
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/120534

De Oña, J.; López-Maldonado, G.; Abellán, J. (2013). Extracting decision rules from police
accident reports through decision trees. Accident Analysis & Prevention. 50:1151-1160.
https://doi.org/10.1016/j.aap.2012.09.006

http://dx.doi.org/10.1016/j.aap.2012.09.006

Elsevier



1 
 

Extracting decision rules from police accident reports through decision 

trees 
 

Juan de Oñaa,*, Griselda Lópeza  and Joaquín Abellánb 

 
a TRYSE Research Group. Department of Civil Engineering, University of Granada, ETSI 

Caminos, Canales y Puertos, c/ Severo Ochoa, s/n, 18071 Granada (Spain) 

 
b Department of Computer Science & Artificial Intelligence, ETSI Informática, c/Periodista 

Daniel Saucedo Aranda, s/n, 18071 Granada (Spain) 

* Corresponding author. Phone: +34 958 24 99 79, jdona@ugr.es 

 
ABSTRACT 

 

Given the current number of road accidents, the aim of many road safety analysts is to identify 

the main factors that contribute to crash severity. To pinpoint those factors, this paper shows an 

application that applies some of the methods most commonly used to build Decision Trees 

(DTs), which have not been applied to the Road Safety field before. An analysis of accidents on 

rural highways in the province of Granada (Spain) between 2003 and 2009 (both inclusive) 

showed that the methods used to build DTs serve our purpose and may even be complementary. 

Applying these methods has enabled potentially useful decision rules to be extracted that could 

be used by road safety analysts. For instance, some of the rules may indicate that women, 

contrary to men, increase their risk of severity under bad lighting conditions. The rules could be 

used in road safety campaigns to mitigate specific problems. This would enable managers to 

implement priority actions based on a classification of accidents by types (depending on their 

severity). However, the primary importance of this proposal is that other data bases not used 

here (i.e. other infrastructure, roads and countries) could be used to identify unconventional 

problems in a manner easy for road safety managers to understand, as decision rules. 

 

Keywords: traffic accident; severity; decision trees; CART; C4.5; decision rules 

 

 

1. Introduction 

 

Traffic accidents are considered a major public health problem worldwide, claiming 1.27 

million annual deaths and between 20 and 50 million injuries (WHO, 2009). Therefore, the aim 

of many studies to date has been to understand and identify the main factors that have an impact 

on road accident severity. Regression-type generalized linear models, Logit models and Probit 

models have been the techniques most commonly used to conduct such analyses (Kashani and 

Mohaymany, 2011; Savolainen et al., 2011; Mujalli and De Oña, in press). However most of 

them have their own model assumptions and pre-defined underlying relationships between 

dependent and independent variables (Chang and Wang, 2006). 

 

Recently, data mining (DM) techniques have been used to study crash-injury severities by 

different researchers (Kuhnert et al. 2000; Sohn and Shin, 2001; Chang and Wang, 2006; 

Kashani and Mohaymany, 2011; Kashani et al., 2011; Pakgohar et al., 2010). The term Decision 

Trees (DTs) encompasses a series of techniques for extracting processable knowledge, implicit 

in data bases, which is based on artificial intelligence and statistical analysis. One part of the 

DM could be defined as the non trivial process of identifying valid, novel, potentially useful and 

ultimately understandable pattern in data (Fayyad et al., 1996). These techniques are aimed at 

extracting knowledge from large amounts of data previously unknown and indistinguishable. 

DT techniques are particularly appropriate for studying crashes because they are non-parametric 

techniques that do not require prior probabilistic knowledge on the study phenomena. 
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Furthermore, they consider conditional interactions among input data (Montella et al., 2011). 

Other advantages of DTs compared to other methods with similar aims include the extraction of 

decision rules of the "if-then" type (Kashani et al., 2011), and that they can be used to discover 

behaviours that occur within a specified set of data. Moreover, conclusions on behavior can be 

drawn from the structure of DTs to understand the events leading up to a crash and identify the 

variables that determine how serious an accident will be. 

