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Abstract—Here, a detailed analysis of characteristic modes and fields
of an infinite dielectric circular cylinder when computed through the
PMCHWT formulation is carried out. The purpose is to determine their
contribution to the total field, inside and outside the dielectric body and
under two possible excitations: incident plane wave or electric line source
within the cylinder. The study has been done analytically to provide
necessary physical insight of the results obtained. New details about so-
called non-physical modes are provided. It is found that these modes,
that can be neglected outside the dielectric body, do have a significant
contribution to the inner field when the excitation source is within the
dielectric body. It is concluded that the terms physical and non-physical
characteristic modes should more properly be replaced for radiating and
non-radiating characteristic modes.

Keywords—Characteristic modes, dielectric cylinders, non-physical
modes, PMCHWT formulation.

I. INTRODUCTION

Since the Theory of Characteristic Modes (TCM) was proposed in
1968, it has been increasingly used for antenna design and extended
to other fields in electromagnetics. This theory was first formulated
by Garbacz for conducting bodies of arbitrary shape through the
scattering matrix diagonalization [1]. Conceptually speaking, Gar-
bacz was the first to show that there exists a modal representation
acting as a real Hilbert space basis. Later, Harrington, Mautz and
Chang reformulated this theory establishing a more direct method to
obtain Garbacz’s modal expansion [2]–[4]. They considered integro-
differential formulations using the impedance matrix of the Method
of Moments (MoM).

For the past ten years, mainstream interest in TCM has been
focused on conducting bodies [5]–[7]. Recently, however, researchers
are turning to more complex structures including dielectrics, such as
dielectric resonator antennas (DRAs), for instance [8]–[14]. For both,
conducting and dielectric bodies it is important to find those elec-
tromagnetic modes that provide the desired radiation characteristics.
However, with regard to dielectric bodies, there are still unknown
aspects in the interpretation of resulting eigensolutions. Difficulties
arise in the understanding of the solutions using surface integral
equations (SIE) based on Poggio-Miller-Chang-Harrington-Wu-Tsai
(PMCHWT) formulation [15]. Precisely, this SIE formulation pro-
vides two eigenvalues for each mode. In [10] and [16], it appeared
that some of the solutions did not fulfill the orthonormality relation
of the characteristic fields proposed by Chang and Harrington in [17].
Furthermore, given the increasing number of applications of the TCM
they advised to avoid these solutions. These solutions were regarded
as non-physical solutions. Even if these non-physical solutions do
not satisfy the orthonormality condition for the characteristic fields,
it is not demonstrated that their contribution can be discarded for
the total field within the dielectric body. Furthermore, the role of the
source location in the excitation of these modes has not been fully
covered. Thus, depending on the excitation considered, wire source
within the dielectric body or incident plane-wave, the non-physical
solutions may or may not be excited.

Here, the research carried out concerns mainly the physical inter-
pretation of the characteristic modes of an infinite dielectric circular
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cylinder when a PMCHWT integro-differential formulation is used.
Given the canonical nature of the problem, the analysis leads to
explicit analytical solutions, providing faster solutions and deeper
knowledge than a purely numerical analysis. In addition, this ana-
lytical solution will serve as a reference to compare with numerical
MoM solutions based on SIE. As part of the analysis, the contribution
of each eigensolution to the total electric and magnetic equivalent
currents is discussed. This discussion is carried out considering two
situations: a normally incident TMz plane wave and an electric line
source located inside the cylinder. This will help to clarify the role
of all characteristic modes provided by the PMCHWT formulation.

Given the purpose of this communication, the theoretical develop-
ment leading to the analytical matrix operators has not been included
for brevity. Moreover, only the infinite dielectric circular cylinder is
considered for simplicity, considering only those modes that can be
excited under normal incidence. Other geometries are expected to be
studied in future work.

Notice that since the objective of this work is to demonstrate
that the so-called non-physical modes can contribute to the elec-
tromagnetic field, it will be enough to find a case for which these
modes contribute to the total field. Thus forcing us to rethink the
physical interpretation of these modes. Therefore, the simplest case of
a centered line source in the middle of the dielectric circular cylinder
will suffice to this purpose.

