by 1 while δ(l,m) < ts.

3. When δ(l,m) > ts, check if:

(a) l equals the number of actions of the plan (in this case, the estimating

process has already covered the entire plan), or

(b) m is equal to l+ 1, in which case no longer value of l will fulfill δ(l,m) <

ts.

in any of these two cases, the process jumps to step 6.

4. Otherwise, increase l by 1 and reset m to l + 1.

5. If δ(l,m) < ts, go to 2;

6. Return the combination l and m such that δ(l,m) attains its largest value and

δ(l,m) < ts.

Table 3.1 shows a trace of the estimation process to calculate the first repairing

structure T1 of our Mars scenario in Figure 5.5. We assume the values of δ(l,m) are

estimated by some regression model and that the default value of ts is 1000 ms. The

Reactive Planner performs the following steps:

1. l = 2 and m = 3; the value of m is progressively increased by 1 while δ(l,m) <

1000 (see δ(2, 7) in Table 3.1).
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Table 3.1: Trace to calculate l and m values with ts = 1000 ms.

l,m 2, 3 2, 4 2, 5 2, 6 2, 7 3, 4 3, 5 4, 5

δ(l,m) 255 637 824 960 1052 795 1230 1084
selected X

2. The value of l is increased by 1 (l = 3) and m resets to l+1 = 4; we repeat the

process of increasing progressively the value of m by 1 until δ(l,m) > 1000,

i.e. δ(3, 5) > 1000.

3. Then, the value of l is updated to 4 and m resets to l+ 1 = 5. In our scenario,

the Reactive Planner stops in δ(4, 5) because δ(4, 5) > 1000 and since m is

equal to l + 1 no longer value of l will fulfill δ(l,m) < 1000. The Reactive

Planner returns the combination l and m that maximize the function δ.

In Table 3.1 the upper bounds of l and m are 4 and 7, respectively. The Reactive

Planner selects the combination of values which does not exceed the value of ts and

maximizes the function δ (i.e., δ(2, 6) in Table 3.1). As a final remark, if the first

combination of values of l and m exceeds ts, that is, if δ(2, 3) > ts, then (2, 3) would

be the selected combination as there are no other possible choices.

In summary, the function δ(l,m) estimates for some fixed values of l and m, the

time of generating T ; then, Equation 3.4.3 checks whether or not δ(l,m) exceeds ts,

and returns the values of l and m for which the value of δ(l,m) attains its maximum

value without exceeding the value of ts.

3.5 Conclusions

In this chapter, we have presented a single-agent architecture that comprises a gen-

eral reactive planning and execution model that endows an execution agent with

monitoring and execution capabilities. The RPE model integrates a Reactive Plan-

ner module that provides the execution agent with fast responsiveness to recover
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from plan failures in planning applications. Thus, the mission of an execution agent

is to monitor, execute and repair a plan, if a failure occurs.

The key element of the Reactive Planner is the repairing structure, a search space

composed of partial states that encodes recovery plans for potential failures that

may occur in a portion of a plan. Repairing structures are created with an iterative

time-bounded construction that guarantees the Reactive Planner will always have a

repairing structure available to attend an immediate plan failure. Once the repairing

structure is available for some action, the only operation that needs to be done is to

search over the partial states of the structure until a recovery plan is found in the

repairing structure.

The Reactive Planner contributes with several novelties: (a) it is a domain-

independent planner that can be exploited in any application context; (b) it works

with the same PDDL encoding of the Deliberative Planner, thus avoiding trans-

lation of data; (c) it avoids dealing with unnecessary information of the world,

handling specifically the information relevant to the failure; and (d) it performs a

time-bounded process that permits to continuously operate on the plan to repair

problems during execution.

In the next chapter, we will explain the process to come up with a predictive

model and we will show an experimental evaluation of the Reactive Planner module.
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Chapter 4

Evaluation of the Reactive Planner

“In evaluating ourselves, we tend to be long on our weaknesses and short on our

strengths.”

(Craig D. Lounsbrough)

In this chapter, we present the experimental evaluation of the domain-independent

Reactive Planner module, which is the main contribution of the previous chapter.

More specifically, we conducted two principal experiments:

1. Selection of the regression model. In this experiment, we compared two

regression models to estimate the time of generating a repairing structure and

we selected the one with the smallest estimation error. The selection of the

regression model is a relevant issue for the subsequent evaluation of the Reac-

tive Planner since the planner will use the chosen regression model to estimate

the size of a repairing structure such as it was explained in Section 3.4.3.1.

2. Evaluation of the Reactive Planner. We evaluated the performance and reac-

tiveness of the Reactive Planner. Specifically, we conducted two experiments:

(a) Time-bounded construction of repairing structures. The aim of this
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experiment is to check if the Reactive Planner is able to build the re-

pairing structure within the available time. We generated the first three

structures of the solution plans of various planning tasks. Concretely, to

generate one repairing structure, the Reactive Planner uses the selected

regression model to find the values of l and m that maximize the func-

tion δ(l,m). Once the values of l and m are known, the Reactive Planner

generates the repairing structure and we analyze whether the time taken

for building the repairing structure is within the time limit.

(b) Recovery plan. We performed several tests to evaluate the performance

of the iterative search plan algorithm with the first repairing structure of

the solution plans. We also compared our repair mechanism with two

other deliberative methods, including an adapting repair method and a

replanning mechanism.

The Reactive Planner module was implemented in Java and all the experiments

were run on a GNU/Linux Debian computer with an Intel 7 Core i7-3770 CPU @

3.40GHz x 8, and 8 GB RAM.

4.1 Selecting the regression model

Our interest lies in comparing a linear regression model against a tree regression

model which, in principle, can approximate nonlinear functions, and analyze the

error of both approaches when estimating the time of generating a repairing struc-

ture. The process of selecting the regression model is divided into four stages:

1. Generation of the data samples: We obtained the solution plans for several

planning tasks from diverse planning benchmarks1, and generated random re-

pairing structures for these plans. For each repairing structure, we stored the

1Part of the benchmark can be seen at http://planinteraction.cguz.org/resources/.
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generation time along with other features which altogether form the represen-

tation space of the data samples (see Section 4.1.1).

2. Learning the linear regression model: Given as input the data samples,

we employ cross-validation to fit the linear model that estimates the time of

generating a repairing structure.

3. Learning the bagging model: Given as input the data samples, we trained

the bagging model that estimates the actual time needed to build a repairing

structure.

4. Testing the two regression models: Given as input the data samples, we

tested the two learning models and analyzed the estimated time versus the

real time needed to generate the repairing structures. We then compared the

results of the two models and we selected the one that better approximates

the actual time of generating a repairing structure and returns the minimal

prediction error.

4.1.1 Data samples

We selected four planning domains along with their corresponding problems or

planning tasks (nine planning tasks for each domain) from the benchmarks col-

lections used in the International Planning Competition (IPC) 2:

• the rovers domain is a space exploration scenario from the IPC of 2002 (the

domain is shown in Appendix B.1).

• the logistics domain is a transport scenario from the IPC of 2000 (the do-

main can be seen in Appendix E.1).

• the driverlog domain is a vehicle routing scenario from the IPC of 2002.

• the parcprinter domain is a manufacturing scenario from the IPC of 2008.
2http://ipc.icaps-conference.org/
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These four planning domains feature different characteristics, structural prop-

erties and topology of the search space in order to make our Reactive Planner as

domain-independent as possible. We solved 36 planning tasks, nine problems of

each domain, with LAMA planner [90]. For each planning task P = 〈V,A, I,G〉, we

obtained a solution plan Π and for each Π we generated repairing structures with

random values of l and m, generating a total of 6,788 repairing structures.

Our aim is to use the collection of 6,788 repairing structures to learn the pa-

rameters that better explain the size of a repairing structure Ti associated to a plan

window [a1, . . . , al]. Ultimately, our objective is to estimate the time of generating

Ti, what can be done by estimating the size of Ti. Predicting the development of a

search tree based on the data of the plan window and the only available node of

the search tree, the root node, is not an easy task. We selected the components or

features of the repairing structures that directly or indirectly affect the generation of

the search tree and let the learning model choose the weights of the variables that

better explain the tree generation.

As we detailed in Section 3.4.3.1, the Reactive Planner calculates the size of

the repairing structure that can be created within the time limit by trying different

values of the plan window length l and maximum depth tree m. Thereby, we could

simply extract l and m out of the 6,788 repairing structures collection. However,

the plan window l is an indirect and not very informative parameter to estimate

the actual size of the search tree, reason why we selected other features of the plan

window that will provide much more helpful information for the estimation.

In the following, we analyze the features that can be extracted from the 6,788

repairing structures to make up the sample dataset. Given T , a repairing structure of

the 6,788-item collection, we distinguish, on the one hand, the features that provide

indication of the time or size of generating T , which ultimately is the variable that

the Reactive Planner needs to estimate to ensure a time-bounded construction of a

repairing structure. On the other hand, we identify another set of features related

to the plan window associated to T . Overall, we extracted 9 parameters (features)
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from each repairing structure T (observation), that we classify into two groups:

Group 1: parameters related to T .

1. real time to generate T (t): this is ultimately the variable to predict.

2. number of nodes of T (N): N can be used to derive the time of generating T

if we are able to figure out the average time of expanding a node of the tree.

3. branching factor of T (b): b can not be directly obtained from T but can be

calculated, thus providing an indirect measure of the size of T .

4. depth of T (m): this provides the deepest level of a leaf node.

Group 2: parameters related to the plan window.

5. number of fluents in the root node Gl of T . This parameter is directly related

to the size of the state space of T . As it was explained in Section 3.4.1, the

generation process expands Gl considering the actions that affect the fluents

in Gl. That is, the more fluents in Gl, the more actions to expand Gl. For

instance, the number of fluents of the root node G2 of T1 in Figure 3.7 is five

(see the fluents of G2 in Figure 3.6).

6. number of relevant variables in the plan window of T . The number of relevant

variables is an important parameter because it helps reduce the complexity of

T during the generation process. As we explained in Section 3.4.1.2, we only

consider the relevant variables involved in the preconditions and effects of the

actions of the plan window [a1, . . . , al] because these are the only fluents that

will actually need to be repaired. In the repairing structure T1 of Figure 3.7

associated to the plan window [a1, a2] of the plan Π of Figure 5.5, the number

of relevant variables associated to T1 is five; i.e., all the variables involved
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in the set pre(a1) ∪ eff(a1) ∪ pre(a2) ∪ eff(a2) = {loc-B, link-w2-w1, locs-

s1, analyze-B, have-B} (see the preconditions and effects of the actions in

Appendix A.1.1).

7. number of relevant variables which also appear in the fluents 〈v, d′〉 of the root

node Gl of T . In other words, the number of relevant variables of parameter 6

that are included in the fluents of the parameter 5. The reason of considering

this parameter 7 is that, as we explained in Section 3.4.1, the expansion of

the root node Gl only considers the actions A of the planning task that modify

a fluent 〈v, d′〉 of Gl and whose v is a relevant variable. In the example of

Figure 3.7, the value of the parameter 7 is two because the only relevant

variables that are included in the fluents of G2 are loc-B and have-B.

8. sum of the cardinality of the domains of the relevant variables of the plan window

(parameter 6). In the generation process, a node G is expanded by considering

all the actions that affect a relevant variable v. Thus, the more values in

the domain of v, the higher the likelihood of using more actions throughout

the expansion of T and, thereby, the more complexity of T . Following with

the same example, the sum of the cardinality of the domains of the relevant

variables of the parameter 6 is 15. Specifically, the domain of the relevant

variables of the parameter 6 along with their cardinalities are:

• Dloc-B = {w1, w2, w3} with a cardinality of three.

• Dlink-w2-w1 = {true, false} with a cardinality of two.

• Dlocs-s1 = {w1, w2, w3, NONE} with a cardinality of four.

• Danalyze-B = {true, false} with a cardinality of two.

• Dhave-B = {s1, s2, r, NONE} with a cardinality of four.

9. number of actions that affect a relevant variable of the plan window. In or-

der to reduce the complexity of T , only the actions that modify the relevant
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variables in the parameter 6 are considered during the tree expansion (see

Section 3.4.1.2). For example, the number of actions of A that changes the

value of a variable of the parameter 6 is 21.

The parameters of group 2 have also an impact on the size of a repairing struc-

ture. Particularly, parameters 5 (number of fluents in the root node of T ) and 7

(number of relevant variables which also appear in the fluents of the root node of

T ) are directly related to the root node and, in principle, they have a greater im-

pact in the generation of the tree, in contrast to parameters 6 (number of relevant

variables in the plan window of T ), 8 (sum of the cardinality of the domains of

the relevant variables of the plan window) and 9 (number of actions that affect a

relevant vairable of the plan window) that are more related to the size, structure

and composition of the plan window. As we commented before, we do not include

the plan window length l as a parameter of the data samples because it would yield

poorly estimated models. On the contrary, parameters 5 to 9 are much more infor-

mative because they affect directly or indirectly the items included in the length of

the plan window. All in all, the estimation of the Reactive Planner depends on the

length of the plan window and depth of the tree. We preserve the value of m > l in

our estimation model to ensure that a repairing structure will comprise at least one

action to repair the first action of the plan window.

4.1.2 Learning the linear regression model

Multiple linear regression [22] is a statistical technique that predicts or explains

the value of a dependent variable (y) by considering more than one explanatory

features (xi). Hagerty demonstrated that linear regression produces less accurate

predictions when y is a variable that presents long range values [56]. This is pre-

cisely the case of the variable t, the time of generating a repairing structure, because

time is expressed in milliseconds and may contain outliers. Similarly, the number of

nodesN of a repairing structure is a variable that can take on values in a long range.
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The columns 1 and 2 of Table 4.1 presents the minimum and maximum values of t

and N , respectively, of the repairing structures of the sample dataset. Consequently,

estimating the time or number of nodes of a repairing structure T with a linear re-

gression model is not feasible because it may produce highly inaccurate predictions.

Table 4.1: Range of values of time t, number of nodes N and branching factor b.

description t (ms) N b

Minimum value 1 13 1
Maximum value 4,507,382 242,495 33

For the aforementioned reasons, we opted for selecting the branching factor (b)

as the variable to estimate with the linear regression model since the values of b

are restricted to a much smaller range, as can be seen in the column 3 of Table 4.1.

Obviously, b is not a direct measure of the time or size of a repairing structure but,

by using appropriate formulas and inferences, we can obtain the number of nodesN

out of b and we can then infer the time t out of N . The parameters 4 to 9 that were

presented in Section 4.1.1 will be the explanatory variables xi, that is, the variables

that will be used to estimate b. Specifically, we name the variables as follows:

• x1: parameter 4 (depth m of T ).

• x2: parameter 5 (number of fluents in Gl of T ).

• x3: parameter 6 (number of relevant variables in the plan window of T ).

• x4: parameter 7 (number of relevant variables which appear in the fluents

〈v, d′〉 of Gl of T ).

• x5: parameter 8 (sum of the cardinality of the domains of the relevant vari-

ables of the plan window).

• x6: parameter 9 (number of actions that affect a relevant variable in the plan

window).
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Once the values of the six parameters of the 6,788 repairing structures are ex-

tracted, we calculate their branching factor b and complete the sample dataset. We

recall that b is a non-observable value of the repairing structures so it must be cal-

culated. In general, there exist many factors that determine not only the size of the

tree but also its form. Therefore, it is safe to say that the search trees are irregularly

shaped, what makes it difficult to calculate the branching factor. We based our cal-

culations on the effective branching factor [81]3 because this measure is reasonably

independent of the maximum depth of the tree and usually it is fairly constant for

sufficiently hard planning tasks. Although the effective branching factor b cannot be

written explicitly as a function of the depth m and the number of nodes N , we can

design a plot of b versus N for some value of m (see Appendix F.1) and come up

with the following formula:

N = (b+ 0.44)m (4.1.1)

By using formula 4.1.1, we calculate the branching factors of the 6,788 repairing

structures to complete the sample dataset. Finally, the samples that will be used to

learn the linear regression model will have the following features:

• b, the dependent variable y.

• variables x1 to x6, the explanatory features.

4.1.2.1 Selecting explanatory parameters

The first step for learning the linear model is to select from the input data samples

the parameters xi that better explain the behaviour of the model to estimate the

variable y = b, the branching factor of the repairing structures. The objective is to

determine the relationships between the input features xi of the data samples, and

3The effective branching factor is the number of children generated in each node if the repairing
structure were a uniform tree.
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their roles, either alone or in conjunction with others, in describing the response of

the branching factor b.

In the literature, various methods have been proposed for selecting some subsets

of parameters, which consist in either adding or deleting one or more parameters at

a time according to a specific criterion [31]. These procedures are generally referred

as stepwise methods, which consist in two basic ideas called adding selection method

(adding one or more variables in each step) and elimination method (removing one

or more variables in each step). In our case, we opted for eliminating a set of pa-

rameters at a time from all the candidate parameters. In addition, we show that the

deletion of parameters does not considerably worsen the model with respect to the

full model which includes all the explanatory variables.

b̂ = w0 +
6∑
i=1

wi ∗ xi (4.1.2)

R2: 0.704

adjusted R2: 0.701

Table 4.2: Correlation matrix between dependent variable b and parameters

parameters b

x1 -0.463
x2 -0.409
x3 0.092
x4 0.144
x5 0.081
x6 0.468

Initially, we calculated the linear model with all candidate parameters xi (see

Equation 4.1.2) and we analysed the correlation matrix between each parameter

and the real values of b (see Table 4.2). We see some interesting relationships. It

appears that high values of x6, the number of relevant actions that modify the rele-

vant variables of the plan window, increase the branching factor (positively related),
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and high values of x1 and x2, the depth m and number of fluents in the root node,

respectively, are strongly related in decreasing values of b (negatively related). The

least significant parameters in the correlation matrix are x3 and x5. The parameter

x4 is also loosely related to b in comparison to x1, x2 and x6. In view of these results,

we remove the parameters with the least correlation with b; i.e. x3, x4 and x5.

Some studies consider that parameters with correlation coefficients below 0.5

are not significant to the linear model. In our case, we can observe that none of

the coefficients reach such value, what may be an indication that the linear model

will not properly explain the behaviour of the branching factor. Nevertheless, we

decided to design the linear model with the best three explanatory variables and

then compare it with a non-linear model (see Section 4.1.4).

b̂ ' f(x)← w0 + w1x1 + w2x2 + w6x6 (4.1.3)

R2: 0.689

adjusted R2: 0.687

In order to confirm that x3, x4 and x5 are not significant parameters for the lin-

ear regression model, we used the coefficients of determination R-squared (R2) and

adjusted R2, which are statistical measures of how close the data are to the fitted

model. The R2 is always between 0 and 1, where 0 indicates that the linear model

does not fit the data at all and 1 indicates that the model perfectly fits the real val-

ues of the dependent variable y. In general, the higher the R2, the better the model

fits the data. The adjusted R2 is a variation of R2, which is most commonly-cited

statistic when we are using multiple explanatory parameters because, in contrast

to R2, it accounts for the number of parameters in the equation. The value of the

adjusted R2 is usually lower than the result for R2. As we can see in the two Equa-

tions 4.1.2 and 4.1.3, removing x3, x4 and x5 slightly affect the R2 (this value will

always decrease when a parameter is removed) and the adjusted R2, confirming
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our hypothesis that x3, x4 and x5 are not significant parameters for the linear re-

gression model. Hence, the explanatory variables that we will consider in the linear

regression model are x1, x2 and x6. In addition, We calculated the coefficients of

determination with a linear model using x1, x2 and x4, i.e., selecting the next best

explanatory variable after x6, and we obtained a value of R2 equal to 0.456 and ad-

justed R2 equal to 0.455, thus confirming that the appropriateness of the selection

of x1, x2 and x6 for the design of the linear model.

4.1.2.2 Estimating the time to generate the repairing structure

Once we have the linear regression model, we list the remaining operations to obtain

the estimated time of generating a repairing structure:

Linear method:

1. Calculate b̂ with the fitted linear regression model.

2. Apply formula 4.1.1 to calculate the total number of nodes N̂ .

3. Apply formula 4.1.4 to estimate the time t̂T of generating a repairing struc-

ture T . The value of t̄regress is computed as the average time to apply the

regressed transition function regress to a node G′ in the repairing structures

of the dataset.

t̂T = N̂ ∗ ¯tregress (4.1.4)

4.1.3 Learning the bagging model

Bootstrap aggregating or Bagging is an ensemble method that employs supervised

machine learning methods for classification and regression [15]. Bagging trains

multiple regression predictors in the ensemble using a randomly drawn subset of

the training set. The predictors are combined by averaging the results of predicting
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a numerical outcome generating an aggregated prediction of multiple models which

is less noisy than one calculated by an individual model.

Although there are several models (boosting, stacking, random forest and oth-

ers), we decided to use the bagging model because as a tree ensemble model it offers

better predictions and it is a more stable model than other regression models [43].

Moreover, we emphasize the following reasons:

1. approximate to nonlinear function problems: bagging works well with

problems that are linearly and non-linearly separable. In general, this is an

advantage for tree ensemble models.

2. performs well with large datasets: it allows analysing significant amounts

of data using standard computing resources in reasonable time.

3. white box model: tree ensemble models work as a white box; that is, if a

condition is observable in a model, the explanation for the situation is easily

explained by boolean logic (model tree). By contrast, in a black box model,

the explanation for the predictions is typically difficult to understand, as for

instance in an artificial neural network model.

4. over fitting: bagging takes care of over fitting in contrast to other ensemble

models like Boosting that even though shows better predictive accuracy than

bagging, it tends to over-fit the training data as well.

In order to understand the bagging model, let’s consider first the regression

problem. Suppose we fit a model to the training sample set D={d1, d2, . . . , dn},

obtaining the prediction f̂(x) at any given testing input x. As shown in Figure 4.1,

bagging obtains the prediction as the average of the predictions of a collection of

predictors with bootstrap samples 4, thereby reducing the variance of the predic-

tion. For each bootstrap sample (new training sets) Dc, c={1, 2, . . . , C}, bagging
4The basic idea of bootstrap sample is to randomly draw datasets with replacement from the train-

ing data, each sample the same size as the original training set. This is done C times, producing C
bootstrap datasets.

93



4.1 Selecting the regression model

training set D D2

D1

Dc

ensemble of

the predictors
f̄(x)

samples

bootstrap
predictors averages

Figure 4.1: Operation of the bagging model, using model tress as base models.

fits a predictor f̂c(x). Then, bagging estimates the final prediction as a uniformly

weighted average defined by:

f̄(x) =
1

C
∗

C∑
c=1

f̂c(x) (4.1.5)

More specifically, bagging manipulates the training dataset to generate multiple

explanatory parameters by sampling with replacement. In contrast to the linear re-

gression model, bagging can estimate variables with a long range of values, like the

time to generate the repairing structure. Hence, we opted for estimating directly the

time of generating a repairing structure instead of the branching factor or number

of nodes.
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4.1.4 Comparing the two regression models

In this section, we evaluated and compared the two regression models in order to

select the one with the best accuracy to estimate the real time of generating repair-

ing structures. We used k-fold cross validation to test how well the two approaches

(the linear method and bagging model) are able to get trained by some data and

then predict data they have not seen. Other techniques, however, train the model

using all the sample dataset and evaluate the fitted model with the same dataset

(data that the model has seen before) leading to an overfitted model. Note that

we wish to compare the predicted time of both approaches with respect to the real

time. Since the linear model only predicts the branching factor, we actually calcu-

lated the estimated value of the time for each repairing structure with the so-called

linear method exposed in Section 4.1.2.2, which involves calculating the branching

factor, estimating the number of nodes and then estimating the time. Thereby, we

compared the final result of estimating the time with the linear method (which uses

the linear model) and the bagging model.

4.1.4.1 K-fold cross-validation

The purpose of the k-fold cross-validation is to compare the two approaches. We

applied the 10-fold cross validation by training the linear and bagging models 10

times on 90% of the data and ensuring that each data point ends up in the 10%

test set exactly once. We have therefore used every data point to contribute to

an understanding of how well the two models perform the task of learning from

some data and predicting some new data. More concretely, our sample dataset is

partitioned into k = 10 equal sized subsamples of 678 samples. A single subsample

is retained as the validation data for testing the model, and the remaining k − 1

subsamples are used as training data. The cross-validation process is then repeated

k times (the folds) using each of the k subsamples exactly once as the validation

data. Hence, we trained the two models k times and obtained k estimations of the
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out-of-sample error.

In summary, we checked the two models with a systematic approach, in which

every instance is used for model testing exactly once giving us some amount of

confidence that the error is not too noisy. Next, we will see which model proves

better at predicting the test set points.

Additionally, since the linear method procedure to estimate the time is very dif-

ferent from the bagging model, which directly estimates the time, we were also

interested in applying the same procedure to a branching factor estimated with the

bagging model. Hence, we tested three approaches:

1. the linear method as explained in 4.1.2.2.

2. the bagging method, which computes the estimated branching factor and then

applies the same procedure to estimate the time as the linear method.

3. the bagging model.

Table 4.3: Errors obtained with the three approaches using 10-fold cross validation.

measure of error 5 linear method bagging method bagging model

Root Mean Square Error (RMSE): 135,310 ms 126,768 ms 18,445 ms

Mean Absolute Error (MAE): 14,038 ms 11,256 ms 2,147 ms

Mean Absolute Percentage Error (MAPE): 1,403% 1,125% 214%

Table 4.3 describes the results of applying the 10-fold cross-validation to the

three approaches. We show three measures of error. The RMSE represents the

standard deviation of the residuals; i.e., the difference between the real values and

the estimated values of the time of generating a repairing structure; and the MAE

is the average of the absolute residuals. RMSE and MAE are also expressed in

milliseconds; a good threshold is defined as a value that is closer to the minimum
5See Appendix F.2 for formulas and a small description of each measure of error.
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value of the estimated variable and a bad threshold is a value that is closer to the

maximum value (see Table 4.1 which shows the minimum and maximum values of

t out of all the collected repairing structures). As we can see, the bagging method

is better than the linear method, but the estimated values are too high in relation to

the minimum value of t. On the contrary, the bagging model presents better results

than the linear and bagging methods and its estimation is closer to the real time

values, as it is shown in the RMSE and MAE.

The MAPE is calculated as the average of the absolute value of the residuals

divided by the real time. The MAPE measures the size of the error in percentage

terms. When the predicted variable is within a small range of values, the upper limit

of MAPE is between 0% and 100%, but when the range of values is too large, it is

not possible to define an upper limit. Again, we can see that the bagging model has

better results than the linear and bagging methods. Although MAPE also takes a

fairly high value (214%) in the bagging model due to the large range of values of

the time variable, this value is significantly lower than the value obtained with the

linear method (1,403%) and bagging method (1,125%).

We designed an additional experiment in which we fitted the three approaches

with the complete dataset. Table 4.4 shows the results of the three approaches

for a dataset of 32 new repairing structures obtained from planning tasks of the

rovers, logistics, driverlog and parcprinter domains. More specifically, for

each planning task, we estimated the real time of generating the first repairing

structure with different values of l and m, and we calculated the parameters of

Group 2 related to the plan window (see Section 4.1.1).
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4.1 Selecting the regression model

Table 4.4: Real time and estimated time of the three approaches for generating a
repairing structure.

task l m time linear method bagging method bagging model
tT b̂→ N̂ → t̂T b̂→ N̂ → t̂T t̂T

r
o
v
e
r
s

do
m

ai
n

1 2 6 39 532 103 46
1 5 6 68 680 331 58
2 2 6 17 566 68 102
2 5 6 35 553 164 82
2 4 8 36 466 281 185
2 5 9 37 512 464 482
9 2 5 361 740 669 355
9 4 5 290 882 609 318

10 2 5 234 713 345 586
10 4 6 12,661 1,522 8,535 12,134

l
o
g
i
s
t
i
c
s

do
m

ai
n 1 2 6 46 892 67 62

1 5 6 293 1,144 358 286
2 2 6 43 883 76 46
2 5 6 131 901 215 144
2 4 8 1,398 283 214 1,581
9 2 6 219 179 109 218
9 4 6 451 213 173 496

d
r
i
v
e
r
l
o
g

do
m

ai
n 1 2 6 65 920 89 72

1 5 6 503 1,480 22,400 624
2 2 6 42 1,149 81 36
2 5 6 39 1,172 214 51
2 4 8 381 420 771 852
2 5 9 7,873 859 3,463 8,400
9 2 6 2,024 3,124 3,201 2,085
9 4 6 2,578 7,725 3,762 2,825

10 5 6 18,366 17,277 36,746 18,616

p
a
r
c
p
r
i
n
t
e
r

do
m

ai
n 1 2 6 419 1,525 529 415

1 5 6 13,178 4,646 8,893 12,697
2 4 8 111 606 247 136
2 5 9 1,961 964 931 1,628
9 2 6 208 1,027 91 216
9 4 6 2,819 1,128 685 2,932
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1. the column task denotes the particular planning task for which we estimated

the time of the first repairing structure.

2. the columns l andm indicate the plan window length and the maximum depth

of the first repairing structure, respectively.

3. the column time shows the real time to generate the first repairing structure

with the specified values of l and m.

4. the remaining columns show, for each approach, the estimated time to gener-

ate the first repairing structure.

As we can see in Table 4.4, the bagging model obtains much better results than

the other two approaches since the estimated values are much closer to the real time.

In our particular case, the Reactive Planner uses the estimated time to calculate the

maximum-size repairing structure that can be built within a given time limit (see

Section 3.4.3.1). Let tT be the real time of generating a repairing structure T , t̂T

the estimated time and ts the time available to the Reactive Planner to build the

repairing structure; following, we expose an analysis of the results of Table 4.4:

1. overestimated values of the approaches. If tT < t̂T , then we can ensure

the Reactive Planner will be able to build the search space within the avail-

able time because, as we explained in Section 3.4.3.1, the Reactive Planner

will always choose a repairing structure whose estimated time is below ts;

therefore, we have tT < t̂T < ts. However, if t̂T largely overestimates tT (tT

<< t̂T ), then the Reactive Planner will discard such repairing structure if it

happens that ts < t̂T , when it actually may be the case that the real time of

generating the structure is within the deadline; that is, tT < ts < t̂T . Thus, the

risk of overly large overestimates is that we could rule out choices when there

is actually enough time to build the repairing structure within the available

time.

99



4.1 Selecting the regression model

For instance, assuming ts is equal to 500 ms in the logistics domain task 2,

l = 2 and m = 6; the linear method will discard this configuration due to ts

< t̂T (500 < 883), even though the real time is tT=43. However, the bagging

model will consider this configuration although it slightly overestimates the

real time value. This is because the overestimate of the bagging model is

close to the real time and so within the time limit (43 < 46 < 500). The

same happens in the driverlog domain task 2, l = 5, m = 6. Thus, we are

interested in a model whose estimated values are not overly large and are

close to the real time values, such as the estimates of the bagging model.

2. underestimated values of the approaches. If t̂T < tT , then it exists some

risk that the Reactive Planner runs out of time iff it holds t̂T << tT and ts < tT .

The closer tT to t̂T , the lower the risk. More specifically, if t̂T overly underesti-

mates tT then the Reactive Planner might select a configuration which cannot

actually be built within the available time ts; that is, the Reactive Planner will

run out of time before being able to complete the repairing structure.

For instance, assuming ts is equal to 1,500 ms in the parcprinter domain

task 9, l = 4, m = 6; the linear method will select this configuration due to

t̂T < ts (1,128 < 1,500), and the Reactive Planner will run out of time be-

cause the real time of building the repairing structure is actually much higher

than the estimate, tT=2,819. In contrast, the bagging model will discard this

configuration because its estimated value (2,932) exceeds the time limit.

Table 4.5 shows the errors of the underestimates of the three approaches. As

we can see, the bagging model only presents a MAPE of 8% compared to the

≈56% of the other two approaches. Besides, the results of RMSE and MAE

of the bagging model are better than the results of the linear and bagging

methods.

A closer look at the figures of Table 4.4 show that some underestimated val-

ues of the bagging model are a bit far away from the real value (e.g., the
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parcprinter domain task 1, l = 5, m = 6) and others are very close to the

real time value (e.g., the logistics domain task 9, l = 2, m = 6 or the rovers

domain task 9, l = 2, m = 5). Moreover, the bagging model looks like to un-

derestimate the values when the real time values are too big (time > 10 secs.,

e.g., the rovers domain task 10, l = 4, m = 6 or the parcprinter domain

task 1, l = 5, m = 6).

Table 4.5: Errors for the underestimates of the three approaches.

measure of error linear method bagging method bagging model

Root Mean Square Error (RMSE): 5,295 ms 2,623 ms 221 ms

Mean Absolute Error (MAE): 3,539 ms 1,963 ms 121 ms

Mean Absolute Percentage Error (MAPE): 57% 56% 8%

In summary, the accuracy of the bagging model is confirmed by the results and

analysis exposed in this section. For all these reasons, we opted for using the bag-

ging model in our Reactive Planner

4.2 Experimental evaluation

In this section, we present the evaluation of the Reactive Planner module with two

planning domains, the rovers and logistics domains. Since we do not use exactly

the same domains of the IPC but a modified version (see the rovers domain and

logistics domain used in our approach in Appendices B.1 and E.1, respectively),

we generated a set of planning tasks for each domain that have a similar complexity

to the first ten tasks of the respective IPC benchmarks.

We computed a solution plan for each planning task with the LAMA planner.

Given a solution plan Π, we performed two off-line evaluations (with no simulation

of the execution of Π) in order to test the performance of the Reactive Planner:
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1. generation of the time-bounded repairing structures for Π: the purpose of

this test is to check if the bagging model of the Reactive Planner is capable of

generating the repairing structures for Π within the corresponding time limits.

2. plan repair: we simulate various failures in the plans of the rovers domain

in order to check if the Reactive Planner can find a recovery plan with the

repairing structure of the plan window where the failure occurs. In addition,

we compared the results of our recovery plan mechanism with two other repair

methods [40, 90]. Our primary intention with this experiment is to evaluate

the ability of the structures to recover of a plan failure.

