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Abstract

Current PET detectors have a very low sensitivity, of the order of a few

percent. One of the reasons is the fact that Compton interactions are rejected.

If an event involves multiple Compton scattering and the total deposited en-

ergy lays within the photoelectric peak, then an energy-weighted centroid is the

given output for the coordinates of the reconstructed interaction point. This

introduces distortion in the final reconstructed image. The aim of our work is

to prove that Compton events are a very rich source of additional information

as one can improve the resolution of the detector and implicitly the final recon-

structed image. This could be a real breakthrough for PET detector technology

as one should be able to obtain better results with less patient radiation. Using

a PET as a double Compton camera, by means of Compton cone matching i.e.,

Compton cones coming from the same event should be compatible, is applied

to discard randoms, patient scattered events and also, to perform a correct

matching among events with multiple coincidences. In order to fully benefit ex-

perimentally from Compton events using monolithic scintillators a multi-layer

configuration is needed and a good time-of-flight resolution.
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1. Introduction

State-of-the-art PET detectors leave plenty of room for improvement. In

this work, our approach is to radically change the way Compton interactions

are taken into account. The main goal is to show that being able to distinguish

among the interactions from the same event i.e., with a good event tag timing

resolution and with a good spatial resolution, by using a multi-layer detector

configuration, can play a crucial role in improving PET resolution and sensitivity

and thus, on the quality of the final reconstructed image. This could potentially

lead to a reduction on the dose applied to the patient.

As a first part of this work we shortly present the most relevant details of

current PET technology and focus on the special details that will be needed later

in our analysis. For the second part of this work, as a theoretical exercise, we

will present with an example the substantial improvement that one can obtain

on the reconstructed image of a Derenzo phantom [1] in the limiting (ideal)

case, in which one is able to precisely distinguish among all the interaction

points within the detector. As a third part of the paper, we will present the

Compton cone matching algorithm giving all the technical details, introducing

a novel technique. We will also analyse the relevant sources of uncertainty i.e.,

detector resolution, Doppler-broadening effect, etc. and present an alternative

approach for their estimation. As for the last part, we shall perform the physical

characterization of the building blocks of such a Compton PET.

We defer for a forthcoming publication the simulation of a full PET system

for different geometry configurations and number of layers, using all the building

blocks and algorithms presented herein.

2. Photoelectric vs. Compton

As it is widely known, PET systems are exclusively based on the photoelec-

tric effect and Compton interactions are purely sources of noise as described

in the following. Consider a 511 keV γ-ray initiated within a patient’s body,

and for simplicity, consider that this photon does not suffer scattering within
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Table 1: Comparison between the probabilities for photoelectric, Compton and Rayleigh

interactions for LYSO and LaBr3 for a 511 keV incident photon.

Scintillator Photoelectric Compton Rayleigh

LYSO 45.5% 48.8% 5.7%

LaBr3 29.2% 65.2% 5.6%

the patient. If this photon is directly absorbed via a photoelectric effect when

reaching the detector without any previous interactions (within the detector)

this event will be registered. This would be the best case, for which the only

sources of blurring for the coordinates of the interaction point are the intrinsic

resolution of the detector and the noise introduced by the electronics. However,

such cases are quite rare and one normally expects a γ-ray to previously suffer

from Compton interactions (within the detector) before it is finally absorbed.

This type of events will also be taken into account by the detector if the total

deposited energy lays within the photoelectric peak (which will have a width

associated to the detector resolution). This last case will translate into a dis-

tortion of the coordinates of the reconstructed interaction point, which implies

a distorted line of response (LOR) that finally translates into a blurred recon-

structed image. What is normally done in order to minimize the impact of the

Compton interactions is to use materials that favour the photoelectric effect

such as LYSO/LSO scintillators. In Table 1 we show a comparison between

LYSO and LaBr3 for the probabilities associated to the types of interaction

that can occur within the material.1 All the statistics presented in this work

were extracted from Monte Carlo simulations performed independently using

PENELOPE 2014 [2, 3, 4] and GATE 8.0 [5]. We always find perfect agreement

within an error less than 1%.

We can observe that for LYSO scintillators, the Compton and the photoelec-

1For this simulation we use a 100×100×20 mm3 detector block with a 511 keV γ-ray point

source and normal incidence, in order to characterize the material intrinsically and avoid

possible border effects.
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tric effect compete, as they have similar probabilities of interaction, meanwhile

for LaBr3 the Compton effect dominates by a factor 2. This is obviously the

reason why LaBr3 or similar materials are widely used for Compton cameras

[6, 7, 8, 9, 10, 11, 12, 13].

