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Abstract. 
Purpose:  

To assess the peripheral refraction induced by Fractal Contact Lenses (FCLs) in myopic eyes 

by means of a two-dimensional Relative Peripheral Refractive Error (RPRE) map. 

Materials and Methods: 

This study involved twenty-six myopic subjects ranging from -0.50 D to -7.00 D. FCLs 

prototypes were custom-manufactured and characterized. Corneal topographies were taken in 

order to assess correlations between corneal asphericity, lens decentration. Two-dimensional 

RPREs were measured with an open-field autorefractor at 67 points, covering the central 60 

x 30 degrees of the visual field. The bidimensional RPRE vector components: M, J0 and J45  

of the difference between the values obtained with and without the FCLs in the eye were 

obtained. Additionally, the FCL induced peripheral refraction in tangential and sagittal 

planes was computed along the horizontal meridian. 

Results: 

Significant correlations were found between the corneal asphericity and vector components 

of the RPRE in the nacked eyes. FCLs were decentered a mean of 0.7 ± 0.19 mm to the 

temporal cornea. M decreased asymmetrically between nasal and temporal retina after fitting 

the FCLs with a significant increment of the myopic shift beyond 10º (p<0.05). The 

maximum myopic shift at the peripheral retina (M= -1.3 D) was located at 20º. The two-

dimensional RPRE maps showed the FCLs decentration. Induced by the FCLs, significant 

differences for all vector components were found in peripheral retina.  

Conclusions 

As predicted by ray-tracing simulations, FCLs fitted in myopic eyes produce a myopic shift 

of the RPRE. The two-dimensional RPRE maps show information about the lens 

performance that is hidden in the conventional one-dimensional meridional representations. 

 

Key Words: myopia progression, contact lenses, fractal, peripheral refractive error, two-

dimensional maps. 
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Introduction 

During the last years myopia control therapies have deserved a large interest among researchers 

and vision care professionals. Several methods have been proposed to slow myopia progression; 

among them, non-pharmacological treatments, like orthokeratology and peripheral defocus 

modifying contact lenses (CLs) achieved very good outcomes, which has been attributed to the 

induction of a myopic Relative Peripheral Refractive Error (RPRE), although the optical 

mechanisms for myopia development still remain controversial.1-7  Different designs of 

multifocal CLs were proposed to this aim, 6,8-10  and consequently, the amount and extension of 

the induced RPRE vary among lenses. Since the ocular growth during the emmetropization 

process might depend on the stimulated retinal areas,11 it is expected that different designs will 

provide different results. Therefore, to obtain information about RPRE induced by different 

lenses in the spherical, but also in the astigmatic component of the refraction, across the whole 

paracentral retina seems to be of great importance to understand the lens success in myopia 

progression. In particular, it is likely that the astigmatic component of the RPRE plays a role in 

the myopia development in humans, as it has been demonstrated it plays in the emmetropization 

in monkeys12 and chicks.12-13 

In a previous paper,10 we have proposed a new design of CLs for myopia control, named Fractal 

Contact Lenses (FCLs). The potentiality of FCLs to produce a myopic RPRE was demonstrated 

by ray tracing methods in model eyes. However, the good theoretical performance obtained with 

FCLs has not been still validated in real eyes. Therefore, the main aim of this study is to assess 

the peripheral refraction induced by FCLs. To do that, FCLs prototypes were specially 

manufactured and characterized. In order to obtain a complete assessment of the lens 

performance in real myopic eyes, we measured the RPRE induced by the lenses at 67 locations 
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across the 60º x 30º of right eye visual field with an open field autorefractometer. The mean 

values of the measured dioptric power vectors (M, J0 and J45), were represented as contour plots 

in 2D power maps. In this sense, our approach improves the assessment methods employed in 

previous works evaluating contact lenses, because we are able to obtain complete 2D information 

about the induced RPRE at different positions of the visual field. 

