Document downloaded from:

http://hdl.handle.net/10251/120602

This paper must be cited as:

Da Silva, SW.; Ortega Navarro, EM.; Rodrigues, M.; Bernardes, A.; Pérez-Herranz, V. (2018). The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere. 210:615-623. https://doi.org/10.1016/j.chemosphere.2018.07.057

The final publication is available at http://doi.org/10.1016/j.chemosphere.2018.07.057

Copyright Elsevier

Additional Information

Accepted Manuscript

The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin

Salatiel W. da Silva, Emma M. Ortega, Marco A.S. Rodrigues, Andréa M. Bernardes, Valentín Pérez-Herranz

PII: S0045-6535(18)31315-8

DOI: 10.1016/j.chemosphere.2018.07.057

Reference: CHEM 21772

To appear in: ECSN

Received Date: 24 April 2018

Revised Date: 10 July 2018

Accepted Date: 11 July 2018

Please cite this article as: da Silva, S.W., Ortega, E.M., Rodrigues, M.A.S., Bernardes, André.M., Pérez-Herranz, Valentí., The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin, *Chemosphere* (2018), doi: 10.1016/j.chemosphere.2018.07.057.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Chemosphere

魙

	ACCEPTED MANUSCRIPT
1	THE ROLE OF THE ANODE MATERIAL AND WATER MATRIX IN THE ELECTROCHEMICAL
2	OXIDATION OF NORFLOXACIN
3	
4	Salatiel W. da Silva ^{1,2} , Emma M. Ortega ¹ , Marco A. S. Rodrigues ³ , Andréa M. Bernardes ² , Valentín

Pérez-Herranz^{1*} 5

¹Grupo IEC. Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat 6

Politècnica de València. P.O. Box 22012, E-46071 Valencia, Spain. 7

²Departamento de Materiais, PPGE3M, Universidade Federal do Rio Grande do Sul. Avenida Bento 8

9 Gonçalves, 9500, Porto Alegre, Brazil.

³Universidade Feevale, Campus II ERS-239, 2755, Novo Hamburgo, Brazil. 10

*Corresponding author: vperez@iqn.upv.es; P.O. Box 22012, E-46071 Valencia, Spain 11

12

13

ABSTRACT

The roles of the anode material, boron-doped diamond (BDD), with different boron (B) and 14 substrate Silicon (Si) or Niobium (Nb) content, and one dimensionally stable anode (DSA[®]), were 15 evaluated in the oxidation of norfloxacin (NOR) by electrochemical advanced oxidation process 16 17 (EAOP). The effect of other components in real wastewater on the performance of EAOP was also studied. The anode materials were characterized by cyclic voltammetry, regarding diamond 18 19 quality, electro-generation of oxidants and NOR oxidation mechanism (direct and/or indirect). The results showed that the anode material influences on the NOR oxidation pathway, due to distinct 20 characteristics of the substrate and the coating. Apparently, low difference in diamond-sp³/sp²-21 22 carbon ratio (Si/BDD₁₀₀ × Si/BDD₂₅₀₀) does not leads to significant differences in the EAOP. On the other hand, the variation in the sp³/sp² ratio seems to be higher when Si/BDD₂₅₀₀ and Nb/BDD₂₅₀₀ 23 24 are compared, which would explain the best current efficiency result for Si substrate. However,

ACCEPTED MANUSCRIPT

the Nb substrate presented a similar current efficiency and a 60% lower energy consumption. Dissolved organic matter (DOM) present in the real wastewater affect the EAOP-Nb/BDD due to HO[•] and persulfate ions scavenged. However, when supporting electrolyte was added to a real wastewater spiked with NOR, the NOR decay reaches similar values found to the synthetic one. Due to the energy saving and mechanical properties, Nb substrate presents some technological advantages in relation to Si, which can facilitate the application to industrial levels.

31

32 **KEYWORDS:** BDD electrodes; Silicon and Niobium; Norfloxacin; Real wastewater.

33

34 1. INTRODUCTION

The widespread use and environmental prevalence of pharmaceutical compounds increase annually due to the widening range of medical treatments, greater availability and access of medicines worldwide. Pharmaceutical products reach the wastewater treatment plants (WWTP) through the wastewater network, after metabolism and excretion, as unchanged compounds or as metabolites. Besides that, direct release may occur through improper disposal of unused or expired pharmaceuticals directly into toilet bowls, sinks or as solid waste (Ternes, 1998).

Fluoroquinolones have been widely used as antibiotics in the treatment of infectious 41 diseases (Kümmerer, 2009), as cattle growth promotor (Thiele-Bruhn, 2003) and at aquaculture 42 (van den Bogaard and Stobberingh, 1999). Considering the overall use and the partial or complete 43 resistance of most fluoroquinolones to the elimination in conventional WWTP, they are often 44 45 detected in effluents, surface water and drinking water (Miao et al., 2004). Moreover, the fluoroquinolones Ciprofloxacin, Enrofloxacin, Danofloxacin and Norfloxacin were found in soil 46 47 samples from São Paulo (Leal et al., 2013). Streptococcus agalactiae have also been reported to be 48 resistant to fluoroquinolone antibiotics in fish farms in Brazil (Chideroli et al., 2017). Therefore, the

ACCEPTED MANUSCRIPT

removal of these antibiotic class before the discharge to the environment is a technologicalchallenge.

Advanced oxidation processes (AOP) have been employed in the removal of pharmaceutical compounds, including Fenton, UV_{254nm} and H₂O₂/UV_{254nm} (Santos et al., 2015), Photocatalysis and Photoelectrocatalysis (da Silva et al., 2018), among other combinations. The electrochemical advanced oxidation process (EAOP) has been highlighted among the AOP to contaminants removal (Isarain-Chávez et al., 2017; Souza et al., 2017) due to its ease implementation, operation and scale-up and low energy consumption (de Moura et al., 2014).

The degradation of different organic compounds by EAOP at boron-doped diamond on 57 58 Silicon substrate (Si/BDD) has been extensively reported (de Araújo et al., 2014; Barreto et al., 2015; Brito et al., 2015; Coledam et al., 2016; Souza et al., 2017). However, the electrochemical 59 degradation in BDD on Niobium substrate (Nb/BDD) has been poor studied. The applicability of 60 Nb/BDD anodes in the oxidation of organic compounds has been successfully used to remove 61 carboxylic acids (de Queiroz et al., 2017), dyes (Sales Solano et al., 2013), petroleum (Gargouri et 62 al., 2014) and agricultural pesticides (Borràs et al., 2010). Nevertheless, no studies have been 63 reported about electrochemical oxidation of norfloxacin (NOR) in Nb/BDD anodes. 64

The main goal of this work was to evaluate the degradation of NOR by EAOP. The influence 65 of the anode material and the role of other components in real wastewater on the EAOP 66 performance were evaluated. The different anode materials were characterized by cyclic 67 voltammetry, regarding to the electrochemical window, oxygen evolution reaction (OER), diamond 68 69 film quality (diamond-sp³/sp²-carbon ratio), electro-generation of oxidants and evaluation of the 70 NOR oxidation mechanism (direct and/or indirect). Besides that, the prediction of NOR decay was 71 proposed by using a mathematical model. The role of other components in real wastewater was 72 approached by the evaluation of NOR oxidation in deionized water and in a real domestic 73 wastewater.

