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Abstract: This work is a proof of concept for the design of active packaging materials based
on the anchorage of gated mesoporous silica particles with a pH triggering mechanism to a
packaging film surface. Mesoporous silica micro- and nanoparticles were loaded with rhodamine
B and functionalized with N-(3-trimethoxysilylpropyl)diethylenetriamine. This simple system
allows regulation of cargo delivery as a function of the pH of the environment. In parallel,
poly(ethylene-co-vinyl alcohol) films, EVOH 32 and EVOH 44, were ultraviolet (UV) irradiated
to convert hydroxyl moieties of the polymer chains into –COOH functional groups. The highest
COOH surface concentration was obtained for EVOH 32 after 15 min of UV irradiation. Anchoring
of the gated mesoporous particles to the films was carried out successfully at pH 3 and pH 5.
Mesoporous particles were distributed homogeneously throughout the film surface and in greater
concentration for the EVOH 32 films. Films with the anchored particles were exposed to two liquid
media simulating acidic food and neutral food. The films released the cargo at neutral pH but kept the
dye locked at acidic pH. The best results were obtained for EVOH 32 irradiated for 15 min, treated for
particle attachment at pH 3, and with mesoporous silica nanoparticles. This opens the possibility of
designing active materials loaded with antimicrobials, antioxidants, or aromatic compounds, which
are released when the pH of the product approaches neutrality, as occurs, for instance, with the
release of biogenic amines from fresh food products.

Keywords: MCM-41; gated mesoporous silica particles; EVOH films; anchorage on film surface;
active packaging; pH-mediated delivery

1. Introduction

Active packaging is a novel technology in which the packaging system is designed to actively
improve the stability and/or quality of the packaged product from processing to consumption. This
technology is being implemented in various industries, although, owing to the fast perishability of
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food, pharmaceutical, and cosmetic products, these are the areas that receive the most attention [1,2].
The mechanism of action is basically related to the release or retention of substances whose presence or
absence is important for the product’s stability or quality. By suitably combining design and mechanism
of action, various active packaging technologies were created, including oxygen scavengers, ethylene
scavengers, humidity controllers, aroma releasers, antioxidant or antimicrobial releasers, enzyme-based
systems, etc. Several interesting reviews were published on this subject [3,4].

There are basically two procedures for designing active packaging systems: manufacture
of an independent device that contains the active agent [5], or manufacture of active materials
that incorporate the agent in the package wall or on the wall surface [6]. Of these two general
procedures, the manufacture of active packaging materials is gaining attention over the development
of independent devices. In the latter, the presence of a device often labeled as toxic because it contains
an inedible component in contact with the product is not well accepted by consumers. Thus, the
incorporation of active agents on or in the polymeric films that constitute the package walls is the
preferred option. Owing to their at least partially amorphous morphology and the presence of free
volume (voids) in polymer matrices, polymeric films allow mass transport (permeation, migration,
scalping, or sorption), processes that are profitable for the design of active materials [6]. However, some
precautions have to be considered in these designs. Firstly, the incorporation of the active substance in
the package walls or the action of the substance should not modify the functional properties of the
packaging throughout its use. Secondly, the substance should not lose activity owing to interactions or
degradations caused by the film manufacturing procedure. Thirdly, the mechanism of action (release,
adsorption) should be maintained and controlled. Finally, and most importantly, the packaging system
should include a triggering mechanism to avoid premature action and partial exhaustion of the system
prior to the presence of the product to be protected. This last condition was achieved through various
procedures: humidity-activated systems [7,8], temperature-activated systems [9], or radiation-activated
systems [10]. Another approach focuses on including substances covalently anchored to the package
walls that exert their action via direct contact with the packaged product, that is, no agent is released or
captured. Such systems were successfully prepared, for instance, via oxidation of a conventional film
surface and anchorage of enzymes [11,12], antimicrobials [13] (such as lysozyme), or antioxidants [14].
Indeed, Goddard, Talbert and Hotchkiss [11] successfully functionalized a polyethylene surface
with lactase to design an active package that reduced the amount of lactose in milk. Muriel Galet,
Talbert, Hernandez Munoz, Gavara and Goddard [12] anchored lysozymes to the surface of ethylene
vinyl alcohol (EVOH) to generate a film with antimicrobial properties against Listeria monocytogenes.
Similarly, Saini, Sillard, Belgacem and Bras [13] anchored a bacteriocin to cellulose fibers with potential
application in active food packaging. Roman, Decker and Goddard [14] prepared an antioxidant active
film via functionalization of a polypropylene surface with polyphenols generated by the action of
laccase. Vasile, et al. [15] covalently bonded chitosan to plasma-treated polyethylene and obtained
a material with antimicrobial properties against Salmonella enteriditis, Escherichia coli, and Listeria
monocytogenes.

