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Abstract 1 

 2 

One of the main objectives of all public administrations is reducing traffic crashes. To this end, Road 3 

Safety Inspections (RSI) stand out as a key measure. Signaling roads is one of the foremost tasks of 4 

RSI. A road that is improperly or poorly signaled can lead to incorrect placement or maneuvers of 5 

vehicles and ambiguous situations that can increase the risk of crashes. This paper analyses the 6 

relationship between road crashes in two-lane rural highways and certain deficiencies in signaling. The 7 

results show that deficiencies such as “incomplete removal of road works markings” or “no guide sign 8 

or in incorrect position” are the ones associated with a higher probability of crashes in two-lane rural 9 

highways. In view of these results, governmental agencies should verify that the original conditions of 10 

a highway are re-established after any construction work is completed. They should also continuously 11 

follow up on the signaling of this type of highway in order to maintain them in optimal conditions.  12 

 13 

Keywords. Traffic crashes; road safety inspections; sign and marking; Decision Trees; Decision rules 14 

 15 

1. Introduction 16 

 17 

Traffic accidents are complex events involving the interaction of different contributory factors, 18 

including road, driver, and vehicle. While it is well known that the human factor is the main cause of 19 

traffic crashes, present in nearly 90% of them (Siskind et al., 2011), previous studies have shown that 20 

the infrastructure also plays a significant role. Nearly 28% of crashes are due to infrastructure and, in 21 

most cases a combination of human and road factors forms a major contribution in the road crashes 22 

(Odgen, 1996).  23 

 24 

In the literature, the crash contribution from human factors is usually analyzed in the context of driver 25 

errors. The human error most often identified in the crashes is related to the perception and processing 26 

of information presented by the road or traffic environment. Situations that cause problems with road 27 
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user perception, interpretation or judgment stages may lead to driver error or loss of control (Croft and 28 

Schnerring, 2009). An estimated 30% of driver-distracted crashes derive from diverse sources outside 29 

the vehicle (Regan et al., 2009). Hence, it is crucial to maintain the road features in optimal conditions 30 

so that they have the least possible impact on the driver´s performance.  31 

 32 

Reducing highway crashes is one of the main aim of the Administrations. One means of reducing them 33 

is to detect and correct roadway deficiencies. Road Safety Inspections (RSI) were established for this 34 

purpose, they are an effective tool for the management of safety on existing roads. The European 35 

Directive on Road Infrastructure Safety Management (EC, 2008) defines RSI as “an ordinary 36 

periodical verification of the characteristics and defects that require maintenance work for reasons of 37 

safety”. Following the principle “Prevention is better than cure”, the RSI are used to evaluate existing 38 

road traffic facilities and to improve road safety performance (Alfredas et al., 2012). While some RSI 39 

treatments will have a greater impact than others, as underlined by Elvik (SETRA 2008), significant 40 

reductions in crashes can be expected as a result of a RSI and associated interventions. 41 

 42 

After some years of experience with RSI, it is broadly recognized as one of the most important and 43 

effective engineering tools available to improve road safety (Antov, 2011). This is why the European 44 

Union makes RSI mandatory for trans-European Road Networks and they are recommended for the 45 

rest of the transport infrastructures (EC, 2008). These inspections should be undertaken after 46 

establishing a series of criteria to be articulated by means of checklists. The checklists are ordered lists 47 

used to cover the most important issues which should be inspected during the RSI. The detected 48 

hazards will be identified like Road Safety Deficiency (RSD). 49 

 50 

Some aspects of a RSD that can be analyzed include those related with signaling. They are easier to 51 

correct and involve a lower cost than other measures, such as the design of the road itself. It is 52 

important for the highway to be properly signaled, and that the information provided is clear and 53 

concise.  54 
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Several authors stress the importance of correct signaling: Miller (1992) reported that existing 55 

longitudinal pavement markings reduce crashes by 21%, and edge lines on rural two-lane highways 56 

reduce crashes by 8%; and Cho et al. (2012) suggested that pavement markings provide guidance to 57 