74 2. EXPERIMENTAL

75 **2.1 Chemicals and solutions**

Norfloxacin active compound was purchased in a local pharmacy (\geq 98%), anhydrous sodium sulfate and all chemicals for chemical oxygen demand (COD) analysis were purchased from Panreac (\geq 99%). NaOH, Na₂CO₃, NaHCO₃ and H₂SO₄ were of analytical grade supplied by Merck. Ultrapure water (Millipore Milli-Q system, resistivity \geq 18.2 M Ω cm) was used for standard solutions preparation. Deionized water (conductivity 1 μ S cm⁻¹) was used for the preparation of all work solutions.

A real wastewater (RWW) was collected after the secondary treatment by activated sludge in the municipal domestic wastewater treatment plant from Novo Hamburgo/Brazil in November 2017. Thereafter, the real wastewater was characterized by UV-Vis spectroscopy, COD, Ion chromatography (IC) and pH and the results are summarized in Fig. SM-1 and table SM-1 in supplementary material (SM).

Before the treatment by EAOP, the real wastewater was spiked with 0.1 mM NOR to attain 87 comprehensive NOR decay profiles (NORE). The conductivity value of the NORE was 5 times lower 88 than the one found for the solution commonly used as background electrolyte in EAOP (0.05 M 89 90 Na₂SO₄) (Brillas et al., 2009). For these considerations, one assay was performed without the addition of the supporting electrolyte (NORE), and another one was accomplished with the 91 92 addition of 0.01 M Na₂SO₄ in the real wastewater spiked with 0.1 mM NOR (NORES). To compare the results with those obtained for synthetic solution (NOR), the initial pH of NORE and NORES 93 adjusted 94 was

95 to ~4.

The RWW has no absorbance shoulder at the wavelength 240-400 nm. Nevertheless, when the target contaminant was spiked in the wastewater matrix, the characteristic NOR peak appear, and this characteristic not changes when the supporting electrolyte was also added (Fig. SM-1a). 99

100 2.2 Electrochemical measurements

The electrochemical measurements were performed using a conventional three electrode cell connected to a computer-controlled Autolab potentiostat/galvanostat model PGCTAT 302N at a scan rate of 100 mV s⁻¹. The cell used Ag/AgCl (3 M KCl) as reference electrode and platinum (Pt) as counter electrode. The working electrodes used were a dimensionally stable anode (DSA®) and BDD anodes: Si/BDD with distinct boron content [B] = 100 and 2500 ppm and Nb/BDD with [B] = 2500 ppm. At this work, the boron content was expressed in ppm regarding to mg kg⁻¹. The main characteristics of these electrodes are summarized in supplementary material at table SM-2.

108

109 2.3 Electrochemical oxidation

All oxidation assays of the NOR antibiotic were performed on a single compartment filter-110 press flow cell by using flat square electrodes with a geometric surface area (A_s) of 0.01 m². 111 1 L of the electrolyte solution was stored in a double-jacket reservoir and circulated through the 112 cell by a centrifugal pump with a flow rate (Q) of 8.33×10^{-6} m³ s⁻¹, that delivery a mass transport 113 coefficient (k) of 2.30 \times 10⁻⁶ m s⁻¹ estimate by the (Fe(CN)₆⁴⁻)/(Fe(CN)₆³⁻) system 114 (Cañizares et al., 2006). The electrochemical oxidation process was performed in galvanostatic 115 mode. During the EAOP the pH was continuously monitored but no pH control was performed. 116 The scheme of the EAOP is presented on the supplementary material (Fig. SM-2). 117

The anodes were tested to evaluate the effect of boron content and diamond-sp³/sp²carbon ratio (Si/BDD₁₀₀ and Si/BDD₂₅₀₀); the influence of the diamond film substrate Silicon or Niobium (Si/BDD₂₅₀₀ and Nb/BDD₂₅₀₀); the effect of the anode non-active vs. active for OER (Nb/BDD₂₅₀₀ and DSA[®]); and the role of other components in real wastewater on the performance of EAOP (Nb/BDD₂₅₀₀).

125 **2.4 Analyses**

126 Changes in the UV/Vis absorption spectrum of the NOR were evaluated by UV/Vis 127 spectroscopy (T80 + UV/Vis Spectrometer from PG Instruments Ltd) using quartz cuvettes with a 128 10 mm optical path. Spectra were obtained between wavelengths 190-900 nm.

Based on the absorption band at 272 nm, which was previously confirmed by UV/Vis (supplementary material, Fig. SM-1), a concentration vs. absorbance curve was constructed and NOR decay could be monitored. Therefore, NOR conversion (X_{NOR} , %) was calculated using Eq. (1):

132
$$X_{NOR}(\%) = (C_0 - C)/C_0 \times 100$$
 (1)

where C_0 is the NOR concentration at initial time and C is the NOR concentration at n time.

The COD in mg of $O^2 L^{-1}$ was evaluated using the closed reflux colorimetric method according to the Standard Methods (Rice et al., 2017) and the COD conversion (X_{NOR} , %) was calculated by the Eq. (2).

137
$$X_{COD}(\%) = (COD_0 - COD)/COD_0 \times 100$$
 (2)

where COD₀ is the COD concentration at initial time and COD is the COD concentration at n time.
 To better evaluate the results obtained, some discussions will be based on current
 efficiency (Eq. (3)) and energy consumption (Eq. (4)) calculated from COD values (García-Galbadón
 et al., 2006).

142
$$\phi = F \cdot V_L \cdot (COD_0 - COD)/8 \cdot \int_0^t I(t)dt$$
(3)

143
$$E_s = \int_0^t U(t) \cdot I(t) dt / 6000 \cdot V_L \cdot (COD_0 - COD)$$
(4)

where *F* is the Faraday constant (96500 A s⁻¹ mol⁻¹), *I* is the applied current (A), V_L is the electrolytic solution (L), *t* is the time in second (s) and *U* is the cell voltage (V).

146 The pH was monitored by potentiometric method by using micropH 2000 Crison.

The IC was performed in DIONEX ICS 3000 coupled to a conductivity detector. For the anions and cations, the column used was IonPac® AS23 2 mm × 250 mm and the IonPac® CS12A 2 mm × 250 mm, respectively. The mobile phase consists in 4.5 mM Na₂CO₃ and 0.8 mM NaHCO₃ for the anion detection and 11 mM H₂SO₄ for the cations identification.

151

152 3. RESULTS AND DISCUSSION

153 3.1 Electrochemical measurements

154 3.1.1 Electrodes characterization

According to the literature (Watanabe et al., 2010; Einaga et al., 2014), it is possible to evaluate the quality of diamond films in BDD electrodes by cyclic voltammetry in a background solution containing 0.5 M H_2SO_4 (supplementary material, Fig. SM-3). It was observed in Fig. 1a and 1b that the used BDD electrodes have a low background current and high potential for OER, meaning that these electrodes have a high diamond-sp³ content with low carbon-sp² impurities at the surface of the diamond films. The obtained voltammogram are in agreement with those finding in the literature (supplementary material, Fig. SM-3, shape II) (Watanabe et al., 2010).