 

There are many algorithms that can be used to build DTs, but CART (Classification and 

Regression Trees) developed by Breiman et al. in 1984 is the once most commonly used to 

analyze crash severity. Authors such as Kuhnert et al. (2000) compared the results obtained with 

CART, multivariate adaptive regression splines (MARS) and logistic regression in the analysis 

of an epidemiological case-control study of injuries resulting from motor vehicle accidents. The 

findings indicated that non-parametric techniques such as CART and MARS can provide more 

informative and attractive models whose individual components can be displayed graphically. 

Chang and Wang (2006) studied the relationships between crash severity with characteristics 

related to drivers and vehicles, as well as variables related to roads, road accidents and the 

environment characteristics. Pakgohar et al. (2010) used CART and Multinomial Logistic 

Regression to study the role played by drivers' characteristics in the resulting crash severity. 

They found that the CART method provided more precise results, which were also simpler and 

easier to interpret. Kashani et al. (2011) studied the key factors that affect the injury severity of 

drivers involved in crashes on two-lane two-way rural roads. Subsequently, Kashani and 

Mohaymany (2011) used CART to identify the main factors that affect the injury severity of 

vehicle occupants involved in crashes on those roads. 

 

However, CART always yields binary trees, which sometimes cannot be summarized as 

efficiently for interpretation and/or presentation (Breiman et al., 1984). In the case of road 

accidents, they may not be very practical when it comes to analyzing the impact of a specific 

category of variable in crash severity. Liu (2009) mentions the existence of other popular 

algorithms for building DTs, such as C4.5. He does not apply it, however, because a binary DT 

is sufficient to develop his work. 

 

Other simple algorithms, such as ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993), have been 

widely used in the literature of DM for building DTs, and do not involve the binary restriction. 

Therefore, this study proposes to make a comparison between the various methods, and to use 

CART and other methods to identify the main factors that affect crash severity. Then we extract 

certain decision or association rules (Agrawal et al., 1993) from the methods that give the best 

results. We show that the methods used complement our objective. Finally, our results could be 

used for the predictive purposes pursued by road safety analysts. 

 

This paper is organized as follows: Section 2 gives an introduction to procedures for building 

DTs, focusing on the ones used in this study. It also describes the parameters used to assess the 

various methods, the procedure for extracting rules and the main features of the study data. 

Section 3 presents the results and a discussion on them. Finally, the last section presents the 

conclusions. 

 

2. Materials and methods 

 

2.1.  Decision Trees 

 

A DT is a predictive model which can be used to represent both classifiers and regression 

models. DTs are popular due to their simplicity and transparency; moreover, they are usually 

presented graphically as hierarchical structures, which make them easy to interpret. 
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A DT is a simple structure that can be used as a classifier. Within a DT, each node represents an 

attribute variable1 X and, each branch represents one of the states of this variable. Normally, a 

terminal node or leaf, specifies the expected value of the class variable or variable in study C, 

depending on the information contained in the training data set, i.e. the set used to build the 

model. The set of data used to check the model is called test set. When we obtain a new instance 

or case of the test data set, we can make a decision or prediction about the state of the variable 

class following the path to the tree from the root node to a leaf node, using the sample values 

and the tree structure. Subsequently, the model obtained can be used to classify new examples 

(cases whose classes are not known a priori), to detect patterns, or simply to gain a better 

understanding of the phenomenon being analyzed. 

 

DTs are built recursively, following a descending strategy, starting with the full data set (made 

by the root node). Using specific split criteria, the full set of data is then split into even smaller 

subsets. Each subset is split recursively until all of them are pure (when the cases in each subset 

are all of the same class) or their "purity" cannot be increased. That is how the tree's terminal 

nodes are formed, which are obtained according to the answer values of the class variable. 

 

The main difference between DTs building procedures lies in the splitting criteria. The most 

commonly applied splitting criteria in simple algorithms are the Gini Index (which measures the 

degree of purity), used in the CART system (Breiman et al., 1984); Information Gain, used in 

the ID3 algorithm (Quinlan, 1986); and the Information Gain Ratio, used in the C4.5 algorithm 

(Quinlan, 1993). ID3 and C4.5 are based on the entropy, which measures the degree of 

confusion (the greater the confusion, less information). The procedures also differ in the 

strategies they use after building a tree, in the process known as pruning. This is when the 

model obtained is simplified and adjusted more closely to the data set used to build it. 