4.2.1 Preparing the sample dataset

The generation of the repairing structures is obviously dependent on the particular

machine in which we run the experiments. Due to the CPU and RAM capacities of

our machine6, structures with a size higher than l = 7 and m = 11 take overly long

times to be generated, causing sometimes memory overflow. Moreover, this also

happens with some structures whose depth is larger than 5 (m >= 5). Given these

computational limitations, the maximum size of the repairing structures we will be

able to generate is l = 7 and m = 11.

Given that the largest possible repairing structure that the Reactive Planner will

handle is l = 7 and m = 11 and that the largest deadline will be thus 7 seconds, we

will consider outliers and discard from the dataset the samples that were generated

in more than 10 seconds. We believe that it is acceptable to drop samples that took

more than 10 seconds because the Reactive Planner will never have more than 7

seconds to build a repairing structure and, as we observed in Section 4.1.4, the

bagging model presents a more pronounced trend to underestimate when the time

of generating a repairing structure is overly large.

Note that, on the other hand, we are not particularly interested in obtaining

6The CPU is an Intel 7 Core i7-3770 @ 3.40GHz with 8 GB of RAM.
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very large trees, not only because their generation may exceed the time limit of

the Reactive Planner but also because the larger the tree, the longer the process of

finding a recovery plan within the repairing structure. Ultimately, our objective is to

provide quick responsiveness to potential plan failures.

4.2.2 Time-bounded repairing structures

In this section, we analyze the accuracy of our Reactive Planner to generate the re-

pairing structures of 12 tasks of the rovers domain and 10 tasks of the logistics

domain. More specifically, we evaluate the timely generation of the repairing struc-

tures of the solution plans for the 22 planning tasks.

As we explained in Section 3.4.3, the Reactive Planner generates various repair-

ing structures for a solution plan Π through an iterative time-bounded construction

process where, in the first iteration, the Reactive Planner generates T1 for a plan

window of length l within a time limit ts of one cycle time. The value of the cycle

time depends on whether we are dealing with a simulated or real system and the

characteristics of the machine. In our experiments, we consider 1000 ms to be a

reasonable deadline for the simulation of an action execution, i.e. a monitor/re-

pair/execution cycle, because the monitor takes ≈ 96 ms, the repair takes ≈ 170 ms

(this is analyzed in more detail in Section 4.2.3) and the remaining time is assigned

for the execution. On the other hand, the limit of 1000 ms (one cycle time) is only

applied to the generation of the first repairing structures. For the construction of the

subsequent structures Ti, the available time of the Reactive Planner will depend on

the number of actions in the plan window of the preceding repairing structure Ti−1.

This is so because while the Reactive Planner is executing the actions of one plan

window, it is simultaneously calculating the repairing structure of the subsequent

plan window. Therefore, the most critical operations are those concerned with the

first repairing structure, which are limited to one execution cycle.
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4.2 Experimental evaluation

Tables 4.6 and 4.7 show the results of generating the structures for the 12 plan-

ning tasks of the rovers domain and the 10 planning tasks of the logistics do-

main, respectively. The data in those tables are the following:
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Table 4.6: Time-bounded repairing structures of rovers domain.

data set complexity T1 (ts =1 sec) T2 T3

task rovers locations goals Π (l,m) time N Π (l,m) ts time N Π (l,m) ts time N
(soil) (rock) (image) (actions) (size) (sec) (nodes) (actions) (size) (sec) (sec) (nodes) (actions) (size) (sec) (sec) (nodes)

1 1 3 1 0 1 6 (2,9) 0.04 30 4 (3,11) 2 1.9 2,887 1 (1,7) 3 0.08 578
2 1 3 1 0 1 6 (4,9) 0.05 167 2 (2,11) 4 0.05 229
3 1 3 1 1 1 9 (4,10) 0.36 1,021 5 (5,11) 4 5.06 7,715
4 1 4 1 1 1 8 (2,10) 0.9 8,780 6 (6,9) 2 6.27 61,480
5 1 4 2 1 1 11 (2,10) 0.58 5,758 9 (6,8) 2 1.63 18,109 3 (3,11) 6 3.21 26,527
6 2 4 2 1 1 11 (3,5) 0.67 2,920 8 (4,8) 3 4.09 18,952 4 (3,10) 4 3.17 19,321
7 2 4 3 1 1 14 (3,9) 1.07 9,420 11 (5,8) 3 2.11 22,545 6 (5,11) 5 4.32 20,595
8 2 5 2 2 1 14 (2,7) 0.72 11,259 12 (2,11) 2 1.98 26,266 10 (5,6) 2 1.83 35,637
9 2 6 3 3 1 18 (2,6) 0.91 13,754 16 (4,5) 2 0.5 5,023 12 (3,7) 4 3.2 27,477

10 2 6 3 3 2 21 (2,8) 0.94 13,378 19 (3,5) 2 2.73 24,338 16 (2,7) 3 2.33 17,112
11 4 10 2 4 3 35 (2,7) 0.73 3,177 33 (2,4) 2 0.12 397 31 (4,5) 2 1.26 3,313
12 4 10 3 4 3 39 (2,7) 0.78 3,167 37 (2,5) 2 1.21 401 35 (4,5) 2 1.15 3,046

T4 T5

task Π (l,m) ts time N Π (l,m) ts time N
(actions) (size) (sec) (sec) (nodes) (actions) (size) (sec) (sec) (nodes)

1
2
3
4
5
6 1 (1,5) 3 0.18 158
7 1 (1,8) 5 0.21 266
8 5 (5,10) 5 5.39 43,131
9 9 (3,8) 3 3.05 24,321 6 (5,7) 3 2.81 55,460

10 14 (2,5) 2 0.39 2,151 12 (3,4) 2 0.65 4,380
11 27 (4,8) 4 3.2 3,916 23 (2,8) 4 0.35 460
12 31 (2,9) 4 2.25 1,193 29 (2,6) 2 0.76 690



Table 4.7: Time-bounded repairing structures of logistics domain.

data set complexity T1 (ts =1 sec) T2 T3

task planes trucks locations goals Π (l,m) time N Π (l,m) ts time N Π (l,m) ts time N
(packages) (actions) (size) (sec) (nodes) (actions) (size) (sec) (sec) (nodes) (actions) (size) (sec) (sec) (nodes)

1 1 2 4 4 20 (3,7) 0.36 184 17 (7,8) 3 1.86 892 10 (6,10) 7 5.70 1,010
2 1 2 4 5 27 (3,7) 0.33 441 24 (6,9) 3 1.46 594 18 (6,10) 6 4.69 950
3 1 2 4 6 25 (2,9) 0.24 248 23 (4,7) 2 1.27 238 19 (7,10) 4 1.69 642
4 1 3 6 7 36 (4,5) 0.29 397 32 (6,10) 4 2.05 153 26 (5,8) 6 3.32 988
5 1 3 6 8 31 (3,6) 0.46 882 28 (2,10) 3 1.62 132 26 (4,7) 2 0.95 407
6 1 3 6 9 36 (2,8) 0.34 158 34 (3,7) 2 1.21 184 31 (7,8) 3 4.05 4,096
7 1 4 8 10 46 (4,5) 0.48 549 42 (6,8) 4 5.23 1,724 36 (3,10) 6 5.06 2,334
8 1 4 8 11 50 (4,5) 0.26 361 46 (6,8) 4 4.05 904 40 (3,10) 6 4.09 1,470
9 1 4 8 12 42 (3,5) 0.17 174 39 (2,8) 3 1.02 198 37 (3,7) 2 1.62 484
10 2 5 10 13 81 (3,4) 0.37 175 78 (3,7) 3 1.29 263 75 (2,7) 3 1.45 364

T4 T5

task Π (l,m) ts time N Π (l,m) ts time N
(actions) (size) (sec) (sec) (nodes) (actions) (size) (sec) (sec) (nodes)

1 4 (3,10) 6 0.74 54 1 (1,8) 3 2.78 541
2 12 (7,8) 6 4.08 2,315 5 (5,10) 7 5.06 4,011
3 12 (7,8) 7 7.62 5,424 5 (5,8) 7 5.16 6,371
4 21 (5,9) 5 5.05 2,148 16 (6,10) 5 6.34 5,340
5 22 (6,8) 4 3.89 2,491 16 (6,10) 6 6.06 2,595
6 24 (5,10) 7 1.05 42 19 (5,10) 5 5.02 1,712
7 33 (2,10) 3 1.33 32 31 (3,7) 2 1.43 472
8 37 (5,6) 3 1.44 922 32 (6,9) 5 3.24 962
9 34 (3,9) 3 0.79 80 31 (2,10) 3 0.92 80
10 73 (4,5) 2 1.51 386 69 (3,9) 4 1.09 55
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1. data set complexity shows the size and complexity of the different planning

tasks of each domain. The number of resources (rovers, planes and trucks),

locations and goals contribute to increase the complexity of each task.

2. The columns under the label T1 are the data corresponding to the first repair-

ing structure. Specifically:

• Π: number of actions of the original solution plan.

• (l,m): l is the length or number of actions of the plan window and m the

maximum depth of T1, respectively.

• time: real time spent in the construction of T1.

• N : number of nodes in the search space of T1.

We recall that the time limit to build T1 is always ts=1 sec reason why ts does

not appear in the data associated to T1.

3. Subsequent repairing structures until covering the entire plan Π. In some

cases only two repairing structures, T1 and T2, were generated, other tasks

required three, four or even five repairing structures to cover the whole plan.

The columns under the label T2, T3, T4 and T5 denote:

• Π: number of remaining actions after discarding the actions that will be

executed with the preceding repairing structure. For instance, in T1 of

the task 9 of the rovers domain (see Table 4.6), the length of its plan

window is l = 2 and thereby the number of actions of the plan when

the construction of T2 is initiated is Π=18 − 2=16. In the case of T2 of

the same task, the length of its plan window is l = 4 and consequently

the number of actions of the plan when the construction of T3 starts is

Π=16− 4=12.

• (l,m): l is the length or number of actions of the plan window of Ti and

m the maximum depth of Ti, respectively.
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• ts: deadline to create the repairing structure. The value of ts for building

Ti other than T1 is set equal to as many seconds as number of actions

covered by the previous repairing structures Ti−1. For instance, in T2 of

task 3 of the rovers domain, ts=4 because l = 4 in T1. In T4 of task 8 of

the same domain, ts=5 because l = 5 in T3.

• time: real time spent in the construction of the repairing structure.

• N : number of nodes in the search space of the repairing structure.

All times are measured in seconds. In Tables 4.6 and 4.7, five repairing structures

(T1, T2, T3, T4 and T5) were created for all tasks except for tasks 1 to 8 of the rovers

domain, where:

• T1 and T2 suffice to cover the full plan Π in tasks 2, 3 and 4.

• T1, T2 and T3 suffice to cover the full plan Π in tasks 1 and 5.

• T1, T2, T3 and T4 suffice to cover the full plan Π in tasks 6, 7 and 8.

We highlight two observations about the repairing structures of the rovers do-

main in Table 4.6. The first remark is that almost every Ti was generated within the

deadline (time < ts), except T1 of task 7; T2 of tasks 3, 6 and 10; and T4 of tasks

8 and 9, which slightly exceeded its time limit. Most notably is the case of T2 of

task 4, which generation time exceeds ts in more than 4 seconds. The reason of this

outlier is that the dataset used to train the bagging model does not contain enough

structures with such complex sizes. The dataset has 6,530 samples out of which

only 46 structures are of size (l,m)=(6,9). We executed an additional test in which

we added ten samples of size l = 6 and m = 9 in the dataset, giving a total of 6,540

samples. Then, we fitted the model and estimated the size of T2 of task 4 again. In

this case, the Reactive Planner returned a structure of size l = 6 and m = 8, which

generation time also exceeded the time limit, but only in 3 seconds.

The second observation is that, for some repairing structures, we can also ob-

serve that the values of (l, m) and ts are the same but the values of time and N
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are different. For instance, (l,m)=(2,10) and ts=1 sec for T1 of tasks 4 and 5 but

the values of time and N are fairly different because of the increasing complexity of

these tasks in terms of the number of locations and goals, which implies a higher

branching factor in each task. In general, the branching factor also depends on the

number of relevant variables in the plan window of Ti and, hence, a tree like T1 of

task 5 may result in a smaller search space than the one of T1 of task 4.

In some structures, like T1 of tasks 1 and 2, the number of nodes N is small,

i.e. the search space is fairly small because the newly generated partial states are

all repeated nodes after a certain point. Hence, in those cases the entire state space

is quickly exhausted, in contrast to other repairing structures like the ones in tasks

6 to 12.

As we explained in Section 3.4.3.1, the Reactive Planner applies a maximization

process that computes for every pair of values of l and m whether or not the value of

t̂T is smaller than ts and selects the values of l and m for which t̂T attains its largest

value without exceeding the value of ts (t̂T < ts). This selection criterion can be

sometimes problematic, like in T2 of task 4, where the Reactive Planner selects the

structure of size (l,m)=(6,9), which generation time overly exceeds the time limit,

even though there are more combinations of values of l and m that also satisfy

t̂T < ts and in which time may not exceed ts. Our model is sufficiently flexible

and allows us to change the selection criterion according to our needs, providing a

stronger guarantee that the Reactive Planner will generate the structure within the

time limit. For example, we can change the criterion and select the second largest

value of t̂T or the structure with the smallest value of l. Note that selecting the

smallest value of l, i.e. l = 2, provides more guarantee that the structure will be

generated within ts because it is very likely that the number of nodes of the tree will

not be too large.

Table 4.7 shows the results obtained for the logistics domain, where the goal

is to find optimal routes for several vehicles which have to deliver a number of pack-

ages. All of the repairing structures were generated within the time limit, except for
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8 repairing structures that slightly exceeds the time limit. Most notably are the cases

of T2 of task 7, T3 of task 6 and T5 of task 4 whose generation time exceeds ts in

≈ 1.26 seconds. In general, the search trees generated in this domain are smaller

(lower values of N) than those of the rovers domain under the same value of ts.

This is because the branching factor in the logistics domain is much lower than

in the rovers domain since trucks are confined to move in a particular city and,

hence, loading a package in a truck will only ramify across the trucks defined in the

city where the package is located. The same happens with the planes. In contrast,

in the rovers domain, rovers are equipped with all functionalities and therefore the

branching factor and number of nodes N are considerably higher. We also note that

some search spaces take the same time to be generated but present a significantly

different number of nodes, like T2 of task 7 and T5 of task 3 (1,724 and 6,371 nodes,

respectively). The is because in T2 of task 7, many of the evaluated nodes are re-

peated nodes, which are not counted in the parameter N .

From the above experiments, we can draw the following general conclusions:

1. There are some cases where the generation time exceeds the time limit be-

cause the Reactive Planner builds rather large repairing structures. The reason

is that the dataset used to train the model does not contain sufficient structures

with such complex sizes.

2. In our model, when the repairing structure is not generated within the time

limit, the Reactive Planner will not have available a complete repairing struc-

ture to find a recovery path. If so, the Reactive Planner will return a not found

solution plan message when requested a recovery plan and the Deliberative

planner will be activated. However, the Reactive Planner can actually use the

structure, although it is not completely generated, to find a recovery path that

reaches the root node Gl of the structure directly.

3. In highly reactive applications, we can opt for changing the selection criterion
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of the Reactive Planner and select small repairing structures (e.g., l = 2 or l =

3) and depth values of m two or three times larger than l and thus provide a

stronger guarantee that the Reactive Planner will generate the structure within

the time limit. In other words, selecting lower values of l and m can offer

more reactivity with the additional cost that the repairing structure presents

less possibilities to find a node in the state space that matches the current

world state.

All in all, the results corroborate the accuracy of the bagging model and the

timely generation of the repairing structures. Overall, out of all of the experiments

carried out in the diverse domains, we can say that 85% of the repairing structures

are always generated within the time limit. On the other hand, in contrast to most

of reactive planners [8], our model is far more flexible since it is capable of deal-

ing with more than one action and multiple failure states with a single repairing

structure.

4.2.3 Repairing plan failures

The objective of this section is to test our repair mechanism explained in Sec-

tion 3.4.2. We compared the average times to recover from a plan failure with

our Reactive Planner, a replanning mechanism and a plan-adaptation mechanism.

The failures were randomly simulated in the plan window of the T1 of the planning

tasks of the rovers domain described in Table 4.6. We generated a plan failure for

each action of the plan window associated to T1. We changed the value of a fluent in

the initial state, thus provoking an erroneous execution in the action a1; the second

failure, applied in the state resulting from a successful execution of a1, affects action

a2; the third failure affects a3, assuming the two preceding actions, a1 and a2, were

correctly executed and so on.
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4.2.3.1 Structure of the results table

In this section, we explain the structure of the results presented in Table 4.8, which

depicts the outcome of the plan failure repair in the rovers domain with three

recovery approaches:

1. Reactive Repair: In this approach we use the Reactive Planner over the first

repairing structure T1.

2. Adaptation: This approach applies the LPG-Adapt mechanism [40], which

repairs a failure adapting the actual plan to the new current state.

3. Replanning: This approach uses the classical planner LAMA [90] as a delib-

erative planner to obtain a new plan from scratch (replanning) when a failure

is detected.

The row type in Table 4.8 denotes the simulated plan failures, which are classi-

fied in four categories:

A. Failures generated due to an error in the execution of the action (Navigate ?r

?wf ?wt). An error of type A is because of: 1) the rover ?r is not located in ?wf

at the time of executing the action or 2) the path from ?wf to ?wt is blocked

and the rover cannot traverse it.

B. Failures that prevent the rover from analyzing the results or taking good pic-

tures to complete its plan mission. This type of failure is caused by: 1) the

rover loses the sample (rock or soil) by an unexpected event when it is about

to analyze it, or 2) the camera loses calibration before taking the picture in a

given waypoint position.

C. Failures that are solved with the help of other rovers when a hardware failure

disables the device of a rover. Since fixing the damaged hardware is not an

eligible option in the rovers scenario, the only possible way to repair this
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failure is with the help of another rover, as long as this is feasible within the

repairing structure.

D. Failures that positively affect the plan execution.

Table 4.8 also describes the following information:

• Π: number of actions of the plan Π at the time of executing the recovery plan

mechanism.

• Π’: total number of actions of the recovery plan Π’. Failures labeled as root in

Π’ denote that the recovery plans were calculated up to the root node of T1.

• reused Π: number of actions of Π that appear in Π’.

• time: real time of the procedure to repair the plan measured in milliseconds.

4.2.3.2 Analysis of the outcome

In this section, we analyze the results of the experiments with the three repair ap-

proaches. We will put more emphasis on the solution plans of our Reactive Planner,

which is one of the main contributions of this PhD dissertation. As we can see in

Table 4.8, the three approaches were able to find a plan except for failure 4 of task

2. In this case, a recovery plan does not exist because the path from waypoint w1 to

w2 is blocked and there is no other possible way to navigate to w2.

In our Reactive Repair approach, the solutions found to each type of plan fail-

ures depicted in the row type of Table 4.8 are as follows:

A. The solutions are about rerouting rovers through other paths using the avail-

able travel maps.

B. The recovery implies either exploring the area again seeking a new sample of

rock or soil (e.g., failure 2 of task 2) and then analyze it, or calibrating the

rover’s camera again (e.g., failure 2 of task 4).
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4.2 Experimental evaluation

C. Failures of this type were found in two cases (failure 3 of task 6 and failure

2 of task 12). The Reactive Planner was capable of solving these two failures

because T1 comprised paths involving the second rover. For instance, in failure

3 of task 6, a hardware failure prevents the rover from analyzing the soil in

a specific location and our model repairs the failure with the second rover,

which explores the area seeking for a sample of soil, analyzes the sample and

communicates the results to the lander.

D. Solutions to failures of type D leverage the positive failure, which achieves the

effects of the next action to execute and, consequently, the Reactive Planner

proceeds with the following action in Π.
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Table 4.8: Time and recovery plans for repairing tasks with T1 in the rovers domain.

tasks 1 2 3 4 5 6 7 8 9 10 11 12
failure # 1 2 1 2 3 4 1 2 3 4 1 2 1 2 1 2 3 1 2 3 1 2 1 2 1 2 1 2 1 2

type D A A B A A D A A D A B A A A A C A B A A A A B A A A A A C
Π 6 5 6 5 4 3 10 9 8 7 9 8 13 12 11 10 9 16 15 14 16 15 22 21 25 24 35 34 39 38

re
ac

ti
ve

re
pa

ir
(R

ea
ct

iv
e

Pl
an

ne
r) Π’ 5 6 7 6 4 7 9 10 9 6 10 9 15 13 12 11 11 18 16 16 17 16 24 22 26 25 37 35 41 39

(root) (root) (root) (root) (root) (root) (root) (root) (root)

reused Π 5 4 6 5 3 7 8 9 8 6 9 8 11 12 11 10 8 14 15 14 16 15 21 21 25 23 33 34 39 38

time* 1.07 0.58 0.15 1.46 1.13 0.84 0.16 0.13 0.09 1.44 0.27 0.24 5.19 0.17 0.24 0.20 0.96 1.41 0.16 2.26 0.28 0.22 22.13 0.23 0.50 2.63 4.18 0.42 0.69 0.35

ad
ap

ta
ti

on
(L
P
G
-A

d
a
p
t) Π’ 5 9 9 6 4 7 13 11 9 6 12 12 13 13 13 15 14 18 19 14 19 20 23 25 28 25 40 37 45 41

reused Π 5 4 6 5 3 7 10 8 8 4 9 7 10 10 11 10 9 13 14 12 15 14 18 19 23 21 30 27 29 33

time* 54 45 58 52 43 51 45 44 43 53 53 52 55 45 48 45 49 56 49 57 43 53 44 56 44 45 51 49 52 50

re
pl

an
ni

ng
(L
A
M
A

) Π’ 5 6 7 6 4 7 11 9 9 5 11 11 15 15 12 10 14 17 17 14 18 16 24 24 28 27 36 34 39 42

reused Π 5 4 5 5 3 7 6 4 4 5 5 6 9 7 3 1 2 4 10 0 4 4 13 4 15 3 22 25 21 29

time* 36 39 54 38 36 32 39 38 41 39 41 41 42 59 51 51 51 51 52 52 59 57 68 69 74 72 140 166 148 149

*time expressed in milliseconds.
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In general, we can classify the solution plans found by our repairing approach

(row Π’ in Table 4.8) as:

1. plans that benefit from positive failures of type D, and so they contain fewer

actions than the original plan Π (e.g. failure 1 of tasks 1 and 3).

2. plans that reuse all the actions in Π (e.g. failure 1 of tasks 2 and 6).

3. plans that reuse only some of the actions in Π (e.g., failure 1 of tasks 5 and

11).

With regard the performance outcomes in Table 4.8 and the summary of statistics

in Table 4.9, we can highlight the following conclusions:

• Reused Π: Comparing the values of reused Π of our Reactive Planner and

LAMA in Table 4.8, we can observe that the Reactive Planner reuses more

actions of Π in the new plan Π’, particularly in the most complex tasks 6 to 12.

For instance, in failure 1 of task 6, both approaches repair the failed plan with

12 actions, but the Reactive Planner reuses the total number of actions of Π

(11 actions) compared with the three actions of the replanning approach. This

seems reasonable since LAMA does not repair the failed plan but it computes

a new plan from scratch. Moreover, the Reactive Planner also outperforms

LGP-Adapt, notably in the failures of the tasks from 7 to 12.

The first column of Table 4.9 shows the mean and standard desviation of the

number of actions of the original plan Π that are reused in the recovery plan

Π’ for all the failures in Table 4.8. As we can see, LAMA is the approach that

presents the worst results, reusing only 51% of the actions of the original plan

in average. In contrast, our Reactive Planner is the approach that shows the

best results with a high percentage (92%) of reused actions in average.

• Plan quality: We can see in Table 4.8 that the plan quality or number of

actions of Π’ is slightly higher with the Reactive Planner than with LAMA in
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4.2 Experimental evaluation

some cases (e.g., failure 1 of task 12 or failure 3 of task 7), and lower in some

other cases (e.g., failure 2 of task 12 or failures 1 and 2 of task 10). LAMA is

able to find shorter plans in a few cases because it computes a plan for the new

situation without being subject to maintain the actions in Π. Nevertheless, the

Reactive Planner returns plans of better quality (fewer actions) than LAMA as

shown in the column increase of Π’ in the summary Table 4.9. This column

denotes the percentage increase in the number of actions of Π’ with respect to

the original plan Π. Thus, a value of, say, 2% indicates that Π’ is, in average,

2% longer than Π. The column shows the mean value and standard deviation

for all the recovery plans in Table 4.8. The Reactive Planner is the approach

that shows the best results, where the recovery plans Π’ are, in average, 3.76%

longer than the original plan. In contrast, LPG-Adapt is the approach that

shows the worst results with an average increase of the plan length of 15.89%.

• Computation time: According to the time results of Table 4.8, the Reactive

Planner is much faster than the other two approaches. The most costly result

is presented in the failure 1 of task 9, which runtime is 22.13 ms. In this case,

the Reactive Planner must explore the entire search space to find a recovery

plan up to the root node. Other examples where the Reactive Planner explores

the entire search space are presented in tasks 3 and 5, where the recovery

plan reaches the root node. Despite this, Table 4.9 shows outstanding runtime

results of the Reactive Planner compared to LPG-Adapt and LAMA, which

proves the benefit of using a reactive repair to fix plan failures.

Table 4.10 shows some results of the Reactive Planner when the search space

is exahusted to find a recovery plan. We selected different repairing structures

from Table 4.6, and we run our recovery mechanism until the search space is

exhausted. As we can see, in the case of a search space of 13,378 nodes (T1

of task 10), the Reactive Planner takes 54.5 ms. LPG-Adapt and LAMA for

the same task 10 found a solution plan in ≈ 45 ms and ≈ 70 ms, respectively
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(see the row time of the adaptation and replanning approaches for the task 10

of Table 4.8). All in all, in relatively big search spaces like T2 of task 4, the

Reactive Planner only takes a small amount of time in exploring the complete

search space (we can say the Reactive Planner guarantees a response time of

≈ 156 ms in this complex case).

Table 4.9: Summary of statistics for the three approaches.

reused (%) increase of Π’ (%) time (ms)
µ σ µ σ µ σ

Reactive Planner 92 8 3.76 21.56 1.65 4.05
LPG-Adapt 85 15 15.89 30.41 49.47 4.72

LAMA 51 27 6.62 25.03 62.83 36.99

Table 4.10: Time of searching a plan failure in the worst case.

task Ti N worst case time (ms)
5 T1 5,758 14.2
10 T1 13,378 54.5
9 T1 13,754 56
5 T2 18,109 65.1
6 T2 18,952 65.9
8 T3 35,637 101.65
4 T2 61,480 155.9

The results of the experimental evaluation presented in this section shows that

our Reactive Planner throws outstanding results compared to the adaptation ap-

proach, LPG-Adapt, and the replanning approach LAMA. This proves the benefit of

using the Reactive Planner to repair plan failures in reactive environments besides

avoiding the overhead of communicating with a deliberative planner. In conclusion,

we can affirm that our model is a robust recovery mechanism for reactive planning

that also provides good-quality solutions and performs admirably well in all the

measured dimensions.
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4.3 Conclusions

In this chapter, we have presented the evaluation of the Reactive Planner. First,

we compared two regression models to estimate the time of generating a repairing

structure and we selected the bagging model, which presented the smallest estima-

tion error. Next, we evaluated the performance and reactiveness of our single-agent

Reactive Planner by conducting two experiments. The purpose of the first experi-

ment was to check whether the Reactive Planner is able to build repairing structures

within the available time and the second experiment evaluated the performance of

our recovery mechanism compared with two other deliberative methods.

The results in Sections 4.2.2 and 4.2.3 show that the Reactive Planner outper-

forms other repairing mechanisms. The most relevant limitation of our model is the

machine dependency of the regression model explained in section 3.4.3.1. In order

to reproduce the experiments, or to export them to other systems, the training of the

regression model must be repeated to adjust the values for a particular processor.

This is a common limitation for any machine learning regression model.

In summary, the overall show that there is a 90% likelihood to obtain a repairing

structure within the time limit. Additionally, the exhaustive experimentation carried

out on the repairing tasks confirms that the repairing structure together with the

reactive recovery process is a very suitable mechanism to fix failures that represent

slight deviations from the main course of plan actions. The results support several

conclusions: the accuracy of the model to generate repairing structures in time, the

usefulness of a single repairing structure to repair more than one action in a plan

fragment while reusing the original plan as much as possible, and the reliability and

performance of our recovery search procedure in comparison with other well-known

classical planning mechanisms.
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Chapter 5

Multi-Agent Reactive Plan Repair

“Collaboration begins with mutual understanding and respect.”

(Astronaut Ron Garan)

In the previous two chapters, we have presented a single-agent reactive exe-

cution model that allows the agent to execute its plan while it is simultaneously

calculating a repairing structure for repairing potential failures in the subsequent

portion of the plan. This anticipatory behaviour grants reactivity and a quick re-

sponsiveness: if a failure occurs, there will be always available a repairing structure

that comprises a restricted representation of potentially reachable world states and

with which the agent will be able to promptly find a recovery plan. This model, em-

bedded in the PELEA architecture, ensures a continuous and uninterruptedly flow

of the execution agent, thus saving the agent from the need to resort to a planning

agent.

Following our investigations in single reactivity, we are interested in exploring

the extension of the model to a multi-agent context for collaborative repair where

at least two agents participate in the final solution. The multi-agent scenario differs

considerably from a single-agent context because agents cannot foresee in advance

which other agent may claim for help and, therefore, the repairing structures of
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the agents do not contain helpful information for assisting the agent. This way, the

mission of an agent who is asked to provide help consists in creating at the time

of the request a combined repairing structure that supports fixing the failure of the

demanding agent as well as the adaptation of its own plan to repair the failure.

Ultimately, the objective is to come up with a Multi-Agent Reactive Planning and

Execution (MARPE) model that ensures the continuous and uninterruptedly flow of

the execution agents.

Since we are working in a reactive environment where several agents execute

their plans, our aim is to support two main features in the collaborative repair pro-

cess:

1. Involvement of multiple agents: an agent can request help from one or more

agents.

2. Promptly response: To improve responsiveness, only a maximum of two

agents can intervene in the repair process, the agent that fails and the agent

that provides the help. We limit the provision of assistance to a single agent

for the sake of obtaining a promptly response. The more agents involved in

a response, the more time needed to calculate a response. Clearly, this re-

stricts the failures that can be reactively solved. However, if solving the failure

of an agent requires more than one solver agent then it is likely to be more

worthwhile to resort to replanning than slowing down the execution of multi-

ple agents. Ultimately, the MARPE model is not as a solution to cooperatively

solve all the upcoming failures but a system towards a global reactive solution.

Our MARPE model is aimed to work within a reactive context and thereby we

advocate for a fast solution to solving the failure. More specifically, our primary

objective is that the agent that seeks assistance can obtain a promptly solution, if

possible.
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5.1 Motivating example

This chapter is organized as follows: Section 5.1 introduces a motivating exam-

ple to illustrate the different concepts that will be presented throughout the Chap-

ter. Next, we present the architecture in which the MARPE model is embedded.

Section 5.3 introduces the context and the characteristics that define the recovery

process of a failure in a multi-agent environment. Section 5.4 explains in detail the

collaborative repair mechanism and, finally, Section 5.5 presents some conclusions.

5.1 Motivating example

In this section, we present an illustrative example that describes the behaviour of

several agents when they participate in a multi-agent repair process. The example

extends the Planetary Mars scenario of Section 3.2 with two more rovers.

w1

w2

w3r
s2

s1B

A

C

L

Figure 5.1: Initial state of the Mars domain motivation scenario.

Figure 5.1 shows the initial situation of a particular problem of a multi-agent

version of the Mars domain scenario (see Appendix A.2) with three rovers (A, B and

C). The waypoint w2 is the initial location of lander L and the rovers, and L remains

always in w2. The mission of A is to use the microscopic camera to analyze rocks r
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5.1 Motivating example

located in w3, communicate the results to L, and navigate to the initial position w2.

The mission of B is to analyze a soil sample s1 located in w1, communicate the results

to L from w1, and navigate to w2. The mission of C is to analyze a soil sample s2

located in w3, communicate the results to L from w3 and navigate to w2. Rovers can

only communicate if the transmission device is not disabled, i.e. the fluents 〈trans-

A,true〉, 〈trans-B,true〉, and 〈trans-C,true〉 are present in the current world state.

Likewise, they can only analyze soil or rock samples if the device to analyze is not

disabled; i.e., if fluents 〈analyze-A,true〉, 〈analyze-B,true〉, and 〈analyze-C,true〉

hold in the current world state. On the other hand, A and B have capabilities to

explore the area seeking for more soil or rock samples (fluents 〈seek-A,true〉 and

〈seek-B,true〉). Rovers have good maps to travel between two waypoints, except for

rover C, which can not navigate from w2 to w3.

Rovers are entities that encompass a planning agent and an execution agent.

The planning agent of each rover calculates a plan for its respective problem that

will be executed by the associated execution agent in a shared environment (the

solution plan of each rover is shown in Appendix A.2.4).

While planning agents generate the plans, rovers publicize each other how they

can contribute if a failure occurs over the course of the execution. Thus, agents are

apprised of the services or capabilities provided by the other agents, which they

might need to resort to if a failure occurs during the execution.

In case of a failure, the first thing an execution agent will attempt is to repair it

with its own repairing structure, as we explained in Section 3.4.2. Whenever self-

repairing is not possible, the agent will seek assistance from other agents in order

to attempt solving the failure collectively.

Given our Mars scenario, let us assume that A fails when executing the action

(Analyze A r w3). The failure produces two alterations in the current world state: i)

rover A has no longer the capability to analyze rocks and ii) its current location is

w1 instead of w3; i.e., the fluents 〈analyze-A,false〉 and 〈loc-A,w1〉 hold in the world

state. This failure prevents A from analyzing the rock.
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Let’s assume rover A is not able to fix the failure with its single repair mechanism

and so it requests help from rover B. Through the publicized services, rover A knows

that rover B is able to analyze the rock r and send the results of the analysis back

to him; i.e., B can reach the fluent 〈have-A,r〉. Rover B receives A’s request and tries

to find a recovery path that gives support to rover A as well as keeping the course

of the execution of its current plan window. Assuming that rover B finds a recovery

path, when the actions of the recovery path are executed, rover A will dispose of the

rock analysis. Consequently, the only remaining actions that A needs to execute are

(1) navigating from w1 to w3 (2) communicating the results of the analysis to L and

(3) navigating to the destination waypoint w2.