Considered from another point of view, new technologies based on nanomaterials or
nanocomposites received massive attention in the packaging field lately, especially in active packaging
research. The new properties and functions of nanoscale particles display new opportunities for
enhancing traditional product performance. A wide range of nanostructured materials were included
as fillers in packaging films to provide barrier properties or improved mechanical resistance, or to
control activity in smart packaging applications [16,17]. Moreover, nanostructures were also included
to provide antioxidant and antimicrobial properties. Biddeci, et al. [18] reported the design of a
pectin-based biopolymer film with both antioxidant and antimicrobial activities. The film was created
by filling the pectin matrix with modified halloysite nanotubes containing essential peppermint oil.
Later, Li, et al. [19] used the solvent volatilization method to prepare polylactide films containing
nanoparticles of silver and titanium dioxide. The developed films showed good antimicrobial activity
against two common food pathogens: E. coli and Listeria monocytogenes.
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Among commented nanostructured materials, mesoporous silica particles (MSPs) exhibit unique
features such as high stability, biocompatibility, nontoxicity, and large load capacity. Moreover, the
possibility of functionalizing the external surface with gate-like ensembles makes these materials
unique candidates for the design of on-command controlled release devices. In fact, a number of gated
materials based on mesoporous silica particles able to deliver the cargo upon application of target
physical (such as light or temperature) [20,21], chemical (pH changes or redox potential) [22,23], and
biochemical (enzymes, antibodies, or DNA) [24] stimuli were reported. These functionalized MSPs
are mainly used in the fields of drug delivery [25–28] or sensing [29], and are prepared in the form of
nanoparticles [30] or microparticles [31]. In contrast, gated MSPs are barely incorporated in polymers
or on surfaces. Moreover, as far as we are aware, MSPs were never previously used in the design of
active packaging.

In this scenario, we report herein the preparation of smart films based on poly(ethylene-co-vinyl
alcohol) (EVOH)-containing gated MSPs covalently anchored and able to modulate the release of
a model molecule in response to changes in the pH of the environment. EVOHs are a family of
copolymers with different ethylene molar percentages, commonly used in packaging technologies
as they provide an excellent oxygen barrier thanks to their high crystallinity ratio and the high
cohesive energy density caused by the large number of hydrogen bonds between macromolecular
chains. Moreover, EVOH not only provides hydrophilicity, but also contains suitable hydroxyl sites for
functionalization [12].

In most reported works about the inclusion of micro- or nanoparticles in packaging systems,
functional nanofillers are mixed with the polymer via three procedures: the solvent casting method,
the melt mixing method, and in situ polymerization [32]. However, these procedures are not suitable
for the present design because the MSP particles require to be exposed to conditions that would open
the gates, promoting the release of the agent included in the particle during preparation. Moreover, if
the particle was included in the polymer matrix, gate opening would be impeded or delayed.

2. Materials and Methods

2.1. Chemicals and Reagents

Tetraethylorthosilicate (TEOS), N-cetyltrimethylammonium bromide (CTABr), triethanolamine
(TEAH3), sodium hydroxide (NaOH), acetonitrile, and N-(3-trimethoxysilylpropyl)diethylenetriamine
(N3) were provided by Sigma (Sigma-Aldrich Química S.L., Madrid, Spain). Films, 75-µm-thick,
of Soarnol DC3203FB ethylene vinyl alcohol copolymer with 32% ethylene molar content (EVOH
32) and Soarnol AT4403B with 44% ethylene molar content (EVOH 44) were kindly provided
by The Nippon Synthetic Chemical Company (Osaka, Japan). Isopropanol, acetone, acetic acid,
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), and Toluidine
Blue O (TBO) were purchased from Sigma (Sigma-Aldrich, Madrid, Spain). Water was obtained from a
Milli-Q Plus purification system (Millipore, Molsheim, France).