 

2.2.  Methods for building Decision Trees 

 

CART: Depending on the nature of the dependent variable, a classification tree (case discrete) 

or a regression tree (case continuous) will be built. The CART model generates binary trees by 

using impurity as a measure to split the Gini Index of diversity (which is a measure of the 

diversity of classes in a tree node being used). For a variable C, it is defined as: 

 

  . (1) 

 

In this way, we can define the split criterion based on the Gini Index as: 

 

 GI  , (2) 

 

where  and X another known variable. 

 

Thus, the best split is the one that minimizes GI . With this procedure, the maximal tree 

that overfits the data is created. To decrease its complexity, the tree is pruned using a cost-

complexity measure that combines the precision criteria as opposed to complexity in the number 

of nodes and processing speed, searching for the tree that obtains the lowest value for this 

parameter. A more detailed description of the CART method can be found in Breiman et al. 

(1984). 

 

ID3: Builds a tree in a manner similar to the CART method but without the binary restriction. It 

can only be used with discrete variables, does not allow pruning and the function used to 

measure impurity is the Shannon’s entropy (Shannon, 1948), which is an information-based 

uncertainty measure. 

 

                                                           
1 Also called feature or predictor variable 
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The ID3 algorithm uses the Information Gain criterion to choose which attribute goes into a 

decision node. Information Gain could be defined as a difference of entropies in the current 

node, considering the information that an attribute variable gives us about the class variable. 

This split criterion can therefore be defined on an attribute variable X, given the class variable 

C, as follow: 

 

   (3) 

 

Where  is the entropy of C, , with , the 

probability of each value of the variable class estimated in the training data set. In the same 

way, , where , t=1,…,|X|, is each possible state of X 

and , j=1,…,k each possible state of C. 

 

Notice that the Information Gain criterion has implicit preference for splitting nominal attributes 

with lots of values. Therefore, it produces trees that discard the remaining attributes prematurely 

because they soon come to branches that have only a few cases. A more detailed description of 

the ID3 algorithm can be found in Quinlan (1986). 

 

C4.5: In order to improve the ID3 algorithm, Quinlan (1993) introduces the C4.5 algorithm, 

where the Information Gain split criterion is replaced by an Information Gain Ratio criterion 

which penalizes variables with many states. Moreover, this model makes it possible to deal with 

continuous attributes and missing values, and to carry out a post-pruning process. The algorithm 

incorporates classification tree pruning once a tree has been induced, by applying a hypothesis 

test on whether or not to expand a branch. 

 

The Information Gain Ratio of an attribute variable X on a variable class C can be expressed as: 

 

   (4) 

 

2.3.  Method assessment 

 

Taking into consideration the indicators used to evaluate the goodness of a classification method 

in De Oña et al. (2011) and Mujalli and De Oña (2011), and that the variable class used shows 2 

possible response categories (state A and state B), the parameters that can be defined are 

described below: 

 

 Accuracy - The method's precision, defined as the percentage of cases correctly classified 

by the classifier. 

 Sensitivity - The proportion of cases correctly classified as state A among all the observed as 

state A. 

 Specificity - The proportion of cases correctly classified as state B among all the observed as 

state B. 

 Receiver Operating Characteristic Curve (ROC) Area – This indicator represents the curve 

of positive cases correctly classified (sensitivity), as opposed to the cases of false positives 

(1-specificity), in such a way that a value 1 describes a perfect adjustment. 

 

If the variable class is accident severity and its potential states are accidents with slightly injured 

-SI- (state A) and accidents with killed or seriously injured -KSI- (state B), the equations that 

define these indicators are: 

 

   (5) 
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   (6) 

 

   (7) 

 

Where,  - Number of cases of SI; - Number of cases of KSI; - Number of false 

cases of SI (i.e. incorrectly classified as SI); - Number of false cases of KSI (i.e. 

incorrectly classified as KSI). 