5.2 Architecture

In this section, we present the architecture of our MARPE model. More specifically,

we extend the architecture presented in Chapter 3 with two new mechanisms:

1. Publicization services: through this mechanism, an agent informs the rest of

agents of the fluents it can achieve; i.e., how it can contribute and assist others

in the case of a potential failure. Agents publicize their services before plan

execution, when planning agents are calculating the initial solution plan for

each execution agent.

2. Collaborative repair process: we augment the capabilities of the Reactive Plan-

ner with a repair mechanism that allows execution agents to solve plan failures

collectively. For this purpose, agents use the services publicized by the other

agents in order to know who is a potential contributor if a failure occurs.

The collaborative repair process, which is the objective of this chapter, relies

upon a recovery process that extends the Reactive Planning and Execution (RPE)

model presented in Chapter 3 to a multi-agent environment. Figure 5.2 shows the
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control flow of the architecture of our MARPE model. We incorporate a new coor-

dination level between the execution agents through the two functionalities men-

tioned above: the publicization services and the collaborative repair mechanism.

Environment
real world

(Execution)

(Monitoring)

publicization

wait
(time)

plan monitoring

(Reactive Planner)

generate
repairing
structures

single-repair

collaborative
repair

Execution Agent i

Planning Agent

Π

Π

Π failure

Π’

action state

acting sensing

plan Π failure

Execution Agent j

(Monitoring)

Planning Agent

(Reactive Planner)

collaborative
repair

publicization

failureΠ’
request

reply

services (fluents)

Figure 5.2: Architecture of the multi reactive planning and execution model.

Given an execution agent i registered in the system, after soliciting the initial

solution plan to its planning agent (planner), agent i will publicize the services

information through a broadcast message to the rest of execution agents (boxes

publicization in Figure 5.2). These services are the fluents that appear in the effects

of the actions of the planning task of i. Agent i publicizes its achievable fluents so

that the rest of agents are aware of the capabilities of i. Then, the recipient agents

remove the fluents that are needless to them and record agent i as a potential helper

agent. For example, if agent i publicizes the fluent 〈v, p〉, agent j will ignore such a

fluent if 〈v, p〉 is not defined in the preconditions of its actions nor in the goals of its
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planning task. Otherwise, j will register that the fluent 〈v, p〉 is achievable by agent

i so that agent j may request agent i to repair the fluent 〈v, p〉 in case of a failure in

the plan of agent j.

In our motivating example, rover A publicizes with an asynchronous broadcast

message the following fluents to rover B and rover C:

• 〈locs-s1,w1〉, 〈locs-s1,w2〉, 〈locs-s1,w3〉, 〈locs-s2,w1〉, 〈locs-s2,w2〉, 〈locs-

s2,w3〉, 〈locs-r,w1〉, 〈locs-r,w2〉, and 〈locs-r,w3〉; these fluents denote that A

can help seek more soil or rock samples in any waypoint.

• 〈loc-A,w1〉, 〈loc-A,w2〉 and 〈loc-A,w3〉; meaning that A can navigate to w1, w2,

or w3.

• 〈have-A,s1〉, 〈have-A,s2〉, 〈have-A,r〉, 〈have-B,s1〉, 〈have-B,s2〉, 〈have-B,r〉, 〈have-

C,s1〉, 〈have-C,s2〉, 〈have-C,r〉; these fluents indicate that A can achieve the

results of the analysis of soil and/or rock samples for rover B and C; this capa-

bility is also applied to itself.

• 〈comm-r-w1,true〉, 〈comm-r-w2,true〉, 〈comm-r-w3,true〉, 〈comm-s-w1,true〉, 〈comm-

s-w2,true〉, and 〈comm-s-w3,true〉; these fluents represent that rover A is able to

communicate the results of the analysis to the lander L from any waypoint.

Rovers B and C receive the services communicated by A and filter out the flu-

ents that are useless to them; e.g., the fluents that represent something that A can

achieve by itself (navigate to any waypoint) or the fluents that are not defined in the

preconditions of their actions. Likewise, B and C publicize the same services as rover

A, except that rover C is not able to achieve fluents related to finding new samples

of soil or rock because rover C does not have capabilities to seek more samples.

In our approach, agents generate the service information automatically and re-

ceive updated information at any time during the plan execution. For instance, if

rover A looses the capability of communicating the results of the analysis then rover
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A will publicize a new service information, excluding any fluent of the form 〈comm-

si-wi,true〉, in which si is a soil or rock sample and wi is a waypoint; and excluding

also the fluents 〈have-B,si〉 and 〈have-C,si〉, which are achieved through the action

Comm-rover that communicates the results of the analysis to the other rovers (B and

C in this example).

Communicating service information in a multi-agent environment is common

practice. In some approaches, the transmitted service information is the relation-

ships that agents discover during the planning process such that agents learn how

their plans may affect or be affected by other agents [65]. In our case, however,

service information is used at execution time to inform agents who they can address

in case of a failure.

In a multi-agent system where all agents work in the same environment, the

solution returned by the planning and repair methods (single-repair, collaborative

repair, and the Planning Agent in Figure 5.2) may interfere with the actions of the

plan of any other agent (for instance, in our rovers scenario, an interference will oc-

cur if both rover A and rover B have a plan to analyze the rock r at the same time).

In this kind of situations, we advocate for solving the interference during execution

with our MARPE model whenever the monitor module detects the interference.That

is, instead of detecting and solving conflicts between plans (interferences) at plan-

ning time, we relegate these to execution time, thus making an interference become

a potentially failure when plans are executed at runtime, and hence solving the

failure with the collaborative repair of our MARPE model 1.

Next section explains the context and characteristics where the collaborative

repair takes place. The collaborative repair is explained in detail in Section 5.4.

1A different behaviour of our MARPE model is to not allow recovery plans which interfere some-
how with the actions of other plans under execution. In this case, the agent activates a verification
process that checks whether the recovery solution negatively affects any other plan being currently
executed; if so, the agent does not accept the recovery plan as valid. The conflict verification process
is explained in Appendix G
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5.3 Defining the formal context

In this section, we explain the context and the characteristics that define the re-

covery process of a failure in a multi-agent environment. The key purpose of the

collaborative repair is to let agents assist others to repair a failure, if possible, in

order to ensure a continuous and uninterruptedly execution. If agents do not reach

an agreement to collaborate to fix together a particular failure, then the failed exe-

cution agent calls its planning agent to obtain a new plan.

This section is organized as follows. First, we formally define the planning tasks

of multiple agents that work in a common environment and the existing connection

between the knowledge of the agents. Next, we explain the context of a plan fail-

ure in an unpredictable environment where several execution agents are working

together.

5.3.1 Planning tasks of the agents

As we described in the motivating example of Section 5.1, execution agents are

independent to each other and they are assigned a plan that they must execute

to reach the goals of their tasks. All the agents operate in the same environment

and they can share certain pieces of information depending on the type of agent.

Specifically, the collaborative repair is built on the grounds that agents although

independent handle some common knowledge and information of the environment

(publicization services), which is the key issue to come up with a collaborative repair.

Formally, a multi-agent planning task is a collection of independent planning

tasks (see the definition of planning task in Definition 3.1), one per agent. Let AG

be a finite non-empty set of agents {1, . . . , n}; the planning task of an agent i ∈ AG

is defined as P i = 〈V i,Ai, Ii,Gi〉, where:

• V i is the set of state variables known to agent i. Given two agents i and j

with their respective V i and Vj , there may be variables that are shared by the
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two agents, i.e. v ∈ V i ∩ Vj . During the publicization service, recipient agents

store the variables shared with other agents. In our motivating example, the

set of agents AG is {A, B, C}. The agent A has the set VA that contains variables

like trans-A or loc-L; the agent B has the set VB that contains variables like

trans-B or loc-L; and the agent C has the set VC that contains variables like

trans-C or loc-L. Hence, the three agents share the variable loc-L.

• Ai is the set of capabilities (planning actions) of a given agent i. Given two

agents i and j, agent i can modify with its capabilities the value d of a variable

v such that v ∈ V i ∩ Vj . For this reason, during publicization, an agent i

publicizes the fluents 〈v, d〉 that it can achieve with its planning actions, i.e.

〈v, d〉 ∈ eff(a)/a ∈ Ai, so the rest of agents are informed of the capabilities of

i. For instance, in our motivating example, the rovers A and B have the same

capability to Seek for more soil or rock samples and thereby the two rovers

can modify the value of the variables locs-s1, locs-s2 or locs-r. As another

example, rover A can change the value of the variable have-B by executing the

action Comm-rover that offers A the capability to communicate the analysis of

a given sample to another rover.

• Ii is the subset of fluents of the initial state I that are visible to i. Although

the initial state of the world is the same for all the agents, the visibility that

each agent i has of the world state is limited to its state variables V i. For

instance, A does not know the variables trans-B and trans-C that represent a

transmission device located in the rovers B and C, respectively. Hence, fluents

trans-B and trans-C will not be part of IA.

• Gi is the set of fluents that define the goals of the task P i. In our multi-agent

planning task, the agents’ goals are disjoint sets; i.e., Gi ∩Gj = ∅. An example

of a fluent goal of rover C is 〈loc-C, w2〉 ∈ GC .

A multi-agent scenario works as follows: each planning agent calculates a plan
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Πi for the goals Gi of the task P i and then the associated execution agent will

execute Πi. Given that the goals of the planning tasks are disjoint sets and that

planning agents independently compute a plan for each task, there do not exist

dependencies among the actions of the computed plans. However, since execution

agents operate in a common environment, as shown in the motivating example of

Section 5.1, conflicts (failures) between the agents’ plans may arise at execution

time.

5.3.2 Plan failures in dynamic environments

The RPE model presented in Chapter 3 draws upon the construction of the regressed

plan for a sequence of actions or plan Π (Definition 3.3). Given a planning task

P = 〈V, I,G,A〉 and a plan Π that solves P, the chronologically sequence of partial

states is obtained by regressing the task goals G through the actions of Π. That is,

each partial state of the regressed plan represents the minimal set of fluents that

must be true in the current state at each point to ensure that G is accomplished.

In highly dynamic and unpredictable environments, where failures may fre-

quently occur, it is preferable to focus exclusively on restoring the most immediate

actions regardless whether the repair affects the achievement of the task goals G

since obtaining a fully executable plan is usually unaffordable. Besides, guarantee-

ing the fulfilment of G can be regarded as waste effort given that the occurrence of

future failures will most likely affect again G. Thus, conducting a repair towards

the achievement of G may not be very sensible. Let us consider, for example, an

execution agent which has a 20-action plan to execute and that a failure occurs in

the second action of the plan. The most priority task is to repair the second action

so as to promptly resume the plan execution even at the expense of some actions

of the rest of the plan becoming non-executable. This will obviously bring about a

failure later in the plan, which will be handled as a failure provoked by any other

factor. Our claim is that our model is specifically designed to account for failures
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at runtime, no matter the cause, and so it seems reasonable to delimit the repair

context to a subset of the actions of Π instead of applying a time-consuming process

that considers the entire Π.

This new view of a failure context may cause a later flaw in a fluent of Π since

the recovery plan will not ensure now the fulfilment of the minimal set of fluents

to achieve G. However, it does foster reactivity as the RPE model will now operate

with the fluents of the root node that only account for the selected plan window

or repair context. Moreover, limiting the repair context to the current window will

also increase the chance of agents helping each other since now agents only need

to ensure the executability of the actions contained in their current plan windows.

Likewise, helper agents that get involved in a collective repair will work to fix the

failure of the assisted agent considering only the immediate goals of its current plan

window instead of the task goals, G.

In order to account for the aforementioned observations, we need to change the

calculation of the root node of a plan window. Now, the root node associated to

a plan window will no longer contain the necessary fluents to ensure the achieve-

ment of G, but only the fluents that represent the actual purpose of executing the

actions in the plan window. In other words, given a sub plan [ai, . . . , al] of a plan Π

=[a1, . . . , an], we have that:

1. in a single-agent environment, the root node of the repairing structure associ-

ated to the plan window [ai, . . . , al] is a regressed partial state that contains

the minimal set of fluents that must hold in the world state S at time t = l + 1

to ensure the sequence of actions [al+1, . . . , an] is executable in S.

2. in a multi-agent environment, the root node of the repairing structure asso-

ciated to the plan window [ai, . . . , al] is a non-regressed partial state which

contains the fluents that denote the ultimate purpose of executing the action

sequence [ai, . . . , al]. We refer to this set of fluents as the purpose of the plan

window. The purpose of a plan window is the set of fluents produced by
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the actions of the sequence [ai, . . . , al] that are not used by a later action of

the subsequence to produce another fluent. More specifically, if an action aj

generates a fluent f which is used by a further action ak in the sequence to

produce a fluent f ′, the fluent f is not part of the purpose of the plan window

but a supporting fluent to generate f ′.

The following section explains the procedure to compute the root node of a

repairing structure in a multi-agent context.

5.3.3 Root node of a repairing structure

In order to calculate the fluents of the root node of a repairing structure in a multi-

agent context, we define the forward function similarly to the state transition func-

tion defined in Equation 3.3.1. The only exception is that now the root node will

only comprise the fluents that represent the purpose of the plan window but not

the entire world state. We will refer to the root node generated with the forward

function as a forward state.

Let [ai, . . . , al] be an action sequence and F the forward state that contains the

fluents that denote the purpose of [ai, . . . , al]. We calculate the state F as follows:

F = forward([ai, . . . , al]) :=

l⋃
j=i

eff(aj) \
l⋃

j=i+1

pre(aj) (5.3.1)

F contains the fluents reached through the execution of [ai, . . . , al], excluding

the fluents that are used as a support to produce a subsequent fluent. In terms of

planning, and considering the order relationships given by the plan, we are exclud-

ing the fluents f involved in a causal link of the form [ai
f−→ aj], meaning that

the precondition f of action aj is supported by an effect of action ai. That is, if

f ∈ eff(ai) and f ∈ pre(aj), j > i, then the two actions together with the fluent f

form the causal link [ai
f−→ aj]. Note that the forward function of Definition 5.3.1

includes the fluents of eff(ai) that are not used by the actions of the plan window

132



5.3 Defining the formal context

to support the generation of a subsequent fluent.

Let us consider the plan window [a1, a2] composed by the actions (Navigate

B w2 w1) and (Analyze B s1 w1), respectively. The forward state associated to the

plan window [a1, a2] is forward([a1, a2]) = eff(a1) ∪ eff(a2) \ pre(a2) = {〈have-

B,s1〉} (see the preconditions and effects of the actions in the PLANNING DOMAIN

DEFINITION LANGUAGE (PDDL) domain of Appendix A.2) 2. The effect of a1, {〈loc-

B,w1〉}, is not included because this fluent is part of the causal link between the

actions (Navigate B w2 w1) and (Analyze B s1 w1); the preconditions of a2 are the

fluents {〈locs-s1,w1〉, 〈loc-B,w1〉}.

Given a plan window [ai, . . . , al], the forward state F is the root node of the

search space T associated to [ai, . . . , al]. In particular, we can affirm that F ⊆ S,

being S the world state reached after executing [ai, . . . , al] in the corresponding

initial state. T will contain recovery paths to reach the set of fluents F that represent

the purpose of executing [ai, . . . , al]. Depending on the selected recovery path, a

failure in subsequent actions of the plan might occur.

Back to our previous example, the result of forward([a1, a2]) is F={〈have-

B,s1〉}; i.e., the purpose of executing [a1, a2] is that rover B has the soil s1 ana-

lyzed regardless the location of the rover. The repairing structure T for [a1, a2] will

comprise various recovery paths that end up analyzing the soil s1 from different

waypoints. Hence, if rover B analyzes s1 from the location w3, the next action of

the plan a3: (Communicate B s1 L w1 w2), will not be executable. This is the main

difference with respect to the regressed states used as root nodes in the repairing

structures of a single-agent environment. In a multi-agent environment, the repair

structure only considers the local context of the plan window under execution rather

than all the fluents needed to ensure the entire plan is executable.

Additionally, representing the root node of a repairing structure as a forward

2The effect 〈locs-s1,NONE〉 of a2 is not considered as a primary purpose of the plan window because
the constant NONE is used to indicate that the variable locs-s1 has no value. More specifically, NONE
denotes that the sample s1 is not located at any waypoint and thereby the fluent is not a primary
purpose.
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state enables more reactiveness because the repair process now puts only the focus

on the fluents of the associated plan window that represent the purpose of the plan

window rather than on the fluents required to execute the entire plan. We advo-

cate the idea that any failure produced on the fluents of subsequent actions can be

quickly repaired using the subsequent repairing structures. As shown in chapter 4,

the evaluation of the reactive planner threw very competitive results.

5.4 Collaborative repair process

In this section, we explain in detail the Collaborative Repair process [53], in which

one agent seeks assistance from other agents to repair some failure when it is un-

able to solve the failure with its single-agent Reactive Planner. First, we formalize

the multi-agent plan repair process. Next, we present a sketch of the flow process

and then we explain in detail the elements and routines of the process, which are

mostly defined as multi-agent extensions of the concepts of the single-agent repair

mechanism explained in Chapter 3.

5.4.1 Multi-agent plan repair formalization

We have a set of agents AG each executing a plan Πi that solves its respective plan-

ning task P i. A detailed description of the planning task of an agent, P i, is given in

Section 5.3.1. A plan of an agent i is given as a sequence of actions Πi=[ai1, . . . , a
i
n]

or as a sequence of partial states Πi=[Gi0, . . . , G
i
n], as shown in Chapter 3. We

recall that the plans of the agents are computed independently to each other so

potentially arising interferences between plans are not considered at planning time.

We advocate to solve these negative interferences at execution time when the failure

is detected. Thus, the contribution of this chapter is to show that dealing with fail-

ures at execution time using an appropriate multi-agent reactive model turns out to

be more efficient and less costly than solving interferences during the construction
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of the plans with a deliberative planner.

As we mentioned in Chapter 3, when an agent reacts to a failure in its plan,

the reactive planner actually works with a portion of the plan, called plan window,

rather than on the entire plan of the agent. The same applies to a multi-agent

context; when two or more agents get involved in a multi-agent plan repair, only

the plan windows of the involved agents will intervene in the repair process. For

the sake of simplicity, we will assume that [Gi0, . . . , G
i
n] refers to the current plan

window of every agent i in the system. Consequently, a failure in the agent i will

always affect the first action a1 of the plan window [ai1, . . . , a
i
n] of the failing agent

i.

Agents individually execute their plans under a common environment. An agent

makes use of its monitoring-execution system to keep track of the plan execution

and uses its embedded reactive planner when its plan fails (see Chapter 3). In case

the failure is not solvable by itself, the multi-agent repair module is activated. Within

a multi-agent execution context, the failure of a plan Πi of an agent i can arise for

two reasons:

1. An unexpected event makes the action of the agent’s plan become non-executable.

This is the same source of failure as in a single-agent context.

2. A negative interference between the plans of two or more agents renders the

plan of an agent non-executable. This source of failure only occurs in a multi-

agent context.

Let us suppose that the current state of the world is S, that agent i fails when the

action ai1 of its plan window [Gi0, . . . , G
i
n] is not properly executed and that i is not

able to repair the failure by itself. Agent i then seeks assistance from another agent

to recover the state Gi0 so as to be able to execute ai1 and the remaining actions of

its plan window; otherwise it will aim to recover Gi1 in order to execute ai2; and so

on. That is, agent i will try to successively find an agent capable of restoring one of

the partial states of its plan window.

135



5.4 Collaborative repair process

Through the publicization services, agent i is aware of the potentially helper

agents to restore the failed fluents of a state Git. Assuming agent j is a candidate to

restore a partial state Git of i’s plan window, the repair process is composed of two

stages:

1. Agent j creates a new planning task that takes into account the current world

state S, the partial state Git to be reached of agent i and the last partial state

Gjm of its current plan window [Gj0, . . . , G
j
m]. Following a similar procedure as

explained in [61], agent j creates a new planning task of the form 〈Vj ,Aj ,Sj ,

Gji 〉 where:

• Sj ∈ S

• Aj is the set of actions of the agent j

• Gji=Gjm ∪ Git

Note that the agent j uses its set of actionsAj to restore the flawed fluents and

thus help agent i resume the execution of its plan window. The new partial

state Gji results from the combination of the target partial state of i (Git) and

the last partial state of the current plan window of j (Gjm). The output of this

stage is a recovery solution plan that is sent to agent i.

2. Let us assume that the recovery solution returned by agent j that restores the

flawed fluents of agent i is [Gj0, . . . , G
j
t], or equivalently, [aj1, . . . , a

j
t]. Agent i

needs now to find a plan that complies with [aj1, . . . , a
j
t] and enables to resume

the execution of its plan window. To this end, agent i creates new planning

task that takes into account its original planning task P i, the partial state Git

to reach, the current world state S and the recovery solution received from

agent j. Following the same procedure as with agent j [61], we modify the

planning task P i to create a new planning task of the form 〈V i,Bij ,Si, Gij 〉

where:
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• Si ∈ S

• Bij=Ai ∪ Bj / Bj={a : a ∈ [aj1, . . . , a
j
t] }

• Gij=Git ∪ G
j
t

Si is the subset of fluents of the world state S that are visible to i. Bij results

from the combination of the set of actions of i (Ai) and the actions of the plan

received from j. The set of actions in Bij will be used by agent i to find a

plan that resumes the execution of its plan window while conforming with the

order relationships of the recovery plan of j. Gij is the partial state that results

from combining the target partial state of i, Git, and the last partial state, Gjt ,

of the solution returned by the agent j.

5.4.2 Outline of the workflow

Whenever an execution agent is not able to solve a failure with its Reactive Planner,

it will invoke the Collaborative Repair process to find out whether any agent in the

environment can help it out to restore the execution of its plan. In this case, the

execution agent activates the collaborative process (pictured by the box labeled

as collaborative repair in the Execution Agent i of Figure 5.2), which initiates a

communication and information exchange procedure with the other agents. In our

model, agents are always willing to help whenever this is possible. That is, we

assume altruistic agents.

Algorithm 3 shows the general flow of the Collaborative Repair mechanism. In

the following, we explain the flow between a requester agent i and a helper agent j

when the Collaborative Repair process is activated. Agent i has a repairing structure

associated to its plan window under execution [ai1, . . . , a
i
n] or, equivalently, to the

partial states [Gi0, . . . , G
i
n], where Gin is the root node of the plan window. Agent j

has a repairing structure associated to its plan window under execution [aj1, . . . , a
j
m]

or, equivalently, to the partial states [Gj0, . . . , G
j
m] where Gjm is the root node. The

root nodes are forward states as exposed in Definition 5.3.1. Let us suppose that a
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requester agent i

plan window: [Gi
0, . . . , G

i
n]

1: for Gi
t ∈ [Gi

0, . . . , G
i
n] do

2: F← fluents that fail in Gi
t and i cannot achieve

3: AG← agents that achieve all the fluents in F
4: if AG 6= {} then
5: ΠAG ← {} . solution plans
6: for j ∈ AG do
7: send Gi

t to j
8:
9:
10:
11:
12:
13: Π← fluents 〈v, p〉 ∈ Πj/ v ∈ Vi

14: ΠAG ← insert Π
15: end for
16: for Π ∈ ΠAG do
17: Πi ← Requester Joint Plan(Π, Gi

t, Ai, Si)
18: if Πi 6= {} then
19: return form multi-reactive solution
20: end for
21: end for

helper agent j

[Gj
0, . . . , G

j
m]

G′ ← fluents 〈v, p〉 ∈ {Gi
t ∩ eff(a)∀a ∈ Aj}

Gji ← Create Joint Partial State(Gj
m, G′)

T ← Helper Joint Search Space(Gji, Aj , Sj)
Πj ← Iterative Search Plan(T , Sj , [Gji])
send Πj to i . Otherwise, send reject message

Algorithm 3: General flow of the Collaborative Repair process.

precondition of ai1 fails in the current world state Si and agent i is not able to find

a recovery path with its embedded Reactive Planner, as explained in Chapter 3. In

this case, agent i activates its collaborative mechanism:

1. Agent i iterates through the partial states of its plan window [Gi0, . . . , G
i
n]. At

each iteration, we will refer to the partial state under study, Git, as the target

partial state of agent i (line 1 of Algorithm 3). Agent i identifies the flawed

fluents of Git which are not attainable by itself (set F in line 2). Then, through

the publicized services, it retrieves the set of agents AG that are capable of

achieving the fluents in F (line 3). Subsequently, it initiates a process to find

one agent of AG that is able to return a recovery path to achieve F (lines 4

to 6). Agent i sends the whole partial state Git to agent j (line 7) because j

must repair F ∈ Git while considering all the fluents that are necessary for i to

continue with the execution of the remaining actions of its plan window from

Git.
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2. With the received information, agent j performs the following operations:

(a) it retrieves from Git the set of fluents G′ that are modifiable with the

effects of its planning actions (line 8 of Algorithm 3). Particularly, the set

G′ will contain fluents that belong to one of these groups: a) fluents that

fail in Git and agent i cannot achieve (set of fluents F); b) fluents that fail

in Git and agent i can achieve; and c) fluents in Git that have not failed.

(b) it creates a new partial state Gji as the result of the combination of the

set G′ and its root node Gjm (line 9),

(c) starting from the Gji, it creates a new repairing structure that encodes a

solution plan that fixes the flawed fluents of i as well as considering the

execution of its own plan (lines 10 and 11).

(d) if a solution is found, the solution is sent to agent i (line 12); otherwise,

agent j sends a reject message indicating it cannot repair the failure.

3. In case agent j returns a solution Πj , agent i retrieves from this solution the

fluents that stem from variables of V i and stores the filtered solution (lines 13

and 14).

4. Once agent i collects the solutions of all the agents in AG that achieve the set

of fluents F, it iterates over each solution (line 16) until it finds a returned

plan that can be properly adapted to resume the execution of its own plan, if

any; this is so because agent i may require to execute some extra actions in

order to reach other flawed fluents of Git that are achievable by itself (note

that it may be possible that the solution from agent j achieves all the fluents

that fail in Git, in which case the only operation for agent i is to wait until

the execution of the solution plan of agent j finishes). The loop stops when

either i) agent i finds a valid solution (lines 17-19) or ii) there are not more

solutions to iterate. Assuming that agent i accepts the solution of one agent,

we say the two agents have reached an agreement to collaborate together,
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thus forming a multi-reactive solution. This agreement ensures a collaborative

process between the two agents.

In summary, the Collaborative Repair mechanism enables solving failures pro-

duced in short portions of the plan. The requester agent uses the service informa-

tion publicized by other agents in order to know the potential helper agents that can

contribute to reach a partial state of its current plan window. Reaching this partial

state will allow the requester agent to fix the failure and resume the execution of

its current plan. The potential helper agents search for a solution plan generating a

new combined repairing structure. The solution plan of the potential helper agents

gives support to the requester agent without altering the purpose of execution of

its plan window. If the helper agent finds a solution recovery plan that repairs the

failure, the solution is sent to the requester agent, which will decide whether or not

the solutions is acceptable. If an agreement is reached, the two agents will jointly

execute their respective plans. When this happens, we say the two agents form a

multi-reactive solution.

5.4.3 General concepts

For explaining the details of the Collaborative Repair mechanism, we will use two

plans, presented in Appendix A.2.4, throughout this section. The two plans are as-

sociated to rovers A and B from our motivating example. Let us assume that the first

two actions of each plan have already been executed and that their plan windows

are updated accordingly to [aA3, . . . , a
A
l ] and [aB3, . . . , a

B
m], which define the sequences

of partial states [GA
2, . . . , G

A
l ] and [GB

2, . . . , G
B
m], respectively. Subsequently, agent A

fails (requester agent) when executing the action aA3=(Communicate A r L w3 w2).

This action fails because rover A lacks the results of the analysis of the rock and its

current location is w1 instead of w3. That is, the fluents 〈have-A,r〉 and 〈loc-A,w3〉

are not true in the current world state. In addition, we will also assume that agent

A loses the capability of analyzing rocks; i.e. the fluent 〈analyze-A,false〉 holds in
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the world state. Then, agent A activates its collaborative mechanism:

1. The first iteration of the external loop of Algorithm 3 starts with plan window

[GA
2, . . . , G

A
l ] and GA

t set to GA
2, which contains the fluents {〈loc-L,w2〉,〈loc-

A,w3〉,〈link-A-w3-w2,true〉,〈trans-A,true〉,〈have-A,r〉}. These are the fluents needed

to execute the actions (Communicate A r L w3 w2) and (Navigate A w3 w2).

2. Agent A identifies the set of fluents that fail in GA
2 and are not achievable by

itself; F={〈have-A,r〉}, meaning that agent A lacks the results of the anal-

ysis of the rock r; i.e., the fluent 〈have-A,NONE〉 holds in the current world

state. Although the fluent 〈loc-A,w3〉 ∈ GA
2 has also failed, it is not included

in F because rover A can repair this fluent. Note also that the failing fluent

〈analyze-A,true〉 is not in F either because this fluent is not in GA
2; that is,

this fluent is not needed to execute the actions (Communicate A r L w3 w2) and

(Navigate A w3 w2).

3. agent A retrieves the set of agents AG capable of achieving the set of fluents F:

AG={B}.

Subsequently, the whole partial state GA
2 is sent to rover B.

5.4.3.1 Joint partial state

A joint partial state combines the fluents of the partial states of two different agents,

i and j. The resulting state must not contain duplicated fluents. We define

Create Joint Partial State(Gi, Gj) as the function that given any two partial

states, Gi and Gj , generates a new one as the union of the fluents of Gi and Gj

with non-repeated elements (Definition 5.4.1). We apply this process iff no conflict

exists between the fluents of Gi and Gj (Definition 3.4.1):
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Create Joint Partial State(Gi, Gj) :=


Gi ∪Gj : if ¬conflict(Gi, Gj)
undefined : otherwise

(5.4.1)

In our example:

1. rover B receivesGA
2 and selects the fluents modifiable with its planning actions,

discarding the fluens from GA
2 that it cannot affect in any manner. Thus, we

have G′={〈have-A,r〉}.

2. the root node of B is GB
m={〈loc-B,w2〉, 〈comm-s1-w1,true〉}; thus, rover B calls

Create Joint Partial State(GB
m,G′) and obtains the new partial stateGBA={〈have-

A,r〉,〈loc-B,w2〉,〈comm-s1-w1,true〉}. This new partial state is simply the union

of the fluents of G′ and GB
m because no conflict exists between {〈have-A,r〉}

and the fluents in GB
m.

The partial state GBA will be the root node of a joint repairing structure that will

comprise the actions needed for rover B to help rover A recover from its failure.

5.4.3.2 Joint Search Space of a helper agent

Algorithm 4 shows the procedure Helper Joint Search Space for a helper agent j

to create a new combined repairing structure using a joint partial state Gji as the

root node. The goal of this function is to create a search space that comprises the

choices to repair the failed plan of the requester agent alongside the plan execution

of the helper agent.

The algorithm receives three input parameters. The first parameter is the joint

partial state Gji; the second one is the set of planning actions of the agent, Aj; and

the third parameter is its current world state Sj . Agent j updates the current state

Sj by applying Definition 3.3.1, Sj = result(Sj , a), with the first action a of its plan

window, the action that agent j is currently executing. For instance, in our example,
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when rover B receives the request from rover A, its plan window is [aB3, . . . , a
B
m], so

B is executing the action aB3 = (Communicate B s1 L w1 w2). The collaborative repair

of rover B operates in parallel with its plan execution, which means that rover B

needs to take into account the execution of the action aB3 during the repair process.

Therefore, rover B updates its current state SB with the simulation of the execution

of the action (Communicate B s1 L w1 w2). That is, rover B initiates the search of a

repairing plan for the requester rover A assuming its current action has been already

executed3.

Input: Helper Joint Search Space(Gji, Aj , Sj)
1: Q ← {Gji }
2: T ← {Gji }
3: ts ← set up to one execution cycle
4: while Q 6= ∅ do
5: G← extract first node from Q
6: for all {a ∈ Aj | relevant(G, a) is true} do
7: G′ ← regress(G, a)
8: if G′ /∈ T then
9: if ∃ G′′∈ T | G′′⊂ G′ then

10: mark G′ as superset of G′′

11: else
12: Q ← Q∪G′

13: set an arc a from G′ to G
14: T ← T ∪ G′

15: if time generation > ts or G′ ⊂ Sj then
16: return T
17: update time generation
18: return T

Algorithm 4: Generate a helper joint repairing structure T .

The procedure Helper Joint Search Space works similarly to Algorithm 1. It

expands the root node Gji by applying the regressed transition function regress(Gji

, a) following Equation 3.3.2 (lines 5 and 7 of Algorithm 4). This follows the classical

backward construction of a planning space, where a node G is expanded (line 7)

generating all possible sequences of actions that eventually reach the root node Gji.

3In case the execution of action aB3 fails, rover B informs rover A and resorts to replanning, and A

discards the solution plan offered by rover B.
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In Algorithm 1 of Chapter 3, the time limit to generate the search space T is im-

plicit in the input parameter depth of T (m), which is calculated through an estimat-

ing function that ensures that a tree of depthmwill be generated within a given time

limit (see Section 3.4.3.1). This is so because we want an anticipatory behavior that

guarantees that there will always be available a repairing structure for future actions

when a failure occurs. In contrast, in a multi-agent setting, agents do not foresee

which agents will request for help and, therefore, the helper agent j needs to create

at runtime a combined repairing structure within a fixed time limit. More specifi-

cally, it must find a recovery solution that fixes the failure of agent i (lines 9-11 of Al-

gorithm 3, procedures Create Joint Partial State, Helper Joint Search Space

and Iterative Search Plan) within a maximum time of one execution cycle (line

3 of Algorithm 4).

As it was shown in the results of Chapter 4, the procedure to generate a repairing

structure (line 10 of Algorithm 3) is most costly than the procedure to extract the

recovery plan from T (line 11 of Algorithm 3), which is negligible (in average it

takes ≈ 1.65 ms that represents 0,00165% of one execution cycle).