 

 

Materials and Methods 

Contact Lenses construction and characterization 

FCLs are multizone bifocals with a special design as described in Ref. [10]. The profile of the 

lenses are shown in Fig. 1A). A set of FCLs prototypes with treatment labeled power of +2.00 D 

and correction powers ranging from -0.50 D to -7.00 D in -0.50 D steps, were fabricated using a 

precision lathe (Optoform 40, Sterling Ultra Precision, Largo, USA). The lens material was 

Hioxifilcon A (Benz G5X p-GMA/HEMA), whose refractive index, hydrated and at 35º, is 

1.401. Each FCLs prototype was manufactured with a diameter of 14.50 mm and two different 

base curves: 8.4 mm and 8.6 mm. The constructed lenses were assessed with the Nimo TR1504 

(LAMBDA-X, Nivelles, Belgium) contact lens power mapper (version 4.2.6.0 r477). The 

instrument software allows to obtain the dioptric power profiles of multifocal CLs, however it is 

not able to locate the zones in a multizone CLs and it is the operator who must enter the radii of 

the zones (with a maximum of five zones). For this reason, we developed a custom software 

using MATLAB (Mathworks, Inc., Natwick, MA) to precisely detect the power transition 

between therapeutic and compensation zones.14 The algorithm computes the second derivative of 

the dioptric power profile exported from the NIMO, and shows the transition between two zones 
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of different power (see Fig. 1B). The program also obtains the parabolic profiles of both the base 

(far distance) power of the lens and its therapeutic power, see Fig. 1C). For a given radius ρ of 

the pupil, the fourth-order Zernike spherical aberration of the lens: C4,0 is obtained by fitting the 

profile to a parabolic curve P(r)=P0+br2 as: C4,0= b ρ4 / 24√5 where P0 is the paraxial power (at 

r=0) (see Fig. 1C).15 The power profile at the therapeutic zones is obtained by substracting the 

results of Fig. 1B and 1C) as shown in Fig. 1D). By using this method, each lens was relabelled 

with its true (experimental) therapeutic and correction power. 

 

Subjects and procedures 

The research adhered to the tenets of the Declaration of Helsinki. All participants gave written 

consent after explanation of the nature of the study which was approved by the Institutional 

Review Board of the University of Valencia. Twenty-six myopic subjects (mean age 23.77 ± 

3.62 years) participated in this study (18 females and 8 males). All participants underwent a 

complete eye exam including objective and subjective refraction and slit-lamp exploration. Only 

right eyes were considered. Inclusion criteria were: myopic eyes ranging from -0.50 D to -7.00 D 

(mean -2.62 ± 1.59 D) and astigmatism ≤ 0.75 D with no ocular diseases, strabismus or 

amblyopia with normal and corrected distance visual acuity better than 0.2 log MAR.  

Before fitting the FCLs, corneal topographies were taken for the naked eye with the Keratron 

Scout topographer (Optikon 2000 SpA, Rome, Italy). Elevation data were exported in binary 

format (.XLB and .ZLB extension files) and a custom software was programmed in MATLAB in 

order to compute corneal asphericities, fitting elevation data to a conic function,16 at the nasal 

and temporal sides, along the horizontal (0º-180º) meridian.  
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Subjects were fitted with the FCL of the constructed set having the compensation power closer to 

the spectacle refraction after correction of vertex distance power, and with base curve that best 

matched the corneal radius. The behaviour of the lenses, movement and centration, were 

evaluated by the examiner twenty minutes after fitting. Then corneal topographies were taken 

again but with the patient wearing the best fitted FCL. The distance from the centre of the first 

therapeutic zone and the centre of the pupil diameter was measured with the caliper tool of the 

Keratron Scout software to obtain the FCL decentration in each case. 

 

Peripheral Refractive Error 

Objective central and peripheral refractions were measured with an open-field autorefractor 

(Grand-Seiko WAM-5500, Grand-Seiko Co., Ltd., Hiroshima, Japan). All measurements were 

made in non-cyclopegic conditions at environmental mesopic light conditions to ensure 

minimum pupil diameters of 4 mm in all participants. 

Participants looked at 67 fixation targets (high contrast circles of 1” diameter located on a 2 m 

distant wall) covering 60º x 30º of the central visual field, see Fig. 2. Measurements were taken 

with the eye rotation technique,17 and the alignment was achieved with the instrument alignment 

camera, so that the pupil of the tested eye was centered with respect of the measuring axis. 