The software used to build the DTs was Weka (Witten and Frank, 2005), which is an open 

source freeware, available at: http://www.cs.waikato.ac.nz/ml/weka/ 

 

Moreover, in order to obtain a more reliable result for each method (CART, ID3 and C4.5) in 

classification, a repeated Cross Validation procedure (CV) was used. In our case, we use a 

10x10-fold CV. In general, a k-fold CV uses the whole data set, and randomly divides the 

sample used in the training phase into k sets: Sequentially, each subset is kept to be used as a 

testing set against the tree model generated by the remaining k-1 subsets. Thus, different k 

models are obtained, in which the accuracy of the classifications in the training set (k-1) and in 

the testing subsets (k) can be evaluated and the optimal tree can be selected. 

 

Finally, a corrected paired t-test implemented in Weka, which is a corrected version of the 

standard paired t-test, was used to compare the results of the trees generated with the different 

algorithms. This test checks whether a method is better or worse than another, on average, in all 

the training and testing data sets based on an initial data set. In our case, we used the 

classification results from the 100 test set for this test, i.e. the sets obtained from a 10x10-fold 

CV procedure. The level of significance used for this paired t-test was 0.1. 

 

It should be pointed out that the ID3 algorithm implemented in Weka allows instances without 

classification. To compare results, we implemented a similar procedure but classified all the 

instances of the test set as in Abellán and Masegosa (2010). In the case of no classification, we 

took into account the decision in the parent node. For sake of simplicity, we call this procedure 

ID3 too. 

 

2.4.  Rules extraction and validation 

 

The DT's structure was transformed into rules in order to extract its potentially useful 

information. The rules make a logic conditional structure of the type “XY”, where in our 

case, X is a set of statuses of several attribute variables; and Y is only one state of the class 

variable: 

IF (a set of statuses of several attribute variables) - THEN (status of the class variable).  

 

For example:  

IF (accident type=rollover & atmospheric condition=light rain) THEN (severity=slightly 

injured accident). 

 

The part X of the rule is called the antecedent and the part Y is called the consequent. 

 

In a DT, rules are configured from the root node, which is where the conditioned structure (IF) 

begins. Each variable that intervenes in tree division makes an IF of the rule, which ends in 

child nodes with a value of THEN, which is associated with the state resulting from the child 

node. The resulting state is the status of the class variable that shows the highest number of 

cases in the child node analyzed. 

 

A priori, as same number of rules can be identified as the number of terminal nodes on the tree. 

However, 3 parameters were used on each possible rule “XY”, in order to extract significant 

http://www.cs.waikato.ac.nz/ml/weka/
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rules that could provide useful information for the implementation of road safety strategies in 

the future.  

 

It is known as support of X, as the percentage of the data set where appears X. In the same vein, 

we can talk about the support of the entire rule, as the percentage of the data set where X & Y 

appear. For each rule, the 3 parameters that we use here are the following: Support (S), which 

for us will be the support of the entire rule; Population (Po), which is the support of the 

antecedent of the rule; and Probability (P), which is the percentage of cases in which the rule is 

accurate (i.e. P=S/Po expressed as percentage). 

Probability parameter (P) is equivalent to the confidence parameter used in Montella et al. 

(2011). Montella et al. (2011) set a minimum value ≥1% due to the nature of the data, 

significant interest in fatal crashes and sample size. However in our paper, the sample size is 

smaller and the sample is balanced. Toto ensure that the patterns identified by the rules could be 

extrapolated, the threshold values were: P≥60%. Other works, including Paned and Abdel-At 

(2009) established this value at 10%. Based on the sample size, a minimum value (1%) was also 

indicated to ensure that the patterns identified by the rules would be representative. 

 

We used the most widely-used parameters in the literature on association rules (Po and P) and 

the lowest values, to ensure that the selected rules would be representative: Po≥1% and P≥60%. 

With these values and due the relation among 3 parameters, S must verify that actually S≥ 0.6%, 

a higher value than the one used in Montella et al. (2011), S≥ 0.1%, due to reasons related to the 

special data set they used. It is worth highlighting that if other minimum values were 

established, more rules could be obtained. 