On the other hand, the purpose of the algorithm that creates a repairing struc-

ture for a single agent is to use this structure to repair a failure of the own agent.

However, in Algorithm 4, the generation of the joint search space stops when a node

whose fluents are all included in the current world state Sj is found. The reason is

that in this case our aim is to create a search structure that comprises a plan for the

requester agent and, therefore, the procedure stops when the structure includes a

branch that encodes a repair plan for the agent.

In summary, the third parameter, Sj , and the variable ts of Algorithm 4 are the

two stop criteria for the generation of a joint search space. More specifically, the

construction of T stops when (line 15 of Algorithm 4):

i. the generation of T exceeds the time limit ts. This parameter ensures a

time-bounded construction of T .
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ii. there exists a node G′ ∈ T | G′ ⊂ Sj , in which case it means that the search

space comprises a joint recovery plan from G′ to Gji.

In our example, rover B calls Helper Joint Search Space(GBA,AB, SB) to create

the joint repairing structure, which is graphically displayed in Figure 5.3. The figure

shows the joint repairing structure with GBA as the root node. In this case, the

process stops when a node G′ ⊂ SB is found.

GBA

G′

aB1

aB2

aB3 aB9 aB1

aB8 aB5 aB16 aB4

aB9

aB8

aB7

aB6

Figure 5.3: Joint repairing structure for rover B.

5.4.3.3 Recovery plan of a helper agent

Once agent j generates the joint search space T , the next step is to extract the

recovery plan that helps the requester agent i from T (line 11 of Algorithm 3). This

is done with the same Algorithm 2 of Chapter 3.

In our example, we have that rover B calls Iterative Search Plan(T ,SB,[GBA])

and finds the solution recovery plan shown by the path in bold of Figure 5.3, ΠB={aB6
: (Navigate B w1 w3), aB7 : (Analyze B r w3), aB8 : (Comm-rover B A r w3), aB9 : (Navigate B

w3 w2)}. The solution ΠB navigates rover B to the location w3 where rover B analyzes

the rock r and communicates the results of the analysis to rover A, and next, rover

B navigates to its final position w2.

When the function Helper Joint Search Space stops by the deadline ts and a

node G′ ⊂ SB has not been found (see stop criteria in Section 5.4.3.2), it means
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rover B is not able to find a solution recovery plan for rover A, in which case, rover

B sends a reject message to A to indicate the impossibility of repairing the failure.

5.4.3.4 Construction of a joint plan by requester agent

This section explains the lines 16 to 20 of Algorithm 3. At this point, the requester

agent i has one or more recovery plans returned by one or several helper agents.

Agent i goes through the solutions collected in ΠAG (line 16) and stops when it finds

one plan in ΠAG that can be adequately adapted to resume the execution of its plan

from the target partial state Git; otherwise, the list ΠAG is exhausted. Thus, when

agent i accepts the solution of one agent j, i sends an accept message to agent j and

they will start to collaboratively execute their solution plans in the next execution

cycle (line 19). If the requester agent i does not accept any solution, it sends a reject

message to all the helper agents and activates its Deliberative Planner as the last

resource.

As it was mentioned in Section 5.4.3, the set of failing fluents in Git are classified

into F, the fluents to be achieved by the helper agent, and fluents that the requester

agent can achieve by itself (we will refer to this set as F’). Generally speaking,

adapting to the plan returned by the helper agent (line 17 of Algorithm 3) means

that agent i may require to complement the plan with some additional actions to

reach the fluents in F’.

The process to generate an adapted joint plan by the requester agent presents

the following two scenarios:

1. The helper agent achieves the whole set of failing fluents. This occurs

when the solution plan of the helper agent reaches all the fluents that fail in

Git; i.e. the fluents in F and F’.

2. The helper agent does not achieve all the failed fluents in Git. This occurs

when the solution plan of agent j achieves the fluents in F and agent i requires

an additional solution plan to fix the fluents in F’.
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The helper agent achieves the whole set of failing fluents. It goes without say-

ing that the solution plan of a helper agent j achieves the fluents in F. However, it

may be also the case that agent j reaches all the flawed fluents in Git; i.e. it achieves

both the fluents in F and F’. This situation occurs, as we exposed in item 1 of Sec-

tion 5.4.2, because agent j receives the whole partial state Git and tries to repair all

the failing fluents in Git. In other words, if agent j is able to achieve F’, it will try

to find a plan to repair F’ as well because the agent realizes that these fluents are

also necessary to resume the plan execution of agent i from Git. In such a case, the

adaptation plan of the requester agent i is not other than waiting until the solution

plan received from agent j is completed.

Hence, assuming the solution plan offered by the helper agent j is Πj={aj1, a
j
2, a

j
3, a

j
4},

and that this plan achieves all the failed fluents in Git, the adaptation plan of agent

i will be Πi={aiwait, aiwait, aiwait, aiwait}, where aiwait is a dummy action that lasts one

execution cycle. That is, the adaptation plan that i will execute consists solely in

waiting for four execution cycles until agent j finishes the execution of its solution

plan Πj .

The helper agent does not achieve all the failed fluents in Git. This second

scenario occurs when the solution plan of agent j achieves only the fluents of F, in

which case agent i needs to compute an adaptation plan that fixes the remaining

fluents of F’.

In our example, rover A receives from rover B the solution plan ΠB={aB6: (Navigate

B w1 w3), aB7 : (Analyze B r w3), aB8 : (Comm-rover B A r w3), aB9 : (Navigate B w3 w2)} or,

equivalently, [GB
5, . . . , G

B
9], which does not accomplish all the failing fluents {〈loc-

A,w3〉,〈have-A,r〉} ofGA
2 (GA

2={〈loc-L,w2〉,〈loc-A,w3〉,〈link-A-w3-w2,true〉,〈trans-A,true〉,〈have-

A,r〉}). More specifically, ΠB only reaches the fluents of F (F = {〈have-A,r〉}). Conse-

quently, rover A needs a plan to achieve the failing fluents of F’ (F’ = {〈loc-A,w3〉});

i.e., it needs a plan to navigate from location w1 to location w3. To this end, rover A

performs the following operations:
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1. Call Create Joint Partial State(GA
2, GB

9) to create a new partial state GAB

as the result of the combination of GA
2 and GB

9, where GB
9 is the last partial

state of the sequence [GB
5, . . . , G

B
9] extracted from ΠB.

2. Call Requester Joint Search Space(GAB,AA, SA, [aB6, . . . , a
B
9]). Starting from

GAB, it creates a merged repairing structure T that encodes an adaptation plan

to fix the remaining fluents that fail in GA
2 as well as merging its adaptation

plan with the recovery plan of rover B (actions [aB6, . . . , a
B
9]). The merged

search space is graphically represented in Figure 5.4. The figure shows the

depth of the merged repairing structure (left side of the figure); the merged

repairing structure with GAB as the root node (middle side of the figure); and

the solution received from B (right side of the figure).

0

1

2

3

4

solution from B

(ΠB)

aB9

aB8

aB7

aB6

GAB

merge search space generated by Adepth

G′

[aB9,aA3]

[aB8]

[aA5,aB7] [aA4 ,aB7] [aB7]

[aB6] [aA3,aB6] [aB6] [aA4,aB6]

[aB9]

[aB8]

[aB7]

[aA5,aB6]

Figure 5.4: Merged Search Space

The merged structure is also generated by following the classical backward

construction of a planning space, where possible sequences of actions even-

tually reach the root node GAB. The main characteristics of this search space

are:

(a) The maximum depth of the search space is equal to the total number of

actions of the solution plan of the helper agent, thus limiting the time
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generation of the search space. In our example, see solution from B in

Figure 5.4, the solution plan of rover B has four actions, which is the

maximum depth m of the merged search space of rover A. It is m = 4.

(b) The solution of the helper agent must be represented in all branches

of the tree, one action of the plan at each tree level, always keeping the

order relationships between actions. For example, in Figure 5.4, we reach

the root node GAB from two branches. In the first level of the tree (depth

= 1), we represent the last action, aB9; the subsequent down level (depth

= 2), reflects the action aB8 in both branches; the action aB7 is represented

as an outgoing (combined) arc from every node at depth=3; finally, in

the last level, the action aB6 appears as a label of the arcs coming out from

every node at depth=4. This is so because rover A needs to find a solution

considering the ordering of the actions in the solution plan of rover B.

(c) The construction of the merged search space T stops when i) the gen-

eration exceeds the maximum depth or ii) there exists a node G′ ∈ T |

G′ ⊂ SA, in which case it means that the merged search space T com-

prises a solution plan from G′ to GAB. Obviously, this is a conflict-free

solution with the recovery plan offered by rover B, thus allowing the par-

allel execution of the two solution plans.

3. Call Requester Iterative Search Plan(T , SA, [GAB]). Once rover A gener-

ates T , the merged search space T is used to find an adaptation plan ΠA that

fixes the rest of fluents that fail in GA
2, as well as reaching the last partial state

GB
9 extracted from the recovery solution ΠB received from B.

The procedure Requester Iterative Search Plan works similarly to Algo-

rithm 2 (see Section 3.4.2). In this case, the plan window of the third argu-

ment of the algorithm contains only one partial state, the root node of T or

GAB. The procedure tries to find a node G′ ⊂ SA from GAB and stops when

some G′ is found, in which case the path from G′ to GAB is returned. If no G′
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is found, this means that rover A is not able to repair the rest of the failing

fluents of GA
2.

In Algorithm 2 of Chapter 3, the returned plan is generated considering a

search space that contains actions of one single agent. In contrast, the proce-

dure Requester Iterative Search Plan uses the merged search space which

contains actions of two agents. That is, the branches of the merged repairing

structure contains either one action (the one of the helper agent) or two ac-

tions (one of the helper agent and another action of the requester agent). For

instance, in the branch shown in black lines of Figure 5.4.

(a) The path from the node at depth = 1 to the root node contains only

an action of B, [aB9], meaning that rover A has to wait for one execution

cycle.

(b) The path from the node at depth 4 to the upper level contains two ac-

tions, [aA5, a
B
6], meaning that rover A executes its action aA5 while rover B

executes the action aB6.

Hence, rover A calls Requester Iterative Search Plan(T ,SA,[GAB]) and re-

turns the solution shown in black lines of Figure 5.4 as follows, ΠA={aA5 :

(Navigate A w1 w3), aAwait : (Wait A), aAwait : (Wait A), aAwait : (Wait A)}. The so-

lution ΠA will navigate rover A to the location w3 and will wait three execution

cycles until the plan execution of rover B finishes.

The previous iterative collaborative repair process describes the behaviour of

our multi-repair mechanism. At the end of the collaborative repair process, the two

agents will be cooperating together forming a reactive solution.

5.4.4 Execution of the reactive solution plan

Figure 5.5 summarizes the execution of our illustrative example with the MARPE

model. The MARPE model ensures the continuous and uninterruptedly flow of the
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Figure 5.5: Executing the multi-agent planning and execution model

execution agents comprising reactive planning, execution and plan monitoring. In

Figure 5.5, for each rover of our example (A and B), we show:

• ΠX: it represents the plan of the agent X.

• GX
i : it represents the partial state of the agent X that must hold at time step i.

• Tj: it represents the repairing structure for the single repair process.

• P: it represents the publicization services

• MR: it represents the collaborative repair process execution.

In Figure 5.5, rover A fails at time step 2 when it tries to execute action aA3. Since

it is not able to repair the failure with its single reactive planner, it activates the

collaborative mechanism (first small box in MR of rover A in Figure 5.5):
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• Rover B receives the request from rover A when it is executing action aB3.

Simultaneously with the execution of aB3, rover B has to find a recovery so-

lution plan within a time limit of one execution cycle (first box in MR of

rover B in Figure 5.5) with the procedures Helper Joint Search Space and

Iterative Search Plan explained in Sections 5.4.3.2 and 5.4.3.3, respec-

tively.

Rover B cannot execute any other action until the collaborative repair process

finishes, except for the ongoing action aB3.

• Rover A receives the recovery solution plan from rover B (second box in MR of

rover A) and starts the procedures explained in Section 5.4.3.4 to accept the

solution as valid. If rover A accepts the solution of rover B, it sends an accept

message to rover B and, in the next execution cycle, the two rovers will execute

their recovery solution plans (from time step 4 in Figure 5.5). Otherwise, B

resumes the execution of the next action of its current plan and rover A goes

to replanning.

The MARPE model guarantees that the two agents involved in the Collaborative Repair

process can safely continue with the execution of their plans. However, during the

execution of the collaborative solution, from time step 4 until 8 in Figure 5.5, new

failures can arise, and so the agents need to deal with them within the context of

the Collaborative Repair (attending the dependencies of their plans).

For example, in case the helper agent B fails and tries to repair it with the single-

repair method (explained in Section 3.4), the dependencies with rover A will not be

taken into account. This is because the self-repair method will attempt to achieve

the fluents of B, including the failed ones, but not the fluents that B achieves for

the assisted agent A within the collaborative solution. In other words, the single-

repair method of B is only responsible for achieving the fluents of B but not the

fluents that B has committed to agent A. Since a collaborative solution involves two

tightly interdependent agents, any individual action from an agent would have a

152



5.4 Collaborative repair process

very negative impact on the other agent.

Specifically, throughout the execution of the multi-reactive solution plan, two

possible failure situations can stand in regards with the two agents involved in the

solution:

1. The helper agent fails. In this situation, the agent B fails during the execution

of the reactive solution.

2. The requester agent fails. In this situation, the assisted agent A fails during

the execution of the reactive solution.

Some important aspects should be considered in the two possible failing situ-

ations. Whenever any of the two situations arise, the agents will not apply the

MARPE model as it is, because they should consider the relationships of the multi-

reactive solution plan being executed. The two agents need to solve the failure

without requesting help from other agents because they are already working collab-

oratively. In other words, if any action of the rovers A or B cannot be executed due

to a plan failure, they are not allowed to ask for help to any other agent C in the

environment. In contrast, if during the execution of the multi-reactive solution plan,

a plan failure is provoked in the plan of a third agent C, the rover C will activate the

MARPE model but with the restriction that the two agents, A and B, will reject the

request of C because they are already cooperating together.

In the following, we describe briefly the process that our model performs to

recover from the two failure situations that affect the helper agent and the requester

agent.

In any of the two situations, for simplicity, we will say the agent activates the

Collaborative Repair process with the particularity that i) it does not call at first place

the single-reactive method explained in Section 3.4 and ii) it does not call the col-

laborative repair method from the beginning. More specifically, the failed agent

performs the following processes that obviously are parts of our MARPE model.
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Let us also continue with our motivating example, where the agents A and B are

working together with the following plan window of their plans: [aA5, . . . , aAl ] and

[aB6, . . . , aBm] (same situation from time step 4.0 of Figure 5.5). The plans of the two

agents define the sequences of partial states [GA
4, . . . , G

A
l ] and [GB

5, . . . , G
B
m].

5.4.4.1 The helper agent fails

The situation occurs when during the execution of the collaborative solution the

helper agent, which is reaching some fluents for the requester agent, cannot execute

an action of its plan due to a failure. In such a case, the helper agent activates the

Collaborative Repair to generate a multi-reactive solution that solves the failure.

The solution offered by the Collaborative Repair process should consider the flu-

ents that the helper agent requires for the requester agent. If the failure cannot

be fixed then the helper agent will not be able to reach neither its fluents nor the

fluents of the requester agent. Consequently, both agent will invoke replanning.

In our example, assuming the helper agent B fails to execute the first action aB6

(Navigate B w1 w3), the failure produces one alteration in the location of B (the cur-

rent location of B is w2). Since B is collaborating with A, it cannot request assistance

to any other external agent. Thereby, B needs to find a recovery plan that solves its

failure while cooperating with A. Thus, B tries to solve the failure taking into account

the current world state SB ∈ S, the recovery solution of agent A, [aAwait, . . . , a
A
l ], or

equivalently, [GA
5, . . . , G

A
l ]

4, its root partial state GB
m to be reached, and its original

planning task PB. Thus, rover B performs the following operations:

1. Call Create Joint Partial State(GB
m, GA

l ). It creates a new partial state GBA

as the result of the combination ofGB
m andGA

l , whereGA
l is the last partial state

of the recovery solution of agent A.

2. Call Reschedule Joint Search Space(GBA,AB, SB, [aAwait, . . . , a
A
l ]). This method

works similarly to the method Requester Joint Search Space explained in
4Note that the action aA5 of A does not fail and is currently in execution.
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Section 5.4.3.4. Starting from GBA, it creates a merge repairing structure T

that encodes a solution plan to recover from its failure, as well as, merging

its solution plan with the current plan of rover A, actions [aAwait, . . . , a
A
l ]. The

merge structure T is a search space with the same features that we explained

for the Figure 5.4. The main difference of this search space is that actions of

the plan of the helper agent A might be rescheduled in the new recovery plan.

If the rover B finds a new recovery plan, B informs to A, which must change and

reschedule its current solution plan to the one obtained with the Requester Joint Search Space

procedure. Otherwise, B does not find a new recovery plan and informs with an er-

ror message to A. The error message indicates the agent A that B cannot achieve the

fluents that were supported by B and, thereby, both agents will invoke their planning

agent for replanning.

5.4.4.2 The requester agent fails

This situation occurs if during the execution of the collaborative solution the re-

quester agent, which receives help from the helper agent, fails. In such a case,

the requester agent activates the Collaborative Repair to generate a collaborative so-

lution that solves the failure. The solution generated by the Collaborative Repair

process should consider the solution offered previously by the helper agent. More

specifically, the Collaborative Repair of the requester agent applies the same proce-

dure explained in Section 5.4.3.4.

Let us assume the rover A fails to execute the first action aA5 (Navigate A w1 w3).

The failure produces one alteration in the location of A (the current location of A is

w2). As we mentioned before, rover A cannot request assistance from other external

agents because it is collaborating with B. The rover A solves the failure with the

recovery solution ΠA={aA6 : (Navigate A w2 w3), aAwait : (Wait A), aAwait : (Wait A)}.

The solution ΠA navigates rover A to the location w3 and waits two execution cycles

until the plan execution of rover B, ΠB={aB7 : (Analyze B r w3), aB8 : (Comm-rover B
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A r w3), aB9 : (Navigate B w3 w2)}, which communicates the results of the analysis of

the rock r to rover A, finishes.

5.5 Conclusions

In this chapter we have presented a multi-agent reactive planning and execution

model that enables agents to recover from failures through collaboration with other

agents. The model is embedded into a planning and execution system where an exe-

cution agent receives a plan from a planning agent, and the mission of the execution

agent is to monitor, execute, and repair the given plan when a failure occurs.

We augmented the capabilities of the REACTIVE PLANNER (RP) with a Collaborative Repair

behavior that allows execution agents to solve plan failures collectively by finding

an agent that can help out to restore the execution plan of the failing agent. If so,

the two agents work together to reach their goals. The principal objective of the

multi-agent reactive planning and execution model is to ensure the continuous and

uninterruptedly flow of the execution agents.

We used the multi-agent version of the motivating example introduced in Chap-

ter 3.2, the Planetary Mars scenario, to conduct the explanation of the Collaborative Repair

process. We also formalized the essential aspects of our Collaborative Repair process

on the basis of independent agents that communicate to each other via the publi-

cization of services and the construction of merged plan structures.
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Chapter 6

Experimental evaluation in a

multi-agent environment

“The achievements of an organization are the results of the combined effort of each

individual.”

(Vincent Lombardi)

This chapter presents the experimental evaluation of our MARPE model for solv-

ing plan failures. We conducted several tests to evaluate the reactiveness and per-

formance of the MARPE approach along a complete execution of different planning

tasks in various planning domains. In the experimentation carried out, we also com-

pare the core of the MARPE model with other repair configurations, including an

individual plan repair approach and a deliberative planner that finds a joint solution

with a centralized planning mechanism.

In the following, we present the setup of the various repair configurations we

used in the experiments, we introduce the domains and the specification of the

multi-agent planning tasks and then we show and analyze the obtained results.

Finally, we conclude and outline some discussions.
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6.1 Plan repair in a multi-agent context

As we exposed in the previous chapter, the MARPE model aims to promptly and

reactively solve a plan failure of an agent at execution time. The failing agent

requests for help from one or more agents, but the repair process intends to be done

with a maximum of two agents, such as we explained in Section 5.4.2 of Chapter 5,

the requester agent and the helper agent. Agents work in a shared environment, and

each agent is provided an individual plan that has to execute along with the plans

of the rest of agents in the environment. Plans are independent of each other, but

they all need to be successfully executed in order to solve the overall planning task.

When an agent fails its mission of executing its plan, it demands collaboration to the

rest of agents with the aim of applying a quick repair that allows it to resume its plan

execution. Likewise, the helper agent that assists the failing agent attempts to bring

the least possible distortion to its plan. In other words, the actual intention of the

MARPE model is to fix a situation rapidly and allow the two execution agents, the

requester agent and the helper agent, to resume their plans execution. A different

choice to fix a failure is to start from scratch by resorting to a centralized planning

approach that computes a new plan for each agent in the environment under the

new current situation.

We are thus interested in comparing these two collaborative opposed approaches

and validate the effectiveness of the MARPE model versus a deliberative and cen-

tralized approach that takes into account the plans of all the agents at the time of

repairing a failure. For this purpose, we designed several multi-agent repair con-

figurations that are explained in detailed in Section 6.1.2. Previously, we analyze

the adaptation of the single-agent repair mechanims evaluated in Section 4.2.3 of

Chapter 4 to a multi-agent context.
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6.1.1 Adapting single-agent repair methods to a multi-agent context

In the single-agent experiments presented in Chapter 4, we tested three repair meth-

ods: our reactive planner (the core of the RPE model), and two deliberative meth-

ods, the LPG-Adapt mechanism and a replanning approach with the LAMA planner.

The results showed that replanning was slightly more costly than using plan adap-

tation but, in contrast, LAMA was able to find much shorter plans than LPG-Adapt

(see Table 4.8).

During a failure, the plan of an agent can suffer delays when the recovery mech-

anism changes the plan to solve the failure. The situation grows up in a multi-agent

environment, where an agent can not only delay its plan because of a self-repairing

process but either for collaborating to repair the failure of another agent. That is,

a fault can affect the plan execution of one or two agents. Hence, in a multi-agent

context, we aim to minimize the delays in the plans of the agents, and thus in the

overall plan makespan, when a change needs to be applied in the plans to solve a

failure. More specifically, our ultimate objective is to highlight the benefits and lim-

itations of using our MARPE model, a multi-agent reactive framework that employs

a collaborative plan repair technique for solving failures in planning applications.

Specifically, we want to highlight the behavior of a multi-agent and reactive plan-

ning approach. Therefore, we are interested in evaluating two features:

• collaborative repair versus individual plan repair: a comparison of the be-

haviour of MARPE against an individual plan repair carried out by the failing

agent. We want to check whether a collective plan repair turns out to be more

beneficial than having agents independently repairing their plans.

• reactive versus deliberative planning: a comparison of MARPE against a de-

liberative planning approach. We want to assess the performance and ability of

fixing failures of our reactive planning approach (incorpored into the MARPE

model) in comparison to a deliberative procedure 1 (replanning). We must
1We use the LAMA planner, but results can be easily reproduced by simply replacing the LAMA
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note that, as we mentioned in Section 5.4 of Chapter 5, a MARPE solution is

only formed with the two agents that are directly involved in the failure solu-

tion whereas replanning is a centralized approach in which all agents give up

their current plans in order to solve the failure, which may imply re-allocating

goals to some agents.

The reactive planner introduced in Chapter 3 is a single-agent (S) reactive (R)

technique for individual agents. Our multi-agent reactive planner is an extension of

the Single-Reactive (SR) planner to a multi-agent context. Thereby, the framework

presented in Chapter 5 is a multi-agent (M) reactive (R) planning technique that

attempts to solve a failure collaboratively. We also identify a single-agent (S) de-

liberative (D) method when the failing execution agent calls its associated planner

which computes a plan to solve the failure by its own. Finally, the multi-agent (M)

deliberative (D) replanning approach can be viewed as an extension of the Single-

Deliberative (SD) method.

In summary, we distinguish four different repair methods. We show the acronym

of the repair method along with its description based on the characteristics ex-

plained in this section.

• SR: Single Reactive planning method; the model presented in Chapter 3.

• SD: Single Deliberative method; a plan is calculated by the planning agent

associated to the execution agent.

• Multi-Reactive (MR): Multi Reactive method; our MARPE model.

• Multi-Deliberative (MD): Multi Deliberative method; the replanning approxi-

mation.

In a multi-agent system where all agents work in the same environment, a so-

lution obtained with SR, SD, or MR could interfere with the actions of the plan

planner by LPG-Adapt
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window of any other agent, in which case one of the two agents will detect the new

failure and will call the corresponding repair method. As it is explained in Chap-

ter 5, the plan calculated with a repair method (SR or MR) is a sequence of actions

that repairs the current plan window, as opposite to a deliberative method (SD or

MD) which synthesize a complete plan from the current state to the goals. We recall

that the final objective of the agents is to have their plans executed so as to achieve

the desired goals.

6.1.2 Repair configurations

In this section, we design three different combined repair configurations, each de-

fined as a combination of two out of the four methods (SR, SD, MR or MD) exposed

in the previous section. Table 6.1 shows the composition of the three different repair

configurations, which we will call individual repair, reactive repair and deliberative

repair. As we can observe, we use the SR method as a basis in all the configurations.

This is because this repair method, as it was detailed in Chapter 4, turns out to

be the quickest and most effective repairing mechanism to fix a single plan failure.

Therefore, a call to the SR repair method is always made at first place in all the

configurations in order to find a quick solution, if possible; otherwise, we use the

repair methods that actually give name to the configuration.

Table 6.1: Repair configurations designed as a combination of two repair methods.

individual repair reactive repair deliberative repair
SR + SD SR + MR SR + MD

6.1.2.1 Individual repair configuration

This configuration is aimed at evaluating an individual response of the failing agent

with no collaboration from any other agent.
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The individual repair configuration consists in applying the following repair

methods, in this order:

1. First, the agent applies the SR method as exposed in Chapter 3.

2. In case the agent is not capable of reactively self-repairing its plan, it resorts to

the SD repair method, requesting a plan to the deliberative planner comprised

in its associated planning agent.

6.1.2.2 Reactive repair configuration (MARPE model)

In this configuration, we stress the use of a reactive solution. Thereby, this configu-

ration represents the essence of our MARPE model:

1. First, the agent individually applies the SR planning method as in the individ-

ual configuration. If the self-repaired solution of the agent does not succeed,

the configuration then draws upon a multi-repair solution.

2. The MR repair method searches for a multi-reactive solution where a potential

helper agent agrees to collaborate in order to solve the failure. Unlike the

SR method, the agent identified as helper in MR has an active role working

together with the requester agent towards a solution.

One additional observation must be recalled out here. If an agent is working

together with another agent and a failure occurs in its plan, the agent directly works

as it was explained in Sections 5.4.4.1 and 5.4.4.2 without calling the SR method

at first place or the MR method from the beginning. That is so because the recovery

methods offered in Sections 5.4.4.1 and 5.4.4.2 denote parts of our MARPE model.

Hence, for simplicity during the current Chapter each time an agent forms a reactive

solution and a failure occurs during its execution, we will say the agent activates the

MR method.
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6.1.2.3 Deliberative repair configuration (replanning)

In this configuration, in case the usual SR repair method does not succeed, all of the

agents actively participate in finding a deliberative solution. When the MD method

is invoked, all execution agents interrupt their plan simulation and they communi-

cate their current state to a centralized deliberative planner, which is responsible for

finding a global solution. Whereas the reactive approach only involves the agents

that are potential helpers for the failure at hand, in the deliberative configuration,

all the agents give up their plans and they collaboratively call a centralized deliber-

ative planner.

Table 6.2 summarizes the type and number of agents involved in each repair

method as well as the number of agents whose plans participate in such repair

method.

Table 6.2: Overview of the type and number of agents in each repair method.

execution planning modified
agents agents plans

SR 1 - 1

SD 1 1 1

MR m - m

MD n 1 n

Let’s assume n is the total number of execution agents involved in a particular

repair. The SR and SD methods involve one execution agent or its associated plan-

ning agent, in the case of the SD method, and they only modify the plan of the

involved execution agent. In the MR method, m = 2 execution agents are involved

in the reactive solution, and their respective m plans will be likely modified. On the

other hand, only a centralized planning agent participates in the MD configuration

but working with the plans of all the n execution agents in the system. The SR, SD

and MR methods can generate solutions with disagreement with the plans of the

other n−1 (SR and SD methods) or n−m (MR method) execution agents, in which
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case during the execution the failure will be detected and solved with the repair

methods.

6.2 Multi-agent planning tasks

There exist three type of agents in the MARPE approach that interact during the

execution of a Multi-Agent Planning (MAP) task, namely:

1. execution agents, as specified in Chapter 5, which include all the executive

machinery and the reactive planner

2. planning agents associated to the execution agent and each one comprises a

deliberative planner

3. the simulator agent.

Unlike the single-agent experiments, which were only aimed at comparing the

performance of the repair mechanisms, in the multi-agent context we execute the

planning tasks and, therefore, the simulator also intervenes in the planning and

execution system. Execution agents, the principal entities of the MARPE model,

receive a domain and a problem file, which encode their view of the MAP task,

including the planning actions that model their capabilities and the goals they must

achieve. Execution agents then perceive the initial state via the simulator, which

sends each execution agent the set of fluents known to the agent; i.e., the fluents

that affect the preconditions and effects of their actions. Once the planning tasks of

the agents are defined (actions, goals and initial state), each execution agent calls

its deliberative planner to obtain a plan that solves the task and they continue with

the planning and execution process.

It is important to highlight that if the simulator detects that two actions are

conflictive, the simulator only executes one of the two actions.
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As in the single-agent experiments, execution agents receive the task files en-

coded in PDDL3.1 whereas the planning agents and simulator receive a task writ-

ten in PDDL2.1. As we explained in Section 2.1.2.3 of Chapter 2, the simulator

of PlanInteraction was adapted from the original simulator of PELEA, which works

with PDDL2.1. For the conversion from PDDL3.1 to PDDL2.1 and viceversa, we

employ the converters provided in PELEA.

6.2.1 Domain agentization

We generated MAP tasks from three planning domains, namely the rovers domain,

the elevators domain and a transport domain. Our objective is to define MAP

tasks such that the task goals are distributed across agents and each agent is then

responsible and capable of achieving the goals specified in its individual planning

task. That is, in the absence of unexpected events that would prevent agents from

executing their plans, agents will successfully execute their plans and achieve their

assigned goals. Thus, our purpose is to have a group of independent agents execut-

ing their individual plans in a common environment.

For generating the MAP tasks, we adapted the corresponding single-agent do-

mains from the INTERNATIONAL PLANNING COMPETITION (IPC) problem suites

by using the agentization that was firstly presented in [110] 2. This same agen-

tization was later used in the factored representation of the Multi-Agent Planning

Domain Definition Language (MA-PDDL) of the distributed track at the first Compe-

tition of Distributed and Multi agent Planners (CoDMAP) [2]. Actually, the CoDMAP

celebrated at the International Conference on Automated Planning and Scheduling

(ICAPS) of 2015 has contributed towards establishing the foundations for a stan-

dard representation of MAP tasks.

In the following sections, we explain the agentization of the three domains.

2Domains are also available at http://users.dsic.upv.es/grupos/grps/tools/map/fmap.html excepts
for the transport domain, which is inspired from the driverlog domain
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6.2.2 Rovers domain.

The original formulation of the rovers domain was presented in the IPC of 2002.

This domain was already used in Chapter 4 and features rovers that have the neces-

sary abilities to collect soil and rock samples or take images.

The agentization of the rovers domain consists of creating a planning task per

rover. All the agents are of the same type, and they will typically have the same set

of planning capabilities (actions), but there are some exceptions as for the rovers

that are equipped with a camera, which are the only ones that can take images.

The single-agent specification 3 (see Appendix B.1) already includes a rover pa-

rameter in all the actions. However, this rover parameter is not specified in the

:types section as an agent type as it is required in our multi-agent modeling (see

Appendix B.2.1). Additionally, in order to promote a higher degree of cooperation

between agents, we define an extra delivering capability which will be explained in

Section 6.4.1.

6.2.3 Elevators domain.

The elevators domain was used as first time in the IPC of 2008. The domain simu-

lates a real-world problem where there is a building with N floors, and K elevators

that stop at each floor. There are several passengers, for which their current location

(i.e. the floor they are) and their destination are given. The planning task is to find

a plan that moves the passengers to their destination floor.

We adapted the elevators domain presented in the IPC to make floors be acces-

sible by all elevators. We thus define planning tasks where elevators do not have to

stop at intermediate floors for that the passengers board another elevator that takes

them to their destination.

The agentization of the elevators domain consists of creating a planning task

per elevator. Like the rovers domain, all the agents are of the same type, and

3This is the same specification from the original one of the IPC, but with some new capabilities
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they will have the same set of actions. As we mentioned before, our single-agent

specification (see Appendix C.1) is not the same as the original specification of the

IPC. We remove the capacity conditions of the elevator to generate consistent

failures, and we also remove the restricted floor access that some elevators have

to avoid dependencies between agents and promote more cooperation during the

repair of a plan failure. The single-agent specification already includes an elevator

parameter in all the actions. We model the elevator parameter in the :types section

as an agent type as it is required in our MARPE model (see Appendix C.2.1). More

details of this domain will be explained in Section 6.4.2.

6.2.4 Transport domain.

The transport domain is a modified version of the driverlog domain presented in

the IPC of 2002. This domain is an important problem in the fields of transportation

and distribution [51]. In our transport domain, we removed the drivers and all its

abilities. Thus, we only keep a fleet of trucks that can drive between locations. The

trucks can load or unload packages, and the objective is to transport packages be-

tween locations, ending up with a subset of the packages, and the trucks at specified

destinations.

The agentization of the transport domain consists of creating a planning task

per trucks. Like the rovers and elevators domain, all the agents are of the same

type, and they will have the same set of actions. The single-agent specification (see

Appendix D.1) was modeled to already include a truck agent parameter in all the

actions. Obviously, we specified the truck in the :types section as an agent type as

it is required in our model. For the single-agent specification, we keep the domain

with three actions: drive the truck from one location to another, load a package from

one location to a truck and unload a package from a truck to a specific location.