Fig. 1a also demonstrated that the background current rises and the working potential window changes to less positive potentials as the level of boron doping increases, due to the increase in the carbon-sp² impurities (Martin et al., 1996). In addition, the substrate Si or Nb for the BDD film also affect the sp³/sp² ratio, and for this case, Nb appears to have higher carbon-sp² impurities than the Si substrate for BDD (Fig. 1b).

167 A raised background current for DSA[®] electrode which has high adsorption capacity 168 and low potential for oxygen evolution (~1.25 V vs. Ag/AgCl) (Panizza and Cerisola, 2009) was 169 exhibited in the voltammogram (Fig. 1c). These results also show a reversible anodic shoulder in 170 ~0.7 V vs. Ag/AgCl which corresponds to the solid state redox transitions $RuO_2 \subseteq Ru_2O_3$ 171 (Galizzioli et al., 1974; Pelegrini et al., 1999).

	ŏ
172	ACCEPTED MANUSCRIPT Based on the voltammogram it is verified that it possible electro-generate more HO [•] with
173	less parasitic reactions in the electrode materials: Si/BDD ₁₀₀ > Si/BDD ₂₅₀₀ > Nb/BDD ₂₅₀₀ > DSA [®] .
174	FIG. 1
175	
176	3.1.2 Electrochemically generation of oxidants
177	Garcia-Segura et al. (2015) state that the alterity in diamond-sp ³ /sp ² -carbon ratio promotes
178	substantial variations in the electrochemical generation of oxidants from supporting electrolyte. In
179	this way, the electrocatalytic property of the anode materials for generation of oxidants were
180	evaluated by cyclic voltammetry in 0.1 M Na ₂ SO ₄ .
181	An anodic shoulder (I) in the potential region of \sim 2 V vs. Ag/AgCl corresponding to the
182	oxidation of the electrolyte support, generating the persulfate ion ($S_2O_8^{2-}$), and a cathodic
183	shoulder (II) linked to reduction of the persulfate ion (Serrano et al., 2002; Provent et al., 2004),
184	were found for Fig. 2a, 2b and 2c.
185	Studies have demonstrated that there are two possibilities for the generation of persulfate
186	ions (Serrano et al., 2002; Davis et al., 2014; Barreto et al., 2015). In the first case, the $ m HSO_4^-$ and /
187	or SO_4^{2-} anions can adsorb at the active sites formed by carbon-sp² impurities to form $\mathrm{SO}_4^{\bullet-}$
188	(Davis et al., 2014) that leads to $S_2 O_8^{2-}$ generation. The other one occurs by the indirect oxidation
189	of ions HSO_4^- and SO_4^- by HO^- electrogenerated on the anode surface, following the steps
190	presented in Eq. (5-8) (Serrano et al., 2002).
191	$BDD + H_2 O \to BDD(HO^{\bullet}) + H^+ + e^-$ (5)
192	$HSO_4^- + HO^\bullet \to SO_4^{\bullet-} + H_2O \tag{6}$
193	$H_2 SO_4 + HO^{\bullet} \to SO_4^{\bullet-} + H_3O^+$ (7)
194	$2 SO_4^{\bullet-} \to S_2 O_8^{2-}$ (8)

195 It is still possible to verify an increase in the electrochemical generation of persulfate ions 196 as the boron concentration increases (Fig. 2a and 2b). This fact was more apparent for Nb/BDD₂₅₀₀

ACCEPTED MANUSCRIPT

electrode (Fig. 2c). This increase in the production of $S_2 O_8^{2-}$ can be linked to the retention of sulfate species in carbon-sp² impurities that have higher adsorption properties than diamond-sp³ (Davis et al., 2014; Barreto et al., 2015) favoring the persulfate ion generation. In fact, the electrogeneration of persulfate ions will be more pronounced in the Nb/BDD₂₅₀₀ then Si/BDD₂₅₀₀ and Si/BDD₁₀₀.

The persulfate ions are also generated on the surface of the DSA[®] electrode, following Eq. (6-8) or through the interaction of the transition metal catalyst (RuO₂) present in the DSA[®] electrode (Panizza and Cerisola, 2009; Isarain-Chávez et al., 2017) (Fig. 2d). Therefore, it is necessary to consider that the oxidation of NOR will not be exclusively mediated by hydroxyl radicals, but also by persulfate ions.

FIG. 2

208

207

209 3.1.3 Electrochemical behavior of norfloxacin

Aiming to elucidate if direct oxidation of NOR occurs, cyclic voltammetry assays were performed on BDD and DSA[®] electrodes, adding a 1.25 M NOR in a background solution containing 0.1 M Na₂SO₄.

For Si/BDD₁₀₀, by adding a known concentration of NOR an anodic perturbation was found, 213 which may be related to the direct oxidation of NOR (Fig. 3a). On the other hand, it is possible to 214 identify for Si/BDD₂₅₀₀ and Nb/BDD₂₅₀₀, a well-defined anodic oxidation shoulder at ~1,3 V vs. 215 Ag/AgCl (Fig. 3b and 3c). This means that the antibiotic NOR can interact with the surface of these 216 217 electrodes, resulting in a direct transfer of electrons (direct oxidation). Likewise, for the Si/BDD₂₅₀₀ and Nb/BDD₂₅₀₀ (Fig. 3b and 3c) it is also possible to see an anodic perturbation at ~ 1.7 V vs. 218 219 Ag/AgCl that can be related to the direct oxidation of an intermediate product from NOR oxidation 220 (Coledam et al., 2016).

	ACCEPTED MANUSCRIPT
221	The difference found for direct oxidation of NOR can be related to its content of carbon-sp ²
222	impurities in BDD films shown in Fig. 1. For higher carbon-sp ² contents (Nb/BDD ₂₅₀₀ > Si/BDD ₂₅₀₀ >
223	Si/BDD $_{100}$), higher adsorption of NOR at the electrode surface is expected, therefore, the detection
224	of anodic shoulders is better-defined.
225	The voltammogram for DSA $^{\ensuremath{\circledast}}$ not shows an anodic and/or cathodic shoulder related to
226	direct NOR oxidation, indicating that this pollutant will be oxidize only by hydroxyl radicals,
227	persulfate ions and the transitions of RuO2. Similar results for other pollutants and electrodes of

the DSA[®] type have already been reported in the literature (Heberle et al., 2017).

229

FIG. 3

230

231 **3.2 Effect of boron content and diamond-sp³/sp²-carbon ratio**

It is known that an increasing in the boron concentration in the growing diamond film increases the carbon-sp² impure phases (Einaga et al., 2014). These carbon-sp² affects the OER (generation of HO[•]), the electro-generation of oxidants through the supporting electrolyte and NOR interaction with BDD surface (direct oxidation), which can be confirmed in Fig. 1, 2 and 3, respectively. In this sense, the boron concentration and the diamond-sp³/sp²-carbon ration were evaluated for NOR oxidation by using the Si/BDD₁₀₀ and Si/BDD₂₅₀₀ material.