 

In order to tested that spurious rules, and due to the large number of patterns considered, DTs 

could suffer from an extreme risk of type-1 error, that is, of finding patterns that appear due to 

chance alone to satisfy constraints on the sample data (Webb, 2007). To reduce this error and 

following other authors (Montella et al., 2011; Kashani and Mohaymany, 2011), the dataset was 

split randomly in two parts: a training set (70% of the data) and a testing set (remaining 30%). 

 

The training set was used to build a DT and obtain the significant rules that satisfied the three 

parameters defined (S, Po, and P). Next, the rules were validated in the testing set to prevent 

spurious rules (checking that they still met minimum values S, Po and P). 

 

We also used a binomial test to check if the rule support measure deviates significantly (at 0.05 

level) from the theoretically expected value (values from the training set) when the antecedent 

and the consequent items are independent. 

 

Also, we have used a binomial test to check if the deviations of the rule support measure are 

significant (at 0.05 level) from the theoretically expected value (values from the training set) 

when the antecedent and the consequent items are independent. 

 

2.5.  Importance of the variables 

 

The importance of the variables that intervene in the model is defined for a variable X with 

possible states {x1...x} by the following equation:  

 

  (8) 

 

Where C is class variable (severity), nxi the number of cases that X=xi, n the number of total 

cases. I is Gini Index in CART, Information Gain in ID3 and Information Gain Ratio in C4.5 

 

 

2.6.  Description of the data 
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Accident data were obtained from the Spanish General Traffic Accident Directorate (DGT) for 

rural highways in the province of Granada (South of Spain) over a period of 7 years (2003-

2009). In this study, rural highways with only two lanes (one for each direction) were used. The 

horizontal curves radius of these roads ranged from 16 m to 2,824 m. And the AADT ranged 

from 210 to 8,681 veh/day. The accidents analyzed involved 1 vehicle and they did not occur on 

intersections. The total number of 1,801 accidents met these conditions 

 

Following previous studies (Chang and Wang, 2006; De Oña et al, 2011; Kashani and 

Mohaymany, 2011), severity of accident was defined according to the worst injured occupant, 

and two level of severity were identified: accident with slightly injured (SI) and accidents with 

killed or seriously injured (KSI). 
 

To identify the main factors that affect accident severity, 19 variables were analyzed (see Table 

1). The variables chosen were based on: 

- Variables available in the original dataset (from DGT). 

- Variables selected in others studies with similar objectives (Chang and Wang, 2006; De 

Oña et al., 2011; Kashani and Mohaymany, 2011; Pakgohar et al., 2010).  

 

The variables describe characteristics related to the driver (age and gender); accident (month, 

time, day, number of injuries, occupants involved, accident type and cause); road (pavement 

width, lane width, shoulder type, paved shoulder, pavements markings and sight distance); and 

context (atmospherics factors and lighting). Some variables were recoded in a reduced number 

of categories to able to work with them. For instance, in the original dataset MON had 12 

categories (12 months), and it was recoded into four periods (see Table 1). Other variables, such 

as CAU, DAY, LAW, LIG, PAS, PAW, ROM, SEX, SHT, SID, were used as they were in the 

original dataset. Table 1 gives a description of the variables used for the analysis, together with 

the frequency distribution. 

 

(insert Table 1 here) 

 

3. Results and discussion 

 

The first step was to build DTs using the three algorithms (CART, C4.5 and  ID3) with the aim 

of classification using 10x10-fold CV procedure. In order to compare the results, corrected 

paired t-tests were conducted. The results of the tests, comparing the methods to each other on 

the indicators accuracy, sensitivity, specificity and ROC_Area are shown in Table 2. 

 

(insert Table 2 here) 

 

C4.5 and CART show similar values for accuracy. ID3 shows significantly worse values than 

the other two algorithms. The accuracy values are within the range of values obtained in other 

studies in which classification methods with similar objectives were applied: Abdel Wahab and 

Abdel-Aty (2001) obtained 61% accuracy when they applied Bayesian networks and 58.1% 

accuracy on neural networks. De Oña et al. (2011) obtained 58%, 59% and 61% accuracy 

applying Bayesian networks with different algorithms (AIC, MDL and BDeu, respectively). 