road travelers. An alteration of pavement color and/or texture or incomplete removal of pavement 58 

markings during construction projects could confuse individuals driving through the construction work 59 

zones. To make matters worse, under certain lighting and weather conditions the supposedly removed 60 

markings may become more visible than the new ones. Antov (2011) highlighted as common 61 

problems the missing, contradictory or incomprehensible signs/marking. Croft and Schnerring (2009) 62 

pointed out that incorrect or poorly maintained pavement marking can lead to undue placement or 63 

maneuvers of vehicles, thus increasing the risk of crashes. They also showed the influence of 64 

delineation devices in road safety—poorly placed or missing delineation devices can transmit a false 65 

picture of the way ahead, contributing to driver error (Croft and Schnerring, 2009). The 66 

methodological approach for safety evaluation of two-lane rural highways segments put forth by 67 

Cafiso et al. (2007) served to establish that daytime delineation of a road can be effectively 68 

accomplished with pavement markings, whereas nighttime and rainy conditions may require a 69 

different approach to provide long-range delineation of the roadway alignment. Supplementary 70 

delineation is an important safety factor in any condition; but it may prove critical on horizontal 71 

curves, especially on isolated curves with a short radius. Croft and Schnerring (2009) also indicated 72 

that signs poorly located/incorrectly situated can cause confusion, increasing crash risk, just as 73 

excessive signing can increase potential risk for road users. Montella (2005) described a systematic 74 

process to determine which road features should be investigated and how each should be evaluated 75 

during RSI. Accordingly, a safety improvement index was calculated and compared with the expected 76 

collision frequency, and this procedure was carried out in 406 km of rural two-lane rolling highways in 77 

Italy. The study revealed that for missing or ineffective curve warning signs on severe curves, the 78 

relative risk factor could be assumed equal to 10% (Montella, 2005). 79 

 80 
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This study analyzes the relationship between crashes and certain deficiencies in signaling identified by 81 

a previous RSI. The RSI was performed on two-lane rural highways in Andalusia (Spain). From the 82 

Road Safety standpoint, it is vital that two-lane rural highways be studied, as they are the scenario of 83 

most crashes. In Spain, 70% of crashes occur on this type of roads (Ministerio del Interior, 2013). 84 

 85 

The analysis uses a data mining technique. This technique has been widely used in the road safety 86 

field in recent years, giving satisfactory results (Kuhnert et al., 2000; Sohn and Shin, 2001; Abdel 87 

Wahab and Abdel-Aty, 2001; Chang and Wang, 2006; De Oña et al., 2011; Kashani et al., 2011; 88 

Pakgohar et al., 2010; Chang and Chien, 2013; De Oña et al., 2013a; De Oña et al., 2013b; López et 89 

al., 2014). The main aim of this technique is the extraction of knowledge from large amounts of 90 

previously unknown and indistinguishable data. In this case, Decision Trees (DTs) are employed. DTs 91 

are appropriate for studying crashes because they are non-parametric techniques that do not require 92 

prior probabilistic knowledge of the study phenomena. Further advantages of DTs with respect to 93 

other methods having similar aims reside in the extraction of Decision Rules (DRs) (De Oña et al., 94 

2013a). Although each crash is the result of a unique chain of events, some specific factors are 95 

common to several crash circumstances, and DRs can be used to identify these factors and their 96 

interdependences (Montella et al., 2011). Safety analysts could use these rules to understand the events 97 

leading up to an accident, and prioritize certain elements for actions intended to improve road safety.  98 

 99 

In this paper, therefore, DRs extracted from DTs are used to analyze the relationship between the 100 

actual occurrence of traffic crashes on two-lane rural highways and the deficiencies in roadway 101 

signaling previously detected by means of RSI.  102 

 103 

The paper is organized as follows: Section 2 presents a description of the data used, and also describes 104 

the procedures for building DTs, extract DRs, and deriving the final rule set. Section 3 presents the 105 

Results and a Discussion thereof. Finally, the last section succinctly presents some Conclusions. 106 