2.2. Synthesis of Mesoporous Silica Particless

Microparticulated MCM-41 particles (M) were synthesized following the so-called “atrane route”,
according to the method described by Perez-Esteve, et al. [33]. N-cetyltrimethylammonium bromide
(acting as a structure-directing agent) was added to a solution of triethanolamine (TEAH3) containing
sodium hydroxide (NaOH) and tetraethylorthosilicate (TEOS). Temperature was then set at 118 ◦C.
After the CTABr was dissolved in the solution, water was slowly added with vigorous stirring at 70 ◦C.
This mixture was aged in an autoclave at 100 ◦C for 24 h. The molar ratio of the reagents was fixed at 7
TEAH3:2 TEOS:0.52 CTABr:0.5 NaOH:180 H2O.

Nanoparticulated MCM-41 particles (N) were synthesized using the procedure described by
Perez-Esteve, Fuentes, Coll, Acosta, Bernardos, Amoros, Marcos, Sancenon, Martinez-Manez and
Barat [33]. N-cetyltrimethylammonium bromide was firstly dissolved in 480 mL of deionized water.
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Then, 3.5 mL of a sodium hydroxide solution was then added, and the mixture was heated to 80 ◦C.
Finally, TEOS was added dropwise to the surfactant solution. The mixture was stirred for 2 h to give a
white precipitate. The molar ratio of the reagents was fixed at 1 TEOS:0.1 CTABr:0.27 NaOH:1000 H2O.

After synthesis, the resulting microparticulated or nanoparticulated powder was recovered by
centrifugation, washed with deionized water, and air-dried at room temperature. To prepare the final
mesoporous materials, the as-synthesized solids were calcined at 550 ◦C using an oxidant atmosphere
for 5 h in order to remove the template phase.

2.3. Mesoporous Silica Particle Loading and Functionalization

Once the starting supports (M and N) were synthesized, both supports were loaded with
rhodamine B (M-Rh and N-Rh). Amounts of 100 mg of template-free MCM-41 and 39 mg of
rhodamine B dye (0.8 mmol Rhodamine B/g MCM-41) were suspended in 25 mL of acetonitrile
inside a round-bottom flask in an inert atmosphere. The mixture was then stirred for 24 h at room
temperature to achieve maximum loading in the MCM-41 scaffolding pores.

To obtain loaded and functionalized solids (M-Rh-N3 and N-Rh-N3), an excess of N3 (0.43 mL,
0.015 mmol) was added to the mixtures. The final mixtures were stirred for 5.5 h at room temperature.
The two loaded and functionalized solids were then isolated by vacuum filtration, washed with 300 mL
of water adjusted to pH 2, and dried at room temperature for 24 h.

2.4. Characterization of Mesoporous Silica Particles

Mesoporous silica particles were characterized by means of powder X-ray diffraction (PXRD), N2

adsorption–desorption isotherms, zeta potential, thermogravimetric analyses, and microscopy.
PXRD was performed on a D8 Advance diffractometer (Bruker, Coventry, UK) using CuKα

radiation. N2 adsorption–desorption isotherms were recorded with a Micromeritics ASAP 2010
automated sorption analyzer (Micromeritics Instrument Corporation, Norcross, GA, USA). The samples
were degassed at 120 ◦C in vacuum overnight. The specific surface areas were calculated from the
adsorption data in the low pressure range using the Brunauer–Emmett–Teller (BET) model. Pore size
was determined following the Barrett–Joyner–Halenda (BJH) method. From the XRD and porosimetry
studies, the a0 cell parameter and wall thickness of the various supports were calculated.