 

The C4.5 algorithm gives a higher value than CART (55% vs. 54%) in the sensitivity parameter 

analysis. The improvement is not significant, however. CART gives a higher value than C4.5 

for the specificity parameter, although the improvement is not significant either. For ID3, both 

sensitivity and specificity are poorer, in comparison to the values of the other two algorithms. A 

global measure given by the ROC Area indicator shows that CART gives the best results (57%) 

whereas ID3 obtains the lowest values again (53%). 

 

The computational time it took each algorithm to build the DT was another indicator analyzed. 

It was obtained that the CART method requires the most time to build a tree, being 55 times 
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slower than for the C4.5 algorithm and 42 times slower than ID3. C4.5 is the algorithm that 

takes the less time, needing only 0.03 seconds to build a DT with 19 variables and 1,801 data. 

This result is logical because the CART algorithm is more complex, and in turn, C4.5 is more 

complex than ID3, since it has more optimization parameters in order to improve the results. 

The implementation of the C4.5 algorithm is optimized in Weka, and therefore the 

computational time is lower than for ID3. 

 

Taking the above results in consideration, it can be seen that the ID3 algorithm is the method 

that gives the worst results. The difference in improvement using CART and C4.5 is not 

significant, however. Although CART obtains slightly higher values in the precision and 

specificity parameters analyzed, the improvement is not significant, and therefore, we cannot 

assert a priori that one method is better than the other. It would be worthwhile to analyze the 

decision rules obtained with the algorithms that attained the best results: C4.5 and CART. 

 

3.1.  CART  

 

Figure 1 shows the DT built using the CART method with 70% of the data for training and the 

remaining data (30%) for testing, as used by Montella et al. (2011). The CART method creates a 

tree with 19 nodes and 10 terminal nodes. 

(insert Figure 1 here) 

 

Table 3 shows a description of the six rules identified in the DT that verify the minimum values 

of the parameters S, Po and P in the training and in the test sets. Support varies from 1.6% (rule 

16) to 8.0% (rule 6). All the rules include at least 1% of the population, and probability values 

are higher than 60.9%, with 70.7% being the highest value (rule 15). 

 

With regards to the binomial test that was performed, all the rules obtained from the training set 

with the minimum threshold have a grade of lift (see Montella et al., 2011) different than 1. 

Hence the antecedent and consequent are independent. These results were not included in the 

paper because they are not important for our aims. The binomial test showed that all the rules 

given in Table 3 have no significant differences (at 0.05 level), based on support when they are 

applied on the test set. Only the rule 5 (see Table 3) has a high level of support in the test set 

compared to the support in the training set. This difference is significant at 0.05 level of 

significance.  

 

(insert Table 3 here) 
 

The root variable that generates the tree is SEX (see Figure 1) which splits into two branches 

(nodes 1 and 2). For female drivers, and depending on LIG, nodes 5 and 6 are obtained, with 

different degrees of severity (see Figure 1): accidents are KSI if LIG is insufficient or without 

lighting, with a probability of 61% (rule 5); while if LIG is sufficient, dusk or day light the 

severity is SI, with a probability of 69% (rule 6). 

 

The rest of the rules are attributable to male drivers (node 1). After this node, the tree splits 

according to ACT. For rollover, collision with obstacles and other accidents types, the severity 

of the accident is SI, with this rule representing 6.4% of the population (rule 4 in Table 3). For 

all other accident types, the tree splits by the variable ATF:  if ATF is light rain the accident is 

SI, with a probability of 63% (rule 8); in others cases the tree continues to grow according to 

DAY. If DAY is public holiday or after public holiday the accident is KSI, with a probability of 

65% (node 10 in Figure 1), and if it is before public holiday or working day the tree is divided 

according to TIM. From 6-12 h, accidents with SI are obtained when PAS is paved or non-

existent (rule 15, which is the one that represents the highest probability: almost 71%) whereas 

when it is not paved the severity is KSI (rule 16). From 12-6 h, tree is divided by MON and LIG 

(see Figure 1), however neither of the obtained nodes are rules. 
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Following Eq. 8, it is possible to obtain the importance of the variables in the model. Table 4 

shows normalized importance of these variables. 12 variables were detected as having the 

greatest influence on accident severity, with percent which varying from 100% to 9.9%. 