II. CHARACTERISTIC MODES OF INFINITE DIELECTRIC

CIRCULAR CYLINDERS

Let us directly consider the integro-differential matrix operators in
(1) for TMz , and in (2) for TEz , where a is the cylinder radius,
H

(2)
n (x) are the Hankel functions of the second kind, Jm(x) the

Bessel functions of the first kind, and k1 and k2 the outer and inner
wavenumbers, respectively.

These operators have been obtained analytically for an infinite
dielectric cylinder of circular cross-section using the PMCHWT
formulation used by Chang and Harrington in [4]. Furthermore, since
the infinite circular cylinder is a canonical geometry, it is noteworthy
to mention that n index dependence in matrix operators (1) and (2)
implies orthogonality between the n modes and they can be solved
independently from each other. The resulting matrix equation in [4]
is repeated in (3) for clarity,[

Le N
N Lm

][
J
jM

]
tan

=

[
Einc

jHinc

]
tan

(3)

where Einc and Hinc are the incident fields, J and M are the
total electric and magnetic surface equivalent currents, [· ]tan means
tangential component of the bracketed quantity on the cylinder sur-
face, and Le, Lm and N are the operators involved in the PMCHWT
formulation. The imaginary number j is an added factor employed to
make the matrix operator symmetric. For the sake of brevity, vectors
in (3) can be grouped as

f =
[

J
jM

]
g =

[
Einc

jHinc

]
(4)

and the matrix operator as

T =

[
Le N
N Lm

]
(5)

Therefore equation (3) can be written as

T (f) = gi (6)
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Fig. 1: Geometry and material of the considered infinite dielectric
circular cylinder

where subscript tan has been dropped for brevity. See [4] for more
details about the derivation of operator (5).

The dielectric circular cylinder is shown in Fig. 1. The pairs
(ρ, φ) and (ρ′, φ′) are observation and source point locations in
polar coordinates, respectively. Pairs (εr1 , µr1) and (εr2 , µr2) are
the relative permittivity and permeability for outer and inner media,
respectively.

The characteristic eigenvalues of a given n-th mode are calculated
solving the weighted eigenvalue problem (7) on the Tn operators (1)
and (2). Since Tn is symmetric, it can be expressed in terms of its
Hermitian parts as Tn = Tn,re+jTn,im, and the eigenvalue equation
defining the characteristic modes is

[Tn,im][fn] = λn[Tn,re][fn] (7)

In (7), λn are real characteristic eigenvalues and fn the coefficients
of the characteristic cylindrical modes {cos(nφ), sin(nφ)}, or char-
acteristic modes. The characteristic modes are normalized to radiate
unit power. The usual orthogonality relationships are expressed as

〈fm, Tn(fn)〉 = 〈f∗m, Tn(fn)〉 = (1 + jλn)δm,n (8)

〈fm, Tn,re(fn)〉 = 〈f∗m, Tn,re(fn)〉 = δm,n (9)

〈fm, Tn,im(fn)〉 = 〈f∗m, Tn,im(fn)〉 = λnδm,n (10)

These equations show that the eigenvectors form a weighted
orthogonal set over the material body surface.

As it will be discussed later, since the total electric and magnetic
current distributions are function of their characteristic currents, it is
useful to write equation (7) as a function of their electric and magnetic

characteristic currents, Jλ
(i)
n

n and Mλ
(i)
n

n respectively.

Fig. 2: Comparison between analytic and numerical characteristic
eigenvalues for the infinite dielectric circular cylinder

[
X Nim
N t
im B

]
n

[
J
λ
(i)
n

n

M
λ
(i)
n

n

]
= λ(i)

n

[
R Nre
N t
re G

]
n

[
J
λ
(i)
n

n

M
λ
(i)
n

n

]
(11)

In equation (11), X , B, R, G, Nim and Nre are the general
tangential operators used from the PMCHWT formulation in [4]. It
is important to emphasize that since each n-th mode has associated
a system of two equations with two unknowns, it will involve two
eigenvalues and two characteristic eigencurrents. These two solutions
can be obtained for each n-th mode independently of the other modes
solving (11), where i = 1, 2 is the index to distinguish the two
solutions.

Now, let us consider as an example a non-magnetic cylinder of
radius a = 5 mm and permittivity εr2 = 9. The outer media is
assumed vacuum. See Fig. 1. Next, the characteristic eigenvalues
of the cylinder will be studied to check whether the so-called non-
physical modes contribute to the electromagnetic field, and whether
or not removing these solutions influence the accuracy of the resulting
fields.