Let’s now take a global look at the distribution of hits (interactions) and

events (one or more hits that originate from the same incident γ-ray) that occur

in a detector. In Fig. 1, for the same previous simulation, in the top-left panel we

have plotted the ROOT [14] histogram of the hits as a function of the deposited

energy within the detector for the LYSO block. No energy blurring has been

inserted. We can observe that in the case of LYSO a considerable number

of events are just photoelectric with no previous scattering (the right peak at

511 keV). On the top-right panel we show the events histogram as a function

of the deposited energy (with an energy uncertainty of 10% associated to the

detector resolution). By means of a rough number-of-events-per-bin counting

we can observe that the four highest bins (from the photoelectric peak of the

histogram of events) already sum the number of all the events from the 511 keV

photoelectric peak of the (top-left) histogram of the hits. This means that a

significant number of events that lie on the photoelectric peak are the Compton-

photoelectric mixture that we have already mentioned. These noisy events are

not dominant in the case of LYSO but their percentage is still, rather relevant.

Let’s now take a look at the same distribution in the case of LaBr3. One can

easily appreciate that the situation has changed when compared to the previous

case. It can be observed that a quite small number of hits (bottom-left) are

just photoelectric and that the rest (mixture of Compton plus photoelectric)

dominate. Again, by performing a rough counting, already the two highest bins

(from the photoelectric peak of the bottom-right histogram of events) contain

the same number of events as the ones from the 511 keV photoelectric peak

from the histogram of the hits (bottom-left). This means that the a significant

region of the Gaussian is pure Compton noise. Obviously this noise is much more

relevant in the case of LaBr3 than in the previous case, suggesting that it is not

an appropriate material for a traditional PET based on the photoelectric effect.
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Figure 1: Histograms of the energy distribution for all individual hits for the simulated events

(for a 511 keV incident γ ray) for LYSO (top-left) and LaBr3 (bottom-left) and histograms of

the number of events as a function of the total energy deposited in the detector, with a 10%

energy blurring, for LYSO (top-right) and for LaBr3 (bottom-right).

However, it is potentially an appropriate material if one intends to incorporate

Compton information to the PET detector, which is the main goal of our work.

Another crucial point is the mean distance between interactions as a func-

tion of the material. If one aims to being able to distinguish among several

interactions (from the same event) one must choose the appropriate material.

Again, LaBr3 is more favourable from this point of view, as the mean distance

between the first two consecutive interactions d12 is greater in this case than for

LYSO. In Fig. 2 we can see the distribution (in percentage) of events that suffer

at least two interactions as a function of the distance d12 (between the first two

interactions) for LYSO (yellow-light) and for LaBr3 (pink/orange-dark). One

can observe that, as expected, there is a much greater percentage of events that

occur in the first few millimetres for LYSO than for LaBr3.

As we have already mentioned, besides the Compton scattering within the

detector, there is also the possibility of Compton scattering in the patient’s

body. If the photon does not deposit much energy in this interaction and it
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Figure 2: Distribution of events (in percentage) that suffer at least two interactions in the

detector, as a function of the distance between the first two hits d12 for LYSO (yellow-light)

and LaBr3 (orange/pink-dark).

still lays on the photoelectric peak, then the detector registers this event and

consequently builds the wrong LOR. There are many other sources of noise, such

as random or multiple events. All these can be potentially discarded through

the Compton cone matching algorithm that we shall describe is Section 4.

3. Change of paradigm and limiting case

Let’s assume for a moment, just as a theoretical exercise, that one were able

to distinguish among all the interaction points within a detector and had enough

time resolution to also distinguish the time ordering of the hits. Then one would

be able to recognize the coordinates of the first interaction point for each event

and build the true LORs. This would obviously bring a drastic improvement to

the final reconstructed image. In order to qualitatively show this improvement,

we have performed the image reconstruction for a simulated Derenzo phantom

in four cases.

The details of the simulation and for the image reconstruction process are

given in the following. The phantom consists in tubes of 5 cm of length and

different diameters. The specific volume activity in our case is given by

AV =
10µCi

Vd=2.5
=

370000 Bq

Vd=2.5
, (1)
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Figure 3: Image reconstruction of a GATE simulation for a Derenzo phantom for tubes

of different diameters and a length of 5 cm, for a cubical 4-block detector of dimensions

100 × 100 × 20 mm3, assuming that the coordinates of the first interaction points are known,

with no blurring introduced (ideal image) (top-left) and with intrinsic detector blurring of 1.0

mm for x and y and 1.5 mm for DOI (top-right). In the bottom panel, the image reconstruction

for a standard PET (using energy-averaged coordinates for events with multiple scattering)

for a LYSO detector (left) and for a LaBr3 detector (right).

where Vd=2.5 is the volume of the tube of diameter 2.5 mm. AV was maintained

constant for all sources of the phantom. These sources were isotropic and the

acquisition time was 5 min (with a 10 ns coincidence window). The detector

is composed of four blocks of dimensions 100 × 100 × 20 mm3. The image

reconstruction method was LMOS [15, 16] with 3 iterations and 10 subsets,

1.0×1.0 mm2 virtual pixels (for the detector) and 0.25×0.25×0.25 mm3 voxel

size.

