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Abstract

We present a new method for the analysis of electromagnetic scattering from homo-
geneous penetrable bodies. Our approach is based on a reformulation of the governing
Maxwell equations in terms of two uncoupled vector Helmholtz systems: one for the
electric field and one for the magnetic field. This permits the derivation of resonance-
free Fredholm equations of the second kind that are stable at all frequencies, insensitive
to the genus of the scatterers, and invertible for all passive materials including those
with negative permittivities or permeabilities. We refer to these as decoupled field
integral equations.

1 Introduction

A standard problem in electromagnetics concerns the solution of of the Maxwell equations
in an exterior domain, when an incoming wave is scattered by a collection of bounded
penetrable obstacles. There is a vast literature on integral equation methods for such
problems, with standard formulations for the piecewise constant case described, for ex-
ample, in the papers [10, 15, 16, 17, 20]. Boundary integral methods are natural in the
homogeneous (piecewise constant) setting, since they require only the discretization of the
inclusion boundaries rather than the domain, satisfy the Silver-Müller radiation condition
exactly, and can be coupled with suitable fast algorithms, such as the fast multipole method
(FMM).

Working in the frequency domain and assuming a time dependence of the form e−iωt,
Maxwell’s equations in a linear, isotropic material are given by

∇×Htot = −iωεL Etot, (1)

∇×Etot = iωµLHtot,
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where εL and µL are the local permittivity and permeability of the medium, respectively.
Here, Etot and Htot denote the total electric and magnetic fields which we express in the
form

Etot = Ein + E0, Htot = Hin + H0, (2)

in the exterior region and
Etot = E, Htot = H, (3)

within the inclusions. Here, {Ein,Hin} is a known incoming electromagnetic field.
For the sake of simplicity, we will assume that the penetrable obstacles are all made of

the same material and that they define a compactly supported open region D in R3 whose
boundary, denoted by ∂D, consists of a finite number of disjoint, closed surfaces belonging
to class C2. We also assume that the exterior region R3/D is connected. We will denote
by ε0, µ0 the material properties of the exterior domain and by ε, µ the material properties
of the inclusions.

At obstacle boundaries, the Maxwell equations (1) must satisfy the continuity condi-
tions [12, 19]:

n× (E0 −E) = −n×Ein

n× (H0 −H) = −n×Hin,
(4)

where n denotes the outward normal vector to the interface.

Definition 1. The boundary value problem defined by (1) with {εL, µL} = {ε, µ} inside
the inclusions and {εL, µL} = {ε0, µ0} in the exterior domain, together with the interface
conditions (4), will be referred to as the Maxwell transmission problem.

It is well-known that, under mild assumptions on the permittivity and permeability
[6, 17], the Maxwell transmission problem has a unique solution, so long as the scattered
field satisfied the Silver-Müller radiation condition:√

µ0
ε0

H0(x)× x
|x| −E0(x) = o

(
1
|x|

)
, |x| → ∞ . (5)

We will restrict our attention in this paper to the case ω ≥ 0 with ε0, µ0 > 0 and

=(ε) > 0 or ε ∈ R+

=(µ) > 0 or µ ∈ R+,
(6)

where R+ denotes the positive real numbers. For the sake of completeness, we provide
a simple proof of uniqueness for this parameter regime (Appendix A), which includes all
metamaterials wth non-zero dissipation.

The standard approach to the development of integral equation methods is based on
the classical vector and scalar potentials [19]: We let

A0(x) = µ0Sk0 [J0](x), A(x) = µSk[J ](x),
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where

Sk[J ](x) ≡
∫
∂D

gk(x− y)J(y) dsy , (7)

gk(x) = eik|x‖/‖x‖, k =
√
w2εµ, and k0 =

√
w2ε0µ0, Here, J ,J0 can be viewed as surface

electric currents. When the argument of the square root is complex, k is taken to lie in the
upper half-plane. We define the vector anti-potentials by

Ã0(x) = ε0Sk0 [K0](x), Ã(x) = εSk[K](x),

where K,K0 can be viewed as surface magnetic currents. The scalar potentials and an-
tipotentials are given by

φ0(x) =
1

iωε0µ0
∇ ·A0, φ(x) =

1

iωεµ
∇ ·A,

and

ψ0(x) =
1

iωε0µ0
∇ · Ã0, ψ(x) =

1

iωεµ
∇ · Ã.

From these, we may write

E0 = iωA0 −∇φ0 −
1

ε0
∇× Ã0,

H0 =
1

µ0
∇×A0 + iωÃ0 −∇ψ0

(8)

for x in the exterior, and

E = iωA−∇φ− 1

ε
∇× Ã,

H =
1

µ
∇×A + iωÃ−∇ψ

(9)

for x inside the inclusions.
The number of degrees of freedom in the representation is reduced by assuming that

the tangential vector fields J0,J ,K0,K satisfy

Js := ε0J0 = εJ Ks := µ0K0 = µK . (10)

Imposing the conditions (4) and using the relations (14) yields Müller’s integral equation
[17] for Js,Ks:

−n×Einc = −
(
µ0 + µ

2

)
Ks − (µ0∇× Sk0

− µ∇× Sk) [Ks] + iω (ε0µ0Sk0
− εµSk) [Js]

− 1

iω
(∇∇ · Sk0

−∇∇ · Sk) [Js]
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−n×Hinc =

(
ε0 + ε

2

)
Js + (ε0∇× Sk0 − ε∇× Sk) [Js] + iω (ε0µ0Sk0 − εµSk) [Ks]

− 1

iω
(∇∇ · Sk0 −∇∇ · Sk) [Ks]

In Müller’s original formulation, the unknowns are actually the tangential components
of E and H rather than fictitious currents, and the integral equation above is the dual of
the formulation in [17]. We refer the reader to [3, 4, 5, 6, 9, 18, 31] for further details.

It suffices, for our present purposes, to note that all of the operators appearing above
turn out to be compact and that Müller’s integral equation is a resonance-free Fredholm
equation of the second kind. It is uniquely solvable for the passive materials under con-
sideration here. Moreover, it can be shown that the integral equation is stable even in the
low-frequency regime. Unfortunately, the representation itself is subject to “low-frequency
breakdown”. That is, once the currents are known, the evalution of E or H from (8), (9)
is unstable as ω → 0, because of catastrophic cancellation in the scalar potentials.