The functionalization degree of different particles was estimated by determining the percentage
of organic matter in functionalized particles and confirmed by zeta potential measurements. The
percentage of organic matter was determined by thermogravimetric analyses (TGA) on a TGA/SDTA
851e Mettler Toledo balance, using an oxidant atmosphere (air, 80 mL/min) with a heating program
consisting of a heating ramp of 10 ◦C per minute from 393 to 1273 K and an isothermal heating step
at this temperature for 30 min. The percentage of lost matter in the 100–750 ◦C range was used to
estimate the functionalization degree since the only organic matter in the particle was due to the
anchored amines. To determine the zeta potential (α) of bare and functionalized MSP, a Zetasizer Nano
ZS unit (Malvern Instruments, Malvern, UK) was used. Samples were dispersed in distilled water at a
concentration of 1 mg/mL. Before each measurement, samples were sonicated for 2 min to preclude
aggregation, and the particle dispersions were carefully placed in a folded capillary zeta cell (Malvern
Instruments, Malvern, UK). The zeta potential was calculated from the particle mobility values by
applying the Smoluchowski model. The average of five recordings is reported as the zeta potential.
The measurement was performed at 25 ◦C. Measurements were performed in triplicate.

For transmission electron microscopy (TEM) analysis, MSPs were dispersed in dichloromethane
and sonicated for 2 min to preclude aggregates, and the suspension was deposited onto copper grids
coated with carbon film (Aname SL, Madrid, Spain). Imaging of the MSP samples was performed
using a JEOL JEM-1010 (JEOL Europe SAS, Croissy, France) operating at an acceleration voltage of
80 kV. Field-emission scanning electron microscopy (FESEM) images were acquired with a Zeiss Ultra
55 (Carl Zeiss NTS GmbH, Oberkochen, Germany) operating at 1.5 mV and a working distance of
5.6 mm. Observations were done in the secondary electron mode.
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2.5. Preparation and Functionalization of EVOH Films

EVOH-32 and EVOH-44 films were cut into 4-cm2 pieces and were sequentially cleaned in
iso-propanol, acetone, and deionized water. The EVOH films were sonicated twice with each solvent
at 10 min intervals. Clean films were left to dry in Petri dishes inside a desiccator with anhydrous
calcium sulfate at room temperature (25 ◦C) for 12 h.

EVOH-32 and EVOH-44 films were irradiated in open glass Petri dishes for 1, 3, 10, and 15 min
under a vacuum ultraviolet (UV) Xe excimer lamp with 6 W at 172 nm (UV-Consulting Peschl España
S.L., Valencia, Spain). The films were turned over and exposed to UV light under the same conditions.
This method was used to oxidize and create carboxylic acid functional groups on both film surfaces.

In order to select the more suitable EVOH film (EVOH-32 or EVOH-44) for the subsequent
attachment of N3-MSP, a quantitative method for determining the number of carboxylic acids created
after UV irradiation, the Toluidine Blue O (TBO) dye assay, was carried out. The method used was that
described by Hernandez, Tseng, Wong, Stoddart and Zink [22], Uchida, et al. [34], and Kang, et al. [35]
with some modifications. In brief, control and UV-treatment films were immersed in a TBO solution
(0.5 mM TBO solution in deionized water with the pH adjusted to 10.0 with 0.5 M NaOH) and shaken
for 2 h at room temperature (25 ◦C). Then, the films were rinsed three times with deionized water
adjusted to pH 10.0 to remove non-complexed dye. To desorb the complexed dye on the film surfaces,
films were submerged in 50 wt% acetic acid solution for 15 min. The absorbance of the acetic acid
solutions was measured at 633 nm using a UV–visible light (UV–Vis) spectrophotometer (Agilent 8453
Spectroscopy System), and compared with a standard curve of TBO dye in 50 wt% acetic acid solution.