238 It is possible to observe in Fig. 4c and 4d that no significant differences in the current 239 efficiency and energy consumption values, calculated for both Si/BDD₁₀₀ and Si/BDD₂₅₀₀ anode, 240 were observed, meaning that similar results for COD and NOR decay were achieved, Fig. 4a and 241 4b, respectively.

Although the results presented on Fig. 1a, 2a, 2b, 3a and 3b showed that these materials present some differences in the sp³/sp² ratio, this difference did not lead to significant changes in NOR oxidation. This finding is probably associated to the small difference in the sp³/sp² ratio between the anodes, what agrees with literature (de Araújo et al., 2014).

sp³/sp² ratio (estimated by Raman spectrometry), Fierro et al. (2011) did also not observed 247 significant differences in the COD removal. de Araújo et al. 2014 investigated the influence of the 248 249 sp³/sp² ratio (165 and 176, estimated by Raman spectrometry) on Si/BDD with the same boron 250 concentration (500 ppm) to removal of color, COD and TOC from rhodamine B, and did not verified a significant removal difference. 251

findings presented at this work and corroborated by the literature 252 The (de Araújo et al., 2014) show that the difference in the diamond-sp³/sp²-carbon ratio probably 253 should be higher (such as 165 and 262, as verified by de Araújo et al. 2014) to affect the 254 255 contaminant oxidation.

FIG. 4

257

256

246

3.3 Effect of diamond film substrate (Si or Nb) 258

The substrate effect, silicon or niobium, of diamond film were investigated for NOR 259 260 oxidation by using the Si/BDD₂₅₀₀ and Nb/BDD₂₅₀₀ anodes. Fig. 5a and 5b showed similar results in NOR degradation and COD removal for Si or Nb substrate. However, Fig. 5c shows that there is a 261 slight difference in current efficiency for NOR oxidation using Si and Nb substrates. The differences 262 can be attributed to the existence of competing parasitic reactions such as OER at the anode 263 which will be more expected on the Nb/BDD₂₅₀₀. Since this electrode presented a higher sp²-264 content than Si/BDD₂₅₀₀ as show on Fig. 1b and already discussed. 265

266 Besides that, the NOR oxidation mechanism for Nb/BDD₂₅₀₀ anode may differ from Si/BDD₂₅₀₀ due to differences in the carbon-sp² impurities, which leads to higher direct oxidation 267 268 and by persulfate ions and less by HO[•] (Guinea et al., 2009; Souza et al., 2016) for Nb/BDD₂₅₀₀.

269 On the other hand, the Nb/BDD₂₅₀₀ anode showed 60% less energetic consumption when 270 compared to Si/BDD₂₅₀₀ (Fig. 5d). These can be explained by the fact that Si/BDD electrodes have

				ACC	CEPTED	MANU	SCRIP	Γ				
271	lower	electrical	conductivity	than	Nb/BDD	(Chen,	2004),	which	was	evidenced	in	the
272	voltam	mogram (F	ig. 1b). This fi	nding	could be a	technol	ogical ac	dvantage	e over	silicon, for	scale	e-up
273	the EA	OP to indus	strial application	on.								
274					FI	G. 5						

275

276 **3.4 Influence of the anode material**

277 The influence of the anode material on NOR oxidation was also investigated by using one 278 material non-active (Nb/BDD₂₅₀₀) and one active (DSA[®]) for the OER. It is possible to observe in Fig. 6a, 6b and 6c that the active electrode for the OER, the DSA[®], presented a lower NOR and COD 279 280 decay, as a directly consequence, a lower current efficiency for NOR oxidation was found. The oxidation power of the anode is directly related to the potential for OER. Therefore, the results 281 obtained, for the evaluated anode DSA[®], can be explained by the general oxidation mechanism for 282 organic pollutants (Comninellis, 1994) and confirmed in the voltammetry measurements in Fig. 1c, 283 2d and 3d. 284

The nature of DSA[®] material causes difficulties in the NOR oxidation by HO[•] due to the competition with parasitic reactions, favoring to indirect NOR oxidation through the formation/decomposition of the higher valence oxide $RuO_2 \leftrightarrows Ru_2O_3$ (Galizzioli et al., 1974; Pelegrini et al., 1999) and/or by the generation of persulfate ions (Panizza and Cerisola, 2009), significantly reducing the oxidation rate of NOR.

290 On the other hand, the non-active electrode for the OER, the Nb/BDD₂₅₀₀, showed a higher 291 NOR degradation and COD decay, as well a higher current efficiency for NOR oxidation when 292 compared to DSA[®] (Fig. 6a, 6b and 6c). These result can be explained because the Nb/BDD₂₅₀₀ 293 have a higher potential for OER ~2,30 V vs. Ag/AgCl and the HO[•] is so weakly bonded to the 294 surface of the BDD (low bonding enthalpy) that it is possible to say that the HO[•] are quasi-free 295 (Comninellis and Chen, 2010). It means that the current applied leads to a less undesired side299

FIG. 6

300

301 **3.5** The role of other components in real wastewater on the EAOP performance

It is possible to see in Fig. 7a that NOR decay (synthetic solution) was faster than the one composed by NORE (RRW spiked with NOR). These results can be explained because NOR content corresponded to ~50% of COD, indicating that some COD fraction corresponded to dissolved organic matter (DOM) (González et al., 2013). Thereby, DOM can affect negatively the NOR degradation, since it can be involved in mechanisms of oxidant agents consumption (like HO[•] and persulfate ions) (Wenk et al., 2011).

On the other hand, when sodium sulfate was added to a NORES, the NOR degradation 308 significantly increase, reaching similar values found to degradation of synthetic solution. These 309 facts can be linked to the energy-band theory. For the solution with low conductivity (NORE), the 310 voltage may not provide sufficient potential to activate electron transfer (Lin et al., 2012) and thus 311 reduces the HO[•] and persulfate ions formation. Nevertheless, the addition of the sodium sulfate 312 313 leads to an increase in the ionic force and conductivity of the NORES solution, favoring the movement and transport of generated persulfate ions, from the surface of the anode to the bulk 314 of the solution, leading to an increased in NOR decay (Zhong et al., 2013). 315

Similar results were also found for COD decay (Fig. 7b). However, COD and NOR decay was not simultaneous leading to byproduct formation. More information about of the physicochemical characteristics of the wastewater treated by EAOs is showed in table SM-1 on supplementary material.

Fig. 7a also shows that the NOR decay follows an exponential-like decay. Probably NOR have a low concentration when compared to an excess of HO' generated at high current densities, which may describe the reactions as first-order kinetic (Fukunaga et al., 2008). Linearizing the results of Fig. 7a by plotting $\ln(C/C_0)$ vs. treatment time (h), the slope in the linearized plot (inset graphic in Fig. 7a will determines the kinetic constant value for NOR removal resulting in 0.75 h⁻¹ (\bigstar NOR), 0.82 h⁻¹ (\blacklozenge NORES) and 0.45 h⁻¹ (\blacklozenge NORE), respectively, with a good linear correlation R² \ge 0.99.