Rather than writing the scalar potentials and antipotentials as above, however, we may
write

φ0(x) = Sk0 [ρ](x) φ(x) = Sk[ρ](x), (11)

and
ψ0(x) = Sk0 [ρM ](x), ψ(x) = Sk[ρM ](x), (12)

where

Sk[ρ](x) ≡
∫
∂D

gk(x− y) ρ(y) dsy , (13)

and
ρ = ∇S · J/(iω), ρM = ∇S ·K/(iω). (14)

Here, ∇S denotes the surface divergence operator.

Remark 1. The problem of low-frequency breakdown lies in the computation of ρ, ρM .
Since ill-conditioning occurs even for a fixed ω under mesh refinement, a more descriptive
term is, perhaps, dense-mesh breakdown [24], which we will use interchangeably.

One mechanism to overcome dense-mesh breakdown is to solve two auxiliary integral
equations for the scalar potentials [26], using the representation (8) and (9) and imposing
the two interface conditions

n · (ε0Etot
0 − εEtot) = 0,

∇ ·E0

k20
− ∇ ·E

k2
= 0.
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The first is a standard condition for dielectric interfaces and leads to the scalar equation

ε0
∂φ0
∂n
− ε∂φ

∂n
= f (15)

where

f = n ·Ein + iωn · (ε20µ0 · Sk0 [J0]− ε2µ · Sk[J ]) + n · ∇ × (εµSk[K]− ε0µ0Sk0 [K0])

The second interface condition follows from the fact that E and E0 are divergence-free,
with the particular linear combination chosen to yield the equation

φ0 − φ =
∇ · Sk[J ]−∇ · Sk0 [J0]

iω
. (16)

Similarly, one can derive the two scalar equations for ψ and ψ0:

µ0
∂ψ0

∂n
− µ∂ψ

∂n
= g (17)

where

g = n ·Hin + iωn · (µ20ε0 · Sk0 [K0]− µ2ε · Sk[K]) + n · ∇ × (εµSk[J ]− ε0µ0Sk0 [J0]),

and

ψ0 − ψ =
∇ · Sk[K]−∇ · Sk0 [K0]

iω
. (18)

Without entering into details, it is well-known that the interface problems (15),(16) and
(17),(18) are uniquely solvable without dense-mesh breakdown using a Fredholm equation
of the second kind [29, 21]. (Care must be taken in computing the right-hand sides for (16)
and (18). In particular, catastrophic cancellation can be avoided for small ω by computing
the difference asymptotically.)

Remark 2. A solver for the Maxwell transmission problem based on first solving the Müller
integral equation, followed by solving the systems (15),(16) and (17),(18) will be referred
to as a decoupled charge-current formulation. It yields stable solutions for real ε, µ [26],
but can have resonances for lossy materials.

It is also worth noting that alternative “charge-current” formulations have been devel-
oped [8, 22, 23, 32] that make use of electric and magnetic charge as additional, distinct
unknowns. Using the representation (8), (9) with A,A0, Ã, Ã0 defined in terms of the
unknowns J ,K and the relation (10), with φ, φ0, ψ, ψ0 defined in terms of ρ, ρM , one can
seek to enforce

n · (ε0E0 − εE) = −n · ε0Ein

n · (µ0H0 − µH) = −n · µ0Hin,

n× (E0 −E) = −n×Ein

n× (H0 −H) = −n×Hin.

(19)
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This avoids low-frequency breakdown and leads to a Fredholm equation of the second
kind. However, these methods are subject to spurious “near resonances.” The precise
location of these resonances depends on the specific charge-current scheme employed, the
material properties and the geometry, illustrated in Fig. 1 below. A “decoupled potential
formulation,” presented in [1], extends the method of [25] for perfect conductors to the
dielectric case. It, too, is subject to spurious resonances when the real parts of ε and µ are
not both positive, because of the existence of “transmission” eigenvalues [14].

In [7], an integral representation was developed using four scalar densities supported
on the obstacle boundaries. This “generalized Debye source” representation yields a
resonance-free Fredholm integral equations of the second kind, valid for all the material
properties of interest in the present paper. The topology of the domain, however, plays
a critical role and the method requires a basis for surface harmonic vector fields. Finally,
there is a substantial literature on “single source” integral equations, which involve only one
unknown tangential vector field (see, for example [10, 15, 30]). Unfortunately, the original
single source formulations typically do not lead to Fredholm equations, involve hyper-
singular operators, and/or are subject to low-frequency breakdown. Significant progress,
however, has been made in formulating equations that are immune from low-frequency
breakdown (see, for example, [2, 16, 24]). Unfortunately, none of these equations have
been shown to be resonance-free for the full range of passive materials which we consider
here.

In the present paper, we describe a new system of decoupled Fredholm integral equations
for the electric and magnetic fields that are resonance-free for all problems of interest,
insensitive to the genus of the scatterer, and immune from low-frequency breakdown.

2 Generalized transmission problems

Our approach to the Maxwell transmission problem is based on the analysis of two nonstan-
dard boundary value problems governed by the vector Helmholtz equation. More precisely,
we introduce the electric and magnetic transmission problems as follows:

Definition 2. By the vector electric transmission problem we mean the calculation
of a vector field

E ∈ C2(D) ∩ C(D) for x ∈ D;

E0 ∈ C2(R3 \D) ∩ C(R3/D) for x ∈ R3 \D,
with

∆E + k2E = 0, x ∈ D
∆E0 + k20E0 = 0, x ∈ R3/D

(20)

that satisfies the interface conditions

n×
(
E0 −E

)
= f (21)
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n×
(∇×E0

µ0
− ∇×E

µ

)
= g (22)

∇ ·E0 −∇ ·E = q (23)

n · (ε0E0 − εE) = p (24)

and the radiation condition

∇×E0(x)× x
|x| + x

|x|∇ ·E0(x)− ik0E0(x) = o
(

1
|x|

)
, |x| → ∞ , (25)

where f ∈ C0,α
t (Div, ∂D), g ∈ C0,α

t (∂D) and q, p ∈ C0,α(∂D).

Definition 3. By the vector magnetic transmission problem we mean the calculation
of a vector field

H ∈ C2(D) ∩ C(D) for x ∈ D;

H0 ∈ C2(R3 \D) ∩ C(R3/D) for x ∈ R3 \D,
with

∆H + k2H = 0, x ∈ D
∆H0 + k20H0 = 0, x ∈ R3/D

(26)

that satisfies the interface conditions

n× (H0 −H) = f ′ (27)

n×
(∇×H0

ε0
− ∇×H

ε

)
= g′ (28)

∇ ·H0 −∇ ·H = q′ (29)

n · (µ0H0 − µH) = p′ (30)

and the radiation condition

∇×H0(x)× x
|x| + x

|x|∇ ·H0(x)− ikH0(x) = o
(

1
|x|

)
, |x| → ∞ , (31)

where f ′ ∈ C0,α
t (Div, ∂D), g′ ∈ C0,α

t (∂D) and q′, p′ ∈ C0,α(∂D).