 107 
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2. MATERIALS AND METHODS 108 

 109 

2.1 Description of the data 110 

 111 

The data come from two different sources. The Andalusian Regional Government provided the Road 112 

Inventory database and the Road Safety Inspections database, while the Spanish General Directorate 113 

of Traffic provided the Spanish Road Crashes database.  114 

 115 

The Road Inventory database contains a list of road sections with their geometrics and equipment 116 

characteristics. Two-lane rural highways from the Complementary Road Network of Andalusia were 117 

selected for this study. Urban segments, junctions and segments with road work places were removed 118 

from the study; because the factors related to crashes taking place on these sections are different, they 119 

should be analyzed separately (Moore et al., 2010). The total length of the investigated road network is 120 

1,635 km. 121 

 122 

The Road Safety Inspections database contains information about a RSI developed on two-lane rural 123 

highways in the Complementary Road Network in Andalusia. In this RSI some risks associated with 124 

RSD were identified. These risks were defined as Road Safety Deficiency Elements (RSD-E). The 125 

risks related with the vertical signs and pavement markings identified during the RSI are denominated 126 

Signaling Elements from Road Safety Inspection (RSD-SE). The main aim of this study is to 127 

investigate the influence of RSD-SE on road crashes.  128 

 129 

The Spanish Road Crashes database contains a description of the location and type of crashes that 130 

occurred on Spanish roads. Information about the crashes in two-lane rural highways in the 131 

Complementary Road Network of Andalusia was extracted from this database. The period of study is 132 

three years (2006-2008), and during this period the total number of crashes with victims in these 133 

segments was 1,454.  134 



 

 6 

A global database with information about crashes, road characteristics, and RSD-SE was built using 135 

the three databases. The following analysis is based on seven variables related to geometric and 136 

environmental road characteristics (see Table 1) and eight RSD-SE (see Table 2).  137 

 138 

[Insert here Table 1] 139 

 140 

[Insert here Table 2] 141 

 142 

The following criteria were corroborated in order to identify the RSD-SE:  143 

 144 

• RSD-SE1: The length of the passing zone was at least the minimum indicated by Spanish 145 

National Standards. For a speed of 100 km/h, the minimal distance is 250 meters. For 60 km/h 146 

the minimum is 75 meters. For speeds in-between, intermediate distances are established. 147 

• RSD-SE2: The regulatory signs are present and correctly positioned (e.g., speed limit or no 148 

passing zone). 149 

• RSD-SE3: Signs indicating danger/precaution are present and correctly positioned (e.g., road 150 

narrows, dangerous curve, animal crossing, etc.) 151 

• RSD-SE4: Guide signs are properly situated. 152 

• RSD-SE5: Road markings are clear and visible. 153 

• RSD-SE6: There are no contradictions between vertical signs and road markings at a given 154 

point. 155 

• RSD-SE7: This deficiency is considered to exist in segments where road markings have not 156 

been adequately eliminated. 157 

• RSD-SE8: This deficiency is considered to exist in segments where the road width is greater 158 

than 7 meters and there are no post-mounted delineators or they present damage amounting to 159 

over 50%.  160 
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[Insert here Figure 1] 161 

 162 

2.2. Classification and Decisions Trees (CART) 163 

 164 

DTs are one of the most widely used data mining techniques for classifying and predicting class 165 

variables. When the target variable is discrete, a classification tree is developed, whereas a regression 166 

tree is developed for continuous variables. CART can be used for both kinds of target variables. In this 167 

study, the target variable is the occurrence of the accident (ACC: YES or NO) and, therefore, a 168 

classification tree is developed. 169 

 170 

A DT is an oriented graph formed by a finite number of nodes departing from the root node. DTs are 171 

built recursively, following a descending strategy, starting with the full data set (made by the root 172 

node). Using specific split criteria, the full set of data is then split into even smaller subsets. Each 173 

subset is split recursively until all of them are pure (when all cases in each subset present the same 174 

class) or their “purity” cannot be increased. Thus the tree’s terminal nodes are formed, obtained 175 

according to the answer values of the target variable (De Oña et al., 2013a). 176 