The four cases are shown in Fig. 3. Assuming we are able to distinguish the

first interaction point for each event, the ideal reconstructed image (without

blurring associated to the coordinates) is shown in the top-left panel. The same

image, this time introducing spatial blurring for the coordinates (associated to
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the intrinsic resolution of the detector) is shown in the top-right panel. In the

bottom panels we have the image reconstruction corresponding to a standard

PET detector (using the centroid method) with LYSO (left) and LaBr3 (right)

scintillators.

The substantial image quality improvement can be appreciated when com-

paring the bottom images (that represent the images obtained with state-of-

the-art detectors) with the top-right image (which represents the maximum

improvement that one can obtain over the state-of-the-art PET detectors). As

this is just a simplistic theoretical exercise that is supposed to serve as a proof

of concept, we have used back-to-back photons and we have only considered

the image distortion introduced by uncertainty on the measurement of the co-

ordinates. Also, we have always made the correct pairings i.e., no randoms,

phantom scattering, etc. have been considered.

Having enough time and spatial resolution in order to be able to distinguish

among all the interactions (originated by one event) taking place within a detec-

tor is a rather difficult task with current technology. For this reason a multi-layer

approach results very appealing in this case. Further details will be given in

Section 7 where we shall analyse the dominant types of events depending on the

thickness of the layer.

For the moment we shall only assume that we are able to distinguish among

all the interactions and that we also have knowledge of their time sequence. The

purpose of doing that is to theoretically analyse all the potential information

that we can extract from the Compton interactions. Details of how this can be

achieved with a multi-layer configuration will be given later on.

4. Double Compton camera and cone matching

Using all the available information from each hit (that is, the coordinates

x, y, z, the time of impact t and the deposited energy E) in a detector, one

can build a Compton cone following the equation for the Compton angle as a

8



θ

Detector

(x1, y1, z1, t1, E1)

Scattered photon

(x2, y2, z2, t2, E2)

Hit 1

Hit 2

Incident photon comes from

here (Compton cone) θa

e+e− → γγ

LOR

θb

Figure 4: Reconstruction of the Compton cone using the information from the first two

interactions, as in a Compton telescope (left). Two reconstructed Compton cones intersect in

a LOR because they originate in the same e+e− annihilation event (right).

function of the energy

cos θ = 1−mc2
(

1

E2
− 1

E1 + E2

)
. (2)

This is schematically shown in Fig. 4 (left) (here we have supposed for simplicity

that the entire energy of the incident photon has been deposited in the two

interactions i.e., E1 + E2 = 511 keV). This is nothing but the principle that

lays beyond a Compton camera [6, 7, 8]. In a Compton camera, in order to

reconstruct the image of a source one uses the intersection of many such cones.

Here we propose a novel technique, where we won’t only use the information

from one detector, but two at the same time. This is done in order to fully

benefit from the fact that we have a full PET detector and not a simple Compton

camera. The philosophy of a double Compton camera that we propose is rather

different and it can be described by the following principle. If two photons come

from the same event, i.e., from the same electron-positron annihilation, both

their Compton cones must intersect in a LOR.2 This is schematically shown

in Fig. 4 (right). Thus, when multiple events are registered in a detector in

the same coincidence time window, one builds all the possible Compton cones

and matches the correct events by simply requiring the Compton cones to be

2This was also proposed some years ago [17], however no further study of this technique

has been performed, to our knowledge.
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Figure 5: Compatibility of a Compton cone with a pure photoelectric event (left). Example of

two reconstructed cones that do not match, for an event with scattering within the patient’s

body (right).

compatible (to intersect in a LOR).

In order to perform the cone matching described previously, at least two

interactions (one of them Compton scattering) were required in each of the two

detectors. There is also a simpler version of the matching principle. One can

also match a Compton cone with a photoelectric absorption, as it is shown

schematically in Fig. 5 (left). If the segment CP belongs to the surface of the

Compton cone, then these two events are compatible i.e, the segment CP is a

potentially true LOR.