Theorem 1. The vector electric and magnetic transmission problems have unique solutions
for ω ≥ 0.

Proof. See Appendix C.
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Definition 4. The layer potentials in (7) and (13) are referred to as single layer potentials,
with vector or scalar densities, J and ρ, respectively. Letting x′ denote a point on ∂D,
they are continuous across the interface. Their normal derivatives, denoted by S′k, satisfy
the jump conditions [3, 4]:

lim
x→x′±

n(x′) · ∇Sk[J ](x) = ±1

2
J(x′) + S′k[J ](x′) (32)

lim
x→x′±

n(x′) · ∇Sk[ρ](x) = ±1

2
ρ(x′) + S′k[ρ](x′) (33)

where S′k[J ](x′) and S′k[ρ](x′) are defined in the principal value sense, limx→x′− denotes
the interior limit (x ∈ D) and limx→x′+ denotes the exterior limit (x ∈ R3/D).

The double layer potential is defined by

Dk[ρ](x) ≡
∫
∂D
∇gk(x− y) · n(y) ρ(y) dsy . (34)

It is well-known to satisfy the jump condition

lim
x→x′±

Dk[ρ](x) = ∓1

2
ρ(x′) +Dk[ρ](x′)

where Dk[ρ](x′) is defined in the principal value sense. Finally, we let Mk denote the
operator obtained by taking the limit:

lim
x→x′±

n(x′)×∇× Sk[J ](x) ≡ ∓J(x′) +Mk[J ](x′) , (35)

where Mk[J ](x′) is defined in the principal value sense.

Theorem 2. Let

E0 = µ0∇× Sk0 [a]− µ0Sk0 [nσ] + µ0ε0Sk0 [b] +∇Sk0 [ρ] x ∈ R3/D

E = µ∇× Sk[a]− µSk[nσ] + µεSk[b] +∇Sk[ρ] x ∈ D .
(36)

Imposing the conditions (21) - (24) yields the second kind Fredholm equation

µ0 + µ

2
a +

(
µ0Mk0 − µMk

)
[a]− n×

(
µ0Sk0 − µSk

)
[nσ]+

n×
(
µ0ε0Sk0

− µεSk

)
[b] + n×∇

(
Sk0
− Sk

)
[ρ] = f

µ0 + µ

2
σ +

(
µ0Dk0

− µDk

)
[σ] +∇ ·

(
µ0ε0Sk0

− µεSk

)
[b]

−ω2
(
µ0ε0Sk0 − µεSk

)
[ρ] = q

ε0 + ε

2
b + (ε0Mk0 − εMk)[b] + n×∇×∇×

(
Sk0 − Sk

)
[a]−

n×∇×
(
Sk0
− Sk

)
[nσ] = g

−ε0 + ε

2
ρ+ (ε0S

′
k0
− εS′

k)[ρ] + n · ∇ ×
(
ε0µ0Sk0 − εµSk

)
[a]−

n ·
(
ε0µ0Sk0 − εµSk

)
[nσ] + n ·

(
µ0ε

2
0Sk0 − µε2Sk

)
[b] = p .

(37)
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which is invertible for (f , p,g, q) in the function space

C0,α
t (Div, ∂D)× C0,α(∂D)× C0,α

t (∂D)× C0,α(∂D)

, so long as ε, µ satisfy the conditions (6). Given the solution to (37), the functions given
by (36) solve the vector electric transmission problem.

Proof. See Appendix D.

The analogous result follows trivially for the vector magnetic transmission problem.

Theorem 3. Let

H0 = ε0∇× Sk0(a)− ε0Sk0(nσ) + µ0ε0Sk0(b) +∇Sk0(ρ) x ∈ R3/D

H = ε∇× Sk(a)− εSk(nσ) + µεSk(b) +∇Sk(ρ) x ∈ D .
(38)

Imposing the conditions (27) - (30) yields a second kind Fredholm equation, identical to
(37) with {ε, µ} and {ε0, µ0} interchanged. Given the solution to this dual integral equation,
the functions given by (38) solve the vector magnetic transmission problem.

Theorem 4. Let Ein,Hin denote an incoming electromagnetic field, let E0,E denote the
solution of the vector electric transmission problem with right hand side

f = −n×Ein

g = −iωn×Hin

q = 0

p = −n · ε0Ein ,

(39)

and let H0,H denote the solution of the vector magnetic transmission problem with right
hand side

f ′ = −n×Hin

g′ = −iωn×Ein

q′ = 0

p′ = −n · µ0Hin .

(40)

Then, the fields E0,E,H0,H satisfy the Maxwell equations and solve the Maxwell trans-
mission problem.

Proof. The result follows from Theorem 1 and the fact that the desired scattered fields
satisfy the vector electric and magnetic transmission problems by inspection. The boundary
data f ,g, q, p and f ′,g′, q′, p′ satisfy the required regularity conditions assuming that the
incoming fields Ein and Hin are induced by exterior sources away from ∂D.
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Theorem 5. The solution of the vector electric and magnetic transmission problems satisfy
the following stability properties uniformly on the interval ω ∈ [0, ωmax].

‖E0‖α,R3\D ≤ K(∂D, kmax)
(
‖f‖α,∂D + ‖g‖α,∂D + ‖q‖α,∂D + ‖p‖α,∂D

)
(41)

‖H0‖α,R3\D ≤ K(∂D, kmax)
(
‖f‖α,∂D + ‖g‖α,∂D + ‖q‖α,∂D + ‖p‖α,∂D

)
(42)

For Maxwellian incoming fields, we have

‖E0‖α,R3\D ≤ K(∂D, kmax)
(
‖Ein‖α,∂D + ‖Hin‖α,∂D

)
(43)

‖H0‖α,R3\D ≤ K(∂D, kmax)
(
‖Ein‖α,∂D + ‖Hin‖α,∂D

)
. (44)

Proof. See Appendix E.

As a consequence of the preceding theorems, one can solve the Maxwell transmission
problem replacing it with the vector electric and magnetic transmission problems. This
permits evaluation of the fields all the way to ω = 0 without low frequency breakdown and
without regard to the genus of the surface.