 177 

The CART method is a particular methodology for building binary Decision Trees in which the Gini 178 

Index is used as the splitting criterion. The development of a CART model generally consists of three 179 

steps: (1) growth of the tree; (2) the pruning process; and (3) selection of an optimal tree from the 180 

pruned trees. Tree growing entails recursive partitions of the target variable to maximize ‘‘purity’’ in 181 

the two subsequent child nodes. By definition, the terminal nodes present a lower degree of impurity 182 

compared to the root node. In tree growing, predictors generate candidate partitions (or splits) at each 183 

internal node of the tree, so that a suitable criterion needs to be defined in order to choose the best 184 

partition (or the best split) of the objects. The Gini reduction criteria is applied to measure the ‘‘worth’’ 185 

of each split in terms of its contribution toward maximizing the homogeneity through the resulting 186 
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split. If a split results in the splitting of one parent node into B branches, the ‘‘worth’’ of that split may 187 

be measured as follows: 188 

 189 

 Worth = Impurity (Parent node) − ∑ P(n) ∗ Impurity(n)N
n=1 , (1) 190 

 191 

where Impurity (Parent node) denotes the Gini measure for the impurity (i.e., non-homogeneity) of the 192 

parent node, and P(b) denotes the proportion of observations in the node assigned to branch b. The 193 

impurity measure, Impurity (node), may be defined as follows: 194 

 195 

 Impurity (node) = 1 − ∑ (
number of class i cases

all cases in the node
)^2I

i=1 . (2) 196 

 197 

When a node is ‘pure’, Eq. (2) gives the minimum value, and its value will be higher for less 198 

homogeneous nodes. If one considers the definition of “worth” according to Eq. (1), a split resulting in 199 

more homogeneous branches (Child nodes) will have more “worth”. 200 

 201 

While developing a CART this criterion is applied recursively to the descendants to achieve Child 202 

nodes having maximum worth which, in turn, become the parents to successive splits, and so on. The 203 

splitting process goes on until there is no (or less than a pre-specified minimum) reduction in impurity 204 

and/or the limit for a minimum number of observations in a leaf node is reached. Following this 205 

process, a saturated tree is obtained. The saturated tree provides the best fit for the used database, but 206 

overfits the information contained within the database, and this overfitting does not help in classifying 207 

other databases. Therefore, when developing a CART model data is usually divided into two subsets: 208 

one for learning (or training) and the other for testing (or validation).  209 

 210 

The learning sample is used to split nodes, while the testing sample is used to compare the 211 

misclassification. The saturated tree is obtained from the learning data. Overly large trees could result 212 
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in higher misclassification when applied to classify new databases. To decrease its complexity, the tree 213 

is pruned in a second step according to the cost-complexity algorithm, which is based on removing the 214 

branches that add little to the predictive value of the tree. The cost-complexity measure combines the 215 

precision criteria as opposed to complexity in the number of nodes and processing speed, searching for 216 

the tree that obtains the lowest value for this parameter. The final step gives rise to the optimal tree. A 217 

more detailed description of the CART method can be found in Breiman et al. (1984). 218 

 219 

2.3. Decision Rules (DRs) 220 

 221 

The DT's structure can be transformed into rules in order to extract its potentially useful information. 222 

A DR is a logical, conditional structure of the type if A->B, in which A is the antecedent of the rule 223 

and B is the consequent, with all the splits of the parent nodes being the antecedent and the class of the 224 

terminal node being the consequent.  225 

 226 

Each rule starts at the root node and each variable that is included in tree division makes an IF of the 227 

rule, which ends in terminal node with a value of THEN (which is associated with the state resulting 228 

from the terminal node). The class of a node is the status that shows the highest number of cases. 229 

Thus, a priori, the number of rules can be identified with the number of terminal nodes in the tree. 230 