2.6. N3-MSP Deposition

To attach M-Rh-N3 and N-Rh-N3 to the EVOH films via covalent bonding, a previously reported
procedure was used [12]. EVOH films were stirred for 30 min in two conjugation buffers containing
5 × 10−2 M EDC and 5 × 10−3 M NHS at pH 3.0 or 5.0 to select the most adequate bonding conditions.
The selected concentrations represent molar excesses of at least 10-fold and 100-fold for EDC and
NHS, respectively, compared to the determined mole quantity of surface carboxylic acid groups. Then
EVOH films (4 cm2/mL) were sonicated for 30 min in buffer (pH 3.0 or pH 5.0) containing M-Rh-N3
or N-Rh-N3 at a final concentration of 0.5 mg/mL, and then stirred for 2 h at room temperature
(24 ± 1 ◦C). EVOH-M-Rh-N3 and EVOH-N-Rh-N3 films were rinsed with buffer (at pH 3.0 or pH
5.0) to clean unattached particles, before being dried, and stored in dry conditions until use. The whole
process is summarized in Figure 1.
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Figure 1. Scheme of the functionalization process: surface modification of ethylene vinyl alcohol
(EVOH) and the subsequent carbodiimide-mediated anchoring of N-(3-trimethoxysilylpropyl)
diethylenetriamine (N3)-functionalized mesoporous silica particles (MSPs).

2.7. Surface Analysis

The efficiency of immobilization of N3-MSP on the EVOH films was studied by means of FE-SEM.
FESEM images were acquired with a Zeiss Ultra 55 (Carl Zeiss NTS GmbH, Oberkochen, Germany) and
observed in the secondary electron mode. Micrographs of the particles before and after immobilization
on the EVOH films were obtained.
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2.8. Controlled Release from the Films

In a typical experiment, 1 cm2 of film was suspended in 4 mL of water adjusted to pH 2 and
pH 7.5. At certain times (2 min, 1, 2, 4, 6, 8, and 24 h), aliquots were separated and filtered. Dye
released from the pore voids to the aqueous solution was quantified by measuring the emission band
of rhodamine B centered at 580 nm (excitation at 554 nm) using a Jasco-FP-8500 spectrofluorometer
(Tokyo, Japan).

The rhodamine B release kinetics from pore voids of the porous silica supports were calculated
using the Higuchi model, where the amount of guest release, Qt, per unit of exposed area at time t can
then be described by the following equation:

Qt = kH ×
√

t,

where kH is the release rate constant for the Higuchi model.

3. Results and Discussion

3.1. MSP Preparation and Characterization

Microparticulated (M) and nanoparticulated (N) MSPs as synthesized, MSPs loaded with
rhodamine B (M-Rh and N-Rh), and MSPs functionalized with N-(3-trimethoxysilylpropyl)
diethylenetriamine (N3) (M-Rh-N3 for micro and N-Rh-N3 for nano) were prepared and characterized
using standard procedures. Figure 2a shows powder X-ray patterns of the MCM-41 microparticles as
synthesized, after calcination, loaded once with Rhodamine B and functionalized with N3 (M-Rh-N3).
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Figure 2. Powder X-ray diffraction of MCM-41 particles as prepared (i), after calcination (ii), and after
the loading and functionalization process: (a) microparticles; (b) nanoparticles.

The PXRD of the microparticulated MSPs as synthesized (Figure 2a, curve i) shows four low-angle
reflections typical of a hexagonal array that can be indexed as (100), (110), (200), and (210) Bragg peaks.
A significant displacement of the (100) peak in the diffractogram was clearly observed for the calcined
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microparticles (Figure 2a, curve ii), corresponding to a cell contraction of ca. 4 Å. This displacement and
the broadening of the (110) and (200) peaks are most likely related to further condensation of silanol
groups during the calcination step. Figure 2a, curve iii corresponds to the M-Rh-N3 PXRD pattern.
In this case, a slight intensity decrease and a further broadening of the (110) and (200) reflections
were observed, probably due to a loss of contrast owing to the filling of the pore voids with the dye
and the functionalization with amines. Nevertheless, the value and intensity of the (100) peak in this
pattern clearly showed that both the loading process with the dye and the subsequent functionalization
with amines did not damage the mesoporous scaffolding. The same diffractogram features were
obtained for the solid materials prepared with MCM-41 nanoparticles (Figure 2b). Since both particles
belong to the MCM-41 family, the similarity between diffractograms of micro- and nanoparticles was
expected [31].