3 High Frequency Scaling

While the representation (36) is sufficient for proving existence and uniqueness, it is not
well scaled at high frequencies. For the sake of simplicity, we will asume that the scatterer
has dimensions on the order of unity, so that ω itself is a measure of size in terms of
wavelength. Following Kress [13] and our earlier work [28], when ω > 1, we suggest that
the representation for the electromagnetic field be modified as follows:

E0 = µ0∇× Sk0(a)− ωµ0Sk0(nσ) + ωµ0ε0Sk0(b) +∇Sk0(ρ) x ∈ R3/D

E = µ∇× Sk(a)− ωµSk(nσ) + ωµεSk(b) +∇Sk(ρ) x ∈ D (45)

We also rescale the jump conditions (21)-(24) as follows:

n×
(
E0 −E

)
= f = −n×Einc

1

ω
n×

(∇×E0

µ0
− ∇×E

µ

)
=

1

ω
g = − 1

ω
n× ∇×Einc

µ0

1

ω

(
∇ ·E0 −∇ ·E = q

)
= − 1

ω
∇ ·Einc

n ·
(
ε0E0 − εE

)
= p = −n · ε0Einc
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This results in the following (rescaled) system of equations:

(Bs + Ks)x = ys, (46)

where

Bs :=


I1 ωB12 ωB13 0
0 I2 B23 0
0 0 I3 0
B41 0 0 I4

 (47)

Ks :=


K11 0 0 K14

0 K22 0 K24
ω

K31
ω K32 K33 0
0 ωK42 ωK43 K44

 (48)

x :=


a
σ
b
ρ

 ; ys :=


f
q
ω
g
ω
p

 (49)

4 Condition number analysis

To illustrate the behavior of the various methods discussed above, we implemented all of
the integral operators for a spherical scatterer, expanding each surface current in vector
spherical harmonics and each charge density in scalar spherical harmonics, as in [28]. From
this it is straightforward to compute the condition number of the various linear systems of
interest for any ε and µ, where we assume the exterior permeability and permittivity are
normalized to ε0 = 1, µ0 = 1.

In our first experiments, we plot the condition number of our decoupled field integral
equation (DFIE), the decoupled charge-current formulation (based on the Müller integral
equation), and a standard charge-current formulation as a function of angular frequency ω
(Fig. 1). The precise charge-current formulation that we use is obtained from the standard
representation for the fields in terms of potentials and antipotentials (8-9), but imposing
the continuity condition (14) in the form

∇ · Sk0(J)− iωSk0(ρ) = 0.

With

E0 = −∇× Sk0(K) + iωµ0Sk0(J)−∇Sk0(ρ),

this is accomplished in a weak sense by simply replacing the normal component of E0 with

11



n ·E0 = −n · ∇ × Sk0(K) + iωµ0n · Sk0(J)− n · ∇Sk0(ρ) + η (∇ · Sk0(J)− iωSk0(ρ)) ,

where η is an arbitrary parameter that defines a family of numerical methods.
Even for a fixed geometry, the space of possible integral equations is high-dimensional,

depending on ω, ε, and µ (and η for the charge-current formulation). Thus, Figs. 1 and 2
only shows a sample of the possible behaviors of the various methods. In each plot, we fix
ε and µ as indicated and scan the frequency ω in the range [0, 10].

In Fig. 1, the left column corresponds to settng ε = −2 + i, µ = −1 + i, with η = 0, 1, i
in the three rows, respectively. Near resonances only appear to occur for η = 0. However,
note in Fig. 2 (left), that for ε = −1 + i, µ = 1, it is the charge-current formulation with
η = 1 that is badly behaved (left). For the right-hand side of Fig. 1, we searched for values
of ε, µ where the decoupled charge-current blows up. For ε = 1 + i, µ = 1, the charge-
current formulation with η = 0 appears to behave well (Fig. 2, center). Note, finally,
that in the absence of dissipation (when ε and µ are real), the decoupled charge-current
formulation appears to be the best behaved (Fig. 2, right).
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Figure 1: Condition number of the (scaled) DFIE, the charge-current formulation with
η = 0, 1, i, and the decoupled charge-current (Müller) formulation for a homogeneous
dielectric sphere of unit radius as a function of frequency ω for ε = −2 + i, µ = −1 + i and
for ε = −0.3249 + 0.6898i, µ = 1.589 + 0.842i.
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Figure 2: Condition number of the (scaled) DFIE, the charge-current formulation with
η = 0, and the decoupled charge-current (Müller) formulation for a homogeneous dielectric
sphere of unit radius as a function of frequency ω for various material parameters.

We plot the locations of spurious resonances of the decoupled charge-current formula-
tion in Fig. 3. For each point in the plane defined by the real parts of ε and µ, we use the
scheme described in [14] to find positive imaginary components for ε and µ that lead to
blow-up of the integral equation in the range ω ∈ [0, 10]. The material is lossy (dissipative)
by construction, so these resonances are non-physical.

Figure 3: Spurious resonances in the decoupled charge-current formulation.
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5 Further numerical validation

While the primary purpose of this paper is to present the derivation and analysis of the
decoupled field integral equation, we illustrate its performance here using a high-order
locally corrected Nyström discretization [27]. Without entering into details, this method
uses nnodes = 7 points per curved triangular element for 5th order accuracy, nnodes = 25
points per curved triangular element for 10th order accuracy, and nnodes = 45 nodes per
curved triangular element for 14th order accuracy. The total number of unknowns is
N = 6Ntri nnodes, as there are two tangential vector fields and two scalar unknowns.
corresponding to six degrees of freedom, at each point.

For our first example, we consider the obstacle to be a single spheroid centered at the
origin with semi-principal axes of length a = 1, b = 2, and c = 3, with ε = 1.5 and µ = 1,
ε0 = µ0 = 1 and ω = 1. The incoming wave is assumed to be a plane wave propagating in
the z-direction. In Fig. 4 we plot the estimated relative error for the interior and exterior
regions, using a reference solution with 200 triangles and 45 nodes per triangle.
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Figure 4: Estimated error for an ellipsoid with semi-principal axes of length a = 1, b =
2, c = 3 and ε = 1.5, µ = 1. The

For our second example, we consider the same ellipsoid with ω = 1 but with ε = −3 + i
and µ = −2 + .5i, a so-called double negative index material. Fig. 5 shows the estimated
relative error for the interior and exterior regions.
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Figure 5: Estimated error for an ellipsoid with semi-principal axes of length a = 1, b =
2, c = 3 and ε = −3 + i, µ = −2 + .5i.