 231 

Due to the fact that the occurrence of crashes is infrequent in comparison with the non-occurrence of 232 

crashes, the class of the terminal node —and therefore the class resulting from the rule— will usually 233 

be the non-occurrence of an accident (ACC=NO). Notwithstanding, from the road safety perspective, 234 

the rules of interest are the rules involving crashes. To identify this type of rule, and following 235 

previous studies (Montella et al., 2012; López et al., 2014), we use the posterior classification ratio 236 

(PCR) in order to re-assign a response class (the consequent) to each rule extracted. PCR compares the 237 

classification of the terminal nodes of the tree with the classification of the root node (Eq. 3): 238 

 239 



 

 10 

 𝑃𝐶𝑅(𝑗|𝑡) =  
𝑝 (𝑗|𝑡)

𝑝(𝑗|𝑡𝑟𝑎𝑖𝑧)
 (3) 240 

 241 

where: 242 

p (j|t) = Proportion of observations in node “t” that belong to the class “j”, where class “j” is 243 

“YES”; troot = Root node of the tree. 244 

 245 

The assignment of the class to each rule was performed selecting the class j* with the greatest value of 246 

PCR. In addition, we will analyze only rules in which the consequent of the class variable (ACC) is 247 

the accident occurrence (YES). For each rule, then, two parameters are calculated: Support and 248 

Probability of accident (in three years´ time). 249 

 250 

Support: The support of the rule (S) is the percentage of the data set for which both A (antecedent) and 251 

B (consequent) appear, that is, the number of cases in which the following rule is fulfilled: 252 

 253 

𝑆(𝐴 → 𝐵) =
|(𝐴→𝐵)t|

𝑁
 (4) 254 

Where (A → B)t is the number of crashes for which both conditions A and B are verified; N is the total 255 

number of crashes. 256 

 257 

Probability of accident (in 3 years): Indicates the probability that an accident will occur in three years´ 258 

time as a consequence of the circumstances given in the rule. 259 

 260 

 Prob. accident 3 years = PCR ∗ Prob. global acc (5) 261 

 262 

Where Prob. global acc =
crashes

𝑘𝑚 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
 263 

 264 
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Because of the large number of patterns considered, DTs may suffer from an extreme risk of Type I 265 

error, that is, of finding patterns that appear only by chance to satisfy constraints on the sample data 266 

(Webb, 2007). To reduce the risk of Type I error, and following other authors (Montella et al., 2012; 267 

Kashani and Mohaymany, 2011), the dataset was split randomly in two parts: a training set (70%) and 268 

a testing set (30%). The rules extracted on the training set were validated using the testing set. The 269 

application of the tree structure obtained in the training set to the testing sample produced the testing 270 

tree that was used for validation. To reduce the risk that results were overfitted to the sample, at each 271 

node of the testing tree the assignment of the class was compared with the assignment performed in 272 

the training tree. As a result, only nodes with the same class in both the training and the testing trees 273 

were validated. 274 

 275 

2.4. Decision Rules obtained from a Decision Tree: The global DRs set 276 

 277 

The extraction of knowledge with DRs extracted from a DT has some limitations. The rules depend on 278 

the DT’s structure because they are extracted from each tree branch from the root node to the terminal 279 

node. Therefore, knowledge is extracted only in the direction dictated from the root node to the 280 

terminal node even if other possible important rules could exist. To extract all the possible patterns 281 

from a particular data set, Abellán et al. (2013) proposed a method called information root node 282 

variation (IRNV). The main characteristic of the IRNV method is that a set of DTs is built by varying 283 

the root node. Thus, every possible set of DRs is obtained from each tree, providing a set of rules with 284 

potentially useful information.  285 

 286 

The first step in order to obtain DRs from the different DTs built varying root node was to randomly 287 

split the dataset into the training set (70% of the data) and the testing set (30%). Then, based in the 288 