327

FIG. 7

328

The ion chromatography showed the presence of nitrate as an oxidation product of NOR. Therefore, the total oxidation of NOR involves the stoichiometric reaction (9).

331
$$C_{16}H_{18}FN_3O_3 + 38H_2O \rightarrow 16CO_2 + 3NO_3^- + F^- + 94H^+ + 90e^-$$
 (9)

Based on the number of the electrons exchanged for the complete total oxidation of NOR (90), the mass transport coefficient (k, 2.30 × 10⁻⁶ m s⁻¹) and the NOR concentration at the initial treatment time (C_0 , 0.1 mol m⁻³) the limiting current density (i_{lim}) for the system was found to be 2 A m² (Eq. (10)) (Kapałka et al., 2008):

$$336 \quad i_{lim} = n \cdot F \cdot k \cdot C_0 \tag{10}$$

337 Considering that the applied current density in the process was 100 A m², it is concluded 338 that I > $i_{lim(0)}$, and the system is being controlled by mass transport. From the mathematical point 339 of view, this behavior can be modeled through Eq. (11).

340
$$C = C_0 \cdot exp\left\{-t/\tau \left(1 - exp(k \cdot A_s/Q)\right)\right\}$$
(11)

341 where, τ is the residence time (12 s).

The mathematical model used (simple) is generally applied to direct oxidation systems and / or in which hydroxyl radicals are the main oxidant mediators (Comninellis and Chen, 2010), which may explain the good correlation found for NOR and NORES decay. On the other hand,

ACCEPTED MANUSCRIPT

differences between the degradation of organic contaminants achieved experimentally and the prediction by simple models such as the one used here have been reported (Coledam et al., 2016), and this fact was also found for NORE. These differences can be explained by the fact that, these mathematical model does not predict the possibility of electrochemically generating other oxidants (such as persulfate, hypochlorite, chlorine etc.), that can act in the bulk solution. Additionally, the model also not takes into account the generated radicals scavenger by DOM (Comninellis and Chen, 2010; Wenk et al., 2011).

352

353 4. CONCLUSIONS

The results presented at this work showed that EAOP is a good technology option for the 354 oxidation of NOR in synthetic solutions and real wastewater. The electrode material may affect 355 significantly the NOR and COD decay rates. A higher sp²-content will have an influence on the NOR 356 oxidation mechanism, favoring the direct oxidation and the one mediated by persulfate ions. On 357 the other side, a high-quality diamond film, with high sp³-content, will favor the oxidation by HO[•] 358 359 and will increase the process current efficiency. Comparing the electrodes evaluated at this work, the BDD presented the best results in terms of NOR and COD decay. In fact, considering its 360 mechanical and conductive properties that save energy consumption, Niobium presents some 361 technological advantages in relation to Silicon, which can facilitate the scale-up of the EAOP to 362 industrial levels. 363

364

365 ACKLOWGEMENTS

366 The authors thanks CNPq, CAPES, Cyted, FAPERGS and Finep for the financial support.

367

368 **5. REFERENCES**

	16
	ACCEPTED MANUSCRIPT
369	Barreto, J.P. P., Araújo, K.C. F., de Araújo, D.M., Martínez-Huitle, C.A., 2015. Effect of sp3/sp2 Ratio
370	on Boron Doped Diamond Films for Producing Persulfate. ECS Electrochem. Lett. 4, E9–E11.
371	Borràs, N., Oliver, R., Arias, C., Brillas, E., 2010. Degradation of Atrazine by Electrochemical
372	Advanced Oxidation Processes Using a Boron-Doped Diamond Anode. J. Phys. Chem. A 114,
373	6613–6621.
374	Brillas, E., Sirés, I., Oturan, M.A., 2009. Electro-Fenton Process and Related Electrochemical
375	Technologies Based on Fenton's Reaction Chemistry. Chem. Rev. 109, 6570–6631.
376	Brito, C.D.N., de Araújo, D.M., Martínez-Huitle, C.A., Rodrigo, M.A., 2015. Understanding active
377	chlorine species production using boron doped diamond films with lower and higher sp3/sp2
378	ratio. Electrochem. commun. 55, 34–38.
379	Cañizares, P., García-Gómez, J., Fernández de Marcos, I., Rodrigo, M.A., Lobato, J., 2006.
380	Measurement of Mass-Transfer Coefficients by an Electrochemical Technique. J. Chem. Educ.
381	83, 1204–1207.
382	Chen, G., 2004. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38,
383	11–41.
384	Chideroli, R.T., Amoroso, N., Mainardi, R.M., Suphoronski, S.A., de Padua, S.B., Alfieri, A.F., Alfieri,
385	A.A., Mosela, M., Moralez, A.T.P., de Oliveira, A.G., Zanolo, R., Di Santis, G.W., Pereira, U.P.,
386	2017. Emergence of a new multidrug-resistant and highly virulent serotype of Streptococcus
387	agalactiae in fish farms from Brazil. Aquaculture 479, 45–51.
388	Coledam, D.A.C., Aquino, J.M., Silva, B.F., Silva, A.J., Rocha-Filho, R.C., 2016. Electrochemical
389	mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press
390	reactor, with investigations of toxicity and oxidation by-products. Electrochim. Acta 213, 856–
391	864.
392	Comninellis, C., 1994. Electrocatalysis in the Electrochemical Conversion / Combustion of Organic
393	Pollutants. Electrochim. Acta 39, 1857–1862.
394	Comninellis, C., Chen, G., 2010. Electrochemistry for the Environment, Electrochemistry for the
395 200	Environment. Springer New York, New York, NY. da Silva, A.J.C., dos Santos, E.V., de Oliveira Morais, C.C., Martínez-Huitle, C.A., Castro, S.S.L., 2013.
396 397	Electrochemical treatment of fresh, brine and saline produced water generated by
398	petrochemical industry using Ti/IrO2-Ta2O5 and BDD in flow reactor. Chem. Eng. J. 233, 47–
399	55.
400	da Silva, S.W., Heberle, A.N.A., Santos, A.P., Rodrigues, M.A.S., Pérez-Herranz, V., Bernardes, A.M.,
400	2018. Antibiotics mineralization by electrochemical and UV-based hybrid processes:
402	evaluation of the synergistic effect. Environ. Technol. 1–11.
403	Daghrir, R., Drogui, P., Tshibangu, J., 2014. Efficient treatment of domestic wastewater by
404	electrochemical oxidation process using bored doped diamond anode. Sep. Purif. Technol.
405	131, 79–83.
406	Davis, J., Baygents, J.C., Farrell, J., 2014. Understanding persulfate production at boron doped
407	diamond film anodes. Electrochim. Acta 150, 68–74.
408	de Araújo, D.M., Cañizares, P., Martínez-Huitle, C.A., Rodrigo, M.A., 2014. Electrochemical
409	conversion/combustion of a model organic pollutant on BDD anode: Role of sp3/sp2 ratio.
410	Electrochem. commun. 47, 37–40.
411	de Moura, D.C., de Araújo, C.K.C., Zanta, C.L.P.S., Salazar, R., Martínez-Huitle, C.A., 2014. Active
412	chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: Electrochemical behavior,
413	concentration determination and their application. J. Electroanal. Chem. 731, 145–152.
414	de Queiroz, J.L.A., da Silva, A.R.L., de Moura, D.C., da Silva, D.R., Martínez-Huitle, C.A., 2017.
415	Electrochemical study of carboxylic acids with Nb-supported boron doped diamond anode.
416	Part 1: Potentiodynamic measurements and bulk oxidations. J. Electroanal. Chem. 794, 204–
417	211.