Unlike the naive implementation of Müller’s method (or the PMCHW scheme [20]),
there is clearly no “dense-mesh breakdown” in evaluating the electromagnetic field, cconsis-
tent with the theory.

To further demonstrate the stable behavior of our scheme at low frequencies, we consider
ithe obstacle to be a sphere of radius R = 1 with ε = 1.3, µ = 1. Fig. 6 shows the error, with
the exact solution computed via the the Mie solution. There is clearly no low frequency
breakdown.

16



10−50 10−40 10−30 10−20 10−10 100

10−8

10−6

10−4

ω (rad)

Er
ro

r

 

 36 Triangles 24 Nodes/triangle
96 Triangles 45 Nodes/triangle

36 Triangles, 25 nodes/triangle
96 Triangles, 45 nodes/triangle

!

Figure 6: Estimated error for a sphere of radius R = 1 with ε = 1.3, µ = 1.

Our final example is a superellipsoid: x8 +y8 +z8 ≤ 1 with ε = 1.3, µ = 1, and ω = 0.1.
Fig. 7 shows the estimated relative error for the interior and exterior regions. The error in
the exterior region is smaller since it is measured at a distance R = 10, where the integrals
involve smoother integrands. Notice, again, the absence of dense-mesh breakdown.
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Figure 7: Estimated error for a superellipsoid x8 + y8 + z8 ≤ 1 with ε = 1.3, µ = 1.

6 Conclusions

We have presented a new method for simulating electromagnetic scattering from homoge-
neous penetrable bodies, based on reformulating the Maxwell equations in terms of two
uncoupled vector Helmholtz systems. one for the electric feld and one for the magnetic
field. We have shown that these partial differential equations have unique solutions and
that those solutions correspond to the desired electromagnetic field, Furthermore, we have
shown that the vector Helmholtz equations can be recast as boundary integral equations
which are well-conditioned and resonance-free for all lossy materials, including doubly neg-
ative materials, where <(ε) < 0,<(µ) < 0. We refer to these as decoupled field integral
equations. They are insensitive to the genus of the scatterers, and immune from dense-
mesh (low frequency) breakdown.

Previously developed charge-current formulations avoid dense-mesh breakdown but can
be subject to spurious resonances and can have erratic behavior, as seen in our numerical
experiments above. Our approach is based on Fredholm integral equations of the second
kind, equipped with relatively straightforward proofs of existence and uniqueness based on
standard energy estimates and the Rellich Lemma.

The extension of our method to problems involving both perfect conductors and di-
electrics is underway, as is its implementation using suitable fast algorithms. It will be
interesting to compare its performance with the generalized Debye method - the only other
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approach which has been proven to lead to well-posed integral equations for all passive
materials [7]. Results from these developments will be reported at a later date.
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A Uniqueness for the Maxwell transmission problem

Theorem 6. The Maxwell transmission problem has a unique solution for any permittivity
and permeability satisfying conditions (6) for ω > 0.

Proof. Suppose that E,H,E0,H0 denotes a solution to the Maxwell transmission problem
with Helmholtz parameters k2 = ω2εµ, k20 = ω2ε0µ0, and homogeneous boundary data, so
that

n×
(
E0 −E

)
= 0

n×
(∇×E0

µ0
− ∇×E

µ

)
= 0.

(50)

Due to the regularity properties of the fields at the boundary, we may apply the Rellich
lemma [3] which states that uniqueness holds if =E ≥ 0 where

Iv = k0

∫
∂D

(
n×E0 · ∇ ×E0

)
ds (51)

and =E denotes its imaginary part. Using the jump conditions and Green’s identity [3] we
obtain:

Iv = k0

∫
∂D

(
n×E0 · ∇ ×E0

)
ds = k0

(µ0
µ

)∫
∂D

(
n×E · ∇ ×E

)
ds =

= k0

(µ0
µ

)∫
D
|∇ ×E|2 − k2|E|2dv =

1

µ

(
k0µ0

∫
D
|∇ ×E|2dv

)
+ =

− ε
(
k0ω

2µ0

∫
D
|E|2dv

)
=

1

µ
α− εβ .

(52)

From (6), we find that α and β are real, non-negative numbers and =(Iv) ≥ 0. Thus,
E0 = 0 ∀x ∈ R3/D. Since H0 = ∇×E0

iωµ0
, we also have that H0 = 0 ∀x ∈ R3/D. From the

jump conditions we get n × E = n ×H = 0, therefore, using the representation theorem
(see [3]) we get that E = 0,H = 0, ∀x ∈ D.
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We will have occasion to consider the dual case, where ε, µ > 0 and ε0, µ0 satisfy (6) for
which we now show that we the transmission problem also has a unique solution. First, if
=(k0) = 0, the result above is sufficient. Thus, we may assume that =(k0 > 0). Let BR be
a ball with radius R that contains the obstacle D. Applying Green’s identity we obtain

1

µ0

∫
∂BR

(
n×E0 · ∇ ×E0

)
ds =

1

µ0

∫
BR/D

|∇ ×E0|2 − k20|E0|2dv+

+
1

µ

∫
D
|∇ ×E|2 − k2|E|2dv.

(53)

Taking the limit as R→∞, the left hand side tends to zero due to the radiation condition
and the fact that =(k0 > 0) so that the outer material is lossy. Thus,

0 =
1

µ0

∫
R3/D

|∇ ×E0|2 − k20|E0|2dv +
1

µ

∫
D
|∇ ×E|2 − k2|E|2dv. (54)

Taking the imaginary part, we get

0 ==
( 1

µ0

∫
R3/D

|∇ ×E0|2 − k20|E0|2dv
)

=

==
( 1

µ0

)∫
R3/D

|∇ ×E0|2dv −=(ε0)ω
2

∫
R3/D

|E0|2dv.
(55)

Recall now that µ0 and ε0 cannot both be real. Thus, if =(µ0) > 0, then ∇ × E0 = 0.
If =(ε0) > 0, then E0 = 0. In either case, we get H0 = E0 = 0 ∀x ∈ R3/D, and
E = 0,H = 0, ∀x ∈ D, as desired.

Remark 3. At zero frequency, the Maxwell transmission problem no longer has a unique
solution, unless additional constraints are imposed on the normal data. Our formulation
in terms of the vector electric and magnetic transmission problems is unique even at zero
frequency and yields the (unique) limit of the Maxwell transmission problem as ω → 0+.