Additionally, and to promote a higher cooperation between agents, we modeled two

extra capabilities in the multi-agent specification (see Appendix D.2.1), which will
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be explained in Section 6.4.3.

6.3 General overview of the experiments

In this section, we explain the common elements of the experiments we carried out

in all the domains. We discuss the parameters that we measure and the meaning

of the data in the results tables. The particular analysis of the outcomes obtained

for the three domains (see Section 6.4) is separately explained in the section corre-

sponding to each domain. Specifically, we designed two scenarios:

a. one-time failure scenario: we trigger one or several failures that occur at a

time in the initial agents’ plans.

b. two-times failure scenario: we trigger two consecutive failures; the first fail-

ure is the same as in the one-time failure scenario and then a second failure is

induced on the repaired plan after the first failure. Since the plan calculated

by each repair configuration can be different after the first repair, the second

failure may be triggered at different times on the repaired plans.

It is important to highlight that each triggered failure may affect one or several

agents. We also note that failures other than the triggered ones may happen in the

two scenarios as a consequence of the resulting plan repair and the behaviour of the

repair approach. We will call this type of failure collateral failures.

We selected six MAP tasks for each domain where each task corresponds to a

problem from the IPC. The MARPE model is implemented in Java, and we run all

tests on a GNU/Linux Debian PC with an Intel 7 Core i7-3770 CPU @ 3.40GHz x 8,

and 8 GB RAM.
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6.3.1 Structure of the results tables

In this section, we explain the structure of the results tables and the parameters to

be measured. All the results tables for the three domains are exactly the same so we

will refer to Table 6.5 (one-time scenario) and Table 6.7 (two-times scenario) of the

rovers domain when explaining the general structure of the tables.

A row of a table represents a failure applied to a MAP task, and the columns

denote:

1. the column task denotes the particular MAP task in which the failure is ap-

plied, and the number of agents and goals of the task.

2. the column fail indicates the induced failure (the meaning of the failure is

explained in the sections that show the obtained results). A failure in the

one-time failure scenario is denoted as Fi, meaning that we triggered a single

failure; and, in the two-times failure scenario is denoted as Fi-Fj, meaning that

we trigger two consecutive failures, Fi and then Fj.

3. the columns of the repair methods show the outcome of applying each method

in the three repair configurations: individual repair, reactive repair (our MARPE

model), and deliberative repair, which work as follows:

• the individual repair configuration activates first SR; if SR cannot solve

the failure, the SD method is then activated to repair the plan failure.

• the reactive repair configuration calls the SR method if the agent is not

working together with another agent, or the MR method if the agent is

collaborating; if the SR is not able to repair the failure, then the MR

method is activated.

• the deliberative repair configuration activates first SR; if SR cannot solve

the failure, the MD method is then invoked.
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The MAP tasks of the agents are simulated until their completion and we mea-

sure the following parameters:

i. the number of reached goals at the end of the simulated plan execution com-

pared to the number of goals in the initial MAP task. This is represented by

the column reached goals as can be seen in Table 6.5.

ii. the overall number of execution cycles of the complete simulation of the MAP

task. This parameter is represented in the column cycles of all results tables,

as can be observed in Table 6.5.

iii. the gap between the time in which the goals of the agent are reached and the

time where are expected to be reached. A positive number is when the agent

finishes later and generally, but not always, the goals of the agent are reached.

A negative number means the agent finishes earlier, in which case the goals of

the agent usually are not reached. A zero number means the agent finishes on

time and the goals of the agent are reached.

iv. the computation time of the MAP task execution. This value is represented

under the column real time in the results tables (see Table 6.5 as an example).

6.3.2 Figures of the results tables.

In this section, we explain the meaning of the figures that appear in the results

tables. For each repair configuration, we show the total number of times the repair

methods (SR, SD, MR, or MD) are activated versus the number of times the method

is capable of solving the failure. More specifically:

1. Meaning of x/y. The notation x/y of the results tables show that y is the

number of times the method is invoked and x the number of times the method

successfully solves the failure.
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For instance, in failure F1 of task 1 (see the one-time failure scenario of Ta-

ble 6.5), the value of SR is x/y = 1/1, meaning that SR is activated once and

finds a solution for such failure. Consequently, the SD method is not invoked

since SR was capable of solving the failure. The same value x/y = 1/1 appears

in the SR of the reactive and deliberative configurations, which also indicates

that these two methods are able to solve the failure. Likewise, the rest of

methods are never invoked.

In the F1-F2 failure of task 1 in the two-times failure scenario presented in

Table 6.7, the value of SR in the reactive and deliberative configurations is

x/y = 2/2, meaning that SR is activated twice and finds a solution in the two

cases. In this case, the two activations of the SR method correspond to the

two consecutive failures, F1 and F2.

2. One same failure may activate two or more repair methods. If a method

is not capable of solving a failure, the next method in the configuration is ac-

tivated. Then, the y value of two different methods in the same configuration

may comprise a call for the same failure.

For instance, in failure F9 of task 5, the value of SR in the individual config-

uration is x/y = 0/1, meaning that SR is activated once but is not capable of

finding a solution. Next, the SD of the individual configuration is activated but

is not able to find the solution either (0/1). Consequently, agent2 finishes its

plan execution sooner (see the delay of agent2), and only 4 out of 6 goals are

reached. The same situation occurs in the SR method of the reactive configura-

tion, which does not repair the failure, and the MR is consequently activated.

Likewise, MR does not attain repairing the task (0/1). In contrast, the MD

method of the deliberative configuration repairs the plan failure (x/y = 1/1).

3. Failures for multiple agents. In both scenarios, the number of times a method

is activated, y, may refer to a failure produced in a single agent or a failure

produced in multiple agents.
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For instance, in the one-time failure scenario of Table 6.5, the value of SR for

F14 of task 1 is x/y = 2/2, which means that SR is activated twice and finds

a solution in both cases. In this case, the two activations of SR stem from the

fact that F14 provokes a failure that affects two agents, agent1 and agent2.

The value of SR in the three repair configurations stand for the same double

failure.

In the two-times failure scenario, identifying a multiple agent failure is not

straightforward because the value x/y not only shows the result of the first

failure, which may affect one or several agents, but also the second consecu-

tive failure, which may also affect several agents. Therefore, we identify cases

where:

• y = 2, in which case each consecutive failure only involves a single agent

• y > 2, in which case either failure can affect more than one agent

For instance, in the two-times failure scenario of Table 6.7, the value of SR for

F21-F22 of task 6 in the reactive and deliberative configurations is x/y = 5/5.

The first failure F21 modifies the state of two agents, finding a solution for

both agents; and the second failure, F22, affects three agents and finds a

solution plan for all of them as well.

4. Collateral failures. The number of times a method is activated, y, may re-

spond to the number of calls for solving the original failure or for solving a

collateral failure. Thus, a failure repaired with the SR and MR methods may

sometimes produce a collateral failure.

For instance, in the one-time failure scenario of Table 6.5, the value x/y = 2/2

of SR for failure F2 in tasks 1 and 5 indicates that two failures are produced

and repaired; the first one is the original F2 and the second one is a collateral

failure.
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Another example can be seen with F16 of task 5 in Table 6.5, where three of

the four failures (y = 4) are the failures that F16 provokes in three agents.

Each agent repairs its plan, which finishes two cycles later over the original

plan (see column delay of the three agents). Notice, agent3 delays its plan

execution in one more cycle (delay = 2) than the other two agents (delay =

1). The reason is because the solution of agent3 generates a collateral failure,

which agent3 repairs activating its SR in the three configurations.

The MR method can also produce a collateral failure, like in F11 of task 1 in

the one-time failure scenario (see Table 6.5), where the MR of the reactive

configuration repairs the failure forming a new multi-reactive solution and,

when the agents finishes the execution of the multi-reactive solution, a col-

lateral failure is produced in the plan of the helper agent agent1, which is

repaired with the SR method; i.e., the SR method is activated twice; one for

attempting to solve F11, which turns out not to be a successful repair, and

the second one to repair a collateral failure, which is successfully solved; i.e.

x/y = 1/2. The same occurs in F13 of task 1.

In failure F1-F13 of task 4 in the two-times scenario (see Table 6.7), the value

of SR in the reactive configuration is x/y = 2/3, meaning that SR is activated

thrice and finds a solution in two of the three cases. The first one is to success-

fully solve F1; the second one is to unfruitfully solve F13; and the third one is

for successfully solving a collateral failure detected when agents finishes the

execution of the multi-reactive solution formed by the MR to repair the second

failure. In contrast, the MD solution of the deliberative configuration does not

generate a collateral failure.

5. Parameters. Same values of x/y in different repair methods may sometimes

render a different number of cycles, and values of real time in the failures of

the one-time and two-times failure scenarios.

For instance, in the one-time failure scenario of Table 6.5, the value of SR in
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F18 of task 6 (x/y = 2/2) means that SR is activated twice and finds a solu-

tion in the two cases. The first failure refers to the original failure F18 and the

second one to a collateral failure. As we can observe, the value of SR in the

three repair configurations is the same. However, we can see some differences

in the number of cycles and real time execution. The deliberative configura-

tion takes one more cycle than the individual and reactive configurations. This

situation is normal because the deliberative repair requires some extra time to

calculate the first plan for the agents; i.e., the central planner of MD needs to

wait until all executing have sent their knowledge of the initial state in order

to compound a global vision of the world state to generate the plan, and once

the plan is calculated, it assigns the actions to each execution agent. The same

happens in the two-times failure scenario with the failure F3-F2 of task 3 (see

Table 6.7).

Once explained the general meaning of the data for the results tables, in the

following we present the particular analysis of the experimental results for each

domain.

6.4 Experimental results

In this section, we present the obtained results for the three domains. First we show

the results for the rovers domain with the one-time and two-times scenarios. Next,

we present the results for the elevators and transport domains with the one-time

scenario. Finally, in the next section we outline some conclusions and discussions of

this chapter.
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6.4.1 rovers domain

The multi-agent rovers domain presents some differences in relation to the single-

agent version. In addition to the new capabilities introduced in Chapter 4, we en-

dow rover agents with rover-to-rover communication abilities represented by the

operators (Communicate rover ?r1 - rover ?r2 - rover ?s - sample ?w1 - waypoint

?w2 - waypoint), or (Communicate image rover ?r1 - rover ?r2 - rover ?o - objec-

tive ?m - mode ?w - waypoint) that allows a rover ?r to communicate a rover ?r2

the results of the samples analysis or the taken image at waypoint ?w. This new

ability is included to promote an alternative joint way of repairing failures (see Ap-

pendix B.2.1).

In this domain, a rover agent collaborates in the multi-repair solution employ-

ing a total number of five capabilities: seek for more samples (new capability added

in the Chapter 4), analyze rock samples, analyze soil samples, take images, and

communicate any previous results to any other rover. We designed two different

capability configurations, R1 and R2, for the rovers domain (see Table 6.3).

Table 6.3: Two configurations of capabilities for the rovers domain

conf description
R1 rovers have the abilities to seek for more samples, analyze

rock and soil samples, and take image; but they do not have
the rover-to-rover communication skill to communicate re-
sults between them.

R2 rovers have all the abilities (seek for more samples, ana-
lyze rock and soil samples, take image, and communication
rover-to-rover).

Configurations R1 and R2 were executed with the one-time failure scenario ex-

plained above. This test allows us to discuss the performance of the three repair
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configurations under the same failing situations: when agents are not able to com-

municate results to each other (R1), or when they have the capability of rover-to-

rover communication (R2). We will see in the results that adding more capabilities

to the rovers also increases the reactive solutions. On the other hand, we executed

the two-times failure scenario only with the R2 rover configuration because since

the plans calculated for the two rover configurations, R1 and R2, will be differ-

ent after the first repair, applying the same second failure in R1 and R2 may be

impossible. Thereby, it is pointless to compare both configurations when the two

consecutive failures are not the same. Additionally, configuration R2 is more inter-

esting for us because it gives rise to more multi-reactive solutions. This is ultimately

our aim in order to test the benefits of our MARPE model.

Table 6.4: Failures generated for the rovers domain

failure description

si
ng

le
fa

ilu
re

s

F1 one rover loses the good maps to navigate from one to other waypoint.
F2 the objective of one rover is not visible from the waypoint.
F3 one rover’s camera loses calibration.
F4 one rover loses the results of sample analysis.
F5 one rover loses the results of the image.
F6 one rover loses the capability to take image.
F7 one rover loses the capability to seek for more samples.
F8 one rover loses the capability to analyze samples (both soils and rocks).
F9 one rover loses the capability to analyze soils or rocks (just one of both).

F10 one rover loses the sample when it is about to analyze in a waypoint.

co
m

po
un

d
fa

ilu
re

s

F11 F10 and F7 (same rover).
F12 F10 and F8 (same rover).
F13 F4 and F7 (same rover).
F14 F3 and F4 (different rovers).
F15 F5 and F6 (same rover).
F16 2xF1 and F2 (different rovers).
F17 F3 and F6 (same rover).
F18 F3 and F2 (same rover).
F19 F10 and F1 (different rovers).
F20 F4 and F8 (same rover).
F21 F1 and F18 (different rovers).
F22 F10 and F19 (different rovers).
F23 F4 and F7 (different rovers).
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Table 6.4 shows all the failures we generated for the rovers domain, which

we divided into single and compound failures. A single failure alters a fluent in the

current world state like failure F3, in which the camera loses calibration. Compound

failures change two or more fluents in the current world state, such as failures from

F11 to F23. Notice that a compound failure may affect not only one agent (F11-

F13), but two or more agents (F14 or F16). We randomly chose and applied a

single or compound failure from Table 6.4 during the simulated plan execution.

The rovers’ actions for solving the failures can be any combination of this set of

actions:

1. the rover seeks for more soil samples

2. the rover seeks for more rock samples

3. the rover analyzes the samples.

4. the rover calibrates the camera.

5. the rover takes the image.

6. the rover communicates the samples analysis to the lander.

7. the rover communicates the taken image to the lander.

8. the rover communicates the samples analysis to another rover.

9. the rover communicates the taken image to another rover.

For instance, assuming that we apply the single failure F10, the solution plan of

the rover is to seek for more soil or rock samples at the specific waypoint, analyze

them and communicate the samples analysis to the lander. If we apply the single

failure F3, in which the camera loses calibration, the recovery solution requires to

calibrate the rover’s camera again.

In the case of a compound failure like F12, in which the failing rover loses the

sample and also the capability to analyze samples, the solution plan of the rover
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requires that another rover analyzes the samples and communicates the results to

the lander (in configuration R1) or to the failing rover (in configuration R2), which

in turn will transmit the results to the lander.

The six tasks we executed of the rovers domain correspond to the following

problems:

• our task 1 has two rovers and four goals

• our task 2 has two rovers and five goals

• our task 3 has two rovers and three goals

• our task 4 has two rovers and six goals

• our task 5 has three rovers and six goals

• our task 6 four rovers and eight goals

6.4.1.1 one-time failure scenario

Table 6.5 shows the results for the one-time failure scenario with the R1 rover

configuration. As we can see, the deliberative repair configuration was the only

one capable of achieving the goals of all the tasks (compare columns task and goals

reached). This is reasonable because the Centralize Planner (CP) of the MD repairs

the plan failures with a global vision of the world state. For instance, in F6 of task

1, rover1 loses the ability to take an image and activates the SR of the reactive

repair. SR is not capable of repairing the plan failure, and MR is activated to request

another agent to take the image and to communicate the results to the lander; unlike

to R2 configuration, where the rovers may use the rover-to-rover communication

skill to communicate the sample analysis to the failing rover. The MR is also not

able to repair the plan failure. In contrast, with the deliberative repair the CP of the

MD generates a new plan where rover2 executes all the work of rover1.
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Table 6.5: Results for the one-time failure scenario with the R1 rovers configuration

individual repair reactive repair deliberative repair
RP RP RP

task fail SR SD
goals
reached delay cycles real

time SR MR
goals
reached delay cycles real

time SR MD
goals
reached delay cycles real

time
(agents) 1:8 seg (agents) 1:8 seg (agents) 1:8 seg

1 2 3 4 1 2 3 4 1 2 3 4

F1 1/1 0/0 4 0 1 - - 8 67.72 1/1 0/0 4 0 1 - - 8 67.76 1/1 0/0 4 0 1 - - 8 67.76
F2 2/2 0/0 4 2 0 - - 8 66.74 2/2 0/0 4 2 0 - - 8 66.57 2/2 0/0 4 2 0 - - 9 75.00

1 F14 2/2 0/0 4 1 4 - - 11 90.53 2/2 0/0 4 1 4 - - 11 90.53 2/2 0/0 4 1 4 - - 11 90.73
4 goals F11 0/1 0/1 2 -4 0 - - 7 58.51 1/2 1/1 4 6 3 - - 12 98.59 0/1 1/1 4 3 3 - - 10 82.59

2 agents F12 0/1 0/1 2 -4 0 - - 7 58.33 0/1 1/1 4 3 4 - - 11 90.60 0/1 1/1 4 5 5 - - 12 98.51
F13 0/1 0/1 2 -3 0 - - 7 58.52 1/2 1/1 4 5 5 - - 12 98.33 0/1 1/1 4 5 3 - - 12 98.52
F6 0/1 0/1 3 -2 0 - - 7 58.45 0/1 0/1 3 -2 0 - - 7 58.39 0/1 1/1 4 2 4 - - 11 90.56

F11 0/1 0/1 3 -5 0 - - 9 74.59 1/2 1/1 5 5 3 - - 13 106.75 0/1 1/1 5 8 6 - - 17 138.70
F12 0/1 0/1 3 -5 0 - - 9 74.55 0/1 0/1 3 -5 0 - - 9 74.45 0/1 1/1 5 7 6 - - 16 130.53

2 F4 0/1 1/1 5 5 0 - - 13 106.45 0/1 1/1 5 7 5 - - 15 122.48 0/1 1/1 5 6 5 - - 15 122.45
5 goals F6 0/1 0/1 3 -4 0 - - 9 74.43 0/1 0/1 3 -4 0 - - 9 74.40 0/1 1/1 5 2 4 - - 13 106.37

2 agents F3 1/1 0/0 5 1 0 - - 9 74.43 1/1 0/0 5 1 0 - - 9 74.42 1/1 0/0 5 1 0 - - 10 82.45
F2 1/1 0/0 5 2 0 - - 10 82.54 1/1 0/0 5 2 0 - - 10 82.40 1/1 0/0 5 2 0 - - 11 90.43
F1 1/1 0/0 5 2 0 - - 10 82.48 1/1 0/0 5 2 0 - - 10 82.33 1/1 0/0 5 2 0 - - 11 90.42

F23 0/1 1/1 5 5 0 - - 13 107.69 0/1 0/1 3 -2 0 - - 6 63.77 0/1 1/1 5 4 5 - - 14 115.52
F1 1/1 0/0 5 1 0 - - 9 74.82 1/1 0/0 5 1 0 - - 9 74.93 1/1 0/0 5 1 0 - - 10 82.86

F11 0/1 0/1 3 -5 0 - - 9 74.61 1/2 1/1 5 5 3 - - 13 106.55 0/1 1/1 5 7 7 - - 16 130.51
3 F6 0/1 0/1 3 -4 0 - - 9 74.47 0/1 0/1 3 -4 0 - - 9 74.58 0/1 1/1 5 5 3 - - 14 114.66

5 goals F3 1/1 0/0 5 1 0 - - 9 74.45 1/1 0/0 5 1 0 - - 9 74.56 1/1 0/0 5 1 0 - - 10 82.49
2 agents F2 1/1 0/0 5 2 0 - - 10 82.48 1/1 0/0 5 2 0 - - 10 82.58 1/1 0/0 5 2 0 - - 11 90.46

F15 0/1 0/1 4 -1 0 - - 9 74.44 0/1 1/1 5 3 3 - - 12 98.50 0/1 1/1 5 3 4 - - 13 106.55
F10 1/1 0/0 6 1 0 - - 10 82.52 1/1 0/0 6 1 0 - - 10 82.60 1/1 0/0 6 1 0 - - 10 82.89
F1 1/1 0/0 6 1 0 - - 10 82.54 1/1 0/0 6 1 0 - - 10 82.53 1/1 0/0 6 1 0 - - 10 82.62

4 F13 0/1 0/1 3 -5 0 - - 9 74.46 1/2 1/1 6 4 5 - - 14 114.50 0/1 1/1 6 6 3 - - 15 122.45
6 goals F11 0/1 0/1 4 -4 0 - - 9 74.53 1/2 1/1 6 5 3 - - 14 114.64 0/1 1/1 6 3 6 - - 15 122.55

2 agents F12 0/1 0/1 3 0 -7 - - 9 74.61 0/1 0/1 3 0 -7 - - 9 74.63 0/1 1/1 6 9 11 - - 24 193.63
F15 0/1 0/1 5 -1 0 - - 9 74.54 0/1 1/1 6 3 3 - - 12 98.60 0/1 1/1 6 2 4 - - 13 108.12
F6 0/1 0/1 5 0 0 -2 - 7 59.55 0/1 0/1 5 0 0 -2 - 7 59.67 0/1 1/1 6 2 3 2 - 10 85.38

F12 0/1 0/1 4 0 -3 0 - 7 59.26 0/1 0/1 4 0 -3 0 - 7 59.19 0/1 1/1 6 6 4 4 - 13 107.84
5 F2 2/2 0/0 6 0 0 2 - 8 67.65 2/2 0/0 6 0 0 2 - 8 67.16 2/2 0/0 6 0 0 2 - 9 75.17

6 goals F16 4/4 0/0 6 1 1 2 - 8 67.33 4/4 0/0 6 1 1 2 - 8 67.24 4/4 0/0 6 1 1 2 - 9 75.17
3 agents F3 1/1 0/0 6 0 0 1 - 7 59.34 1/1 0/0 6 0 0 1 - 7 59.38 1/1 0/0 6 0 0 1 - 8 67.08

F9 0/1 0/1 4 0 -3 0 - 7 59.11 0/1 0/1 4 0 -3 0 - 7 59.30 0/1 1/1 6 4 6 4 - 13 107.37
F20 0/1 0/1 6 0 -2 0 0 7 60.21 1/2 1/1 8 5 4 0 0 12 101.07 0/1 1/1 8 4 4 6 3 13 109.78
F21 3/3 0/0 8 1 0 3 0 9 76.23 3/3 0/0 8 1 0 3 0 9 76.13 3/3 0/0 8 1 0 3 0 10 84.59

6 F18 2/2 0/0 8 0 0 3 0 9 76.26 2/2 0/0 8 0 0 3 0 9 76.78 2/2 0/0 8 0 0 3 0 10 85.77
8 goals F9 0/1 0/1 6 0 -3 0 0 7 60.42 0/1 0/1 6 0 -3 0 0 7 59.98 0/1 1/1 8 3 5 3 3 12 100.23

4 agents F6 0/1 0/1 6 0 0 -4 0 7 59.92 0/1 0/1 6 0 0 -4 0 7 60.45 0/1 1/1 8 3 2 5 3 12 100.42
F4 0/1 1/1 8 0 3 0 0 9 76.75 1/2 1/1 8 5 4 0 0 12 100.22 0/1 1/1 8 3 5 3 3 12 100.25
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On the contrary, the reactive repair was not able to reach all the goals in 28%

of the execution failures. However, the reactive repair achieves more goals in fewer

cycles than the deliberative and the individual repairs, as in failure F11 of task

2; where the reactive repair reaches all the goals in 13 cycles of execution, the

deliberative repair in 17 cycles, and the individual repair does not reach all the

goals.

The three repair configurations reach all the goals in 48% of the execution fail-

ures because failures are solved with the SR mechanism, except in F4 and F23 of

task 2 and F4 of task 6. In this failures, SR is not capable of repairing the plan

failure, and the agent activates the SD, MR, or MD of the individual, reactive or de-

liberative repair configurations, respectively. Obviously, as the SR solves the failures,

the real-time results will be almost the same in the three repair configurations ex-

cept for the deliberative configuration where sometimes the MD loses one execution

cycle generating and allocating the solution plan to each agent.

Figure 6.1 compares the real-time results when the reactive and deliberative

configurations reach all the goals. We decide not to compare the individual config-

uration because it only reaches all the goals in 48% of the execution failures. As

we can see, the Figure 6.1 confirms that the reactive repair achieves all the goals

in fewer cycles than the deliberative configuration. In the cases where the differ-

ences are minimal, such as F1 and F10 of task 4, the failure is solved with our SR

mechanism, which highlight the good performance of the self-repair mechanism.

Consequently, as it is shown in Table 6.5, the reactive repair also presents fewer de-

lay in the agents’ plan execution, such as the failure F15 of task 3 where the agents

in the reactive repair present a delay of 3 cycles against the 4 cycles of the delib-

erative configuration. Opposite cases are due to collateral failures, which delay the

agents’ plan execution. For instance, in F2 of task 1, the solution plan is that rover1

navigates to another waypoint where the objective is visible to take the images. This

solution plan produces a collateral failure due to the rover1 is not any longer in the

specific location where it was supposed to be in order to analyze the soil or rock
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samples. The SR of the individual configuration repairs the collateral failure navi-

gating rover1 to the specific waypoint. Notice that as expectedly, if SR is capable of

solving a failure, so it is SR of the reactive and deliberative configurations.
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Figure 6.1: Real-time results when the reactive and deliberative repair configura-
tions reach all the goals in the one-time scenario with R1 rovers configuration

Some compound failures that affects different agents are not detected by all the

agents. For instance, the compound failure F23 of task 2 is applied over different

agents; i.e., rover1 loses the results of sample analysis and rover2 loses the capabil-

ity to seek for more samples. But only rover1 detects the plan failure. rover2 does

not detect the failure because it does not affect its current plan execution. Thus,

rover1 activates its SR, which was not able to repair the plan failure and then the

MR is activated, but MR was also not able to repair the failure because rover2 has

not the ability to seek for more samples. In contrast, the MD of the deliberative

repair generates a solution plan where rover1 seeks for more samples.

Table 6.6 shows the results for the one-time failure scenario with the R2 rover

181



6.4 Experimental results

Table 6.6: Results for the one-time failure scenario with the R2 rovers configuration

individual repair reactive repair deliberative repair
RP RP RP

task fail SR SD
goals
reached delay cycles real

time SR MR
goals
reached delay cycles real

time SR MD
goals
reached delay cycles real

time
(agents) 1:8 seg (agents) 1:8 seg (agents) 1:8 seg

1 2 3 4 1 2 3 4 1 2 3 4

F1 1/1 0/0 4 0 1 - - 8 67.92 1/1 0/0 4 0 1 - - 8 67.59 1/1 0/0 4 0 1 - - 8 67.99
F2 1/1 0/0 4 2 0 - - 8 66.72 1/1 0/0 4 2 0 - - 8 66.52 1/1 0/0 4 1 0 - - 8 66.63

1 F14 2/2 0/0 4 1 4 - - 11 90.65 2/2 0/0 4 1 4 - - 11 90.67 2/2 0/0 4 0 4 - - 11 90.56
4 goals F11 0/1 0/1 2 -4 0 - - 7 58.60 1/2 1/1 4 6 3 - - 12 98.58 0/1 1/1 4 4 4 - - 11 90.59

2 agents F12 0/1 0/1 2 -4 0 - - 7 58.56 0/1 1/1 4 4 4 - - 11 90.41 0/1 1/1 4 5 6 - - 13 106.59
F13 0/1 0/1 2 -3 0 - - 7 58.43 1/2 1/1 4 6 5 - - 12 98.48 0/1 1/1 4 5 3 - - 12 98.50
F6 0/1 0/1 3 -2 0 - - 7 58.64 0/1 1/1 4 3 3 - - 10 82.32 0/1 1/1 4 2 4 - - 11 90.57

F11 0/1 0/1 3 -5 0 - - 9 74.82 1/2 1/1 5 5 3 - - 13 106.38 0/1 1/1 5 8 6 - - 17 138.69
F12 0/1 0/1 3 -5 0 - - 9 74.54 1/2 1/1 5 6 5 - - 14 114.33 0/1 1/1 5 7 6 - - 16 130.36

2 F4 0/1 1/1 5 5 0 - - 13 106.46 0/1 1/1 5 7 4 - - 15 122.39 0/1 1/1 5 7 5 - - 16 130.25
5 goals F6 0/1 0/1 3 -4 0 - - 9 74.53 0/1 1/1 5 3 3 - - 12 98.67 0/1 1/1 5 4 6 - - 15 122.30

2 agents F3 1/1 0/0 5 1 0 - - 9 74.52 1/1 0/0 5 1 0 - - 9 74.58 1/1 0/0 5 1 0 - - 10 82.44
F2 1/1 0/0 5 2 0 - - 10 83.96 1/1 0/0 5 2 0 - - 10 83.77 1/1 0/0 5 2 0 - - 11 91.65
F1 1/1 0/0 5 2 0 - - 10 82.35 1/1 0/0 5 2 0 - - 10 82.51 1/1 0/0 5 2 0 - - 11 90.49

F23 0/1 1/1 5 5 0 - - 13 107.95 0/1 0/1 3 -2 0 - - 6 64.02 0/1 1/1 5 4 5 - - 14 116.00
F1 1/1 0/0 5 1 0 - - 9 74.79 1/1 0/0 5 1 0 - - 9 74.45 1/1 0/0 5 1 0 - - 10 82.95

F11 0/1 0/1 3 -5 0 - - 9 74.60 1/2 1/1 5 5 3 - - 13 106.50 0/1 1/1 5 7 7 - - 16 130.76
3 F6 0/1 0/1 3 -4 0 - - 9 74.51 0/1 1/1 5 3 3 - - 12 98.55 0/1 1/1 5 6 4 - - 15 122.48

5 goals F3 1/1 0/0 5 1 0 - - 9 74.45 1/1 0/0 5 1 0 - - 9 74.48 1/1 0/0 5 1 0 - - 10 82.66
2 agents F2 1/1 0/0 5 2 0 - - 10 82.58 1/1 0/0 5 2 0 - - 10 82.48 1/1 0/0 5 2 0 - - 11 90.49

F15 0/1 0/1 4 -1 0 - - 9 74.39 0/1 1/1 5 4 3 - - 12 98.43 0/1 1/1 5 3 4 - - 13 106.48
F10 1/1 0/0 6 1 0 - - 10 83.80 1/1 0/0 6 1 0 - - 10 84.21 1/1 0/0 6 1 0 - - 10 83.94
F1 1/1 0/0 6 1 0 - - 10 82.62 1/1 0/0 6 1 0 - - 10 82.63 1/1 0/0 6 1 0 - - 10 82.76

4 F13 0/1 0/1 3 -5 0 - - 9 74.69 1/2 1/1 6 5 5 - - 14 114.68 0/1 1/1 6 6 3 - - 15 122.67
6 goals F11 0/1 0/1 4 -4 0 - - 9 74.65 1/2 1/1 6 5 3 - - 14 114.35 0/1 1/1 6 3 6 - - 15 122.97

2 agents F12 0/1 0/1 3 0 -7 - - 9 76.18 0/1 0/1 3 0 -7 - - 9 75.82 1/3 2/2 6 11 13 - - 23 187.51
F15 0/1 0/1 5 -1 0 - - 9 74.67 0/1 1/1 6 4 3 - - 13 106.74 0/1 1/1 6 2 4 - - 13 107.16
F6 0/1 0/1 5 0 0 -2 - 7 60.80 0/1 1/1 6 4 0 4 - 11 93.07 0/1 1/1 6 3 5 3 - 12 101.38

F12 0/1 0/1 4 0 -3 0 - 7 59.70 2/3 1/1 6 5 5 0 - 12 102.64 0/1 1/1 6 6 4 4 - 13 109.20
5 F2 2/2 0/0 6 0 0 2 - 8 67.41 2/2 0/0 6 0 0 2 - 8 67.52 2/2 0/0 6 0 0 2 - 9 75.25

6 goals F16 4/4 0/0 6 1 1 2 - 8 67.34 4/4 0/0 6 1 1 2 - 8 67.94 4/4 0/0 6 1 1 2 - 9 75.32
3 agents F3 1/1 0/0 6 0 0 1 - 7 59.49 1/1 0/0 6 0 0 1 - 7 59.47 1/1 0/0 6 0 0 1 - 8 67.34

F9 0/1 0/1 4 0 -3 0 - 7 59.31 1/2 1/1 6 4 3 0 - 11 91.43 0/1 1/1 6 5 6 4 - 13 107.38
F20 0/1 0/1 6 0 -2 0 0 7 61.19 1/2 1/1 8 5 5 0 0 12 100.93 0/1 1/1 8 6 4 4 6 13 110.30
F21 3/3 0/0 8 1 0 3 0 9 76.43 3/3 0/0 8 1 0 3 0 9 75.87 3/3 0/0 8 1 0 3 0 10 84.13

6 F18 2/2 0/0 8 0 0 3 0 9 76.46 2/2 0/0 8 0 0 3 0 9 76.12 2/2 0/0 8 0 0 3 0 10 84.47
8 goals F9 0/1 0/1 6 0 -3 0 0 7 60.48 0/1 1/1 8 0 3 0 3 10 86.13 0/1 1/1 8 3 5 3 3 12 100.53

4 agents F6 0/1 0/1 6 0 0 -4 0 7 59.87 0/1 1/1 8 3 0 2 0 10 84.44 0/1 1/1 8 3 2 5 3 12 100.27
F4 1/1 0/0 8 0 2 0 0 8 68.37 1/1 0/0 8 0 2 0 0 8 68.40 1/1 0/0 8 0 2 0 0 9 75.96
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configuration. The reactive and deliberative configurations reach all the goals ex-

cept for the failures F23 in task 2 and F12 in task 4 of the reactive configuration.

The reason is that MR is not able to create a multi-reactive solution because the

agent is not capable to adapt its plan. Likewise as in the R1 configuration, the reac-

tive repair achieves more goals in fewer cycles than the individual and deliberative

configurations (92% of the failure executions).
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Figure 6.2: Real-time results when the reactive and deliberative repair configura-
tions reach all the goals in the one-time scenario with R2 rovers configuration

Figure 6.2 compares the real-time results when the reactive and deliberative con-

figurations reach all the goals in the one-time scenario with the R2 configuration.