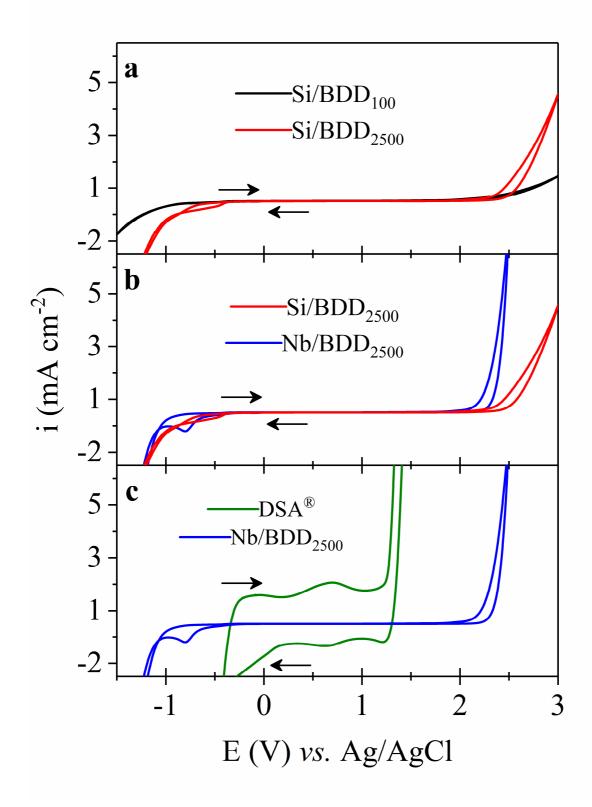
	17
	ACCEPTED MANUSCRIPT
418	de Souza Santos, L.V., Meireles, A.M., Lange, L.C., 2015. Degradation of antibiotics norfloxacin by
419	Fenton, UV and UV/H2O2. J. Environ. Manage. 154, 8–12.
420	Einaga, Y., Foord, J.S., Swain, G.M., 2014. Diamond electrodes: Diversity and maturity. MRS Bull.
421	39, 525–532.
422	Fierro, S., Abe, K., Christos, C., Einaga, Y., 2011. Influence of Doping Level on the Electrochemical
423	Oxidation of Formic Acid on Boron Doped Diamond Electrodes. J. Electrochem. Soc. 158,
424	F183–F189.
425	Fukunaga, M.T., Guimarães, J.R., Bertazzoli, R., 2008. Kinetics of the oxidation of formaldehyde in
426	a flow electrochemical reactor with TiO2/RuO2 anode. Chem. Eng. J. 136, 236–241.
427	Galizzioli, D., Tantardini, F., Trasatti, S., 1974. Ruthenium dioxide: a new electrode material. I.
428	Behaviour in acid solutions of inert electrolytes. J. Appl. Electrochem. 4, 57–67.
429	García-Galbadón, M., Pérez-Herranz, V., García-Antón, J., Guiñón, J.L., 2006. Electrochemical
430	recovery of tin from the activating solutions of the electroless plating of polymers.
431	Galvanostatic operation. Sep. Purif. Technol. 51, 143–149.
432	Garcia-Segura, S., Vieira dos Santos, E., Martínez-Huitle, C.A., 2015. Role of sp3/sp2 ratio on the
433	electrocatalytic properties of boron-doped diamond electrodes: A mini review. Electrochem.
434	commun. 59, 52–55.
435	Gargouri, B., Gargouri, O.D., Gargouri, B., Trabelsi, S.K., Abdelhedi, R., Bouaziz, M., 2014.
436	Application of electrochemical technology for removing petroleum hydrocarbons from
437	produced water using lead dioxide and boron-doped diamond electrodes. Chemosphere 117,
438	309–315.
439	González, O., Justo, A., Bacardit, J., Ferrero, E., Malfeito, J.J., Sans, C., 2013. Characterization and
440 441	fate of effluent organic matter treated with UV/H2O2 and ozonation. Chem. Eng. J. 226, 402–408.
441	Guinea, E., Centellas, F., Brillas, E., Cañizares, P., Sáez, C., Rodrigo, M.A., 2009. Electrocatalytic
442	properties of diamond in the oxidation of a persistant pollutant. Appl. Catal. B Environ. 89,
444	645–650.
445	Heberle, A.N.A., da Silva, S.W., Klauck, C.R., Ferreira, J.Z., Rodrigues, M.A.S., Bernardes, A.M.,
446	2017. Electrochemical enhanced photocatalysis to the 2,4,6 Tribromophenol flame retardant
447	degradation. J. Catal. 351, 136–145.
448	Isarain-Chávez, E., Baró, M.D., Rossinyol, E., Morales-Ortiz, U., Sort, J., Brillas, E., Pellicer, E., 2017.
449	Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn,
450	Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO 2 anodes. Electrochim. Acta 244, 199–208.
451	Kapałka, A., Fóti, G., Comninellis, C., 2008. Kinetic modelling of the electrochemical mineralization
452	of organic pollutants for wastewater treatment. J. Appl. Electrochem. 38, 7–16.
453	Kümmerer, K., 2009. Antibiotics in the aquatic environment - A review - Part I. Chemosphere. 75,
454	417–434.
455	Leal, R.M.P., Alleoni, L.R.F., Tornisielo, V.L., Regitano, J.B., 2013. Sorption of fluoroquinolones and
456	sulfonamides in 13 Brazilian soils. Chemosphere 92, 979–985.
457	Lin, H., Niu, J., Ding, S., Zhang, L., 2012. Electrochemical degradation of perfluorooctanoic acid
458	(PFOA) by Ti/SnO 2-Sb, Ti/SnO 2-Sb/PbO 2 and Ti/SnO 2-Sb/MnO 2 anodes. Water Res. 46,
459	2281–2289.
460	Martin, H.B., Argoitia, A., Landau, U., Anderson, A.B., Angus, J.C., 1996. Hydrogen and Oxygen
461	Evolution on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 143, L133–L136.
462	Miao, X.S., Bishay, F., Chen, M., Metcalfe, C.D., 2004. Occurrence of antimicrobials in the final
463	effluents of wastewater treatment plants in Canada. Environ. Sci. Technol. 38, 3533–3541.
464	Panizza, M., Cerisola, G., 2009. Direct and mediated anodic oxidation of organic pollutants. Chem.
465	Rev. 109, 6541–6569.
466	Pelegrini, R., Peralta-Zamora, P., De Andrade, A.R., Reyes, J., Durán, N., 1999. Electrochemically