IRNV method, a total of 15 models of DTs varying the root node are developed (i.e., a different model 289 

for each one of the seven variables and the eight RSD-SE considered for studying). All the rules in 290 

which the consequent is the occurrence of the accident are extracted from these models. The main 291 
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problem with this method is that most rules are extracted from DTs to which the root node has been 292 

imposed, and this node could not be essential for the pattern that describes the rule. To overcome this 293 

issue a procedure of verification of the root node is performed (López et al., 2014) to determine 294 

whether the rule should be simplified.  295 

 296 

𝐷𝑅 is the rule extracted from a DT in which the root node is imposed (called in this study the extended 297 

rule); and 𝐷𝑅− is the rule without the root node (called in this study the simple rule); A is the 298 

antecedent of the 𝐷𝑅 and is formed by n variables (X'1, X'2, …, X'n); 𝐴− is the antecedent of the 𝐷𝑅− 299 

and is formed by n-1 variables (X'2, …, X'n). In this way, we have to compare 𝐷𝑅: 𝐴 (X'1, X'2, …, 300 

X'n)  B vs. 𝐷𝑅−: 𝐴− (X'2, …, X'n)  B, where B is the consequent. The extended rule (rule with n 301 

items) is selected over a simple rule (rule with n-1 items) if it verifies two conditions (López et al., 302 

2014): 303 

 Condition 1: 
𝑃𝐶𝑅(𝐴→𝐵)

𝑃𝐶𝑅(𝐴−→𝐵)
≥ 1.03 (6) 304 

 305 

 Condition 2: 
𝑆(𝐴→𝐵)

𝑆 (𝐴−→𝐵)
≥ 0.2 (7) 306 

 307 

Condition 1 establishes that the increase of PCR in the DR should be over 3%; and Condition 2 308 

indicates that the support of the DR with respect to the 𝐷𝑅− should be, at least, 20%. Thus, the global 309 

DRs set is formed by extended rules (𝐷𝑅𝑠) when conditions 1 and 2 are verified simultaneously, or 310 

simple rules (𝐷𝑅𝑠−) if one of the conditions is not verified.  311 

 312 

Once the simple rule or the extended rule has been selected, the chosen rules are validated in the 313 

testing set. The PCR is calculated again, and the rules fulfilling PCR ≥1 (the rules whose consequents 314 

are the occurrence of the accident) are the validated rules. The rules that are validated become part of 315 

the final set of RDs and should be analyzed from the road safety standpoint. 316 

 317 
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3. RESULTS 318 

 319 

In the first step, the dataset was randomly split into training and testing sets: 1,174 km formed the 320 

training set, having 738 road sections with crashes and 10,989 road sections without crashes. 321 

 322 

The different models of DTs are built varying the root node using the training set. DT1 is the model 323 

obtained directly, without imposing the root node, whereas DT2 to DT15 are the models obtained 324 

varying the root node. Table 3 shows the main results for the 15 models. 106 rules were extracted from 325 

the different models. From these rules, only rules with PCR≥1 in the training set (i.e., rules whose 326 

consequent is the occurrence of the accident) are selected (62 rules). 327 

 328 

[Insert here Table 3] 329 

 330 

[Insert here Table 4] 331 

 332 

In following, the root node is verified. This verification is only necessary for patterns obtained from 333 

DT2 to DT15 (DTs in which the root node was imposed). Rules for DT1 do not call for such verification 334 

because they do not come from a DT whose root node is imposed. The procedure compares the 335 

extended rule (𝐷𝑅) and the simple rule (𝐷𝑅−). Altogether, 62 rules were analyzed: 20 rules are DR 336 

(verify conditions 1 and 2 simultaneously), and all the others (42) are DR- (do not verify one 337 

condition).  338 

 339 

Finally, the rules were validated in the testing set and a total of 61 rules were obtained. Given that 340 

most of the rules are simplified (they are DR-) some appear more than once. After this process, only 17 341 

rules remain forming the global DR set. 342 

Table 4 shows the rules grouped in four sets to show their common patterns. In the first group (three 343 

rules), the rules only have one RSD-SE as a deficiency; in the second group (five rules), the rules are 344 
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formed by RSD-SE with some deficiencies and geometric or environmental variables; in the third 345 

group (six rules), the rules are formed by RSD-SE without deficiencies (RSD-SE=NO) and geometric 346 

or environmental variables; and in the fourth group (three rules), the rules are formed by RSD-SE 347 