B The scalar transmission problems

Definition 5. By the scalar electric transmission problem we mean the calculation
of a scalar field

u =

{
ui ∈ C2(D) ∩ C(D) if x ∈ D;

u0 ∈ C2(R3 \D) ∩ C(R3/D) if x ∈ R3 \D,

with
∆ui + k2ui = 0, x ∈ D
∆u0 + k20u0 = 0, x ∈ R3/D

(56)
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that satisfies the interface conditions

u0 − ui = q (57)

1

µ0

∂u0
∂n
− 1

µ

∂ui
∂n

= p (58)

and the Sommerfeld radiation condition

x
|x| · ∇u0(x)− ik0u0(x) = o

(
1
|x|

)
, |x| → ∞ , (59)

where p, q ∈ C0,α(∂D). Since we will have occasion to consider the scalar transmission
problem satisfied by u = ∇ · E, and our smoothness assumptions on E don’t guarantee
differentiability at the boundary, we will sometimes replace the condition (58) wth its weak
counterpart:

lim
h→0,h>0

∫
∂D

(
1

µ0

∂u0
∂n

(x + hn)− 1

µ

∂ui
∂n

(x− hn)− p(x)

)
w(x)ds = 0 (60)

for all w(x) ∈ C1,α(∂D).

Definition 6. By the scalar magnetic transmission problem we mean the calculation
of a scalar field

v =

{
vi ∈ C2(D) ∩ C(D) if x ∈ D;

v0 ∈ C2(R3 \D) ∩ C(R3/D) if x ∈ R3 \D,

with
∆vi + k2vi = 0, x ∈ D
∆v0 + k20v0 = 0, x ∈ R3/D

(61)

that satisfies the interface conditions

v0 − ϕ = q′ (62)

1

ε0

∂v0
∂n
− 1

ε

∂vi
∂n

= p′ (63)

and the Sommerfeld radiation condition (59). Since we will have occasion to consider the
scalar transmission problem satisfied by v = ∇ ·H, and our smoothness assumptions on H
don’t guarantee differentiability at the boundary, we will sometimes replace the condition
(63) wth its weak counterpart, as in (60).

Lemma 1. The scalar electric and magnetic transmission problems have unique solutions
for permeabilities and permittivities satisfying (6) for ω ≥ 0.

21



Proof. We restrict our attention to the electric transmission problem, since the proof
for magnetic case is analogous. Thus, Suppose that ψ,ψ0 are a solution of the homo-
geneous scalar electric transmission problem (that is, p, q = 0). From Theorem 3.3 in
[11], we find that the homogeneous solution satisfies the following regularity condition:
ψ0 ∈ C2(R3/D) ∩ C1,α(R3/D), ψ ∈ C2(D) ∩ C1,α(D).

First, let us assume that ω > 0, ε0, µ0 > 0 and ε, µ satisfy the material properties given
by (6). In order to apply the Rellich lemma we consider the quantity

E = k0

∫
∂D

ψ0
∂ψ0

∂n
ds = k0

(µ0
µ

)∫
∂D

ψ
∂ψ

∂n
ds = k0

(µ0
µ

)∫
D
|∇ψ|2 − k2|ψ|2dv =

=
1

µ

(
k0µ0

∫
D
|∇ψ|2dv

)
− ε
(
ω2k0µ0

∫
D
|ψ|2dv

)
=

1

µ
α− εβ,

(64)

where α and β are real, non-negative numbers. Therefore, =(E) ≥ 0 and ψ0 = 0 ∀x ∈
R3/D. From the jump conditions, we get ψ|∂D = ∂ψ

∂n = 0. Therefore, from the representa-
tion theorem, we have that ψ = 0 ∀x ∈ D.

Let us now consider the dual problem, where ε, µ > 0 and ε0, µ0 satisfy (6). If =(k0) = 0,
then we are in the situation above. Thus, we can assume that =(k0 > 0). Let BR be a ball
of radius R that contains the obstacle D. Applying Green’s identity we have

1

µ0

∫
∂BR

ψ0
∂ψ

∂n
ds =

1

µ0

∫
BR/D

|∇ψ0|2 − k20|ψ0|2dv +
1

µ

∫
D
|∇ψ|2 − k2|ψ|2dv. (65)

Taking the limit R → ∞, the left-hand side tends to zero due to the radiation condition
and the fact that the outer region is lossy. Thus,

0 =
1

µ0

∫
R3/D

|∇ψ0|2 − k20|ψ0|2dv +
1

µ

∫
D
|∇ψ|2 − k2|ψ|2dv. (66)

Taking the imaginary part, we get

0 ==
( 1

µ0

∫
R3/D

|∇ψ0|2 − k20|ψ0|2dv
)

= =
( 1

µ0

)∫
R3/D

|∇ψ0|2dv −=(ε0)ω
2

∫
R3/D

|ψ0|2dv.
(67)

Now, µ0 and ε0 cannot both be real. If =(µ0) > 0, then ∇ψ0 = 0. If =(ε0) > 0, then
ψ0 = 0. In either case, we get ψ0 = 0 ∀x ∈ R3/D, and ψ = 0 ∀x ∈ D.

The proof for the static case ω = 0 is standard [3].

Lemma 2. Let E,E0 be a solution of the homogeneous vector electric transmission problem.
Then ψ = ∇ ·E, ψ0 = ∇ ·E0 satisfy the homogeneous scalar electric transmission problem.

Proof. Let E0,E be a solution of the homogeneous vector transmission problem. Clearly,
the functions ψ0 = ∇ ·E0, ψ = ∇ ·E satisfy the scalar Helmholtz equations ∆ψ0 + k20ψ0 =
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0,∆ψ + k2ψ = 0 in the corresponding regions, as well as the regularity conditions ψ0 ∈
C2(R3/D) ∩ C(R3/D), ψ ∈ C2(D) ∩ C(D). From (23) we have

ψ0 − ψ = 0. (68)

Let us now assume that n ×∇ × E0 and n ×∇ × E are sufficiently smooth and that
we can take the surface divergence. Then, from (22), (24) and a little algebra, it is easy to
check that

1

µ0

∂ψ0

∂n
− 1

µ

∂ψ

∂n
= 0. (69)

If n×∇×E0 and n×∇×E are merely continuous, let us define the following quantity:

I1 = lim
h→0+

∫
∂D

n ·
(∇×∇×E0

µ0
(x + hn)− ∇×∇×E

µ0
(x− hn)

)
w(x)ds , (70)

where limh→0+ implies taking the limit with h > 0. Using the interface condition (24) it is
easy to show that

I1 = lim
h→0+

∫
∂D

n ·
(∇∇ ·E0

µ0
(x + hn)− ∇∇ ·E

µ0
(x− hn)

)
w(x)ds =

= lim
h→0+

∫
∂D

( 1

µ0

∂ψ0

∂n
(x + hn)− 1

µ

∂ψ

∂n
(x− hn)

)
w(x)ds.