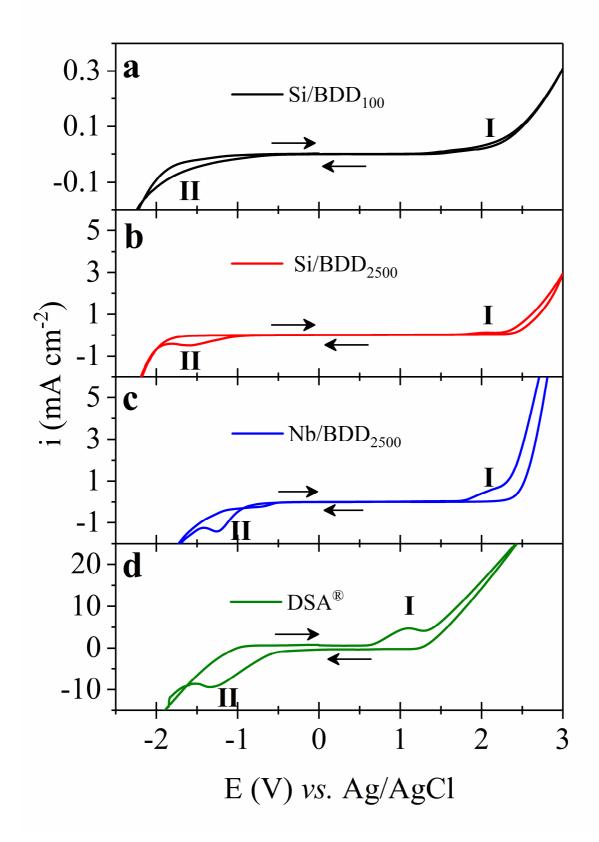
	ACCEPTED MANUSCRIPT
467	assisted photocatalytic degradation of reactive dyes. Appl. Catal. B Environ. 22, 83–90.
468	Provent, C., Haenni, W., Santoli, E., Rychen, P., 2004. Boron-doped diamond electrodes and
469	microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochim. Acta
470	49, 3737–3744.
471	Rice, E.W., Baird, R.B., Eaton, A.D., 2017. Standard Methods for the Examination of Water and
472	Wastewater, in: Rice, E.W., Baird, R.B., Eaton, A.D. (Eds.), American Public Health Association.
473	American Public Health Association, American Water Works Association, Water Environment
474	Federation, p. 1504–1507.
475	Sales Solano, A.M., Costa de Araújo, C.K., Vieira de Melo, J., Peralta-Hernandez, J.M., Ribeiro da
476	Silva, D., Martínez-Huitle, C.A., 2013. Decontamination of real textile industrial effluent by
477	strong oxidant species electrogenerated on diamond electrode: Viability and disadvantages of
478	this electrochemical technology. Appl. Catal. B Environ. 130–131, 112–120.
479	Serrano, K., Michaud, P.A., Comninellis, C., Savall, A., 2002. Electrochemical preparation of
480	peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim. Acta 48,
481	431–436.
482	Souza, F., Quijorna, S., Lanza, M.R. V, Saéz, C., Cañizares, P., Rodrigo, M.A., 2017. Applicability of
483	electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea
484	herbicide. Catal. Today 280, 192–198.
485	Souza, F.L., Saéz, C., Lanza, M.R.V., Cañizares, P., Rodrigo, M.A., 2016. The effect of the sp3/sp2
486	carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes. Electrochim.
487	Acta 187, 119–124.
488	Ternes, T.A., 1998. Occurrence of drugs in German sewage treatment plants and rivers. Water Res.
489	32, 3245–3260.
490	Thiele-Bruhn, S., 2003. Pharmaceutical antibiotic compounds in soils - A review. J. Plant Nutr. Soil
491	Sci. 166, 145–167.
492	van den Bogaard, A.E., Stobberingh, E.E., 1999. Antibiotic Usage in Animals. Drugs 58, 589–607.
493	Watanabe, T., Shimizu, T.K., Tateyama, Y., Kim, Y., Kawai, M., Einaga, Y., 2010. Giant electric
494	double-layer capacitance of heavily boron-doped diamond electrode. Diam. Relat. Mater. 19,
495	772–777.
496	Wenk, J., Von Gunten, U., Canonica, S., 2011. Effect of dissolved organic matter on the
497	transformation of contaminants induced by excited triplet states and the hydroxyl radical.
498	Environ. Sci. Technol. 45, 1334–1340.
499	Zhong, C., Wei, K., Han, W., Wang, L., Sun, X., Li, J., 2013. Electrochemical degradation of
500	tricyclazole in aqueous solution using Ti/SnO2-Sb/PbO2 anode. J. Electroanal. Chem. 705, 68–
501	74.

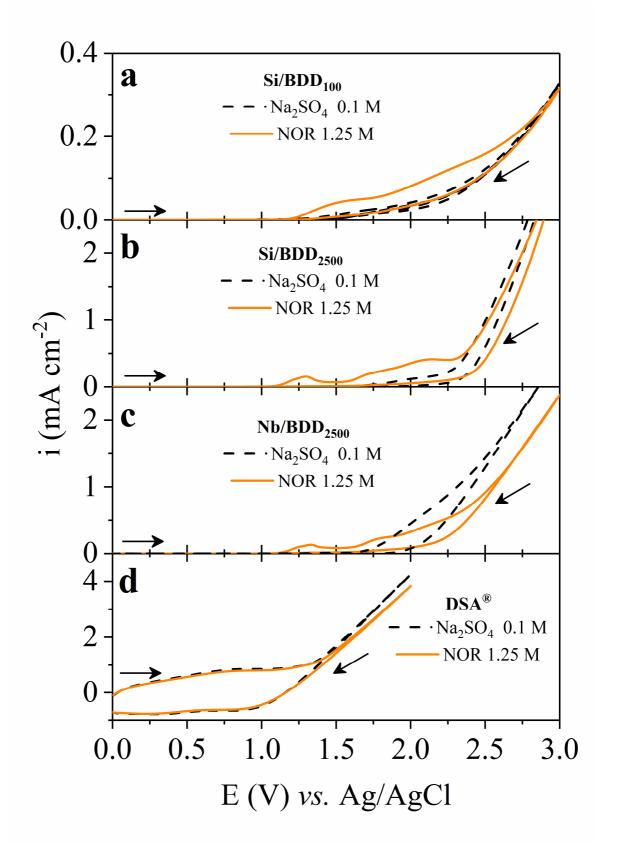
Figure Captions

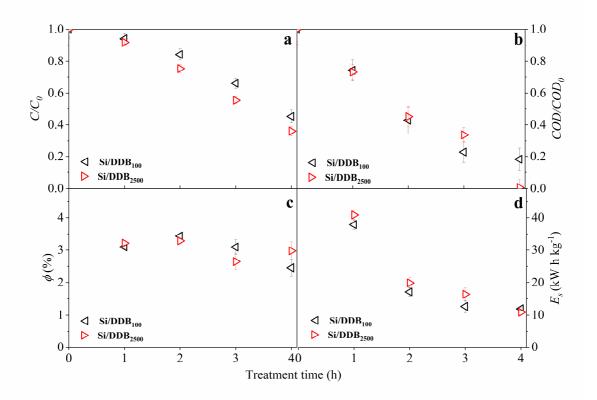
Fig. 1 Electrodes characterization by cyclic voltammetry in 0.5 M H₂SO₄. **a** Influence of the boron concentration (Si/BDD₁₀₀ × Si/BDD₂₅₀₀); **b** Influence of the substrate of the diamond film (Si/BDD₂₅₀₀ × Nb/BDD₂₅₀₀) and **c** Influence of material non-active (Nb/BDD₂₅₀₀) × active (DSA[®]) for the OER.