(with or without deficiencies) and geometric or environmental variables.  348 

 349 

Table 4 shows the values of PCR and the probability of accident (in three years) in the training and 350 

testing set (for each rule). The average probability of accident in the network is 6.28%. 351 

 352 

Rules in the first group show a direct relationship between some signaling deficiencies and the 353 

occurrence of crashes. Rule 1 shows that the incomplete removal of road works markings (RSD-SE 354 

7=Y) presents a probability of accident between 20% (value in the training set) to 22% (values in the 355 

testing set). This translates as an increased probability of the order 220% to 254% (see value of PCR) 356 

with regard to the mean values of accident probability in the network analyzed (6.28%). 357 

 358 

Table 4 shows that RSD-SE7 is present in the rules entailing a greater probability of accident (rules 1, 359 

4, 5, 8 and 16). Rules 4 and 5, in which there are incomplete removal of road works markings, on 360 

roads with AADT less than or equal to 5000 veh/day, have similar values for probability of accident 361 

(between 18% and 23%). With the same values of AADT, if the terrain is flat or rolling, the probability 362 

of accident is between 21% and 25% (see Rule 8). Rule 16 reflects another pattern for roads with the 363 

RSD-SE7. Although it does not involve deficiencies with warning signs (RSD-SE3=N), the values of 364 

probability of traffic crashes are also high, varying between 20% and 25%. Some researches (Cafiso et 365 

al., 2007; Miller, 1992) have described the involvement of deficient road marking in crashes, showing 366 

that their improvement is likely to be cost-effective. For example, on roads with edge lines missing, a 367 

relative increase in injury accident risk of 8% could be assumed; and when the center line is missing 368 

the risk increases to 13% (Safety Audits of Existing Roads, 2003). Ellis and Pyeon (2006) indicated 369 

that pavement work markings not properly removed may confuse or distract drivers. Alteration of 370 

pavement color and/or texture, as well as incomplete removal of pavement markings, has been 371 
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identified as a particular problem for motorists; they can be mistaken for navigable lanes through 372 

construction work zones. Because motorists or drivers heavily rely on pavement markings for roadway 373 

guidance, it is imperative to remove old markings to reduce crashes owing to lane confusion (Cho et 374 

al., 2012). 375 

 376 

Rule 2 shows that lack of correspondence between vertical signs and road markings (RSD-SE6) 377 

presents a direct relationship with crashes. When this deficiency appears on the analyzed roads, the 378 

probability of accident reaches 14% to 21%. This means an increased probability that is 127% to 379 

235% greater than the mean values for accident probability. According to the results, several road 380 

safety problems identified with the lack of correspondence between vertical signs and road markings 381 

can be tied to accident risk. The study by Antov (2011) highlights problems stemming from missing, 382 

contradictory or difficult to read signs/marking, but further typical deficiencies are incomplete or 383 

misguiding signs/road markings, or an “overload” of information. 384 

 385 

Rule 3 shows a direct relationship between crashes and instances when the guide sign does not exist or 386 

it is in an incorrect position (RSD-SE4). In this case, the probability of accident is similar to Rule 2 387 

(between 15% and 21%). This stands as an increased probability ranging from 135% to 238% beyond 388 

the mean values. Some investigations reveal the importance of vertical signs on traffic crashes. Cafiso 389 

et al. (2007) evaluated two-lane rural highways and established that regulatory signs, such as speed 390 

limits, could affect road safety by conveying essential information on safe behavior. For missing or 391 

ineffective signs, the relative risk factor was assumed as equal to 20%. Croft and Schnerring (2009) 392 

likewise established that poorly located or incorrect signs could lead to a confusing and ambiguous 393 

situation, increasing crash risk. 394 

 395 

Rules 6 and 7 show the relationship between deficiencies in RSD-SE 2 and crashes on road with 396 