 

(insert Table 4 here) 
 

LIG is the most important variable, coinciding with previous studies. Gray et al. (2008) 

identified that more severe injuries are predicted during darkness. Abel-Aty (2003) and Heali et 

al. (2008) found the same results. Pande and Abel-Aty (2009) concluded that there is a 

significant correlation between lack of illumination and high severity of crashes. De Oña et al. 

(2010) also pointed that KSI accidents are associated with roadways without lighting. 

 

ATF is the second variable with 83.6% importance in the model. This result matches with other 

previous studies, such as Xie et al. (2009) and Mujalli and De Oña (2011). TIM has 77.1% 

importance in the model which is coherent because there is already a degree of relationship 

between the time and lighting variables. Next comes ACT with 76.0% (Kcoleman and Kweon, 

2002, De Oña et al., 2011 also found this variable as one of the most important in the study of 

severity). SEX represented 72% of the variables' importance. The other variables (see Table 4) 

in the model are less important, with percentages between 55.9% and 9.9%. 

 

3.2.  C4.5  

 

Figure 2 represents a DT built using the C4.5 algorithm based on the training set. It shows 52 

nodes, with 39 terminal nodes. The increase in the number of nodes is justified be the fact that 

this algorithm creates a branch for each category of variable used in the analysis. In this case, 

however, only 9 rules that meet the minimal values for support, population and probability were 

obtained (see Table 5). 

(insert Figure 2 here) 

 

Since the tree generated with C4.5 is larger, only the rules extracted in Table 5 are used to 

describe the following tree structure. In this case, the rules in Table 5 also verify the minimum 

values of the parameters S, Po and P in the training and in the test sets. For C4.5, the binomial 

test showed that all the rules obtained from the training set with the minimum threshold have a 

grade of lift (see Montella et al., 2011) different than 1. And none of the rules given in Table 5 

have significant differences (at 0.05 level) on support when they are applied to the test set.  

 

(insert Table 5 here) 
 

As in CART, the root variable is the variable SEX. For female drivers when LIG is daylight, the 

rule with the highest population (9.9%) and support (6.8%) gives a severity result of SI (rule 6 

in Table 5). 

 

Most of the tree is generated by male drivers (see Figure 2) and according to ACT. Figure 2 and 

Table 5 show the following patterns: if ACT is rollover the severity is SI, with a probability of 

61% (rule 12 in Table 5); whereas, if ACT is collision with pedestrian and PAS is paved the 

severity is KSI. This is the rule with the highest probability (78%). The rest of the rules are 

obtained for rollover accidents and depending on CAU.  

 

When CAU is a combination of factors, SID is without restriction and MON is spring the 

severity of accident is SI with almost 74% of the probability (rule 33). For CAU attributable to 

driver and depending on VEH the following patterns are shown: when VEH is a truck the 

accident is KSI (67.5%), rule 29; when is a motorbike or motorcycle and PAS is non existent or 
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impassable, the same severity (KSI) is obtained (rule 40); and for car two more rules are 

obtained depending on PAW.  

 

When PAW is between [7-6] meters and driver´s age is 27-60, rule 46 is obtained, the severity 

is SI with a probability of almost 68%. When PAW is > 7 meters, the tree splits according to 

NOI, and when it is higher than 1, accidents are SI in 64.4% of cases (rule 48 in Table 5). 

 

Following Eq. 8, it is possible to obtain the importance of the variables in the C4.5 model (see 

Table 6). 

 

(insert Table 6 here) 
 

Fourteen variables were detected as having the greatest influence on accident severity, with 

percent which varying from 100% to 11.2%. ACT is the most important variable in the C4.5 

model, followed by CAU. These results are in accordance with Al-Ghamdi (2002) and Kashani 

and Mohyamany (2011), who situate crash cause among the top variables influencing severity. 