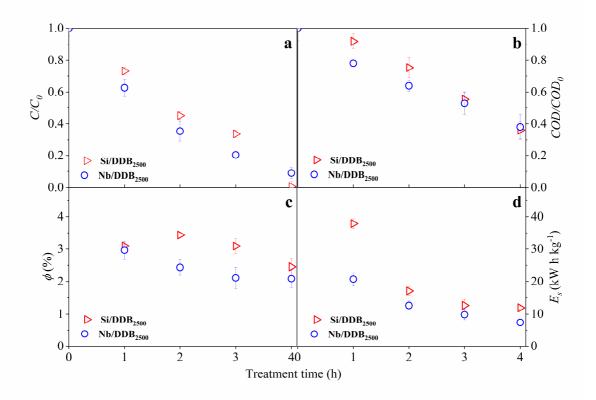
Fig. 2 Cyclic voltammetry analysis for the electrochemical detection of oxidants electro-generated from supporting electrolyte in background solution containing 0.1 M Na₂SO₄. **a** Si/BDD₁₀₀; **b** Si/BDD₂₅₀₀; **c** Nb/BDD₂₅₀₀ and **d** DSA[®].

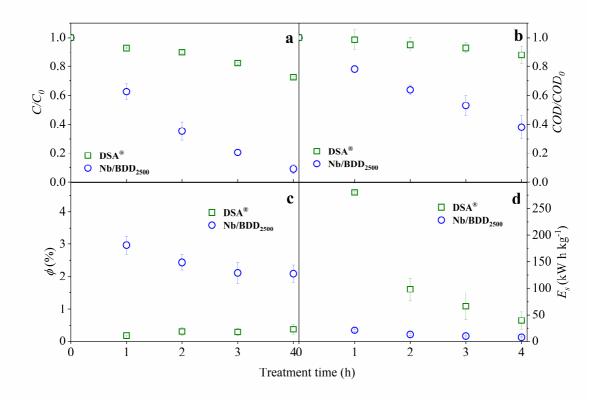

Fig. 3 Voltammetry response step-by-step adding NOR in background solution containing 0.1 M Na₂SO₄ for the electrodes. **a** Si/BDD₁₀₀; **b** Si/BDD₂₅₀₀; **c** Nb/BDD₂₅₀₀ and **d** DSA[®].

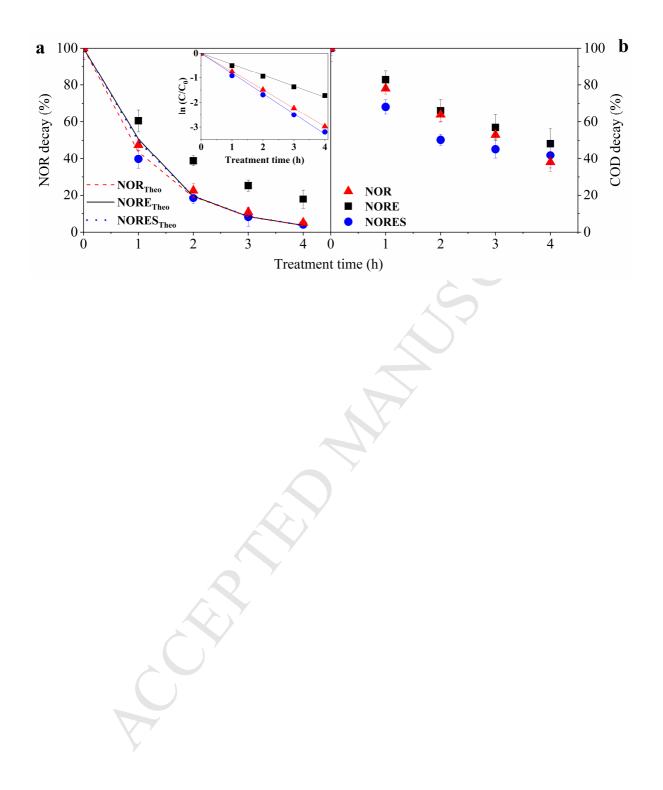

Fig. 4 Effect of boron concentration and diamond- sp^3/sp^2 -carbon ratio on NOR oxidation. **a** Nor decay; **b** COD decay; **c** Current efficiency and **d** Energy consumption. Initial conditions: 30 L h⁻¹, 10 mA cm⁻², 0.1 mM NOR and 0.01 M Na₂SO₄.


Fig. 5 Effect of the diamond film substrate (Si or Nb) on NOR oxidation. **a** Nor decay; **b** COD decay; **c** Current efficiency and **d** Energy consumption. Initial conditions: $30 \text{ L} \text{ h}^{-1}$, 10 mA cm^{-2} , 0.1 mM NOR and $0.01 \text{ M} \text{ Na}_2\text{SO}_4$.


Fig. 6 Influence of the anode non-active (Nb/BDD₂₅₀₀) and active (DSA[®]) for the oxygen evolution reaction (OER) for NOR oxidation. **a** Nor decay; **b** COD decay; **c** Current efficiency and **d** Energy consumption. Initial conditions: $30 \text{ L} \text{ h}^{-1}$, 10 mA cm^{-2} , 0.1 mM NOR and $0.01 \text{ M} \text{ Na}_2\text{SO}_4$.


Fig 7. The role of other components in real wastewater on the EAOP performance. **a** Experimental and theoretical NOR decay. Insert graphic is the linearized NOR decay profiles. **b** COD decay. NORE: real wastewater spiked with 0.1 mM NOR; NORES: real wastewater spiked with 0.1 mM NOR and 0.01 M Na₂SO₄; NOR: synthetic solution with 0.1 mM NOR and 0.01 M of Na₂SO₄. Initial conditions: 30 L h⁻¹, 10 mA cm⁻² and Nb/BDD₂₅₀₀.





CEP CEP

7

Highlights

- Electrochemical advanced Oxidation process is proposed for Norfloxacin oxidation
- Higher boron concentration favored NOR oxidation by persulfate and direct oxidation
- Persulfate and direct oxidation were more intense for the Nb/BDD than for Si/BDD
- Low difference in diamond-sp3/sp2-carbon ratio do not notably change NOR oxidation
- Nb/BDD showed similar current efficiency but lower energy consumption than Si/BDD