(71)

On the other hand, integration by parts yields

I1 = lim
h→0+

∫
∂D

n ·
(∇×∇×E0

µ0
(x + hn)− ∇×∇×E

µ0
(x− hn)

)
w(x)ds =

= lim
h→0+

∫
∂D
−∇s ·

(n×∇×E0

µ0
(x + hn)− n×∇×E

µ0
(x− hn)

)
w(x)ds =

= lim
h→0+

∫
∂D

(n×∇×E0

µ0
(x + hn)− n×∇×E

µ0
(x− hn)

)
· ∇w(x)ds = 0,

(72)

where ∇s · J is the surface divergence of the tangential vector field J , and we have used
(22) in the last step. Note that the reason we require this weak formulation is that, in
general, we cannot interchange the limit h→ 0 with the surface divergence.

Lemma 3. Let H,H0 be a solution of the homogeneous vector magnetic transmission
problem. Then ϕ = ∇·H, ϕ0 = ∇·H0 satisfy the homogeneous scalar magnetic transmission
problem.

Proof. The proof is analogous to that of Lemma 2.

We are now in a position to prove the desired uniqueness result, namely Theorem 1.
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C Proof of Theorem 1

Theorem: The vector electric and magnetic transmission problems have unique solutions
for ω ≥ 0.

Proof. Let us assume that ω > 0 and that E0,E are a solution of the homogeneous vector
electric transmission problem. Then the functions ψ0 = ∇ · E0, ψ = ∇ · E satisfy the
homogeneous scalar electric transmission problem, and ψ0 = ψ = 0 from Lemma 1.

Thus, E0 and E, together with H0 := ∇×E0
iωµ0

,H := ∇×E
iωµ , constitute an electromagnetic

field that satisfies the usual homogeneous interface conditions (continuity fn the tangential
electric and magnetic fields). From the uniqueness theorem 6, we may conclude that
E0 = 0,∀x ∈ R3/D and E = 0,∀x ∈ D.

For the static case, ω = 0, the theorem is a consequence of the fact that the operators
D0, S

′
0 and M0 have a spectrum contained in the interval [−1

2 ,
1
2 ] ([3], Chapter 5). Due to

the regularity properties of the solution at the boundary, in particular the fact that ∇ ·
E0,∇×E0 ∈ C(R3/D) and ∇·E,∇×E ∈ C(D), we can apply the following representation
formula for Laplace vector fields ([3], Theorems 4.11, 4.13):

∇× S0[n×E]− S0[n(∇ ·E)] + S0[n×∇×E]−∇S0[n ·E] = −E x ∈ D
∇× S0[n×E0]− S0[n(∇ ·E0)] + S0[n×∇×E0]−∇S0[n ·E0] = E0 x ∈ R3/D .

(73)
Taking the curl, we obtain

∇×∇× S0[n×E]−∇× S0[n(∇ ·E)] +∇× S0[n×∇×E] = −∇×E x ∈ D
∇×∇× S0[n×E0]−∇× S0[n(∇ ·E0)] +∇× S0[n×∇×E0] = ∇×E0 x ∈ R3/D .

(74)
Substracting the tangential components of ∇ × E from those of ∇ × E0, and using the
jump conditions (21), (22) and (23), we obtain

− f

2

(
1 +

µ

µ0

)
+M0

[
f
(

1− µ

µ0

)]
= 0, (75)

where f = n×∇×E0. Thus,

− f

2

(µ0 + µ

µ0 − µ
)

+M0(f) = 0. (76)

If f 6= 0, then
(
µ0+µ
µ0−µ

)
must be a real number, say λ, between −1 and 1 and

(µ0 + µ

µ0 − µ
)

= λ⇒ µ = µ0

(λ− 1

λ+ 1

)
. (77)
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As µ0 > 0, we must have µ ≤ 0, a contradiction. Thus, f = n×∇×E0 = 0. By the jump
condition (22) and the fact that boundary data is homogeneous, we have n×∇× E = 0.
The representation formulas (73) are now simplified, taking the form

∇× S0[n×E]− S0[n(∇ ·E)]−∇S0[n ·E] = −E x ∈ D
∇× S0[n×E0]− S0[n(∇ ·E0)]−∇S0[n ·E0] = E0 x ∈ R3/D .

(78)

Taking the divergence, we have

D0[∇ ·E] = −∇ ·E x ∈ D
D0[∇ ·E0] = ∇ ·E0 x ∈ R3/D .

(79)

Substracting the limiting values from the corresponding sides we obtain

−∇ ·E0 +∇ ·E
2

+D0[∇ ·E0 −∇ ·E] = 0 x ∈ ∂D. (80)

Using the jump condition (23), we have that ∇ · E0 = ∇ · E = 0 ∀x ∈ ∂D. Thus, the
representation formulas (73) simplify even further to

∇× S0[n×E]−∇S0[n ·E] = −E x ∈ D
∇× S0[n×E0]−∇S0[n ·E0] = E0 x ∈ R3/D .

(81)

Multiplying the first equation by ε and the second by ε0, substracting the tangential com-
ponents and using the jump condition (24), we obtain

− g
(ε0 + ε

2

)
+M0[g(ε0 − ε)] = 0, (82)

where g = n× E0. By the same contradiction argument as above, we find that g = 0, so
that n×E0 = 0,n×E = 0. Thus, the representation formula (73) is simplified again:

−∇S0[n ·E] = −E x ∈ D
−∇S0[n ·E0] = E0 x ∈ R3/D.

(83)

Substracting the normal components, we have

− p

2

(
1 +

ε0
ε

)
− S′0

[
p
(

1− ε0
ε

)]
= 0, (84)

where p = n ·E0. Thus,

− p

2

(ε0 + ε

ε0 − ε
)

+ S′0[p] = 0. (85)

From the spectral properties of S′, a simple contradiction argument shows that n · E0 =
n · E = 0. Finally, from the representation formula (73), we have E = 0 ∀x ∈ D and
E0 = 0 ∀x ∈ R3/D.