AADT higher than 5,000 veh/day, and with road width between 5 and 6.5 meters. Rule 7 shows that 397 

the probability of accident varies from 20% to 21%, meaning respective increased probabilities of the 398 
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order 215% to 237% over the mean values. The influence of regulatory signs on accident occurrence 399 

has been investigated in two-lane rural highways by some researchers. Cafiso et al. (2007) reported 400 

explanations of the relative increase in accident risk for some safety issues as vertical sign, 401 

determining that regulatory signs such as for speed limits could affect road safety by conveying 402 

essential information on safe behavior. 403 

 404 

Rule 6 the same pattern, adding deficiencies in road markings (not exist or were deleted - RSD-SE5). 405 

In this case, the probability of an accident in 3 years is around 20%. This would be an increased 406 

probability between 214% 217% greater than the average values for probability of accident in the 407 

network. Previous studies have shown that incorrect or poorly maintained pavement markings can lead 408 

to incorrect placement or maneuvers of vehicles, and increase the risk of crashes (Croft and 409 

Schnerring, 2009).  410 

 411 

In the third group, the rules are formed by RSD-SE without deficiencies and geometric or 412 

environmental variables. In Rule 14 the probability of accident is similar to the probability of accident 413 

of the network analyzed (6.28%). The values of probability in Rules 9, 11 and 12 range between 414 

6.49% and 14.89%. Only in two rules (Rules 10 and 13) the probabilities are greater, increasing to 415 

values of 17%-21%; these rules are identified on roads with high values of AADT (>5,000 veh/day) 416 

and roadway width between 5 and 6.5 meters. Such findings underline that two-lane rural highways 417 

with major traffic flow (AADT) entail an increased risk of accident. 418 

 419 

In the fourth group, the rules are formed by RSD-SE (with or without deficiencies) and geometric or 420 

environmental variables. As seen for Rules 15 and 17, when there are no deficiencies with the RSD-421 

SE7 (incomplete removal of road work markings) on roads with values of AADT between 1,000 to 422 

5,000 veh/day, even if other elements fail, the probability of accident is low, very similar to the 423 

probability of the network. 424 

 425 
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4. CONCLUSIONS 426 

This paper presents an analysis of deficiencies in signaling with regard to crashes on rural highways. 427 

In addition, some variables related to geometric and environmental road characteristic were used, and 428 

the Data Mining technique of Decision Trees was applied. In order to derive all the information 429 

possible from the database analyzed, different DT models were built, varying the root node, and from 430 

each of the models the DRs of interest were extracted (rules whose consequence is the occurrence of 431 

an accident). As a result, 62 rules were obtained, and 61 of them were validated. After elimination of 432 

the rules that were the same, a total of 26 rules made up the final set.  433 

 434 

In order to perform a safety analysis of the rules, they are grouped in four sets: rules directly relating 435 

crashes with signaling deficiencies; rules relating crashes with deficiencies in signaling and roadway 436 

characteristics; rules that do not involve deficient signaling or highway characteristics, but under 437 

certain geometric and/or environmental conditions bear a relation with crashes; and rules that present 438 

deficiencies in some elements, in others no, and have geometric and/or environmental variables 439 

present.  440 

 441 

In general, the element RSD-SE7 (incomplete removal of road works markings) appears in the rules 442 

with the greatest probability of accident in 3 years (Rules 4, 5, 8 and 16), producing in turn a greater 443 

probability of accident. RSD-SE7 appears with AADT less than or equal to 5,000 veh/day, which may 444 

indicate that the pavement markings are not properly re-established in this type of roadway. This result 445 

shows that the government agencies or local administration should verify that after construction is 446 

finished, the original conditions of a roadway must be re-established quickly and efficiently.  447 

Deficiencies in RSD-SE4 (sign does not exist or it is not correctly situated) are also associated with a 448 

greatly increased probability of accident in the network analyzed. This finding serves to accentuate the 449 

importance of maintaining signaling. Indeed, it is recommended that administrations make vigilance 450 

and follow up of roadway signs and signals a priority, ensuring that they are in optimal conditions.  451 
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