The characteristic eigenvalues of the cylinder are shown in Fig. 2.
These analytical eigenvalues λ(i)

n , corresponding to matrices (1) and
(2), are obtained using (11). λ(i)

n are compared with those obtained
numerically using FEKO [18]. Note that a 1-dimensional periodic
boundary condition and the surface equivalence principle were used
to simulate an infinite cylinder with FEKO. Fig. 2 shows an excellent
agreement between the numerical and the analytical solutions. Those
few points scattered outside the curve are due to purely numerical
errors, since they do not fit with the curves obtained analytically.

As Fig. 2 shows, two types of curves can be clearly distinguished:
curves with negative slope and curves with positive slope. Negative
slope curves in this context are referred to as non-physical mode
eigenvalues and positive slope curves as the physical ones. To
distinguish one eigenvalue from the other, superscripts (1) and (2) in
λ
(1)
n and λ(2)

n , have been used for physical and non-physical modes,
respectively. Furthermore, each eigenvalue has its associated subscript
indicating the polarization type and the order of the cylindrical
harmonic solution, e.g., TMz

0 . It is interesting to see that eigenvalues
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corresponding to TEz0 and TMz
1 coincide. Turning to the non-

physical modes, this term was adopted in [10] because they do not
satisfy the far field orthonormality condition (12) associated to the
scattered characteristic far fields En and Em.

1

η

∫∫
EmE∗nds = δm,n (12)

Rather than obtaining a value of unity when m = n, the researchers
in [10] observed that the numerical evaluation of equation (12) on
non-physical modes produced close-to-zero values instead.

However, this analytical study reveals that, at least for a 2D circular
cylinder, an accurate computation of the far field under normal
incidence leads to zero when computing equation (12) for all non-
physical modes and for any given frequency. These results have been
obtained using equations (13) for TMz

n and (14) for TEzn incidence.

Ezn =−
√

j

8πk1

e−jk1ρ
√
ρ∮ 2π

0

(
ωµ0Jn · ẑ− k1Mn · φ̂

)
e−jk1ρ

′cos(φ−φ′)dφ′
(13)

Eφn =

√
j

8πk1

e−jk1ρ
√
ρ∮ 2π

0

(
k1Mn · ẑ + ωµ0Jn · φ̂

)
e−jk1ρ

′cos(φ−φ′)dφ′
(14)

In fact, what happens is that fields radiated by the equivalent
electric and magnetic currents in (13) and (14) cancel each other for
the nonphysical modes when m = n. So there is no field radiated by
these non-physical modes. Therefore, as a first conclusion, it would
be inappropriate to say that condition (12) is not met for the non-
physical modes since in reality there is no radiation at all from these
modes.

As is well known [4], the scattered field can be expressed as the
sum of the fields scattered by all characteristic currents. In view
of previous result, the question arises about whether these modes
contribute to the total field in the different regions involved and even
whether the location of the source with respect to the dielectric body
(inside or outside) may play a role in their contribution. As it will
be demonstrated in the next section, the term non-physical may not
be completely appropriate for these modes since it is found that they
do contribute to the total electric field within the cylinder when the
source is also within it.

III. ON THE CONTRIBUTION TO THE FIELD OF THE TWO

PMCHWT EIGENSOLUTIONS.

To understand better the eigencurrents associated to eigenvalues
λ
(1)
n and λ(2)

n , it is necessary to go deeper into the formulation. The i-
th eigenvector of equation (11) is related to the i-th eigenvalue. These
eigenvectors form a weighted orthonormal set over the material body
surface. Furthermore, the two eigenvectors of each n mode combine
to get the total induced current distribution when an excitation field
is considered. Depending on the location of the source (internal
or external to the surface of the cylinder), the i = 1 and the
i = 2 eigenvectors will be excited or not. Each i-th eigenvector is
a characteristic mode. An expression for the total induced current
distribution as a function of the characteristic modes can be written
as follows,

[
J
jM

]
=

∞∑
n=−∞

2∑
i=1

γni

[
J
λ
(i)
n

n

jM
λ
(i)
n

n

]
{cos(nφ), sin(nφ)} (15)

where the excitation coefficients are

γni =

[
J
λ
(i)
n

n jM
λ
(i)
n

n

] [
Einc

jHinc

]
(1 + jλ

(i)
n )

(16)

Thus, the total current is given by the corresponding excited
characteristic modes given by the two i-th solutions. Therefore both
i-th eigenvectors and eigenvalues have to be taken into account. The
analytical results for the total current distribution considering equation
(15) for an external or an internal incident field are presented below.