Participants fixated the targets sequentially from left to right, line by line from the top. 

Refractions in clinical notation (sphere, cylinder and axis) were exported for analysis in 

MATLAB code. Each measure was converted to vector components: spherical equivalent M, 

with/against the rule astigmatism: J0, and oblique astigmatism: J45.18 The program requests the 

examiner to obtain a minimum of three averaged measures per fixation point up to having 

standard deviations lower than 0.3 D, to compute the mean values of M, J0, ans J45. The RPRE 
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was measured in each subject first with the naked eye (baseline state) and then in the same eye 

fitted with the FCL. The RPREs were calculated by substracting the central values of each vector 

component from the corresponding peripheral one. Contour maps representing the mean values 

of M, J0 and J45 at each visual field location were generated using cubic interpolation of splines 

in steps of 0.5 degrees. Recorded data was used to compute also the tangential (FT = M + J0) and 

sagittal (FS =M − J0) power errors along the horizontal meridian. 

 

Statistical Analysis 

Statistical analysis was done using SPSS software version 20 (SPSS Inc., Chicago, IL, USA), 

and p<0.05 was considered to indicate significance. Normal distributions were tested with the 

Shapiro-Wilk test. Paired t-tests were used to analyze the differences between the RPRE vector 

components obtained with the FCLs and with the nacked eye. Pearson correlation analyses were 

performed to determine the relationship between variables. Power analysis was performed using 

G Power version 3.1.9.2 (available at http://www.gpower.hhu.de/). The sample size in this study 

offered 88% statistical power at a 5% level to detect a difference in RPRE of 0.25 D with and 

without FCLs when the expected standard deviation (SD) of the mean difference was 0.44 D.  

 

Results 

Contact Lenses: Power profiles and fitting 

The power profiles of the therapeutic zones of the constructed lenses had a mean value of 1.32 ± 

0.28 D, which resulted 0.68 D lower than the theoretical labeled +2.00D power. The 

compensation power of the FCL prototypes was negatively correlated with the experimental 

http://www.gpower.hhu.de/
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therapeutic power (r = -0.786, p = 0.007); i.e.; in the prototypes we found that the higher was the 

absolute value of the compensation power, the lower was the therapeutic power of the lens. 

When fitted in patients, topological data revealed that CLs were decentered towards temporal 

cornea, ranging from 0.39 mm to 1.05 mm (mean 0.7 ± 0.19 mm) whereas mean vertical 

displacement was 0.00 ± 0.49 mm (ranging from 0.64 mm down to 1.38 mm up).  The mean 

value of the pupil entrance diameter was 3.67 ± 0.53 mm measured with the Keratron in the 

nacked eye. See Figure 3. 

The mean values of the corneal asphericities along a 4 mm of semi-chord in the horizontal 

meridian were -0.07 ± 0.09 and -0.24 ± 0.18 for the temporal and nasal cornea respectively. 

No correlations were found between the amount of lens decentering and the asphericity of the 

cornea along temporal and nasal sides. 

 

Relative Peripheral Refractive Error 

Significant correlations were found between the corneal asphericity and vector components of 

the RPRE at several points along the horizontal meridian in the nacked eye. These values are 

reported in Table 1. 

Baseline mean values of the RPRE for M, J0 and J45 are represented in Figures 4A, 4D and 4G, 

respectively. Figures 4B, 4E and 4H show the mean values for the same eyes wearing FCLs. The 

net effect of the lens is shown in Fig. 4C, 4F, and 4 I. In these plots, crosses were drawn for those 

positions where the myopic RPRE induced by the FCL is statistically significant. It can be seen 

that the mean myopic shift induced by FCLs increases with the eccentricity and becomes 

significant (p < 0.05) at 10º in the temporal retina (nasal visual field). Note that the effect of the 

FCLs on the refractive components was to produce an asymmetry from nasal to temporal visual 
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fields (Figures 4B, 4C, 4F and 4I), reflecting the lens decentration to the temporal cornea. In fact, 

the effect of the lens on the spherical equivalent M was almost uniform around the center of the 

lens, while, as expected, affects mainly the horizontal and vertical meridians for the J0 

component and the same for the J45 component in oblique meridians for (see Figure 4G and 

Figure 4H).  