The preservation of the mesoporous structure in the final loaded and functionalized solids
M-Rh-N3 and N-Rh-N3 was also confirmed by means of transmission electron microscopy (TEM).
Figure 3 shows the different morphologies of the two types of particles. While MCM-41 microparticles
(Figure 3a) are irregular particles with diameters ranging between 0.8 and 1.2 mm, MCM-41
nanoparticles (Figure 3c) show a spherical shape with diameters of ca. 100 nm. No significant
differences were observed in particle size before and after functionalization. The images show
the typical channels of the MCM-41 matrix both as alternate black and white stripes and as a
pseudo-hexagonal array of pore voids in both types of particles. These channels are seen not
only in the calcined material but also in the loaded and functionalized supports (Figure 3b,d),
confirming that the initial morphology of the mesoporous matrix was maintained after the loading
and functionalization process.
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Figure 3. TEM images of calcined (a) microparticles (M), and (c) nanoparticles (N), showing the typical
hexagonal porosity of the MCM-41 matrix. TEM images of solid MSP micro- and nanoparticles loaded
with rhodamine B and functionalized with N3: (b) M-Rh-N3, and (d) N-Rh-N3.

Textural properties of the various supports calculated from the nitrogen adsorption–desorption
isotherms are summarized in Table 1. As observed, both types of particles (micro and nano) presented
similar textural properties (total area of ca. 1000 m2·g−1, pore volume of ca. 0.9 c3·g−1, and pore
size of ca. 2.5 nm). These features were reported to be sufficient for encapsulation of molecules of
special interest in food technology (i.e., antimicrobial agents, drugs, flavors, vitamins, antioxidants,
enzymes, and other functional compounds) in MSPs [36]. Table 1 also shows that, after the loading
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and functionalization process, a decrease in the N2 volume adsorbed was produced. This reduction is
indicative of mesoporous systems with partially filled mesopores.

Table 1. Characterization of the mesoporous silica particles (MSPs) before and after functionalization:
Brunauer–Emmett–Teller (BET) specific surface area, pore volume, and pore size calculated from the N2

adsorption–desorption isotherms, content of rhodamine B and amines (αRh and αN3, mg/gsolid), and
zeta potential (Z-potential, mV). M—microparticles; N—nanoparticles; Rh—loaded with rhodamine B;
N3—functionalized with N-(3-trimethoxysilylpropyl)diethylenetriamine.

Sample BET Area
(m2/g)

Pore
Volume

(c3/g)

Pore Size
(nm)

αRh
(mg/gsolid)

αN3
(mg/gsolid)

Z-Potential
(mV)

M 1072 0.91 2.62 - - −38
M-Rh-N3 243 - - 15.3 81 41

N 986 0.84 2.51 - - −36
N-Rh-N3 143 - - 17.2 142 43

The content of organic matter in the final hybrid solids M-Rh-N3 and N-Rh-N3 was determined
by thermogravimetric analysis. Contents (α) of rhodamine B and the amine derivative are shown in
Table 1. The organic matter contents in both materials is similar to those reported by other authors
for similar systems based on MSPs loaded with rhodamine B and functionalized with amines [37].
Table 1 also includes the zeta potential values of M-Rh-N3 and N-Rh-N3 suspended in distilled water.
Bare micro- and nanoparticles showed negative zeta potential values of ca. −35 mV. These negative
values are typical of bare mesoporous silica particles, which contain SiO– groups in their surfaces.
After functionalization with amines, a neutralization of the silica by ammonium groups was produced,
and zeta potential values changed from negative to positive values (ca. +40 mV). This inversion of the
surface charge after organic functionalization was reported in literature for similar systems [38,39] and
confirms the efficiency of the functionalization process.

3.2. EVOH Film Surface Analysis

Two EVOH copolymers with a different molar percentage of ethylene monomer (32%—EVOH
32, and 44%—EVOH 44) were selected as films for functionalization. The lower the ethylene content,
the higher the hydrophilicity, the interchain interactions, the rigidity, and the gas barrier. The films
were supplied as the central layer of a three-layer polypropylene (PP)/EVOH/PP coextruded film
without tie layers, so the PP protector layers could be easily peeled off. Monolayer EVOH films were
exposed to UV irradiation to oxidize the film surface. The presence of a significant amount of –OH
substituents permits the generation of carboxylic substituents, which are required for M-Rh-N3 and
N-Rh-N3 particle attachment via EDC/NHS.