On the one hand, Figs. 3a and 3b show the total electric and mag-
netic equivalent currents obtained for a TMz plane wave impinging
normally on the dielectric cylinder surface at f = 4 GHz. To calculate
the total current distribution using equation (15), the incident plane
wave was written in terms of cylindrical wave functions.

Einc = E0

+∞∑
n=−∞

j−nJn(k1ρ)e
jnφẑ (17)

Hinc = E0/η1

+∞∑
n=−∞

j−(n+1)J ′n(k1ρ)e
jnφφ̂ (18)

Either in Fig. 3a or 3b, the contribution of the non-physical
solution to the total current is found to be exactly zero. It can be
seen that when the TMz excitation is considered, only the solution
with i = 1 contributes to the total current distribution. Although
obvious, it is important to point out that since the contribution of
non-physical modes to the total current is zero, their contribution to
the electromagnetic field will equally be zero, either inside or outside
the cylinder.

Let us consider now an electric line source within the cylinder.
The source is located along the z-axis for simplicity. As in the
example above, equation (15) is used, but now the incident electric
and magnetic fields are,

Einc = −k2η2I
4

H
(2)
0 (k2ρ)ẑ (19)

Hinc =
k2I

4j
H

(2)
1 (k2ρ)φ̂ (20)

The goal is to know whether non-physical modes are excited
or not. Since the excitation is rotationally symmetric, so are the
equivalent currents and only TMz

0 mode contributes to the total field.
Table I shows amplitude and phase of the total electric and magnetic
equivalent currents obtained for this case. Results were obtained for
a frequency of 4 GHz. Unlike for a plane wave, in this case both
characteristic mode solutions, i = 1 and i = 2, do contribute to total
equivalent currents. Both modes are meaningful under this sort of
excitation. Letter X in Table I is used to simplify notation and stands
for electric, J , or magnetic current, M .

Now, the electric field radiated by the physical (i = 1) and
nonphysical (i = 2) solutions produced by the currents in Table I
are obtained. Equations (21) and (22) are the scattered outer and
inner electric fields, respectively. These fields are obtained in terms
of the characteristic modes i = 1 and i = 2.
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(a)

(b)

Fig. 3: Contribution of each eigensolution when impinging by a
normally incident TMz plane wave: (a) To the total electric current.
(b) To the total magnetic current.

TABLE I: Contribution of each eigensolution to the total electric and
magnetic current for an electric line source excitation in z-axis.

Electric current, X = J
[Abs (A/m), Phase (rad)]

Magnetic current,
X = M [Abs (V/m),

Phase (rad)]

γ0
1X

λ
(1)
0

0 [2.8732e+10, 2.9148] [4.5211e+12, 1.3441]

γ0
2X

λ
(2)
0

0 [3.1861e+08, 1.8454] [5.6004e+11, 0.2746]∑2

i=1
γ0
iX

λ
(i)
0

0 [2.8887e+10, 2.9052] [4.8154e+12, 1.2419]

Ezscat,out =
η1πk1a

2
J0(k1a)H

(2)
0 (k1ρ)

2∑
i=1

γ0
i J

λ
(i)
0

0

+
k1πa

2j
J1(k1a)H

(2)
0 (k1ρ)

2∑
i=1

γ0
iM

λ
(i)
0

0

(21)

Ezscat,in = −η2πk2a
2

J0(k2ρ)H
(2)
0 (k2a)

2∑
i=1

γ0
i J

λ
(i)
0

0

−k2πa
2j

J0(k2ρ)H
(2)
1 (k2a)

2∑
i=1

γ0
iM

λ
(i)
0

0

(22)

Figs. 4a, 4b and 4c show these fields graphically as a function of
the radial distance to the origin, ρ. Fig. 4a shows the total electric
field. It includes the contribution of the line source and the equivalent
currents. As expected, the field is continuous at the surface interface,
ρ = 5 mm. Figs. 4b and 4c show the scattered electric field generated
by the equivalent currents i = 1 and i = 2, respectively. Notice