The proof for the magnetic vector transmission problem is essentially the same.
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D Existence of solutions to the vector transmission prob-
lems

Theorem 7. The vector electric transmission problem has a solution for any ω ≥ 0.

Proof. Let us consider the representation for the solution E0,E given by (36) and the
corresponding integral equation (37), obtained by imposing the interface conditions (21) -
(24). We examine this Fredholm equation on the product space C0,α

t (Div, ∂D)×C0,α(∂D)×
C0,α
t (∂D)× C0,α(∂D), using the norm

‖(a, σ,b, ρ)‖ ≡ max
(
‖a‖α,∂D + ‖∇s · a‖α,∂D, ‖σ‖α,∂D, ‖b‖α,∂D, ‖ρ‖α,∂D

)
,

following the approach of [4]. It will be convenient to rewrite (37) in the form

(B + K)x = y (86)

where

B ≡


I1 B12 B13 0
0 I2 B23 0
0 0 I3 0
B41 0 0 I4

 , K ≡


K11 0 0 K14

0 K22 0 K24

K31 K32 K33 0
0 K42 K43 K44

 , (87)

x ≡


a
σ
b
ρ

 , y ≡


f
q
g
p

 . (88)

Here,

B12 = −n×
(
µ0Sk0 − µSk

)
(nσ), B13 = n×

(
µ0ε0Sk0 − µεSk

)
(b)

B23 = ∇ ·
(
µ0ε0Sk0 − µεSk

)
(b), B41 = n · ∇ ×

(
ε0µ0Sk0 − εµSk

)
(a)

K11 =
(
µ0Mk0 − µMk

)
(a), K14 = n×∇

(
Sk0 − Sk

)
(ρ)

K22 =
(
µ0Dk0 − µDk

)
(σ), K24 = −ω2

(
µ0ε0Sk0 − µεSk

)
(ρ)

K31 = n×∇×∇×
(
Sk0 − Sk

)
(a), K32 = −n×∇×

(
Sk0 − Sk

)
(nσ)

K33 =
(
ε0Mk0 − εMk

)
(b), K42 = −n ·

(
ε0µ0Sk0 − εµSk

)
(nσ)

K43 = n ·
(
µ0ε

2
0Sk0 − µε2Sk

)
(b), K44 =

(
ε0S
′
k0
− εS′k

)
(ρ)

(89)

with

I1(a) =
µ0 + µ

2
a, I2(σ) =

µ0 + µ

2
σ, I3(b) =

ε0 + ε

2
b, I4(ρ) = −ε0 + ε

2
ρ .

Note that the operators I1, I2, I3, I4 are diagonal and invertible from (6). We will denote
their inverses by I1, I2, I3, I4. Note also that the operator K is compact and that B is
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invertible with

B−1 =


I1 −I1I2B12 I1I2I3(B12B23 −B13I2) 0
0 I2 −I2I3B23 0
0 0 I3 0

−I1I4B41 I1I2I4B12B14 I1I2I3I4(B12B23B41 −B13B41I2) I4

 . (90)

Thus, the Fredholm alternative can be applied and it remains only to show that, in (86),
y = 0 implies x = 0.

For this, we begin by observing that the corresponding fields given by (36) satisfy
the homogeneous vector electric transmission problem. By Theorem (1), they must be
E0 = E = 0. We now define the following auxiliary fields:

Ẽ0 = − 1

µ0

(
µ0∇× Sk0(a)− µ0Sk0(nσ) + µ0ε0Sk0(b) +∇Sk0(ρ)

)
x ∈ D

Ẽ =
1

µ

(
µ∇× Sk(a)− µSk(nσ) + µεSk(b) +∇Sk(ρ)

)
x ∈ R3/D.

(91)

Note that Ẽ0 is defined in the interior, using the exterior material parameters, and that Ẽ
is defined in the exterior, using the interior material parameters. From the jump conditions
for layer potentials (32), (33), (34), (35), we have

n×
(E0

µ0
+ Ẽ0

)
= a

n×
(∇×E0

µ0
+∇× Ẽ0

)
= ε0b

n ·
(E0

µ0
+ Ẽ0

)
= − ρ

µ0
∇ ·E0

µ0
+∇ · Ẽ0 = σ,

(92)

and

n×
(
Ẽ− E

µ

)
= a

n×
(
∇× Ẽ− ∇×E

µ

)
= εb

n ·
(
Ẽ− E

µ

)
= −ρ

µ

∇ · Ẽ− ∇ ·E
µ

= σ.

(93)

These, together with the fact that E0 = E = 0, shows that the fields Ẽ0, Ẽ satisfy the
jump conditions

n×
(
Ẽ0 − Ẽ

)
= 0 (94)

27



n×
(∇× Ẽ0

ε0
− ∇× Ẽ

ε

)
= 0 (95)

n ·
(
µ0Ẽ0 − µẼ

)
= 0 (96)

∇ · Ẽ0 −∇ · Ẽ = 0. (97)

By Theorem 1, for the vector magnetic transmission problem (with material properties

swapped), we have that Ẽ0 = Ẽ = 0. Finally, from the jump conditions above, we may
conclude that a = b = 0, σ = ρ = 0.

Theorem 8. The vector magnetic transmission problem has a solution for any ω ≥ 0.

Proof. The proof is analogous to that of Theorem 7.

E Proof of Theorem 5

Proof. It is easy to see that the operators B and K in 87 are bounded and compact in the
function space C0,α

t (∂D)×C0,α(∂D)×C0,α
t (∂D)×C0,α(∂D) with the norm ‖(a, σ,b, ρ)‖ :=

max
(
‖a‖α,∂D, ‖σ‖α,∂D, ‖b‖α,∂D, ‖ρ‖α,∂D

)
. As C0,α

t (Div, ∂D) is dense in C0,α
t (∂D), the

operator B + K has the same nullspace as in the space analyzed in the proof of Theorem
7 in Appendix D. Thus, it is uniquely solvable. Its inverse operator exists and is bounded
as a map from C0,α

t (∂D) × C0,α(∂D) × C0,α
t (∂D) × C0,α(∂D) to C0,α

t (∂D) × C0,α(∂D) ×
C0,α
t (∂D)× C0,α(∂D). Due to the collective compactness of the operators, the continuity

of the inverse is uniform in [0, ωmax]. This, together with the regularity properties of the
operators in (36) [3] implies the desired estimates (41), (42), (43), (44).
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