The TBO assay was used to quantify the amount of carboxyl groups created after the irradiation
on the surface of the EVOH 32 and EVOH 44 films (Figure 4) [40]. The non-zero initial relevant value
for EVOH 32 is due to the presence of some carbonyl groups in the copolymer, as this family of
materials is obtained via hydrolysis of statistical poly(ethylene-co-vinyl acetate) polymers.

As expected, the density of carboxylic groups increased significantly for both films with the length
of UV treatment. For instance, the number of nmol of COOH/cm2 for EVOH 32 films ranged from
23.31 nmol/cm2 after 1 min to 75.49 nmol/cm2 after 15 min of UV treatment. A similar trend was
found for the EVOH 44 samples, although, in this case, the density of the generated carboxyl groups
was significantly lower than that found for EVOH 32.
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3.3. MSP Immobilization

After confirming the activation of the EVOH films, the amine-functionalized mesoporous silica
particles were covalently linked to the films through amide bonds in the presence of carbodiimide. The
immobilization efficiency of M-Rh-N3 and N-Rh-N3 on the surface of the EVOH films was studied
by means of FESEM. Micrographs of the gated MSPs before and after immobilization on the films
are shown in Figure 5. Four films were developed, EVOH 32-N-Rh-N3 in which the nanoparticles
were anchored at pH = 5 (FN5) and at pH = 3 (FN3) (Figure 6), and EVOH 32-M-Rh-N3 anchored at
pH = 5 (FM5) and at pH = 3 (FM3) (Figure 7). As previously commented (Figure 2), the micro- and
nanoparticles exhibited differences with regard to size and shape (Figure 5a,b). The micro MSPs were
irregular in shape and size, whereas the nano MSPs appeared as equal spheres of ca. 100 nm. These
particle differences conditioned the way in which the MSPs anchored on the films. Figure 5c,d shows
the distribution of micro- and nanoparticles on the EVOH 32 film surface UV-treated for 15 min after
reaction of the EVOH 32 film with an equal mass of M-Rh-N3 or N-Rh-N3. A much better dispersion
was observed for the nanoparticles (Figure 5d) when compared with the microparticles (Figure 5c).
Moreover, the number of particles attached to the surface of the film was estimated as 0.05 ± 0.01
particles/µ2 for M-Rh-N3 and 67± 5 particles/µ2 for N-Rh-N3. Similar results, although with a much
lesser immobilization of particles, were obtained for the EVOH 44 films (data not shown). Therefore,
the EVOH 44 films were discarded.
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3.4. Controlled Release Behavior

Finally, and with the objective of confirming the efficiency of the gated materials for releasing
rhodamine B, controlled delivery studies from the functionalized films according to the pH in water
(used as an aqueous food simulant) were carried out.

Figures 6 and 7 show the release rates of rhodamine B from EVOH 32-N-Rh-N3 and EVOH
32-M-Rh-N3 films functionalized at pH 3 (expressed as mg of rhodamine B released from 1 cm2

of film) when immersed in two aqueous food simulants, at acidic (pH = 2) and neutral pH (pH =
7.5). In EVOH 32-N-Rh-N3 films (Figure 6), the maximum release of rhodamine B was observed at
neutral pH. In these conditions, a controlled, sustained release was achieved during 8 h reaching
a maximum delivery content of ca. 24.5 mg of rhodamine B per cm2 of film Conversely, when this
sample was exposed to an acidic medium, the release was significantly reduced (maximum delivery
of ca. 5.5 mg of rhodamine B per cm of film), reaching a flat baseline during the first hours of the
experiment. This different and remarkable behavior at pH 7.5, when compared to that at pH 2, was
due to the effect of pH on the conformation of the polyamines. This gating-mechanism was widely
described in recent years [33]. At pH 2, polyamines are protonated into polyammonium groups
that favor Coulombic repulsions between close chains. Tethered polyammonium moieties tend to
adopt a rigid-like conformation that pushes them away toward pore openings, blocking the pores
and completely or partially inhibiting release of the sorbed substance. In contrast, a progressive
delivery of the colorant was observed at pH 7.5. In this condition (neutral pH), polyamines are less
protonated and their repulsions are weaker, favoring a pore unblockage that allows the release of the
encapsulated fluorophore.