Figure 5A shows the spherical equivalent (M) along the horizontal meridian, both, at the 

baseline state and with the FCLs. An increase of the myopic shift was found with the FCLs at the 

temporal retina from 10º to 30º (p<0.05).The M values of the RPRE computed by ray tracing in 

our previous work,11 on a myopic model eye (-2,00 D) fitted with a FCL of -2.00D, having 

therapeutic zones 1.32 D and decentered 3.67 mm horizontally are shown in the same figure. An 

excellent agreement can be observed between numerical and the experimental results. We found 

that the myopic shift (M) induced by the FCLs at 25º and 30º in the temporal field decreased 

with the lens decentration through the temporal side of the cornea r = 0.50 (p = 0.013) at 25º and 

r = 0.54 (p = 0.006) at 30º. The tangential and sagittal power errors along the horizontal meridian 

are shown in Fig 5B and 5C. As can be seen the FCLs produce an increasing myopic shift in the 

FT  curve, with a maximun value at 20º of the temporal retina. FS also reveals a myopic shift with 

the FCL, even though less markedly than FT, but highly enough to move the sagittal foci to the 

front of the retina. 

Discussion 

Derived from experimental studies in animals, that found that the refractive error in the 

peripheral retina can regulate the eye growth, current successful treatments aimed to slow 

myopia progression, such as ortokeratology or multifocal contact lenses are intended to create a 

relative peripheral myopia. In most of the clinical studies, the study of the effect of the proposed 
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solutions was restricted to the analysis of the RPRE, measured in terms of vector components M, 

J0 and J45 along the horizontal meridian,3,6 and only few include the vertical and oblique 

meridians.19-21  

In this work we have presented the first clinical study in which the ability of a new design of CLs 

[10] to create a RPRE in the whole 2D visual field has been demonstrated. Taking into account 

that, on the one hand, the mean power at the treatment zones (+1.32 D) of the manufactured 

lenses was lower than the theoretical labelled power (+2.00 D); and, on the other hand, that lens 

prototypes were decentered during the RPRE measurements an excellent agreement between the 

theoretical and experimental results has been obtained (see Fig.5A).  

A negative correlation was also obtained between the compensation power of the 

prototypes and the power at the therapeutic zones, which means that high power minus lenses 

had less power in the therapeutic zones, than low power FCLs. This effect, that can be attributed 

to the spherical aberration, should be taken into account by manufacturers and prescribers, since 

as we have shown in our theoretical model, higher degrees of myopia should need higher 

treatment powers. In our design, this limitation could be easily solved since the treatment power 

this is a free parameter that affects the peripheral refractive error without compromising the 

central vision, at least for pupil diameters lower than 4.0 mm.10 

For the nacked eye, we found that corneal asphericity along temporal and nasal semichords in the 

horizontal meridian was negatively correlated with the M component; but only for temporal 

cornea and nasal retina whereas for J45 and J0 the negative correlations where found between 

nasal cornea and temporal retina (Table 1). This is also in agreement with theoretical models, 

which assert that the more positive is Q, the more myopic is the peripheral refraction induced for 

M and J0.
22,23

 Therefore, this fact should be considered by clinicians, because more prolate 
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corneas might be expected to progress into more myopia.24,25 For the naked eye, the sample 

showed a relative peripheral myopia lower than -0.50 D for M. We also found a trend for J0 to 

become more negative in both sides of the retina, whereas J45 becomes more negative with 

increasing eccentricity in the superior-nasal to inferior-temporal visual field. These results agree 

with those reported in previous studies that measured peripheral M and oblique astigmatism in 

myopes with a Hartmann-Shack aberrometer.26 On the other hand in our sample, the sagittal 

focus was hyperopic in the naked eye along the nasal visual field (Figure 5C), but became 

myopic with the FCLs. This result is an improvement of FCLs over the ortokeratology for 

myopia control, because in ortokeratology, especially in low myopes, this effect has not been 

observed.4  

In conclusion, in this work we have experimentally validated ability of the FCLs to create a 

myopic RPRE in myopic eyes. Excellent agreement between the theoretical prediction and the 

experimental results was obtaneid. In fact, we also have confirmed that, considering both the 

imperfections in the manufacturing process of the prototypes, and the lens decentration, the 

theoretical model used in Ref. [10] can accurately be used to predict the lens effect in real eyes. 