As in the R1 configuration, the reactive repair reaches all the goals in fewer cycles

than the deliberative configuration except for the failure F11 of task 1, where the

MR solution generates a collateral failure. In this failure, rover2 loses its capability

to seek for more soil samples, then rover1 changes its position to seek for more soil

samples that rover2 needs to analyze. This solution generates a collateral failure
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when rover1 finishes the execution of the multi-reactive solution and needs to exe-

cute its last action, because rover1 is not in the required location to communicate

the results of the rock analysis to the lander. The SR of rover1 repairs the plan

failure navigating to the required location.

Failures like F11 and F12 of task 2 provide us an idea of the good performance

of our MARPE approach against the deliberative configuration. In the two failures,

the MR solution generates a collateral failure due to rover1 is not in the required

location to communicate the results of the rock analysis to the lander when rover1

finishes the execution of the multi-reactive solution. However, the reactive repair

presents a better performance because its solution is shorter, in terms of actions,

than the selected by the MD of the deliberative repair. For instance, in F12 of task

2 of the deliberative approach, rover1 seeks for more soil samples (rover2 loses its

capability to seek for more soil samples) and rover2 achieves its goals and the goals

of rover1. Given that rover2 performs its tasks as well as the ones of rover1, the

plan becomes significantly longer.

Finally, in the cases where the differences are minimal, such as F1 and F2 of task

1, the failure is solved with our SR mechanism.

In summary, we concluded that adding more capabilities to the rovers, like in

the R2 rovers configuration, also increases the reactive solutions, as for instance in

F6 of task 1, where the failure is solved with the added rover-to-rover sample anal-

ysis communication capability. In addition, we also concluded that the repair and

deliberative configurations present better results than the individual configuration.

6.4.1.2 two-times failure scenario

Table 6.7 depicts the results of applying two failures in a complete execution of the

same six tasks of Table 6.4. As we highlight before, the individual repair configu-

ration got the worst results. For this reason, we decide just to compare the repair

configurations reactive repair and deliberative repair.
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Table 6.7: Two-times failure scenario results with the R2 rovers configuration.

reactive repair deliberative repair
RP RP

task fail SR MR
goals
reached delay cycles real

time SR MD
goals
reached delay cycles real

time
(agents) 1:8 seg (agents) 1:8 seg

1 2 3 4 1 2 3 4

F1-F2 2/2 0/0 4 2 1 - - 8 67.92 2/2 0/0 4 1 1 - - 8 67.63
F2-F6 1/2 1/1 4 5 3 - - 11 91.91 1/2 1/1 4 4 2 - - 11 91.66

1 F14-F7 2/3 1/1 4 3 6 - - 13 106.49 2/3 1/1 4 3 5 - - 12 100.68
4 goals F11-F10 1/3 2/3 1 5 4 - - 11 91.48 0/2 2/2 4 5 6 - - 13 106.67

2 agents F12-F4 0/1 2/2 4 10 7 - - 16 131.58 1/3 2/2 4 12 5 - - 19 154.51
F13-F2 2/3 1/1 4 8 5 - - 14 114.65 1/2 1/1 4 7 5 - - 14 114.51
F6-F3 0/1 2/2 4 6 5 - - 12 98.57 1/2 1/1 4 4 5 - - 12 98.43

F11-F1 1/2 2/2 5 7 5 - - 15 123.73 0/2 2/2 5 7 12 - - 21 171.88
2 F12-F3 2/3 1/1 5 7 5 - - 15 122.83 1/2 1/1 5 8 7 - - 17 138.51

5 goals F6-F3 0/1 2/2 5 6 5 - - 14 115.69 1/3 2/2 5 0 7 - - 18 146.25
2 agents F3-F2 2/2 0/0 5 3 0 - - 11 90.84 2/2 0/0 5 3 0 - - 12 98.38

F1-F11 2/3 1/1 5 4 3 - - 12 99.79 1/2 1/1 5 8 2 - - 17 140.01
3 F11-F1 1/2 1/1 5 5 3 - - 13 106.59 0/2 2/2 5 8 10 - - 19 154.90

5 goals F3-F2 2/2 0/0 5 3 0 - - 11 90.61 2/2 0/0 5 3 0 - - 12 98.53
2 agents F15-F3 0/1 2/2 5 7 5 - - 15 122.58 1/3 2/2 5 5 1 - - 16 130.41

F10-F1 2/2 0/0 6 1 1 - - 10 83.97 2/2 0/0 6 1 1 - - 10 84.28
4 F1-F13 2/3 1/1 6 7 5 - - 16 130.70 1/2 1/1 6 6 4 - - 15 122.86

5 goals F11-F1 1/2 2/2 6 7 5 - - 16 130.61 1/3 2/2 6 7 5 - - 18 146.43
2 agents F15-F2 0/1 1/2 5 2 2 - - 11 90.84 1/3 2/2 6 7 0 - - 16 130.61

F16-F3 4/4 0/0 6 1 1 3 - 9 77.02 4/4 0/0 6 1 1 3 - 10 85.01
5 F3-F15 1/2 1/1 6 0 0 5 - 11 93.22 1/2 1/1 6 0 0 5 - 11 93.64

6 goals F12-F5 2/4 1/2 5 5 5 -1 - 12 103.62 1/2 1/1 6 6 6 8 - 15 123.44
3 agents F9-F1 0/1 1/2 2 -1 -1 0 - 6 52.85 1/3 2/2 6 0 0 6 - 16 131.17

F20-F10 1/2 1/1 8 6 5 0 0 13 110.20 1/3 2/2 8 3 6 1 2 16 133.95
6 F21-F22 5/5 0/0 8 1 1 3 1 9 77.10 5/5 0/0 8 1 1 3 1 10 86.54

8 goals F1-F13 1/2 1/2 6 0 2 0 4 11 94.36 1/2 1/1 8 3 5 2 5 12 103.07
4 agents F11-F1 0/1 1/2 6 0 -1 0 2 9 76.97 0/1 1/1 8 3 6 2 3 13 109.12
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As we can see in Table 6.7, the two repair configurations are able to reach all

the goals except in the reactive repair for failures F11-F10 of task 1, F15-F2 of task

4, F12-F5 and F9-F1 of task 5, and F1-F13 and F11-F1 of task 6. For instance, in

F11-F10, the first failure F11 impacts over the rover1 and it is repaired forming a

multi-reactive solution with MR (the SR of rover1 is not capable of repairing the

plan failure because rover1 lost the capability to seek for more rock or soil samples

and the MR is activated), and when the agents finish the execution of the reactive

solution the helper agent finds a collateral failure that repairs with the method SR.

At the same time, the plan failure F10, which affects again the rover1, is executed

and the agent rover1 activates the SR of the reactive repair. SR is not capable of

repairing the plan failure, and MR is activated. MR repairs the plan failure forming a

new multi-reactive solution. However, during the execution of the reactive solution,

another collateral failure appears and MR is activated again applying the recovery

solution explained in Section 5.4.4.1. MR is not able to solve the collateral failure

because it exceeds the maximum depth of the merge search space. Then, rover1

and rover2 end their plan execution. For F15-F2, the first failure F15 affect the

rover1, which request for help to rover2 and it is repaired forming a multi-reactive

solution with the MR. Then, the plan failure F2 is executed and the MR works again

applying the explained in Section 5.4.4.2. MR is not able to solve the failure during

the execution of the reactive solution because rover1 can not adapt its plan to the

new failure solution. Then, rover1 and rover2 finish their plan execution. Same

happens in F9-F1, but in this failure situations there is not solution plan because

rover1 loses the ability to analyze rock samples.

One failure situation where MR repairs the plan failure with the explained in

Section 5.4.4.1 is in F6-F3 of task 2, where the first failure F6 affects rover1, i.e.

rover1 loses the ability to take image. Thus, the SR is activated, but SR is not

capable of repairing the plan failure, and the agent activates the MR to request

another agent to take the image. MR finds a solution plan where rover2 takes the

image and sends the results of the image to rover1 which communicates the image
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to the lander. The second failure F3 appears during the execution of the multi-

reactive solution. The failure F3 affects rover2, the helper agent, which solves it by

activating the MR again.
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Figure 6.3: Real-time results when the reactive and deliberative repair configura-
tions reach all the goals in the two-times scenario for the rovers domain

Figure 6.3 compares the real-time results when the reactive and deliberative

configurations reach all the goals in the two-times scenario. The reactive repair also

achieves all the goals in fewer cycles than the deliberative configuration excepts for

the failures F14-F7 of task 1 and F1-F13 of task 4. In F14-F7 of task 1, the first

failure F14 affects rover1 and rover2, i.e. the camera of rover1 loses calibration,

and rover2 loses the ability to seek for more samples. Thus, the SR of each rover

is activated. The SR of each rover is able to find a solution plan and rover1 and

rover2 continue with the execution of the new plan. Then, the second failure F7 is

executed and the SR of rover2 is activated. SR is not capable of repairing the plan

failure, and MR of the reactive repair is activated to request another agent to seek

187



6.4 Experimental results

for more soil samples. MR finds a solution plan where rover1 seeks for more soil

samples that rover2 analyzes and communicates the results of the sample analysis

to the lander. In contrast, with failure F7, the CP of the MD in the deliberative

configuration decides that rover1 executes part of the work of the rover2, i.e.

rover1 seeks for more soil samples, analyzes them and communicates the sample

analysis to the lander. In F1-F13 of task 4, MR of the reactive configuration repairs

the second failure with a solution plan where rover2 seeks for more rock samples,

analyzes them and communicates the sample analysis to rover1, which loses the

sample result analysis together with the ability to seek for more rock samples; then,

rover1 communicates the results of the sample analysis to the lander. As we can

see, in this solution, rover2 performs part of the work of rover1, in contrast with

the solution of MD in the deliberative configuration where rover2 executes the

complete work of rover1. Finally, in some cases where the differences are minimal,

such as F1-F2 of task 1, or F10-F1 of task 4, the failure is solved with the SR.

A higher degree of equilibrium in the agents delay can be defined as the situation

where all the agents participate actively in the solution plan, reaches the goal more

cooperatively, and additionally have a minimal delay. Our approach reaches a higher

equilibrium in the agents delay, in opposition to the MD approach, where sometimes

one agent do all the work, and the another agent finishes earlier, such as the rover1

in the failure F15-F3 of task 3. In this failure situation, the MD generates a solution

plan in which the rover2 performs all the work, and the rover1 has only to wait.

Same happens in F20-F10 of task 6.

6.4.2 elevators domain

The multi-agent elevators domain differs from the single-agent domain (see Ap-

pendixes C.2.1 and C.1, respectively) that we select the elevator as type agent.

We used the STRIPS version of the IPC without actions costs and temporal. Our

elevators domain presents some differences from the IPC version.
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• We remove the predicates related to the maximum number of passengers al-

lowed in an elevator, i.e. the predicate (can-hold ?lift - elevator ?n - count)

and the associated predicates (passengers ?lift - elevator ?n - count) and

(next ?n1 - count ?n2 - count), which are used to know the current number of

passengers and to increase/decrease a passenger in an elevator, respectively.

The reason is that simulating a failure that changes the position of a passen-

ger to be inside or outside the elevator would imply to previously check the

maximum and minimum capacity conditions of the elevator in order to ensure

the failure is a consistent change in the domain.

• We add the function (working-lift ?l) - option, and the predicate (door-

working ?l ?f) to specify whether the elevator ?l is working, and if the door

of the elevator ?l is operative or not in the floor ?f, respectively. These two

fluents allow us to promote a higher degree of cooperation between agents

because, for instance, if the door of the elevator is not operative then the

elevator needs to request for help in order to transport the passenger to the

target floor.

In this domain, an elevator agent collaborates in the multi-repair solution em-

ploying a total number of two capabilities: board a passenger in a floor, and leave a

passenger in a floor.

Table 6.8: Failures generated for the elevators domain

failure description

si
ng

le
fa

ilu
re

s F1 the passenger is on another floor.
F2 the passenger is in an specify elevator.
F3 the elevator changes its position to another floor.
F4 the elevator is broken due to a hardware failure.
F5 the elevator’s door is damaged in an specific floor.
F6 the elevator is not able to reach the floor.
F7 F1 and F5.

Table 6.8 shows all the failures we generated for the elevators domain, which
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we divided into single failures (F1 until F6) and the compound failure, F7. Like the

rovers domain, a single failure alters a fluent in the current world state like failure

F3, in which the elevator changes its position to another floor. The compound fail-

ure F7 changes two or more fluents in the current world state. We randomly chose

and applied a single or compound failure from Table 6.8 during the simulated plan

execution. The elevators’ actions for solving the failures can be any combination of

this set of actions:

1. the elevator moves up to one different floor

2. the elevator moves down to one different floor

3. the elevator boards the passenger in the specific floor

4. the elevator leaves the passenger in the specific floor

For instance, assuming we apply the single failure F1, the solution plan of the

elevator is to moves up to the specific floor, boards the passenger, moves up or down

to the target floor, and leaves the passenger. Notice that some failures, such as F4

and F5, do not have any self-repair solution; i.e. they require a multi-repair solution

plan.

Table 6.9 shows the results of the elevators domain with the one-time failure

scenario. As we can see, the six tasks that we executed of the elevators domain

considers the following planning tasks:

• the task 1 has two elevators, and three goals

• the task 2 has two elevators, and three goals

• the task 3 has two elevators, and four goals

• the task 4 has two elevators, and four goals

• the task 5 has three elevators, and five goals
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Table 6.9: Results for the elevators domain applying one-time failure.

reactive repair deliberative repair
RP RP

task fail SR MR
goals
reached delay cycles real

time SR MD
goals
reached delay cycles real

time
(agents) 1:8 seg (agents) 1:8 seg

1 2 3 4 1 2 3 4

F1 1/1 0/0 3 0 2 - - 9 75.53 1/1 0/0 3 0 2 - - 11 91.58
F2 1/2 1/1 3 3 5 - - 12 98.57 0/1 1/1 3 4 2 - - 13 106.75

1 F4 0/1 0/1 2 -2 0 - - 7 58.65 0/1 1/1 3 4 3 - - 13 106.68
3 goals F5 0/1 0/1 2 -3 0 - - 6 50.50 0/1 1/1 3 3 0 - - 12 98.46

2 agents F7 0/1 1/1 3 3 0 - - 12 98.56 0/1 1/1 3 5 0 - - 14 114.48
F1 1/1 0/0 3 2 0 - - 10 83.52 1/1 0/0 3 2 0 - - 10 83.54

2 F2 0/1 1/1 3 5 2 - - 13 106.63 0/1 1/1 3 1 3 - - 11 91.57
3 goals F5 0/1 0/1 2 -3 0 - - 5 42.75 0/1 1/1 3 2 3 - - 11 90.65

2 agents F7 1/2 1/1 3 5 5 - - 13 106.68 0/1 1/1 3 0 5 - - 13 106.56
F3 1/1 0/0 4 1 0 - - 10 83.62 1/1 0/0 4 1 0 - - 10 82.50

3 F2 0/1 1/1 4 3 2 - - 12 98.68 0/1 1/1 4 1 3 - - 12 98.43
4 goals F6 0/1 0/1 3 -4 0 - - 9 75.76 0/1 1/1 4 5 3 - - 14 115.80

2 agents F7 0/1 1/1 4 4 4 - - 13 106.38 0/1 1/1 4 6 5 - - 15 122.42
F3 1/1 0/0 4 1 0 - - 10 83.53 1/1 0/0 4 1 0 - - 10 82.31

4 F2 1/1 0/0 4 0 0 - - 8 66.66 1/1 0/0 4 0 0 - - 9 74.43
4 goals F5 0/1 0/1 2 0 -3 - - 10 81.60 0/1 1/1 4 3 5 - - 14 114.41

2 agents F7 0/1 1/1 4 4 5 - - 13 106.57 0/1 1/1 4 5 6 - - 15 122.35
F1 1/1 0/0 5 0 0 1 - 9 74.43 1/1 0/0 5 0 0 1 - 9 74.94

5 F2 0/1 1/2 2 -2 0 -3 - 6 51.15 0/1 1/1 5 3 0 1 - 11 90.91
5 goals F5 0/1 0/1 4 0 -1 0 - 8 69.69 0/1 1/1 5 3 5 2 - 13 107.15

3 agents F7 0/1 2/2 4 5 -5 0 - 13 107.50 0/1 1/1 5 5 6 3 - 14 115.15
F1 2/2 0/0 5 0 0 2 - 10 85.75 2/2 0/0 5 0 0 2 - 10 83.46

6 F2 1/1 0/0 5 -1 0 0 - 8 67.16 1/1 0/0 5 -1 0 0 - 8 66.74
5 goals F5 0/1 0/1 4 0 -1 0 - 8 69.24 0/1 1/1 5 3 5 2 - 13 107.20

3 agents F7 1/2 1/1 5 3 5 0 - 11 91.45 0/1 1/1 5 4 5 2 - 13 106.99
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• the task 6 has three elevators, and five goals

Like the rovers domain, the deliberative repair configuration is the only one

capable of achieving the goals of all the tasks because the CP of the MD repairs

the failures with a global vision of the world state. For instance, in F4 of task 1,

elevator1 presents a hardware failure and activates the SR of the reactive repair.

SR is not capable of repairing the plan failure, and MR is activated to request an-

other agent to fix the hardware plan failure, which is not possible because there is

not action that fix hardware failures. In contrast, with the deliberative repair, the

CP of the MD generates a new plan where the elevator2 executes all the work of

elevator1.

On the contrary, the reactive repair is not able to reach all the goals in the

32% of the execution failures. It occurs for two reasons: 1) the current plan

window is too small or 2) it requires joint actions to fix the failure, and conse-

quently more interactions between the agents. For instance, failure F5 of task 1

represents case 1). In this failure, passenger1 can not board in the elevator1 be-

cause the door of elevator1 has a hardware failure in floor8. Thereby, it is not

possible to execute the next action “5.0: (board elevator1 passenger1 floor8)”

(see Appendix C.2.2.1). elevator1 is covering a plan window of two actions, i.e.

the actions “5.0: (board elevator1 passenger1 floor8)” and “6.0: (move-down

elevator1 floor8 floor4)”, any activation of MR will request to fix the hardware

failure of the door, which is not affordable. In contrast, If the plan window is higher

than two, it will cover the three final actions, and then it will be possible to find

a solution plan where another elevator transports passenger1 to the destination

floor. The same failure F5 but in task 5 represents the case 2), elevator2 detects a

hardware failure and activates the SR. SR is not capable of solving the plan failure,

and MR is activated to request another elevator agent to transport the passenger2

to the target floor8. The solution requires joint actions that employs a higher num-

ber of interactions between agents because elevator2 needs to move to another
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floor in which elevator’s door is working, and leaves the passenger2; then, an-

other elevator should board and transport the passenger2 to the target floor8.

In contrast, the CP of the MD generates the required solution plan.

Figure 6.4: Real-time results when the two repair configurations reach all the goals
for the elevators domain

Figure 6.4 shows the real-time results when the two repair configurations reach

all the goals. Clearly, the reactive repair achieves all the goals in fewer cycles than

the deliberative configuration excepts for F2 of task 2. In this failure, elevator1

detects that the passenger1 took the wrong elevator2 in the floor0 and activates

the SR. SR is not capable of repairing the plan failure and activates the MR to

request the elevator2 to leave the passenger1 in the floor0; unlike, the MD of

the deliberative repair that generates a solution plan where the elevator2 reach

the complete goals of elevator1.

In cases where the differences are minimal, such as F1 of task 2 or F3 of task

4, the failure is solved with our SR mechanism. Consequently, as it is shown in
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Table 6.9, the deliberative repair also presents fewer delay in the agents’ plan ex-

ecution, such as the failure F7 of task 3 where the agents in the reactive repair

present a less number of delay in the execution cycles than the deliberative.

6.4.3 transport domain

The multi-agent transport domain presents some differences in relation to the

single-agent version (see Appendixes D.2.1 and D.1, respectively).

1. We add the predicates (engine-operating ?t) and (hoist-operating ?t) to

specify whether the motor of the truck ?t and the crane of the truck ?t are

working or not, respectively. Thus, if the motor of ?t is not operative, ?t will

not be able to drive to any location and it will request help to other trucks.

In the same way, if the crane of ?t is not operative, ?t will not be capable to

load or unload any package and the only possible solution will be to resort for

help to other trucks. In other words, any failure in the two new predicates

will affect directly the actions drive, load, and unload with not possible self

repairing solution, forcing the failing agent to activate the MR method in the

reactive repair configuration or the MD method in the deliberative repair con-

figuration.

2. We also endow truck agents with the abilities to load a package inside an-

other truck and unload a package from another truck. This new abilities are

included to promote an alternative joint way of repairing failures when the

crane of the truck is not operative. For instance, if the crane of one truck is

not operative to unload a package to an specific location, the truck activates

the MR method. With the new abilities, another truck may drive to the specific

location in order to unload the package from the failing truck, and transport

it to the specific location.
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Table 6.10: Failures generated for the transport domain

failure description

si
ng

le
fa

ilu
re

s F1 truck changes its position to another location.
F2 truck loses the good maps to drive from one location to another location.
F3 truck engine is not operative.
F4 truck hoist is not operative.
F5 package changes its position to one location or truck.

Table 6.10 shows all the possible failures we generated for the transport do-

main. All the failures are single failures that alters a fluent in the current world

state like F2, in which the truck loses the good maps to travel from one location

to another location. In each execution of this domain, we simulated a compound

failure by randomly choosing and applying two single failures from the Table 6.10

during the plan execution. The first single failure is F3 or F4 because we want to

ensure the activation of the methods MR and MD. The second failure will be any

single failure of the Table 6.10. Thus, our compound failures are any combination

of the form F3-Fi or F4-Fi, where Fi is one of the single failures F1, F2, F3, F4 or F5.

Thus, in this domain, trucks’ actions for collaborating in the multi-repair solution

can be any combination of this set of actions:

1. the truck drives to the specific place

2. the truck loads the package from the specific location

3. the truck loads the package from another specific truck

4. the truck unloads the package at the specific location

5. the truck unloads the package to another specific truck

For instance, assuming we apply the failure F1, the solution plan of the truck

is to drive to the particular position, load the package, drive to the target position

and unload the package. If we apply the failure F4, the truck will not be capable of
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self-fixing the plan failure, and activates the MR to request help to other truck that

can drive to the specific location, and load/unload the package from/to the failing

truck.

Table 6.11 shows the results for the transport domain with the one-time failure

scenario. As we can see, the six tasks that we executed are the follows:

• our task 1 has two trucks and two goals

• our task 2 and 3 has two trucks, and three goals

• our task 4 has two trucks, and four goals

• our task 5 and 6 has three trucks, and five goals

The deliberative repair configuration is the only one capable of achieving the

goals of all the tasks except in the execution failure F3-F4 of task 2. The reason is

that the system randomly selects the two failures F4 and F3 to form a compound fail-

ure that affects truck1 and truck2, respectively. Hence, truck1 detects the crane

is not working to load and unload packages and activates the SR. SR is not capable

of repairing the plan failure and activates the MD of the deliberative configuration.

Then, the truck2 interrupts its plan execution, and the two agents communicate

their current state to the CP of the MD, but the MD is not capable of fixing the plan

failure due to truck2 presents also a failure that can not be repaired, the motor of

truck2 is not working. The same reason applies for the MR of the reactive repair

configuration.

Another remarkable difference is that the SR in the transport domain repairs

fewer failures than the rovers and elevators domains, and thereby, the MR and

MD are activated more often in this domain. As we explain before, this happens

because the system randomly selects the single failures F3 or F4, which have not

possible single repairing solution. For instance, in failure F4-F2 of task 1, the crane

of truck1 is not operative (F4), and truck2 loses the good maps to drive from

location s2 to s0 (F2). truck1 detects the plan failure and activates the SR in the
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Table 6.11: Results for the transport domain with the one-time failure scenario.

reactive repair deliberative repair
RP RP

task fail SR MR
goals
reached delay cycles real

time SR MD
goals
reached delay cycles real

time
(agents) 1:8 seg (agents) 1:8 seg

1 2 3 4 1 2 3 4

F3-F2 0/1 1/1 2 4 3 - - 8 67.35 0/1 1/1 2 1 5 - - 9 75.46
F3-F1 0/1 1/1 2 4 3 - - 8 66.44 0/1 1/1 2 1 5 - - 9 74.40

1 F4-F1 0/1 1/1 2 4 1 - - 8 66.35 0/1 1/1 2 4 2 - - 8 66.46
2 goals F4-F2 0/1 1/1 2 2 2 - - 6 50.50 0/1 1/1 2 3 3 - - 7 58.61

2 agents F3-F2 0/1 1/1 2 4 4 - - 8 66.28 0/1 1/1 2 5 5 - - 9 74.31
F4-F1 0/1 1/1 2 4 4 - - 8 66.56 0/1 1/1 2 4 4 - - 8 66.42
F3-F1 1/2 1/1 3 4 4 - - 12 99.39 1/2 1/1 3 4 4 - - 12 99.51
F4-F2 0/1 1/2 0 -2 2 - - 6 50.47 0/1 1/1 3 3 1 - - 11 90.74

2 F4-F5 0/1 1/1 3 4 5 - - 12 98.35 0/1 1/1 3 2 4 - - 12 98.56
3 goals F3-F2 0/1 1/1 3 3 4 - - 11 90.43 0/1 1/1 3 3 4 - - 11 90.45

2 agents F4-F1 0/1 0/1 1 -7 0 - - 4 34.36 0/1 1/1 3 2 1 - - 10 82.43
F3-F4 0/1 0/1 1 -4 0 - - 4 34.82 0/1 0/1 1 -3 -3 - - 5 42.71
F3-F2 0/1 1/2 0 -4 -2 - - 3 27.94 1/2 1/1 3 5 4 - - 12 99.51
F4-F1 0/1 1/1 3 4 3 - - 11 90.60 0/1 1/1 3 5 4 - - 12 98.51

3 F4-F3 0/1 1/1 3 4 3 - - 11 90.42 0/1 1/1 3 4 4 - - 11 90.54
3 goals F4-F2 0/2 2/2 3 9 5 - - 16 130.41 0/1 1/1 3 5 3 - - 12 98.53

2 agents F4-F2 0/2 2/2 3 7 3 - - 14 114.46 0/1 1/1 3 5 5 - - 12 98.66
F3-F2 0/1 0/1 2 0 -6 - - 5 43.42 0/1 1/1 4 2 3 - - 11 91.71
F3-F2 0/1 1/1 4 3 4 - - 12 98.70 0/1 1/1 4 3 5 - - 12 98.93

4 F4-F3 0/1 0/1 2 0 -5 - - 5 42.47 0/1 1/1 4 2 4 - - 12 98.50
4 goals F4-F1 0/1 1/1 4 1 3 - - 11 90.47 0/1 1/1 4 3 2 - - 11 90.54

2 agents F3-F2 0/1 1/1 4 4 3 - - 11 90.54 0/1 1/1 4 4 5 - - 12 98.26
F4-F1 1/3 2/2 5 6 5 1 - 13 108.41 1/2 1/1 5 7 6 3 - 14 116.06
F3-F2 0/1 1/1 5 0 3 3 - 9 75.23 0/1 1/1 5 0 4 4 - 10 83.19

5 F4-F2 0/2 1/2 4 3 5 0 - 10 83.44 0/1 1/1 5 4 6 3 - 12 99.04
5 goals F3-F4 0/2 1/2 3 -2 4 4 - 9 74.93 0/1 1/1 5 7 5 4 - 14 115.23

3 agents F4-F5 0/1 1/1 5 0 2 2 - 7 59.17 0/1 1/1 5 0 1 1 - 8 66.94
F4-F1 1/2 1/1 5 3 3 1 - 10 84.19 1/2 1/1 5 4 4 5 - 14 116.08
F3-F2 0/1 1/1 5 4 4 0 - 9 75.28 0/1 1/1 5 6 6 0 - 13 107.34

6 F4-F5 1/2 1/1 5 4 3 2 - 11 91.28 1/2 1/1 5 2 1 0 - 11 92.26
5 goals F3-F2 1/2 0/1 2 1 0 -5 - 6 50.89 1/2 1/1 5 6 0 7 - 16 131.17

3 agents F4-F5 0/1 1/2 3 -1 1 0 - 9 75.28 0/1 1/1 5 4 2 0 - 13 107.10
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two repair configurations. SR is not capable of repairing the plan failure, and the

MR and MD are activated in the reactive and deliberative repair, respectively. MR

repairs the plan failure by requesting another agent to unload package1 and to leave

it in the location s1. The MD also repairs the plan failure with the CP.
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Figure 6.5: Real-time results when the reactive and deliberative repair configura-
tions reach all the goals for the transport domain

Figure 6.5 compares the real-time results when the reactive and deliberative

configurations reach all the goals, i.e. in the 69% of the total number of execu-

tion failures. The reactive repair is not able to reach all the goals in 31% of the

total number of execution failures. However, the reactive repair presents a better

performance achieving the goals in fewer cycles than the deliberative configuration

except in two failures F4-F2 of task 3, where the MR solution generates a collateral

failure. In the first failure F4-F2 of task 3, the crane of truck1 is not operative and

truck2 loses the good map to drive from location s0 to s2. The MR of the reactive

repair generates a plan solution in which truck2 using its crane loads the package1
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inside the truck1. This plan solution generates a collateral failure when truck1 the

execution of the collaborative solution finishes and needs to execute the remaining

actions of the original plan to unload the package1 (the crane of truck1 previously

presented a hardware failure). Then, as the trucks are not collaborating together,

the SR is activated. SR is not capable of fixing the plan failure and activates the MR.

MR generates a plan solution where truck2 drives to the specified location, loads

the packages from the truck1, and unloads them to the specified location s1. In

contrast, the MD generates a plan solution where the truck2 executes all the work

of truck1. The same happens in the second failure F4-F2 of task 3.

To sum up, failures F4-F1 and F3-F2 of task 6 gives us an idea of the good

performance of our approach against the deliberative configuration. For instance,

in failure F4-F1 of task 6, the crane of the truck1 presents a hardware failure and

truck3 changes its position from s1 to s2. First, truck3 detects the plan failure F1

and activates the SR in the two repair configurations. SR fix the failure by driving

truck3 from s2 to s1. Then, in the next execution cycle, truck1 detects the plan

failure F4 and activates the SR in the two repair configurations. SR is not capable

of repairing the failure and activates the MR in the reactive repair configuration

and the MD in the deliberative configuration. MR repairs the plan failure with the

best and least conflictive solution, truck2 drives to the specific location s1, load

the package and transport it to the target location s2. In contrast, the CP of the

MD generates a solution plan where truck3 transport the package to the specific

location s1. In terms of metric, this solution is worst than the selected by the MR.

The reason is that the truck2 is closer to the specific location than truck3, and one

of its goals is to transport another package to the same target location. Then, it is

more reasonable to fix the plan failure with the truck2.

In cases where the differences are minimal in Table 6.11, the deliberative repair

also presents fewer delay in the agents’ plan execution, such as the failures F4-F1

and F4-F3 of task 3 where the agents in the reactive repair present a less number of

delay in the execution cycles than the deliberative configuration.
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6.5 Conclusions

In this chapter, we have presented the evaluation of our MARPE model. First,

we presented the repair configurations we used in the experiments. Next, we in-

troduced the domains and the specification of the multi-agent planning tasks. Fi-

nally, we analyzed the obtained results by comparing principally our MARPE model,

which we used in the reactive repair configuration, against a centralized delibera-

tive method, which we employed in the deliberative repair configuration. We used

the single repair planning mechanism as a basis in all the configurations.

The results in Section 6.4 show that the MARPE model presents an outstanding

performance by achieving more goals in fewer cycles than the deliberative repair in

a complete execution simulation of the planning tasks. The most relevant limitation

of our model is that some recovery solutions can generate collateral failures in the

plans of the helper agent. However, the excellent performance of our MARPE model

minimizes this limitation because whenever a collateral failure is detected the single

repair or the Collaborative Repair handle to repair it.

The exhaustive experimentation carried out on several non-coordinated plan-

ning domains with the collaborative repair mechanism confirms that the MARPE

model with its Collaborative Repair process is a very suitable multi-agent mechanism

to fix failures that represent slight deviations from the main course of plan actions.

The results support several conclusions: the accuracy of the repairing structures to

recover failures, the reliability and performance of our multi recovery search proce-

dure in comparison with either a central deliberative mechanism or a single reactive

mechanism, and the focus that it is more beneficial to repair small plan windows

rather than the whole plan.
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Chapter 7

Conclusions and future works

“The afternoon knows what the morning never suspected.”

(Robert Frost)

In this chapter, we present the general conclusions of this Ph.D. dissertation and

some future work. The chapter is organized into two sections. The first section

describes our Collaborative Repair approximation and enumerates the more relevant

contributions. The second and last section points at several future research lines

directly related to this work.

7.1 Conclusions

This work has focused on the development of a multi-agent reactive planning and

execution model that would endow robot agents with plan monitoring and execut-

ing facilities as well as the machinery necessary to allow a rover to recover from a

plan failure by itself or with the collaboration of other execution agents. This type

of requirements are not easily satisfied by current reactive planners and multi-agent

architectures.
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7.1.1 Proposed approximation

The proposed solution starts from a planning and execution architecture, where we

associated each execution agent with a planning agent. Although we designed the

architecture to include planning and execution agents, during the development of

this Ph.D. dissertation we only focused on the execution agents. In our architecture,

execution agents are capable of executing and repairing plans within the same en-

vironment. Each execution agent has its planning task with its goals and calls its

associated planning agent which generates its initial plan. Plans are independent of

each other, but they all need to be successfully executed to solve the overall planning

task; i.e., the goals of all the execution agents need to be fulfilled. The principal ob-

jective of the architecture is to define a framework in which the execution process is

not only an isolated executor but a process capable of applying repairing techniques.

For the execution agents, we developed a single-reactive planning technique to take

corrective actions quickly and a multi-agent reactive planning technique to avoid

demanding a new plan from the planning agent.