(a)

(b)

(c)

Fig. 4: Electric field contribution inside and outside the cylinder by
the two equivalent currents when fed by an electric line source in the
z-axis (f = 4 GHz, a = 5 mm, εr2 = 9): (a) Total electric field . (b)
Scattered field due to the i = 1 equivalent currents. (c) Scattered field
due to the i = 2 equivalent currents (non-physical modes solution).

that a different scale was used in Fig. 4c for clarity. It is worth
noticing that the outer scattered field radiated by the equivalent current
corresponding to i = 2 is zero. This current only contributes to the
inner scattered field, ρ < 5 mm.

For the sake of completeness, it is also interesting to show the
behavior of the magnetic field radiated by the physical (i = 1) and
nonphysical (i = 2) solutions produced by the currents in Table I, as
done for the electric field. Equations (23) and (24) are the scattered
outer and inner magnetic fields, respectively. These fields are obtained
in terms of the characteristic modes i = 1 and i = 2.
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(a)

(b)

(c)

Fig. 5: Magnetic field contribution inside and outside the cylinder by
the two equivalent currents when fed by an electric line source in the
z-axis (f = 4 GHz, a = 5 mm, εr2 = 9). (a) Total magnetic field. (b)
Scattered field due to the i = 1 equivalent currents. (c) Scattered field
due to the i = 2 equivalent currents (non-physical modes solution).

Hz
scat,out =−

πk1a

2j
J0(k1a)H

′(2)
0 (k1ρ)

2∑
i=1

γ0
i J

λ
(i)
0

0

+
k1πa

2η1
J1(k1a)H

′(2)
0 (k1ρ)

2∑
i=1

γ0
iM

λ
(i)
0

0

(23)

Hz
scat,in =

πk2a

2j
J ′0(k2ρ)H

(2)
0 (k2a)

2∑
i=1

γ0
i J

λ
(i)
0

0

−k2πa
2η2

J ′0(k2ρ)H
(2)
1 (k2a)

2∑
i=1

γ0
iM

λ
(i)
0

0

(24)

The same behaviour can be observed for the magnetic field.
Figs. 5a, 5b and 5c show these fields graphically as a function of
the radial distance to the origin, ρ.

Following the discussion in previous section, these results support

the motive for which the so-called non-physical modes do not comply
with the orthonormality condition (12). There is no electromagnetic
radiation from non-physical characteristic mode outside the cylinder
surface. Therefore they should be named more properly as non-
radiating modes instead, since they do contribute to inner fields when
source is inside.

These analytical results allow us to understand better the character-
istic eigenvalues obtained numerically from the PMCHWT formula-
tion in previous studies, when analyzing an infinite dielectric circular
cylinder. These conclusions are independent of frequency, material or
radius used for the cylinder.

IV. CONCLUSION

The object of this communication has been to analyze accurately
and to clarify the underlying physics of the characteristic mode
solutions provided by the PMCHWT formulation for dielectric bodies.
For that purpose, an infinite dielectric circular cylinder has been
selected. For such canonical problem, an analytical solution can
be provided, cutting out from the results interpretation any shadow
associated to numerical errors. Thanks to that, it has been possible to
demonstrate that all solutions provided by the PMCHWT formulation
have indeed a physical meaning. This was necessary since, to date,
there has been doubts on certain mathematical solutions of this
formulation which were classified as non-physical. In this regard it is
worth mentioning that the electromagnetic suite FEKO [18] currently
eliminates these modes from the solution presented to the user. In
reality so-called non-physical modes do contribute to the field within
the cylinder when the excitation is also in it. Therefore it would be
more appropriate to qualify them as non-radiating modes.

It is important to emphasize that the results obtained in this
contribution do not contradict the key finding in [10] regarding the
non-radiating nature of their non-physical modes for 3D arbitrary
geometries. In fact it supports it and clarifies the cause behind these
modes not satisfying the field orthogonality relation. Likewise, it is
reasonable to infer that non-radiating modes will contribute too to the
field within a 3D arbitrary structure when the source is within it, as
they do for the cylinder, since the cause of it lays on the properties
of the PMCHWT integro-differential operator, not in the geometry
itself. Certainly this statement will require a numerical proof but this
is left for future work.
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