The CART algorithm identified eleven of the previous fourteen variables. Moreover C4.5 

identified VEH, PAW, and NOI. 

 

4.  Conclusions 

 

DTs allow accident classification based on crash severity. They provide an alternative to 

parametric models due to their ability to identify patterns based on data, without the need to 

establish a functional relationship between variables. Moreover, such classification models can 

be used to determine interactions between variables that would be impossible to establish 

directly, using ordinary statistical modeling techniques.  

 

The main conclusions regarding the methods used in this paper to build DTs are the following: 

- CART builds binary DTs and therefore certain categories of splitting variables are grouped 

in some branches, increasing node support, but making it impossible to analyze the 

influence of a specific category on severity. C4.5 creates a branch for each category, thereby 

permitting an analysis of the influence of all the categories of variables used to build the 

DT. Consequently, it could be said that the rules obtained with CART are less informative. 

- C4.5 generates DTs with more branches than CART, and therefore it produces more rules. 

However, not all the rules meet the established minimal number of support, population and 

probability parameters, and therefore the rules may not be very useful for implementing 

future road safety strategies. 

- The importance of the variables in the model can be obtained using either algorithm. 

- The two algorithms have certain similarities with regards to the structure of the tree 

generated. For example, the root variable for both is SEX and tree density is obtained by the 

branch male drivers, and the value that continues to split the tree is ACT. 

 

DTs permit certain potentially useful rules to be determined that can be used by road safety 

analysts and managers. Initially, they should focus on severe crashes and subsequently intervene 

in minor accidents. The approach proposed in this paper within each group will enable actions 

to be prioritized on the basis of support, population and probability. It is worth highlighting 

certain overall conclusions from a road safety perspective. 

 

The rules drawn from the two methods are coincidental in that: 

 Male drivers are the main causes of KSI crashes. 

 The probability of KSI increases if pedestrians are involved (node 3 Figure 1 and rule 

11 in Table 5). 

 When women drivers are involved in an accident, both methods predict SI when 

lighting exists (full daylight, sufficient lighting and dusk) (rule 6 in Tables 3 and 5, and 

nodes 2 and 3 in Figure 2). However, both methods predict KSI when the lighting is 
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non-existent or insufficient (rule 5 in Table 3 and nodes 6 and 7 in Figure 2). These 

rules are not observed for men and may indicate that women increase their risk of 

severity under conditions of less lighting on the road. 

 

From the standpoint of road safety, most of the rules extracted coincide with the conventional 

problems found on rural highways in developed countries, as most previous studies point out. 

This validates the method proposed in this paper, and therefore it is positive. However, the 

primary importance of this proposal is that other data bases not used here (i.e. other 

infrastructure, roads and countries) could be used to identify unconventional problems in a 

manner easy for road safety managers to understand, as decision rules.  

However, using these two types of DTs permitted the identification of a specific problem 

worthy of further study: Although less women than men are involved in accidents (15.3% vs. 

84.5%, see Table 1), and accident severity is SI in 62.2% of cases, the two methods indicate that 

women increase their risk of severity under conditions of non-existent or insufficient lighting. 

The efforts of multidisciplinary teams with experts on psychology, physiology, road safety and 

illumination should focus on a search of the reason why women, contrary to men, present higher 

risk of severity under conditions of less lighting on the road.  

 

Finally, it should be stressed that each method has advantages and drawbacks, and reveals 

different information. Therefore, the two methods complement each other and the 

recommendation is to use both of them for a full analysis. 

 

5.  Future work 

 

When we use a DT to obtain decision rules, such rules are highly dependent on the variable 

entered in the root node, which permits knowledge to be extracted only in the sense dictated by 

said root variable. For future research, it is worth studying the possibility of generating DTs by 

varying the root node and analyzing all the rules that may be obtained from a single set of data. 

 

For the same purpose, we would like to apply new split criteria based on new mathematical 

models for representing information, as well as the new procedures used in classification to 

date. These criteria and procedures can be seen in Abellán and Masegosa (2010) and Abellán et 

al. (2011). 
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