The main contribution of this work is, undoubtedly, the developed Reactive Plan-

ner, which we integrated into the execution agents. The Reactive Planner is designed

along two fundamental stages: one for a single-agent plan failure recovery and an-

other for multi-agent plan failure recovery. In the following, we highlight the most

relevant aspects of each individual contribution.

7.1.1.1 Repairing structures

We proposed to use repairing structures as search trees, which allow execution

agents to recover from plan failures. Our repairing structures work on a portion

of the plan. We calculate them at runtime with a time-bounded limited process that

exploits Machine Learning techniques to estimate the size of the search tree that the

agent can generate without exceeding a fixed time limit.
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7.1.1.2 Self-repairing process

We put forward a new general reactive repair technique that quickly resumes a

portion of an agent’s plan. The self-repair technique is built upon the repairing

structures, and it simply requires performing a modified breadth-first search on the

tree. Our repairing structure always guarantees the optimal solution.

7.1.1.3 Multi-agent repairing process

As far as we are concerned, there is no reactive repair system in which several ex-

ecution agents participate together to solve plan failures. The work on this Ph.D.

dissertation is the first one that proposes a multi-agent repair process in which an

agent requests help from other agents to repair a plan failure. Our multi-agent

model is not a solution to cooperatively solve all the upcoming failures but a system

towards a global reactive solution. Thus, to improve responsiveness, only a maxi-

mum of two agents intervene in the collaborative repair solution, namely the agent

that fails and the agent that provides the help. The more agents involved, the more

time-consuming the generation of the recovery solution. Even though this clearly

restricts the failures that can be reactively solved, for failures that require several

agents involved in the repair, it is usually more worthy resorting to a replanning

solution.

In our repair model, we proposed to recover from a plan failure by calculating

a new time-bounded repair structure, which includes the goals of the plan window

of the helper agent and the recovery state of the failing agent. The failing agent

receives the proposed recovery solution from the helper agent and combines it into

a newly integrated search-tree. If this is viable, then the agents will be able to

undertake a collaborative reactive solution within a limited time.
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7.1.2 Contributions

We conducted the objective of this Ph.D. dissertation towards the proposal and eval-

uation of a reactive multi-agent technique, suitable for the resolution of certain types

of real problems, characterized by the dynamism of the environment, their limited

reaction times, and the limitations when communicating with the deliberative agent.

Despite the complexity of working under these requirements, we satisfactorily de-

veloped a collaborative execution and planning model to solve various planning

tasks with these characteristics. From our point of view, we favorably met the ob-

jectives of this Ph.D. dissertation. Below, we listed the most general contributions

of this work:

1. Design and development of a single-agent planning and execution architec-

ture that comprises a general planning and execution model that endows an

execution agent with plan monitoring, execution, deliberative planning, and

reactive planning capabilities.

2. Development of a domain-independent self-reactive planner capable to per-

form a time-bounded process. We exploit Machine Learning techniques to

promptly create repairing structures that operate on the plan to fix problems

at execution time.

3. Evaluation of the developed self-reactive planner validating the generation of

the repairing structures within the available time, the best-suited regression

model, the recovery of failures due to slight deviations of the main course

of the plan actions, and the usefulness of the single repairing structure to fix

more than one action in a plan fragment.

4. Extension of the single-agent architecture to a multi-agent planning and ex-

ecution framework, which includes several features, such as, i) supporting

to execute several agents in the same environment, ii) providing agents with

communications capabilities to allow information exchange between them, iii)
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simulation of the state of the world, and iv) the capacity to add new modules

easily for the agents.

5. Implementation of the multi-agent repair mechanism inside the reactive plan-

ner with the principal objective of ensuring the continuous and uninterrupt-

edly flow of the execution agents. The main characteristic of this repair mech-

anism is the repairing structures and their integration with the actions of two

different agents.

6. Evaluation of the developed multi-agent Reactive Planner checking its stable

performance and some limitations that we found.

The work carried out in this Ph.D. dissertation initiated with a short stay (EEBB-

112-04550) executed at NASA Ames Research Center during a period of six months

with the Dr. Jeremy Frank as my advisor and mentor. The aim was to endow

Mars planetary rovers not only with a self-repair process, but with a collaborative

process to allow rovers or spacecraft to minimize time communication to Earth,

which normally has a long delay. Firstly, we incorporated the PELEA architecture

(explained in the Section 2.1.1.6) inside the Mars rovers (execution agents), so

that, each rover autonomously generates and executes its plan. With the limitation

that they can not communicate between them. Secondly, we developed a simplified

and reactive version of a planning and execution architecture for multiple agents,

PlanInteraction, designed for simulated or real executions (explained in detail in

Section 2.1.2.3). Specificaly, we focus on providing the rovers with capabilities of

self-executing, monitoring and repairing, and also with communication between

them. Next, we implemented a conflict resolution mechanism for the Mars domain.

The conflict resolution mechanism had two main intentions:

• it allowed to coordinate the actions of two rovers to fix potential conflicts that

may arise during the execution of a plan. For this, we employed a bilateral
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protocol of negotiation of multiple variables. The protocol allowed to negoti-

ate which agent will first use a shared variable to execute its action.

• If there is no agreement, the rovers continue with their plan execution as

normal and repair the failures by calling its own planner or the central planner

on Earth whenever it occurs.

Finally, we researched in the field of plan monitoring. We developed a frame-

work based on templates that monitors the changes in the variables during the ex-

ecution of the plan. We studied the problem of extracting, from the domain and

the plan, the variables to observe during the plan execution. The process works

in two phases: First, we automatically compile to Metric Temporal Logic (MTL) an

encoding the restrictions to be monitored. Second, we use known algorithms from

the runtime verification community to efficiently compile monitoring processes from

MTL. The monitoring processes are efficient in the sense that they allow to include

time restrictions and quickly detect deviations from the plan.

The results of the short stay and the whole work of this thesis have led to a

series of publications, which we referenced throughout the memory. Of these, the

following stand out:

• César Guzmán, Pablo Castejon, Eva Onaindia, and Jeremy Frank. Reactive

execution for solving plan failures in planning control applications. Journal of

Integrated Computer-Aided Engineering, 22(4):343–360, 2015.

• César Guzmán, Pablo Castejon, Eva Onaindia, and Jeremy Frank. Robust plan

execution in multi-agent environments. In 26th IEEE International Conference

on Tools with Artificial Intelligence (ICTAI), pages 384–391, 2014.

• César Guzmán-Alvarez, Pablo Castejon, Eva Onaindia, and Jeremy Frank.

Multi-agent reactive planning for solving plan failures. In Hybrid Artificial

Intelligent Systems - 8th International Conference, HAIS 2013. Volume 8073

of Lecture Notes in Computer Science, pages 530–539. Springer, 2013.
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• Thomas Reinbacher, César Guzmán. Template-Based Synthesis of Plan Ex-

ecution Monitors. In Hybrid Artificial Intelligent Systems - 8th International

Conference, HAIS 2013. Volume 8073 of Lecture Notes in Computer Science,

pages 451–461. Springer, 2013.

• César Guzmán, Vidal Alcazar, David Prior, Eva Onaindia, Daniel Borrajo, Juan

Fdez-Olivares, and Ezequiel Quintero. Pelea: a domain-independent archi-

tecture for planning, execution and learning. In ICAPS 6th Scheduling and

Planning Applications woRKshop (SPARK), pages 38–45, 2012.

• César Guzmán-Alvarez, Vidal Alcazar, David Prior, Eva Onaindia, Daniel Bor-

rajo, Juan Fdez-Olivares. Building a Domain-Independent Architecture for

Planning, Learning and Execution (PELEA). 21th International Conference on

Automated Planning and Scheduling (ICAPS) - Systems Demo. pages 27-30,

Freiburg (Germany), 2011

• Ezequiel Quintero, Vidal Alcazar, Daniel Borrajo, Juan Fdez-Olivares, Fer-

nando Fernandez, Angel Garcia-Olaya, César Guzmán-Alvarez, Eva Onaindia,

David Prior. Autonomous Mobile Robot Control and Learning with PELEA Ar-

chitecture. AAAI-11 Workshop on Automated Action Planning for Autonomous

Mobile Robots (PAMR). pages 51-56, San francisco (USA), 2011.

• Antonio Garrido, César Guzmán, and Eva Onaindia. Anytime plan-adaptation

for continuous planning. In 28th Workshop of the UK Planning and Scheduling

Special Interest Group (PlanSIG’10), Brescia (Italia), 2010.

• PELEA: Planning, Learning and Execution Architecture. Vidal Alcazar, César

Guzmán-Alvarez, David Prior, Daniel Borrajo, Luis Castillo, Eva Onaindia. In

28th Workshop of the UK Planning and Scheduling Special Interest Group (Plan-

SIG’10), Brescia (Italia), 2010.
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7.2 Future works

In this Section, we present some future extensions concerning the more in-depth

analysis of particular cases of the multi-agent reactive repair mechanism, such as,

formalize some particular aspects of our Collaborative Repair, new proposals or just

curiosity.

This Ph.D. dissertation has been mainly focused on the use of our MARPE model

for recovering plan failures with repairing structures that are generating quickly at

runtime. We formalized the main workflow of the MARPE model in Sections 5.3

and 5.4.1. However, we consider that some more particular aspects can be better

formalized. For instance, during the plan execution of the collaborative solution, we

can have two failing situations, one in which the requester agent fails and another

where the helper agent fails (Section 5.4.4).

Despite the good results offered by our model, there are still many extensions

that can significantly improve performance and efficiency. The multi-agent reactive

repair mechanism consumes a high portion of the total time in the generation of new

structures. The possibility of improving the structures’ generation can be studied to

do it incrementally, starting from an existing structure: the agent creates the search

trees from a given partial state, which normally is the goal of the plan window

and in many cases, it includes fluents that were used in previous structures. This

improvement will increase the size of the structure that the agent can generate, and

of course, it also will increase the number of encoded solutions in the tree.

Another possibility would be to incorporate learning techniques which allow

storing search trees in a library of repairing structures. Thus, the agent generates

the structure if the structure is not available in the library. Otherwise, the agent

would only obtain the search space from the library instead of creating it from

scratch.

Another line of research could be to integrate other multi-agent repair methods

in our MARPE model, so we can ensure a more general model that could work
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with any repair method. However, so as we mentioned in Section 2, there is no

other reactive collaborative repair method in the literature. Although, we found

some deliberative multi-agent planning approach that we believe can be fixed to

use more reactively.

Concerning the utilization of the MARPE model, we can also expect to apply

the model to other real-world problems, such as the network traffic domains, or

telescope control domains. As we show in Section 6, our model can work in different

simulated planning domains of state of the art with pretty good results.

A final line of research focuses on the extension of the proposed multi-agent

reactive repair method to support new functionalities, such as the numerical fluents.

Working with numerical fluents is a fundamental characteristic of many problems

with resources (e.g., the control of the fuel). Incorporating numerical variables in

the search trees increases the cost of generating the structure. We may solve this

problem by adjusting the regression model to consider this new feature.
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Appendix A

Planetary Mars scenario

A.1 Single-agent Mars scenario

A.1.1 PDDL3.1 Domain

( define (domain mars−s cenar io )

( : requirements : typ ing : e q u a l i t y : f l u e n t s )

( : types agent sample waypoint lander opt ion − o b j e c t

rover − agent

rock s o i l − sample )

( : cons tant NONE − opt ion )

( : predicates

( l i n k ? r − rover ?x − waypoint ?y − waypoint )

(comm ? sa − sample ?x − waypoint )

( analyze ? r − rover )

( t r ans ? r − rover ) )

( : functions

( loc ?x − ( e i t h e r lander rover ) ) − waypoint

( have ? r − rover ) − ( e i t h e r sample opt ion )
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( l o c s ? sa − sample ) − ( e i t h e r waypoint opt ion ) )

( : action Navigate

: parameters (? x − rover ?y − waypoint ?z − waypoint )

: precondition (and ( l i n k ?x ?y ?z )

(= ( loc ?x ) ?y ) )

: e f f e c t (and ( assign ( loc ?x ) ?z ) ) )

( : action Analyze

: parameters (? x − rover ? sa − sample ?p − waypoint )

: precondition (and (= ( loc ?x ) ?p)

( analyze ?x )

(= ( l o c s ? sa ) ?p) )

: e f f e c t (and ( assign ( have ?x ) ? sa )

( assign ( l o c s ? sa ) NONE) ) )

( : action Communicate

: parameters (? r − rover ? sa − sample ? l − lander ?x − waypoint ?y −

waypoint )

: precondition (and (= ( loc ? r ) ?x )

(= ( loc ? l ) ?y )

(= ( have ? r ) ? sa )

( t r ans ? r ) )

: e f f e c t (and (comm ? sa ?x )

( assign ( have ? r ) NONE) ) ) )

A.1.2 List of variables

• loc-B: location of rover B.

• loc-L: location of the lander L.

• locs-si: location of an specific rock or soil sample si.

212



A.2 Multi-agent Mars scenario

• have-B: that indicates what analysis the rover has; the value of this variable

can be the results of a sample or NONE.

• trans-B: boolean variable that indicates whether there is a transmission de-

vice located in rover B or not.

• analyze-B: boolean variable that indicates whether rover B can analyze sam-

ples or not.

• link-B-wi-wj: boolean variable that indicates whether rover B has maps to

travel wi to wj or not.

• com-si-wj: boolean variable that indicates whether the communication of the

analysis of a sample si has been successfully communicated from wj or not.

A.1.3 PDDL initial state

The following piece of code shows the values of the variables that define the initial

situation of the problem described in Section 3.3.1

(= (loc B) w2), (= (loc L) w2), (= (locs s1) w1), (= (locs s2) w3),

(= (locs r) w3), (analyze B), (trans B), ((= have B) NONE),

(link B w1 w2), (link B w1 w3), (link B w2 w1), (link B w2 w3),

(link B w3 w1), (link B w3 w2)

A.2 Multi-agent Mars scenario

A.2.1 PDDL3.1 domain

The following codes show the planning domain for each rover of the motivation

example described in Section 5.1.
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( define (domain mars−scenar io−mult i )

( : requirements : typ ing : e q u a l i t y : f l u e n t s )

( : types agent sample waypoint lander opt ion − o b j e c t

rover − agent

rock s o i l − sample )

( : cons tant NONE − opt ion )

( : predicates

( l i n k ? r − rover ?x − waypoint ?y − waypoint )

(comm ? sa − sample ?x − waypoint )

( analyze ? r − rover )

( t r ans ? r − rover )

( seek ? r − rover ) )

( : functions

( loc ?x − ( e i t h e r lander rover ) ) − waypoint

( have ? r − rover ) − ( e i t h e r sample opt ion )

( l o c s ? sa − sample ) − ( e i t h e r waypoint opt ion ) )

( : action Seek

: parameters (? r − rover ? sa − sample ?y − waypoint )

: precondition (and ( seek ? r )

(= ( loc ? r ) ?y ) )

: e f f e c t (and ( assign ( l o c s ? sa ) ?y ) ) )

( : action Navigate

: parameters (? r − rover ?y − waypoint ?z − waypoint )

: precondition (and ( l i n k ? r ?y ?z )

(= ( loc ? r ) ?y ) )

: e f f e c t (and ( assign ( loc ? r ) ?z ) ) )

( : action Analyze

: parameters (? r − rover ? sa − sample ?p − waypoint )
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: precondition (and (= ( loc ? r ) ?p)

( analyze ? r )

(= ( l o c s ? sa ) ?p) )

: e f f e c t (and

( assign ( have ? r ) ? sa )

( assign ( l o c s ? sa ) NONE) ) )

( : action Communicate

: parameters (? r − rover ? sa − sample ? l − lander ?x − waypoint ?y −

waypoint )

: precondition (and (= ( loc ? r ) ?x )

(= ( loc ? l ) ?y )

(= ( have ? r ) ? sa )

( t r ans ? r ) )

: e f f e c t (and (comm ? sa ?x )

( assign ( have ? r ) NONE) ) ) )

( : action Comm−rover

: parameters (? r − rover ? r2 − rover ? sa − sample ?w − waypoint )

: precondition (and (= ( loc ? r ) ?w)

(= ( have ? r ) ? sa )

( t r ans ? r ) )

: e f f e c t (and

( assign ( have ? r ) ? sa ) )

( assign ( have ? r2 ) ? sa ) ) ) )

A.2.2 List of variables

The following codes show the definition of each variable used in the planning do-

main.

• loc-X: location of rover X.

• loc-L: location of the lander L.
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• locs-si: location of an specific rock or soil sample si.

• have-X: that indicates what analysis the rover X has; the value of this variable

can be the results of a sample or NONE.

• trans-X: boolean variable that indicates whether there is a transmission de-

vice located in rover X or not.

• seek-X: boolean variable that indicates whether rover X can seek for more

samples or not.

• analyze-X: boolean variable that indicates whether rover X can analyze sam-

ples or not.

• link-X-wi-wj: boolean variable that indicates whether rover X has maps to

travel wi to wj or not.

• com-si-wj: boolean variable that indicates whether the communication of the

analysis of a sample si has been successfully communicated from wj or not.

A.2.3 PDDL3.1. problems

The following codes show the values of the planning problem for each rover of the

motivation example described in Section 5.1.

Planning problem of rover A

( define (problem motivat ion−example )

( : domain mars−scenar io−mult i )

( : objects

A B C − rover

r s1 s2 − sample

L − lander

w1 w2 w3 − waypoint )

( : i n i t
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; l o c a t i o n rov e r A

(= ( loc A) w2)

; l o c a t i o n Lander

(= ( loc L) w2)

; l o c a t i o n samples

(= ( l o c s s1 ) w1)

(= ( l o c s s2 ) w3)

(= ( l o c s r ) w3) )

; whether r o v e r has c a p a b i l i t y to ana lyze

( analyze A)

; whether r o v e r has c a p a b i l i t y to communicate

( t r ans A)

; whether r o v e r has c a p a b i l i t y to s e ek

( seek A)

; g r i d can t r a v e r s e A

( l i n k A w1 w2) ( l i n k A w1 w3)

( l i n k A w2 w1) ( l i n k A w2 w3)

( l i n k A w3 w1) ( l i n k A w3 w2)

( not ( l i n k A w1 w1) ) ( not ( l i n k A w2 w2) ) ( not ( l i n k A w3 w3) )

(= ( have A) NONE)

(= ( have B) NONE)

(= ( have C) NONE)

( not (comm r w1) ) ( not (comm r w2) ) ( not (comm r w3) )

( not (comm s1 w1) ) ( not (comm s1 w2) ) ( not (comm s1 w3) )

( not (comm s2 w1) ) ( not (comm s2 w2) ) ( not (comm s2 w3) )
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( : goal (and

(comm r w3)

(= ( loc A) w2) ) ) )

Planning problem of rover B

( define (problem motivat ion−example )

( : domain mars−scenar io−mult i )

( : objects

A B C − rover

r s1 s2 − sample

L − lander

w1 w2 w3 − waypoint )

( : i n i t

; l o c a t i o n rov e r B

(= ( loc B) w2)

; l o c a t i o n Lander

(= ( loc L) w2)

; l o c a t i o n samples

(= ( l o c s s1 ) w1)

(= ( l o c s s2 ) w3)

(= ( l o c s r ) w3) )

; whether r o v e r has c a p a b i l i t y to ana lyze

( analyze B)

; whether r o v e r has c a p a b i l i t y to communicate

( t r ans B)

; whether r o v e r has c a p a b i l i t y to s e ek

( seek B)

; g r i d can t r a v e r s e B
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( l i n k B w1 w2) ( l i n k B w1 w3)

( l i n k B w2 w1) ( l i n k B w2 w3)

( l i n k B w3 w1) ( l i n k B w3 w2)

( not ( l i n k B w1 w1) ) ( not ( l i n k B w2 w2) ) ( not ( l i n k B w3 w3) )

(= ( have A) NONE)

(= ( have B) NONE)

(= ( have C) NONE)

( not (comm r w1) ) ( not (comm r w2) ) ( not (comm r w3) )

( not (comm s1 w1) ) ( not (comm s1 w2) ) ( not (comm s1 w3) )

( not (comm s2 w1) ) ( not (comm s2 w2) ) ( not (comm s2 w3) )

( : goal (and

(comm S1 w1)

(= ( loc B) w2) ) ) )

Planning problem of rover C

( define (problem motivat ion−example )

( : domain mars−scenar io−mult i )

( : objects

A B C − rover

r s1 s2 − sample

L − lander

w1 w2 w3 − waypoint )

( : i n i t

; l o c a t i o n rov e r C

(= ( loc C) w2)

; l o c a t i o n Lander

(= ( loc L) w2)

; l o c a t i o n samples
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(= ( l o c s s1 ) w1)

(= ( l o c s s2 ) w3)

(= ( l o c s r ) w3) )

; whether r o v e r has c a p a b i l i t y to ana lyze

( analyze C)

; whether r o v e r has c a p a b i l i t y to communicate

( t r ans C)

; whether r o v e r has c a p a b i l i t y to s e ek

( not ( seek C) )

; g r i d can t r a v e r s e C

( l i n k C w1 w2) ( l i n k C w1 w3)

( l i n k C w2 w1) ( not ( l i n k C w2 w3) )

( l i n k C w3 w1) ( l i n k C w3 w2)

( not ( l i n k C w1 w1) ) ( not ( l i n k C w2 w2) ) ( not ( l i n k C w3 w3) )

(= ( have A) NONE)

(= ( have B) NONE)

(= ( have C) NONE)

( not (comm r w1) ) ( not (comm r w2) ) ( not (comm r w3) )

( not (comm s1 w1) ) ( not (comm s1 w2) ) ( not (comm s1 w3) )

( not (comm s2 w1) ) ( not (comm s2 w2) ) ( not (comm s2 w3) )

( : goal (and

(comm s2 w3)

(= ( loc C) w2) ) ) )
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A.2.4 Solution plans

The following codes show the initial solution plans for each rover of the motivation

example described in Section 5.1.

plan of rover A

0 : (Navigate A w2 w3)

1 : (Analyze A r w3)

2 : (Communicate A r L w3 w2)

3 : (Navigate A w3 w2)

plan of rover B

0 : (Navigate B w2 w1)

1 : (Analyze B s1 w1)

2 : (Communicate B s1 L w1 w2)

3 : (Navigate B w1 w2)

plan of rover C

0 : (Navigate C w2 w1)

1 : (Navigate C w1 w3)

2 : (Analyze C s2 w3)

3 : (Communicate C s2 L w3 w2)

4 : (Navigate C w3 w2)
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Appendix B

Rovers domain

B.1 Single-agent rovers

This single-agent domain is a modification of the rovers domain of IPC of 2002 in

the following aspects:

• We modeled the domain in PDDL3.1.

• We incorporated a set of new functionalities to promote more alternatives to

repair plan failures.

The new functionalities are the following:

1. We modify the variable have-B: that indicates what the rover has; with the

variable have-B-sa: that indicates the rover has an specify rock or soil sample;

the value of this variable is also modified to have either the location where the

sample was analyzed or NONE.

2. We endow rovers with reconnaissance abilities like, for instance, the operator

(Seek ?r ?sa ?w) that allows a rover ?r to seek more samples ?sa in a waypoint

?w.
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3. We endow rovers with photography abilities like, for instance, the operator

(Calibrate ?r ?i ?t ?w) that allows a rover ?r to calibrate the camera ?i in

order to take a picture to the target ?t from the waypoint ?w or (Take image

?r ?p ?t ?i ?m) that allows a rover ?r to take a picture to the target ?t using

the camera ?i in high or low resolution mode ?m.

PDDL3.1 domain

( define (domain rover )

( : requirements : typ ing : e q u a l i t y : f l u e n t s )

( : types rover sample waypoint lander camera mode o b j e c t i v e opt ion − o b j e c t

rock s o i l − sample )

( : constants NONE − opt ion )

( : predicates

( l i n k ? r − rover ?x − waypoint ?y − waypoint )

(comm ? sa − sample ?w − waypoint )

(comm image ?o − o b j e c t i v e ?m − mode)

( analyze ? r − rover ? sa − sample )

( t r ans ? r − rover )

( seek ? r − rover )

( image ? r − rover )

( supports ? c − camera ?m − mode)

( have image ? r − rover ?o − o b j e c t i v e ?m − mode)

( c a l i b r a t e d ?c − camera ? r − rover )

( v i s i b l e f r o m ?o − o b j e c t i v e ?w − waypoint ) )

( : functions

( loc ?x − ( e i t h e r lander rover ) ) − waypoint

( have ? r − rover ?x − waypoint ) − ( e i t h e r sample opt ion )

( l o c s ? sa − sample ) − ( e i t h e r waypoint opt ion )

( c a l i b r a t i o n t a r g e t ? i − camera ) − o b j e c t i v e

( on board ? i − camera ) − rover )

( : action Seek
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: parameters (? r − rover ? sa − sample ?w − waypoint )

: precondition (and (= ( l o c s ? sa ) NONE)

(= ( loc ? r ) ?w)

( seek ? r ) )

: e f f e c t (and ( assign ( l o c s ? sa ) ?w) ) )

( : action Navigate

: parameters (? x − rover ?y − waypoint ?z − waypoint )

: precondition (and ( l i n k ?x ?y ?z )

(= ( loc ?x ) ?y ) )

: e f f e c t (and ( assign ( loc ?x ) ?z ) ) )

( : action Analyze

: parameters (? x − rover ? sa − sample ?p − waypoint )

: precondition (and (= ( loc ?x ) ?p)

( analyze ?x )

(= ( l o c s ? sa ) ?p) )

: e f f e c t (and ( assign ( have ?x ? sa ) ?p)

( assign ( l o c s ? sa ) NONE) ) )

( : action Communicate

: parameters (? r − rover ? sa − sample ? l − lander ?x − waypoint ?y −

waypoint )

: precondition (and (= ( loc ? r ) ?x )

(= ( loc ? l ) ?y )

(= ( have ? r ? sa ) ?x )

( t r ans ? r ) )

: e f f e c t (and (comm ? sa ?x )

( assign ( have ? r ? sa ) NONE) ) ) )

( : action C a l i b r a t e

: parameters (? r − rover ? i − camera ? t − o b j e c t i v e ?w − waypoint )

: precondition (and ( imaging ? r )

(= ( c a l i b r a t i o n t a r g e t ? i ) ? t )

(= ( loc ? r ) ?w)
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( v i s i b l e f r o m ? t ?w)

(= ( on board ? i ) ? r ) )

: e f f e c t (and ( c a l i b r a t e d ? i ? r ) )

( : action Take image

: parameters (? r − rover ?p − waypoint ? t − o b j e c t i v e ? i − camera ?m −

mode)

: precondition (and ( c a l i b r a t e d ? i ? r )

(= ( on board ? i ) ? r )

( image ? r )

( suppor ts ? i ?m)

( v i s i b l e f r o m ? t ?p)

(= ( loc ? r ) ?p) )

: e f f e c t (and ( have image ? r ? t ?m)

( not ( c a l i b r a t e d ? i ? r ) ) ) )

( : action Communicate image

: parameters (? r − rover ?o − o b j e c t i v e ?m − mode ? l − lander ?x − waypoint

?y − waypoint )

: precondition (and (= ( loc ? r ) ?x )

(= ( loc ? l ) ?y )

( have image ? r ?o ?m)

( t rans ? r ) )

: e f f e c t (and (comm image ?o ?m)

( not ( have image ? r ?o ?m) ) ) ) )
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B.2 Multi-agent rovers

B.2.1 PDDL3.1 domain

( define (domain rover )

( : requirements : typ ing : e q u a l i t y : f l u e n t s )

( : types agent sample waypoint lander camera mode o b j e c t i v e opt ion − o b j e c t

rover − agent )

( : constants NONE − opt ion )

( : predicates

( l i n k ? r − rover ?x − waypoint ?y − waypoint )

(comm ? sa − sample ?w − waypoint )

(comm image ?o − o b j e c t i v e ?m − mode)

( analyze ? r − rover ? sa − sample )

( t r ans ? r − rover )

( seek ? r − rover )

( image ? r − rover )

( t r a n s r o v e r t o r o v e r ? r − rover )

( supports ? c − camera ?m − mode)

( have image ? r − rover ?o − o b j e c t i v e ?m − mode)

( c a l i b r a t e d ?c − camera ? r − rover )

( v i s i b l e f r o m ?o − o b j e c t i v e ?w − waypoint ) )

( : functions

( loc ?x − ( e i t h e r lander rover ) ) − waypoint

( have ? r − rover ?x − waypoint ) − ( e i t h e r sample opt ion )

( l o c s ? sa − sample ) − ( e i t h e r waypoint opt ion )

( c a l i b r a t i o n t a r g e t ? i − camera ) − o b j e c t i v e

( on board ? i − camera ) − rover )

( : action Seek

: parameters (? r − rover ? sa − sample ?w − waypoint )

: precondition (and (= ( l o c s ? sa ) NONE)

(= ( loc ? r ) ?w)
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( seek ? r ) )

: e f f e c t (and ( assign ( l o c s ? sa ) ?w) ) )

( : action Navigate

: parameters (? x − rover ?y − waypoint ?z − waypoint )

: precondition (and ( l i n k ?x ?y ?z )

(= ( loc ?x ) ?y ) )

: e f f e c t (and ( assign ( loc ?x ) ?z ) ) )

( : action Analyze

: parameters (? x − rover ? sa − sample ?p − waypoint )

: precondition (and (= ( loc ?x ) ?p)

( analyze ?x )

(= ( l o c s ? sa ) ?p) )

: e f f e c t (and ( assign ( have ?x ? sa ) ?p)

( assign ( l o c s ? sa ) NONE) ) )

( : action Communicate

: parameters (? r − rover ? sa − sample ? l − lander ?x − waypoint ?y −

waypoint )

: precondition (and (= ( loc ? r ) ?x )

(= ( loc ? l ) ?y )

(= ( have ? r ? sa ) ?x )

( t r ans ? r ) )

: e f f e c t (and (comm ? sa ?x )

( assign ( have ? r ? sa ) NONE) ) ) )

( : action C a l i b r a t e

: parameters (? r − rover ? i − camera ? t − o b j e c t i v e ?w − waypoint )

: precondition (and ( imaging ? r )

(= ( c a l i b r a t i o n t a r g e t ? i ) ? t )

(= ( loc ? r ) ?w)

( v i s i b l e f r o m ? t ?w)

(= ( on board ? i ) ? r ) )

: e f f e c t (and ( c a l i b r a t e d ? i ? r ) )
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( : action Take image

: parameters (? r − rover ?p − waypoint ? t − o b j e c t i v e ? i − camera ?m −

mode)

: precondition (and ( c a l i b r a t e d ? i ? r )

(= ( on board ? i ) ? r )

( image ? r )

( suppor ts ? i ?m)

( v i s i b l e f r o m ? t ?p)

(= ( loc ? r ) ?p) )

: e f f e c t (and ( have image ? r ? t ?m)

( not ( c a l i b r a t e d ? i ? r ) ) ) )

( : action Communicate image

: parameters (? r − rover ?o − o b j e c t i v e ?m − mode ? l − lander ?x − waypoint

?y − waypoint )

: precondition (and (= ( loc ? r ) ?x )

(= ( loc ? l ) ?y )

( have image ? r ?o ?m)

( t rans ? r ) )

: e f f e c t (and (comm image ?o ?m)

( not ( have image ? r ?o ?m) ) ) )

( : action Communicate rover

: parameters (? r − rover ? r2 − rover ? sa − sample ?p − waypoint ?x −

waypoint )

: precondition (and (= ( loc ? r ) ?x )

( t r a n s r o v e r t o r o v e r ? r )

(= ( have ? r ? sa ) ?p) )

: e f f e c t (and ( assign ( have ? r ? sa ) NONE)

( assign ( have ? r2 ? sa ) ?p) ) )

( : action Communicate image rover

: parameters (? r − rover ? r2 − rover ?o − o b j e c t i v e ?m − mode ?x −

waypoint )
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: precondition (and (= ( loc ? r ) ?x )

( t r a n s r o v e r t o r o v e r ? r )

( have image ? r ?o ?m) )

: e f f e c t (and ( not ( have image ? r ?o ?m) )

( have image ? r2 ?o ?m) ) ) )

B.2.2 Solution plans

B.2.2.1 problem one

plan of rover1

0.0: (calibrate rover1 camera0 objective0 waypoint2) [1.0]

1.0: (sample soil rover1 rover1store waypoint2) [1.0]

2.0: (communicate soil data rover1 general waypoint2 waypoint2 waypoint3) [1.0]

3.0: (take image rover1 waypoint2 objective0 camera0 low res) [1.0]

4.0: (communicate image data rover1 general objective0 low res waypoint2 waypoint3) [1.0]

plan of rover2

0.0: (navigate rover2 waypoint2 waypoint1) [1.0]

1.0: (sample soil rover2 rover2store waypoint1) [1.0]

2.0: (navigate rover2 waypoint1 waypoint4) [1.0]

3.0: (sample rock rover2 rover2store waypoint4) [1.0]

4.0: (communicate soil data rover2 general waypoint1 waypoint4 waypoint3) [1.0]

5.0: (communicate rock data rover2 general waypoint4 waypoint4 waypoint3) [1.0]
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B.2.2.2 problem two

plan of rover1

0.0: (calibrate rover1 camera0 objective0 waypoint1) [1.0]

1.0: (navigate rover1 waypoint1 waypoint3) [1.0]

2.0: (sample soil rover1 rover1store waypoint3) [1.0]

3.0: (take image rover1 waypoint3 objective0 camera0 low res) [1.0]

4.0: (navigate rover1 waypoint3 waypoint4) [1.0]

5.0: (communicate soil data rover1 general waypoint3 waypoint4 waypoint3) [1.0]

6.0: (communicate image data rover1 general objective0 low res waypoint4 waypoint3) [1.0]

plan of rover2

0.0: (navigate rover2 waypoint1 waypoint2) [1.0]

1.0: (sample soil rover2 rover2store waypoint2) [1.0]

2.0: (navigate rover2 waypoint2 waypoint4) [1.0]

3.0: (sample rock rover2 rover2store waypoint4) [1.0]

4.0: (sample soil rover2 rover2store waypoint4) [1.0]

5.0: (communicate soil data rover2 general waypoint2 waypoint4 waypoint3) [1.0]

6.0: (communicate soil data rover2 general waypoint4 waypoint4 waypoint3) [1.0]