Similar behavior can be seen in Figure 7 for EVOH 32-M-Rh-N3. A sustained release of the
cargo was observed after adding water adjusted to pH 7.5 to the films, while release was hindered
after the addition of water adjusted to pH 2. Again, at neutral pH, polyamines are not protonated
and their interactions are weaker, favoring pore unlock. However, despite the fact that MCM-41
nano- and microparticles were loaded with similar amounts of rhodamine B (see Table 1), the amount
of rhodamine delivered from EVOH 32-M-Rh-N3 was ca. four-fold lower than that achieved from
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EVOH 32-N-Rh-N3 films. This difference might be explained by the different density of particles
anchored to the film (see Figure 4).

Finally, the results presented in this work also confirm that amines do not lose their gating
properties after immobilization on EVOH films, opening a new field for controlled release in
packaging applications.

To compare the rhodamine B release kinetics from pore voids of both types of silica supports (nano
and micro) the experimental release data were fitted to the Higuchi model, and the Higuchi release
rate constant (kH) was calculated. The good fit of the delivery curves to the Higuchi model, as Figure 8
shows, suggests that the delivery of rhodamine B from the pores of various solids is basically a diffusive
process [31]. Moreover, for both types of particles, the kH constant at pH 7.5 was the same (kH = 40).
There were also no significant differences in Higuchi rate constants at acidic conditions: kH was 15 for
EVOH 32-N-Rh-N3, and 13 for EVOH 32-M-Rh-N3. These data confirm that delivery at pH 7.5 is not
only more efficient than at pH 2, but also faster. Moreover, the small differences between the two types
of particles demonstrate that release kinetics is influenced by the porous system (equal in all MCM-41
particles) instead of by the particle morphology. Accordingly, differences observed in the comparison
of Figure 6 with regard to the amount of dye released by the encapsulation systems (20%–30% greater
in EVOH 32-N-Rh-N3 films) are due to the higher concentration of particles achieved during the
N3-MSP deposition step (see Figure 4).
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Figure 8. Higuchi representation of rhodamine B release from EVOH 32-M-Rh-N3 and EVOH
32-N-Rh-N3 prepared at pH 3 in aqueous media at acidic pH (pH = 2) and at neutral pH (pH = 7.5).
Symbols correspond to experimental data, and the lines are the fitting lines of the Higuchi equation.

4. Conclusions

This work is a proof of concept for the design of active packaging materials with a pH triggering
mechanism. Mesoporous silica micro- and nanoparticles (MCM-41) were manufactured, calcined,
and used to load and release an agent in a controlled manner when exposed to suitable pH
conditions. The particles were loaded with rhodamine B (selected as a dye whose release is easy
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to monitor) and functionalized with N-(3-trimethoxysilylpropyl)diethylenetriamine (polyamines).
This functionalization creates chemical gates whose key is based on pH.

In parallel, poly(ethylene-co-vinyl alcohol) (EVOH) films with two monomer compositions, EVOH
32 and EVOH 44, were successfully oxidized by UV irradiation. The treatment generated –COOH
substituents in the polymer chains, which increased with an increase in irradiation time and a decrease
in copolymer ethylene content. Oxidized EVOH was used to anchor the loaded silica particles through
the use of EDC/NHS linkers. Linkage was carried out successfully at pH 3 and pH 5, especially for
nanoparticles, which were distributed homogeneously throughout the film surface, especially in the
case of EVOH 32 films.

Finally, the ability to keep and release the agent was analyzed. The final load of the dye was
greater in the films exposed to anchorage treatments at pH 3, as, at pH 5, a partial release of rhodamine
B was evidenced during the process. The films with the anchored particles were exposed to two liquid
media, simulating acidic food and neutral food. The films released the agent quickly and completely
at neutral pH, but kept the dye locked at acidic pH.

Hence, this work demonstrates the feasibility of covalently anchoring smart delivery systems
able to deliver a functional molecule after applying a triggering stimulus to EVOH films. This
successful mechanism will allow the design of new active packaging systems loaded with antioxidant,
antimicrobial, or aromatic agents able to release their cargo only under certain conditions, such as the
generation of biogenic amines by bacteria in fresh food products.
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