The FCL design was intended to not interfere with the normal functioning of accommodation; 

i.e. to avoid any additional blur at near vision under photopic lighting conditions.10 This is also 

important because the role that accommodation plays in the myopia progression is still an issue 

to be resolved.27 

On the other hand, the new two-dimensional representation of the RPRE employed to study the 

effect of the lens in different areas of the visual field, offered us further information about what 

happens in a wide area of the retina, especially considering the lens decentration. This means that 

this representation is convenient for increasing the knowledge about the changes in the 
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astigmatism components induced by the lenses. For instance, we found that for the J45 

component minor changes are induced by the lens that can only be appreciated in oblique 

meridians. 
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Tables 

Table 1. Correlations between Relative Peripheral Refractive Error (RPRE) vector components 

and asphericity at the Temporal or Nasal semi-chord of the cornea from the normal vertex to 4 

mm of radial position in the nacked eye. Only significant values are included. 

 
Retinal Area (°) RPRE (D) 

Mean ± SD 
Corneal side Pearson r 

M    
-25 (NR)  -0.22±0.47 Temporal -0.452, p=0.040 
-15 (NR) -0.21±0.40 Temporal -0.526, p=0.014 
-10 (NR) -0.27±0.29 Temporal -0.436, p=0.048 

J0    
+25 (TR) -0.82±0.29 Nasal -0.572, p=0.007 
+20 (TR) -0.56±0.22 Nasal -0.562, p=0.008 
+10 (TR) -0.1±0.2 Nasal -0.505, p=0.019 

J45    
+30 (TR) 0.11±0.25 Nasal -0.581, p=0.006 
+20 (TR) 0.05±0.15 Nasal -0.465, p=0.033 
+10 (TR) -0.01±0.09 Nasal -0.478, p=0.028 
+5 (TR) 0.01±0.09 Nasal -0.467, p=0.033 

NR=Nasal retina; TR= Temporal retina.  
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Captions 

Figure 1. A) Theoretical bifocal profile of the FCL lens curvature B) Measured zones in a 

constructed FCL with mean far power -3.5 D. Vertical lines are the limits of the zones detected 

by the custom software (see Ref. 14). C) Profile of the treatment power across the lens obtained 

by substracting the base (far) power to the curve in Fig. B).  D). Radial variation of the base and 

treatment powers fitted to a parabolic radial profile reflecting the spherical aberration of the 

lens.
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Figure 2. Schematic representation of the RPRE measurement process with WAM-5500. The 

circles represent the discrete points measured with the eye rotation method.  

 
 

http://www.linguee.es/ingles-espanol/traduccion/schematic+representation.html
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Figure 3. Topographic image of the FCL fitted in a patient’s eye. Black and white crosses 

indicate the centers of the pupil and the lens respectively. In this case a decentration of 0.57 mm 

was measured. 
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Figure 4. Mean values of the relative peripheral refractive error (RPRE) across the visual field 

for the vector components M, J0 and J45, at the baseline state (left); with FCLs fitted in the eye 

(centre) and the difference (right). Crosses in the right column indicate field positions (see Fig. 

2) where the myopic RPRE induced by the FCL is statistically significant (P<0.05).  
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Figure 5. (A) Mean values of the spherical equivalent M (RPRE) along the horizontal visual field 

in the nacked eye (Baseline) and with Fractal Contact Lenses (FCL) The black symbols and 

dashed line represent the theoretical values computed by ray tracing (see the main text for 

details). (B) Tangential and (C) Sagittal powers along the horizontal retina in the baseline state 

and with FCLs. An asterisk over each eccentricity was represented to describe significant 

differences between baseline and with FCLs (p<0.05). 

 