7.0: (communicate rock data rover2 general waypoint4 waypoint4 waypoint3) [1.0]

B.2.2.3 problem three

plan of rover1

0.0: (calibrate rover1 camera0 objective0 waypoint4) [1.0]

1.0: (navigate rover1 waypoint4 waypoint3) [1.0]

2.0: (sample rock rover1 rover1store waypoint3) [1.0]

3.0: (take image rover1 waypoint3 objective0 camera0 low res) [1.0]

4.0: (navigate rover1 waypoint3 waypoint5) [1.0]

5.0: (communicate rock data rover1 general waypoint3 waypoint5 waypoint3) [1.0]

6.0: (communicate image data rover1 general objective0 low res waypoint5 waypoint3) [1.0]

230



B.2 Multi-agent rovers

plan of rover2

0.0: (sample soil rover2 rover2store waypoint4) [1.0]

1.0: (navigate rover2 waypoint4 waypoint1) [1.0]

2.0: (sample rock rover2 rover2store waypoint1) [1.0]

3.0: (navigate rover2 waypoint1 waypoint5) [1.0]

4.0: (sample soil rover2 rover2store waypoint5) [1.0]

5.0: (communicate soil data rover2 general waypoint5 waypoint5 waypoint3) [1.0]

6.0: (communicate rock data rover2 general waypoint1 waypoint5 waypoint3) [1.0]

7.0: (communicate soil data rover2 general waypoint4 waypoint5 waypoint3) [1.0]

B.2.2.4 problem four

plan of rover1

0.0: (calibrate rover1 camera1 objective1 waypoint4) [1.0]

1.0: (sample rock rover1 rover1store waypoint4) [1.0]

2.0: (navigate rover1 waypoint4 waypoint6) [1.0]

3.0: (communicate rock data rover1 general waypoint4 waypoint6 waypoint3) [1.0]

4.0: (sample rock rover1 rover1store waypoint6) [1.0]

5.0: (communicate rock data rover1 general waypoint6 waypoint6 waypoint3) [1.0]

6.0: (take image rover1 waypoint6 objective1 camera1 low res) [1.0]

7.0: (communicate image data rover1 general objective1 low res waypoint6 waypoint3) [1.0]

plan of rover2

0.0: (navigate rover2 waypoint4 waypoint3) [1.0]

1.0: (sample soil rover2 rover2store waypoint3) [1.0]

2.0: (navigate rover2 waypoint3 waypoint1) [1.0]

3.0: (sample rock rover2 rover2store waypoint1) [1.0]

4.0: (communicate soil data rover2 general waypoint3 waypoint1 waypoint3) [1.0]

5.0: (sample soil rover2 rover2store waypoint1) [1.0]

6.0: (communicate soil data rover2 general waypoint1 waypoint1 waypoint3) [1.0]

7.0: (communicate rock data rover2 general waypoint1 waypoint1 waypoint3)
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B.2.2.5 problem five

plan of rover1

0.0: (calibrate rover1 camera0 objective0 waypoint1)

1.0: (navigate rover1 waypoint1 waypoint6)

2.0: (sample soil rover1 rover1store waypoint6)

3.0: (take image rover1 waypoint6 objective0 camera0 low res)

4.0: (communicate image data rover1 general objective0 low res waypoint6 waypoint1)

5.0: (communicate soil data rover1 general waypoint6 waypoint6 waypoint1)

plan of rover2

0.0: (sample rock rover2 rover2store waypoint4)

1.0: (navigate rover2 waypoint4 waypoint5)

2.0: (sample rock rover2 rover2store waypoint5)

3.0: (communicate rock data rover2 general waypoint5 waypoint5 waypoint1)

4.0: (communicate rock data rover2 general waypoint4 waypoint5 waypoint1)

plan of rover3

0.0: (calibrate rover3 camera2 objective2 waypoint2)

1.0: (sample rock rover3 rover3store waypoint2)

2.0: (communicate rock data rover3 general waypoint2 waypoint2 waypoint1)

3.0: (take image rover3 waypoint2 objective2 camera2 low res)

4.0: (communicate image data rover3 general objective2 low res waypoint2 waypoint1)

B.2.2.6 problem six

plan of rover1

0.0: (calibrate rover1 camera0 objective0 waypoint1)

1.0: (navigate rover1 waypoint1 waypoint6)

2.0: (take image rover1 waypoint6 objective0 camera0 low res)

3.0: (communicate image data rover1 general objective0 low res waypoint6 waypoint1)

4.0: (sample soil rover1 rover1store waypoint6)

5.0: (communicate soil data rover1 general waypoint6 waypoint6 waypoint1)
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plan of rover2

0.0: (sample rock rover2 rover2store waypoint4)

1.0: (navigate rover2 waypoint4 waypoint5)

2.0: (sample rock rover2 rover2store waypoint5)

3.0: (communicate rock data rover2 general waypoint5 waypoint5 waypoint1)

4.0: (communicate rock data rover2 general waypoint4 waypoint5 waypoint1)

plan of rover3

0.0: (calibrate rover3 camera2 objective2 waypoint2)

1.0: (take image rover3 waypoint2 objective2 camera2 low res)

2.0: (communicate image data rover3 general objective2 low res waypoint2 waypoint1)

3.0: (sample rock rover3 rover3store waypoint2)

4.0: (communicate rock data rover3 general waypoint2 waypoint2 waypoint1)

plan of rover4

0.0: (seek rocks rover4 waypoint7)

1.0: (sample rock rover4 rover4store waypoint7)

2.0: (navigate rover4 waypoint7 waypoint3)

3.0: (sample soil rover4 rover4store waypoint3)

4.0: (navigate rover4 waypoint3 waypoint7)

5.0: (communicate soil data rover4 general waypoint3 waypoint7 waypoint1)

6.0: (communicate rock data rover4 general waypoint7 waypoint7 waypoint1)
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Elevators domain

C.1 Single-agent elevators

PDDL3.1 domain

( define (domain e l e v a t o r s )

( : requirements : typ ing )

( : types e l e v a t o r passenger f l o o r s t a t u s − o b j e c t )

( : predicates

( reachable−f l o o r ? l i f t − e l e v a t o r ? f l o o r − f l o o r )

( above ? l i f t − e l e v a t o r ? f l o o r 1 − f l o o r ? f l o o r 2 − f l o o r )

( working−door ? l i f t − e l e v a t o r ?n1 − f l o o r ) )

( : constants YES NOT − opt ion )

( : functions ( l i f t −at ? l i f t − e l e v a t o r ) − f l o o r

( passenger−at ? person − passenger ) − ( e i t h e r f l o o r e l e v a t o r )

( working− l i f t ? l i f t − e l e v a t o r ) − opt ion )

( : action move−up

: parameters (? l i f t − e l e v a t o r ? f1 − f l o o r ? f2 − f l o o r )

: precondition (and (= ( working− l i f t ? l i f t ) YES)
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(= ( l i f t −at ? l i f t ) ? f1 )

( above ? l i f t ? f1 ? f2 )

( reachable−f l o o r ? l i f t ? f2 ) )

: e f f e c t (and ( assign ( l i f t −at ? l i f t ) ? f2 ) ) )

( : action move−down

: parameters (? l i f t − e l e v a t o r ? f1 − f l o o r ? f2 − f l o o r )

: precondition (and (= ( l i f t −at ? l i f t ) ? f1 )

(= ( working− l i f t ? l i f t ) YES)

( above ? l i f t ? f2 ? f1 )

( reachable−f l o o r ? l i f t ? f2 ) )

: e f f e c t (and ( assign ( l i f t −at ? l i f t ) ? f2 ) ) )

( : action board

: parameters (? l i f t − e l e v a t o r ?p − passenger ? f − f l o o r )

: precondition (and ( working−door ? l i f t ? f )

(= ( passenger−at ?p) ? f )

(= ( l i f t −at ? l i f t ) ? f ) )

: e f f e c t (and ( assign ( passenger−at ?p) ? l i f t ) ) )

( : action l eave

: parameters (? l i f t − e l e v a t o r ?p − passenger ? f − f l o o r )

: precondition (and ( working−door ? l i f t ? f )

(= ( passenger−at ?p) ? l i f t )

(= ( l i f t −at ? l i f t ) ? f ) )

: e f f e c t (and ( assign ( passenger−at ?p) ? f ) ) ) )
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C.2 Multi-agent elevators

C.2.1 PDDL3.1 domain

( define (domain e l e v a t o r s )

( : requirements : typ ing )

( : types agent passenger f l o o r s t a t u s − o b j e c t

e l e v a t o r − agent )

( : predicates

( reachable−f l o o r ? l i f t − e l e v a t o r ? f l o o r − f l o o r )

( above ? l i f t − e l e v a t o r ? f l o o r 1 − f l o o r ? f l o o r 2 − f l o o r )

( working−door ? l i f t − e l e v a t o r ?n1 − f l o o r ) )

( : constants YES NOT − opt ion )

( : functions ( l i f t −at ? l i f t − e l e v a t o r ) − f l o o r

( passenger−at ? person − passenger ) − ( e i t h e r f l o o r e l e v a t o r )

( working− l i f t ? l i f t − e l e v a t o r ) − opt ion )

( : action move−up

: parameters (? l i f t − e l e v a t o r ? f1 − f l o o r ? f2 − f l o o r )

: precondition (and (= ( working− l i f t ? l i f t ) YES)

(= ( l i f t −at ? l i f t ) ? f1 )

( above ? l i f t ? f1 ? f2 )

( reachable−f l o o r ? l i f t ? f2 ) )

: e f f e c t (and ( assign ( l i f t −at ? l i f t ) ? f2 ) ) )

( : action move−down

: parameters (? l i f t − e l e v a t o r ? f1 − f l o o r ? f2 − f l o o r )

: precondition (and (= ( l i f t −at ? l i f t ) ? f1 )

(= ( working− l i f t ? l i f t ) YES)

( above ? l i f t ? f2 ? f1 )

( reachable−f l o o r ? l i f t ? f2 ) )

: e f f e c t (and ( assign ( l i f t −at ? l i f t ) ? f2 ) ) )

236



C.2 Multi-agent elevators

( : action board

: parameters (? l i f t − e l e v a t o r ?p − passenger ? f − f l o o r )

: precondition (and ( working−door ? l i f t ? f )

(= ( passenger−at ?p) ? f )

(= ( l i f t −at ? l i f t ) ? f ) )

: e f f e c t (and ( assign ( passenger−at ?p) ? l i f t ) ) )

( : action l eave

: parameters (? l i f t − e l e v a t o r ?p − passenger ? f − f l o o r )

: precondition (and ( working−door ? l i f t ? f )

(= ( passenger−at ?p) ? l i f t )

(= ( l i f t −at ? l i f t ) ? f ) )

: e f f e c t (and ( assign ( passenger−at ?p) ? f ) ) ) )

C.2.2 Solution plans

C.2.2.1 problem one

plan of elevator1

0.0: (move-up elevator1 floor2 floor3) [1.0]

1.0: (board elevator1 passenger2 floor3) [1.0]

2.0: (move-up elevator1 floor3 floor6) [1.0]

3.0: (leave elevator1 passenger2 floor6) [1.0]

4.0: (move-up elevator1 floor6 floor8) [1.0]

5.0: (board elevator1 passenger1 floor8) [1.0]

6.0: (move-down elevator1 floor8 floor4) [1.0]

7.0: (leave elevator1 passenger1 floor4) [1.0]

plan of elevator2

0.0: (move-down elevator2 floor4 floor2) [1.0]

1.0: (board elevator2 passenger3 floor2) [1.0]

2.0: (move-up elevator2 floor2 floor1) [1.0]

3.0: (leave elevator2 passenger3 floor1) [1.0]

237



C.2 Multi-agent elevators

C.2.2.2 problem two

plan of elevator1

0.0: (move-down elevator1 floor2 floor0) [1.0]

1.0: (board elevator1 passenger1 floor0) [1.0]

2.0: (move-up elevator1 floor0 floor4) [1.0]

3.0: (leave elevator1 passenger1 floor4) [1.0]

4.0: (board elevator1 passenger2 floor4) [1.0]

5.0: (move-up elevator1 floor4 floor6) [1.0]

6.0: (leave elevator1 passenger2 floor6) [1.0]

plan of elevator2

0.0: (move-down elevator2 floor4 floor2) [1.0]

1.0: (board elevator2 passenger3 floor2) [1.0]

2.0: (move-down elevator2 floor2 floor1) [1.0]

3.0: (leave elevator2 passenger3 floor1) [1.0]

C.2.2.3 problem three

plan of elevator1

0.0: (move-up elevator1 floor1 floor4) [1.0]

1.0: (board elevator1 passenger4 floor4) [1.0]

2.0: (move-up elevator1 floor4 floor5) [1.0]

3.0: (leave elevator1 passenger4 floor5) [1.0]

4.0: (move-up elevator1 floor5 floor6) [1.0]

5.0: (board elevator1 passenger3 floor6) [1.0]

6.0: (move-down elevator1 floor6 floor1) [1.0]

7.0: (leave elevator1 passenger3 floor1) [1.0]
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plan of elevator2

0.0: (move-up elevator2 floor5 floor8) [1.0]

1.0: (board elevator2 passenger2 floor8) [1.0]

2.0: (move-down elevator2 floor8 floor1) [1.0]

3.0: (board elevator2 passenger1 floor1) [1.0]

4.0: (move-up elevator2 floor1 floor7) [1.0]

5.0: (leave elevator2 passenger2 floor7) [1.0]

6.0: (move-down elevator2 floor7 floor0) [1.0]

7.0: (leave elevator2 passenger1 floor0) [1.0]

C.2.2.4 problem four

plan of elevator1

0.0: (move-up elevator1 floor4 floor5) [1.0]

1.0: (board elevator1 passenger3 floor5) [1.0]

2.0: (move-up elevator1 floor5 floor6) [1.0]

3.0: (board elevator1 passenger4 floor6) [1.0]

4.0: (move-down elevator1 floor6 floor2) [1.0]

5.0: (leave elevator1 passenger4 floor2) [1.0]

6.0: (move-up elevator1 floor2 floor4) [1.0]

7.0: (leave elevator1 passenger3 floor4) [1.0]

plan of elevator2

0.0: (move-down elevator2 floor7 floor6) [1.0]

1.0: (board elevator2 passenger2 floor6) [1.0]

2.0: (board elevator2 passenger1 floor6) [1.0]

3.0: (move-down elevator2 floor6 floor1) [1.0]

4.0: (leave elevator2 passenger1 floor1) [1.0]

5.0: (move-up elevator2 floor1 floor3) [1.0]

6.0: (leave elevator2 passenger2 floor3) [1.0]
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C.2.2.5 problem five

plan of elevator1

0.0: (board elevator1 passenger2 floor0) [1.0]

1.0: (move-up elevator1 floor0 floor2) [1.0]

2.0: (leave elevator1 passenger2 floor2) [1.0]

3.0: (move-up elevator1 floor2 floor4) [1.0]

4.0: (board elevator1 passenger1 floor4) [1.0]

5.0: (move-up elevator1 floor4 floor5) [1.0]

6.0: (leave elevator1 passenger1 floor5) [1.0]

plan of elevator2

0.0: (move-down elevator2 floor4 floor1) [1.0]

1.0: (board elevator2 passenger3 floor1) [1.0]

2.0: (move-up elevator2 floor1 floor8) [1.0]

3.0: (leave elevator2 passenger3 floor8) [1.0]

plan of elevator3

0.0: (board elevator3 passenger5 floor8) [1.0]

1.0: (move-down elevator3 floor8 floor1) [1.0]

2.0: (board elevator3 passenger4 floor1) [1.0]

3.0: (move-up elevator3 floor1 floor2) [1.0]

4.0: (leave elevator3 passenger4 floor2) [1.0]

5.0: (move-up elevator3 floor2 floor3) [1.0]

6.0: (leave elevator3 passenger5 floor3) [1.0]
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C.2.2.6 problem six

plan of elevator1

0.0: (move-up elevator1 floor0 floor5) [1.0]

1.0: (board elevator1 passenger2 floor5) [1.0]

2.0: (move-down elevator1 floor5 floor3) [1.0]

3.0: (leave elevator1 passenger2 floor3) [1.0]

4.0: (board elevator1 passenger1 floor3) [1.0]

5.0: (move-up elevator1 floor3 floor6) [1.0]

6.0: (leave elevator1 passenger1 floor6) [1.0]

plan of elevator2

0.0: (move-down elevator2 floor7 floor3) [1.0]

1.0: (board elevator2 passenger3 floor3) [1.0]

2.0: (move-up elevator2 floor3 floor6) [1.0]

3.0: (leave elevator2 passenger3 floor6) [1.0]

plan of elevator3

0.0: (move-up elevator3 floor4 floor8) [1.0]

1.0: (board elevator3 passenger5 floor8) [1.0]

2.0: (board elevator3 passenger4 floor8) [1.0]

3.0: (move-down elevator3 floor8 floor0) [1.0]

4.0: (leave elevator3 passenger4 floor0) [1.0]

5.0: (move-up elevator3 floor0 floor7) [1.0]

6.0: (leave elevator3 passenger5 floor7) [1.0]
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Appendix D

Transports domain

D.1 Single-agent transport

PDDL3.1 domain

( define (domain t r a n s p o r t ) ( : requirements : typ ing : e q u a l i t y : f l u e n t s )

( : types agent l o c a t i o n obj − o b j e c t t ruck )

( : predicates ( l i n k ? t ruck − agent ?x ?y − l o c a t i o n ) )

( : functions ( pos ? t − t ruck ) − l o c a t i o n

( in ?o − obj ) − ( e i t h e r l o c a t i o n t ruck ) )

( : action load

: parameters (? t ruck − t ruck ? obj − obj ? loc − l o c a t i o n )

: precondition (and (= ( pos ? t ruck ) ? loc ) (= ( in ? obj ) ? loc ) )

: e f f e c t ( assign ( in ? obj ) ? t ruck ) )

( : action unload

: parameters (? t ruck − t ruck ? obj − obj ? loc − l o c a t i o n )

: precondition (and (= ( pos ? t ruck ) ? loc ) (= ( in ? obj ) ? t ruck ) )

: e f f e c t ( assign ( in ? obj ) ? loc ) )

( : action dr i ve
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: parameters (? t ruck − t ruck ? loc−from − l o c a t i o n ? loc−to − l o c a t i o n )

: precondition (and (= ( pos ? t ruck ) ? loc−from ) ( l i n k ? t ruck ? loc−from ?

loc−to ) )

: e f f e c t ( assign ( pos ? t ruck ) ? loc−to ) ) )

D.2 Multi-agent transport

D.2.1 PDDL3.1 domain

domain of the truck agent

( define (domain t r a n s p o r t ) ( : requirements : typ ing : e q u a l i t y : f l u e n t s )

( : types agent l o c a t i o n obj − o b j e c t t ruck − agent )

( : predicates ( engine−opera t ing ? t − t ruck )

( ho i s t−opera t ing ? t − t ruck )

( l i n k ? t ruck − agent ?x ?y − l o c a t i o n ) )

( : functions ( pos ? t − t ruck ) − l o c a t i o n

( in ?o − obj ) − ( e i t h e r l o c a t i o n t ruck ) )

( : action load

: parameters (? t ruck − t ruck ? obj − obj ? loc − l o c a t i o n )

: precondition (and (= ( pos ? t ruck ) ? loc ) (= ( in ? obj ) ? loc ) ( ho i s t−

opera t ing ? t ruck ) )

: e f f e c t ( assign ( in ? obj ) ? t ruck ) )

( : action unload−to−t ruck

: parameters (? truck1 − t ruck ? truck2 − t ruck ? obj − obj ? loc − l o c a t i o n )

: precondition (and (= ( pos ? truck1 ) ? loc ) (= ( pos ? truck2 ) ? loc ) (= ( in

? obj ) ? truck1 ) )

: e f f e c t ( assign ( in ? obj ) ? truck2 ) )

( : action unload
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: parameters (? t ruck − t ruck ? obj − obj ? loc − l o c a t i o n )

: precondition (and (= ( pos ? t ruck ) ? loc ) (= ( in ? obj ) ? t ruck ) ( ho i s t−

opera t ing ? t ruck ) )

: e f f e c t ( assign ( in ? obj ) ? loc ) )

( : action load−from−t ruck

: parameters (? truck1 − t ruck ? truck2 − t ruck ? obj − obj ? loc − l o c a t i o n )

: precondition (and (= ( pos ? truck1 ) ? loc ) (= ( pos ? truck2 ) ? loc ) (= ( in

? obj ) ? truck2 ) )

: e f f e c t ( assign ( in ? obj ) ? truck1 ) )

( : action dr i ve

: parameters (? t ruck − t ruck ? loc−from − l o c a t i o n ? loc−to − l o c a t i o n )

: precondition (and (= ( pos ? t ruck ) ? loc−from ) ( l i n k ? t ruck ? loc−from ?

loc−to ) ( engine−opera t ing ? t ruck ) )

: e f f e c t ( assign ( pos ? t ruck ) ? loc−to ) ) )

D.2.2 Solution plans

D.2.2.1 problem one

plan of truck1

0.0: (load truck1 package1 s0) [1.0]

1.0: (drive truck1 s0 s1) [1.0]

2.0: (unload truck1 package1 s1) [1.0]

plan of truck2

0.0: (load truck2 package2 s0) [1.0]

1.0: (drive truck2 s0 s1) [1.0]

2.0: (unload truck2 package2 s1) [1.0]
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D.2.2.2 problem two

plan of truck1

0.0: (drive truck1 s0 s2) [1.0]

1.0: (load truck1 package1 s2) [1.0]

2.0: (drive truck1 s2 s1) [1.0]

3.0: (load truck1 package3 s1) [1.0]

4.0: (drive truck1 s1 s0) [1.0]

5.0: (unload truck1 package1 s0) [1.0]

6.0: (unload truck1 package3 s0) [1.0]

plan of truck2

0.0: (load truck2 package2 s1) [1.0]

1.0: (drive truck2 s1 s2) [1.0]

2.0: (unload truck2 package2 s2) [1.0]

D.2.2.3 problem three

plan of truck1

0.0: (drive truck1 s1 s0) [1.0]

1.0: (load truck1 package1 s0) [1.0]

2.0: (load truck1 package2 s0) [1.0]

3.0: (drive truck1 s0 s1) [1.0]

4.0: (unload truck1 package2 s1) [1.0]

5.0: (unload truck1 package1 s1) [1.0]

plan of truck2

0.0: (drive truck2 s2 s1) [1.0]

1.0: (load truck2 package3 s1) [1.0]

2.0: (drive truck2 s1 s2) [1.0]

3.0: (unload truck2 package3 s2) [1.0]
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D.2.2.4 problem four

plan of truck1

0.0: (drive truck1 s1 s2) [1.0]

1.0: (load truck1 package1 s2) [1.0]

2.0: (drive truck1 s2 s1) [1.0]

3.0: (unload truck1 package1 s1) [1.0]

plan of truck2

0.0: (load truck2 package3 s0) [1.0]

1.0: (drive truck2 s0 s1) [1.0]

2.0: (load truck2 package4 s1) [1.0]

3.0: (drive truck2 s1 s2) [1.0]

4.0: (unload truck2 package3 s2) [1.0]

5.0: (drive truck2 s2 s0) [1.0]

6.0: (unload truck2 package4 s0) [1.0]

D.2.2.5 problem five

plan of truck1

0.0: (drive truck1 s1 s0) [1.0]

1.0: (load truck1 package2 s0) [1.0]

2.0: (load truck1 package1 s0) [1.0]

3.0: (drive truck1 s0 s1) [1.0]

4.0: (unload truck1 package1 s1) [1.0]

5.0: (unload truck1 package2 s1) [1.0]

plan of truck2

0.0: (drive truck2 s1 s2) [1.0]

1.0: (load truck2 package3 s2) [1.0]

2.0: (drive truck2 s2 s1) [1.0]

3.0: (unload truck2 package3 s1) [1.0]
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plan of truck3

0.0: (drive truck3 s1 s2) [1.0]

1.0: (load truck3 package4 s2) [1.0]

2.0: (drive truck3 s2 s0) [1.0]

3.0: (unload truck3 package4 s0) [1.0]

D.2.2.6 problem six

plan of truck1

0.0: (drive truck1 s0 s1) [1.0]

1.0: (load truck1 package1 s1) [1.0]

2.0: (drive truck1 s1 s2) [1.0]

3.0: (unload truck1 package1 s2) [1.0]

plan of truck2

0.0: (drive truck2 s1 s0) [1.0]

1.0: (load truck2 package3 s0) [1.0]

2.0: (drive truck2 s0 s2) [1.0]

3.0: (unload truck2 package3 s2) [1.0]

plan of truck3

0.0: (load truck3 package5 s1) [1.0]

1.0: (load truck3 package4 s1) [1.0]

2.0: (load truck3 package2 s1) [1.0]

3.0: (drive truck3 s1 s0) [1.0]

4.0: (unload truck3 package5 s0) [1.0]

5.0: (drive truck3 s0 s2) [1.0]

6.0: (unload truck3 package4 s2) [1.0]

7.0: (unload truck3 package2 s2) [1.0]
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Appendix E

Logistics domain

E.1 Single-agent logistics

The logistics domain is a significant problem in the industry of transportation [111]

presented in the IPC of 2000. In this domain, there are several cities, each contain-

ing several locations, some of which are airports. There are also trucks, which can

drive within a single city, and airplanes, which can fly between airports. The goal

is to get some packages from various locations to various new locations. We used

the same STRIPS version of the IPC with the only modification that we convert the

domain and problem files from PDDL2.1 to PDDL3.1.

PDDL3.1 domain

( define (domain l o g i s t i c s ) ( : requirements : typ ing : e q u a l i t y : f l u e n t s )

( : types c i t y p lace package v e h i c l e − o b j e c t a i r p o r t l o c a t i o n − place t ruck

plane − v e h i c l e )

( : predicates ( in−c i t y ? loc − place ? c i t y − c i t y ) )

( : functions ( a t ?a − v e h i c l e ) − place

( in ?pkg − package ) − ( e i t h e r p lace v e h i c l e ) )

( : action load−t ruck

: parameters (? t ruck − t ruck ?pkg − package ? loc − place )
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: precondition (and (= ( at ? t ruck ) ? loc ) (= ( in ?pkg ) ? loc ) )

: e f f e c t (and ( assign ( in ?pkg ) ? t ruck ) ) )

( : action unload−t ruck

: parameters (? t ruck − t ruck ?pkg − package ? loc − place )

: precondition (and (= ( at ? t ruck ) ? loc ) (= ( in ?pkg ) ? t ruck ) )

: e f f e c t (and ( assign ( in ?pkg ) ? loc ) ) )

( : action drive−t ruck

: parameters (? t ruck − t ruck ? loc−from − place ? loc−to − place ? c i t y −

c i t y )

: precondition (and (= ( at ? t ruck ) ? loc−from ) ( in−c i t y ? loc−from ? c i t y ) ( in−

c i t y ? loc−to ? c i t y ) )

: e f f e c t (and ( assign ( a t ? t ruck ) ? loc−to ) ) )

( : action load−plane

: parameters (? plane − plane ?pkg − package ? loc − place )

: precondition (and (= ( in ?pkg ) ? loc ) (= ( at ? plane ) ? loc ) )

: e f f e c t (and ( assign ( in ?pkg ) ? plane ) ) )

( : action unload−plane

: parameters (? plane − plane ?pkg − package ? loc − place )

: precondition (and (= ( in ?pkg ) ? plane ) (= ( at ? plane ) ? loc ) )

: e f f e c t (and ( assign ( in ?pkg ) ? loc ) ) )

( : action f l y−plane

: parameters (? plane − plane ? loc−from − a i r p o r t ? loc−to − a i r p o r t )

: precondition (and (= ( at ? plane ) ? loc−from ) )

: e f f e c t (and ( assign ( a t ? plane ) ? loc−to ) ) ) )
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Appendix F

Evaluating the Reactive Planner

F.1 Calculating the effective branching factor

Given the total number of nodes N and the maximum depth m of a tree T , the

effective branching factor is the branching factor that a uniform tree of depth m

would have in order to contain N+1 nodes. Therefore, N+1=1+b+b2 + · · ·+bm 1.

A different representation for the same formula is shown in Equation F.1.1, which

allows us to calculate the total number of nodes N in non-uniform search trees [81]

using the concept of effective branching factor.

N =
bm+1 − b
b− 1

(F.1.1)

Although b can not be easily written explicitly as a function of m and N , we can

design a plot of b versus N with some values of m in order to find an equivalent

formula that helps us to easily clear b. The plot, shown in Figure F.1, compares

Equation F.1.1 (black line) with the formula to calculate the number of nodes N in

a uniform tree, bm (red line). As we can observe, Equation F.1.1 is an increasing

function that almost has the same form of the formula bm. The main difference is
1For simplicity, we will represent the effective branching factor with the same letter b of the branch-

ing factor.
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F.1 Calculating the effective branching factor

that bm is shifted to the left. Considering this difference and our purpose to find an

approximate formula of the Equation F.1.1, we manually computed 2 the shift in the

red curve (bm) to approach Equation F.1.1 as much as possible. This results in the

function (b+ 0.44)m, which can be graphically seen in Figure F.2 (blue line).
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Figure F.1: Plot of the number of nodes N versus the branching factor b.
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Figure F.2: Plot of N versus b with the approached function.

Two issues related to the previous formulas are worth mentioning here. First,

2We used the geometry package GeoGebra http://www.geogebra.org/
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it is important to highlight that (b + 0.44)m is an approximation of Equation 4.1.1,

which can vary slightly depending on the values of m. Thereby, it is obvious that

the function (b + 0.44)m will not generate the real value of N but an approximate

value. Secondly, the domain of values used for the branching factor b are positive

values starting from 1 because a non-leaf node in a repairing structure will have at

least one child.

F.2 Formulas to calculate the errors

F.2.1 Root Mean Square Error

The Root Mean Square Error (RMSE) 3 represents the sample standard desviation

of the differences between the real values and the estimated values. It is computed

for n different predictions as the square root of the mean of the squares of the

differents between the estimated value and the real value. Values of zero indicates

the estimated values are very close to the real values.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(F.2.1)

F.2.2 Mean Absolute Error

The Mean Absolute Error (MAE) 4 is a quantity used to measure how close forecasts

or predictions are to the eventual outcomes. It is computed as the average of the

absolute errors, difference between the real time and the estimated time.

MAE =

∑n
i=1 | yi − ŷi |

n
(F.2.2)

3https://en.wikipedia.org/wiki/Root-mean-square deviation
4https://en.wikipedia.org/wiki/Mean absolute error
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F.2.3 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) 5 is computed as the difference be-

tween the real time and the estimated time divide by the real time. The absolute

value in this calculation is summed for every sample point and divided by the num-

ber of samples. Multiplying by 100 makes it a percentage error.

MAPE =

∑n
i=1 |

yi−ŷi
yi
|

n
(F.2.3)

5https://en.wikipedia.org/wiki/Mean absolute percentage error
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Appendix G

Conflict verification

In our MARPE model, we may choose to work with the verifying conflict process,

in which case the repair solution of any agent j is considered valid if it does not

produce any conflict with the plan window of the other external agents in the envi-

ronment.

We declared the procedure verify conflicts that checks if a given recovery so-

lution is free of conflicts with the other plans that are been executing in the environ-

ment. Algorithm 5 shows the general workflout of the procedure verify conflicts.

Input: Πj , ∆

1: for k ∈ ∆ do
2: j send Πj to k
3:
4:
5: message← receive response
6: if message = reject then
7: return false
8: end for
9: return true

external agent k

Π← receive Πj

if conflictBetweenP lans(Πk, Πj) = false then
send accept . Otherwise, send reject message

Algorithm 5: Workflout of the procedure to verify conflicts

Let’s assume that the repair process of the agent j found a solution plan Π′ that

solves the new planning task P ′ of the agent j such as we defined it at Section 5.3.

The agent j will call the procedure of Algorithm 5, verify conflicts (Π′, ∆) where
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∆ is a set of external agents. We define the function verify conflicts as the

procedure to check whether the solution Π′ of the agent j is free of conflict with the

other plans that are been executing in the environment.

The agent j sends each agent k of the set of external agents ∆ the recovery solu-

tion (lines 1 and 2). The external agents receive the solution and accept the solution

as valid if it is not conflicted with its current plan window (lines 3 - 6). Otherwise,

the agent k reject the solution in which case the procedure verify conflicts re-

turns the value false (lines 6 and 7).

We define the function conflictBetweenP lans(Πk, Πj), line 4 of Algorithm 5,

that given any two plans, Πk and Πj , checks whether a conflict between the plans

exists or not by satisfying the following constraint. For every variable v published

by agent k through the services, the agent j identifies pair of partial states {Gkt , G
j
p}

⊆ {Πk ∪ Πj} such as v ⊂ { Gkt , G
j
p}, and the partial states, Gkt and Gjp, must satisfy

¬conflict(Gkt , G
j
p). The procedure conflictBetweenP lans(Πk, Πj) holds if it exists

a partial state Gt of agent k that presents some mutex with any partial state Gp of

the agent j in sequences of partial states of Πk and Πj , respectivelly.

We tested Algorithm 5 on a GNU/Linux Debian PC with an Intel 7 Core i7-3770

CPU @ 3.40GHz x 8, and 8 GB RAM; and in average it takes only 0.036 ms that

represents 0,000036% of one execution cycle. This CPU time does not consider

the communication delay between the agents in the environment. Moreover, in our

experiments of Chapter 6 the agents are executing in the same PC, and thereby, the

time of the communication between agents is imperceptible.
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[107] Jose M Such, Ana Garćıa-Fornes, Agust́ın Espinosa, and Joan Bellver. Ma-

gentix2: A privacy-enhancing agent platform. Engineering Applications of

Artificial Intelligence, pages 96–109, 2012. 23, 38

[108] Katia Sycara, Massimo Paolucci, Martin van Velsen, and Joseph Giampapa.

The RETSINA MAS Infrastructure. Technical report, The special joint issue of

Autonomous Agents and MAS, Volume 7, Nos. 1 and 2, 2001. 2, 25

[109] Alejandro Torreño, Eva Onaindia, Antońın Komenda, and Michal Stolba.
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