This technique is even more powerful. Based on the same principle, by means

of cone matching, one can recognize and discard events that have previously suf-

fered scattering within the patient’s body. This is schematically shown in Fig. 5

(right). Similar considerations are valid for random and multiple events. By

simply checking the compatibility between each pair of cones, one in principle,

is able to recognize the true matching events and build the correct LORs. In

a classical PET detector one can never be sure to make the correct matching

among compatible events based on the total energy information only.
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5. Compton algorithm

One must realize that building cones for each event is a very expensive

task mathematically and also computationally and thus, difficult to implement

efficiently. There is however a very simple equivalent and novel approach that

we propose. Suppose we have detected 4 hits in the same coincidence time

window: A1 and B1 in one detector and A2 and B2 in another one. Again, for

simplicity, we shall suppose that both initial incident photons have deposited

all their energy in the detectors. Using the time stamp information one can

establish the time sequence of the hits. For the following calculations we shall

assume (without loss of generality) that tB1 > tA1 and tB2 > tA2 (see Fig. 6 (a)

and (b) for more details).

The next step is to construct the two geometrical angles, which we shall call

θg,1 and θg,2, by using the spatial coordinates of A1, A2, B1 and B2. Assigning

the coordinates as follows

Ai(xAi , yAi , zAi) , Bi(xBi , yBi , zBi) , (3)

with i = 1, 2, one can construct the following vectors

~u1 = (xA1 − xA2 , yA1 − yA2 , zA1 − zA2) ,

~v1 = (xB1
− xA1

, yB1
− yA1

, zB1
− zA1

) , (4)

and

~u2 = −~u1, ~v2 = (xB2
− xA2

, yB2
− yA2

, zB2
− zA2

) . (5)

The cosines of the two angles θg,1 and θg,2 will be simply given by the scalar

product divided by the corresponding product of the moduli of the vectors

cos θg,i =
~ui · ~vi
ui vi

, (6)

with i = 1, 2. Assigning EAi
and EBi

(again with i = 1, 2) as the deposited

energies in the four hits one can also calculate the cosines of the Compton angles

by using (2)

cos θi = 1−mc2
(

1

EBi

− 1

EAi + EBi

)
. (7)
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e+e− → γγ

(a)

Figure 6: Schematic representation of the construction of the two geometrical angles θg,1

and θg,2 with the time ordering given by tB2
> tA2

and the two possibilities (a) and (b) for

tB1
> tA1

, when at least two interactions from the same event occur in each detector (same

considerations can be made for tA2
and tB2

). Representation of the construction of only one

geometrical angle (c) for the case in which one photoelectric effect occurs in one detector and

a Compton scattering in the other.

With all these ingredients and keeping in mind that the domains of both the

Compton and the geometrical angles are restricted to the first two quadrants

i.e., 0 ≤ θg,i ≤ π and 0 ≤ θi ≤ π, the compatibility of the Compton cones can be

resumed in the following statements in terms of angles or equivalently in terms

of cosines:

(i) If θ1 = θg,1 (or cos θ1 = cos θg,1) and θ2 = θg,2 (or cos θ2 = cos θg,2) then

the Compton cones are compatible.

We have also commented the case in which, for example A2 is a photoelectric

interaction and thus, B2 does not exist, as in case (c) from Fig. 6. In this case,

the compatibility of the Compton cone with the photoelectric event can be

simply stated (in terms of angles or cosines) as

(ii) If θ1 = θg,1 (or cos θ1 = cos θg,1) then the Compton cone is compatible

with the pure photoelectric event.

This simply means that A2 (which is where the photoelectric effect took place)

belongs to the surface of the Compton cone constructed with the information

from the other detector, as shown previously in Fig. 5 (left).

The case of multiple hits in the same coincidence time window including
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randoms, singles, etc., and the complete pairing algorithm will be presented in

detail in a future publication.

6. Energy and position errors

We have made the compatibility statements in terms of angles and in terms

of cosines because for the error propagation analysis, working in terms of cosines

(and not in terms of angles) will be free of divergences. All our previous formulae

allow us to calculate cosines of angles (not angles) as functions of some variables

i.e., cos θ = f(xi). Thus, in order to obtain the angle one needs to further apply

the arccos function: θ = arccos f(xi). Let’s now apply the standard error

propagation formula for θ. Considering that σxi
are the Gaussian errors of the

variables xi then

σ2
θ =

∑
j

(
∂θ

∂xj

)2

σ2
xj

=
∑

j

(
∂ arccos f(xi)

∂xj

)2

σ2
xj

=
∑

j

(
∂f(xi)

∂xj

)2 σ2
xj

1− f(xi)2
. (8)

The function

(
1− f(xi)

2
)−1

= (sin2 θ)−1 (9)

diverges when θ approaches 0 or π, which are values that do belong to our

domain. When working directly with cos θ the divergent term (9) is simply

absent

σ2
cos θ =

∑
j

(
∂f(xi)

∂xj

)2

σ2
xj
. (10)

As we have concluded in the previous section, the cone matching algorithm

is equivalent to comparing cosines of geometrical angles cos θg,i and Compton

angles cos θi. Each of these angles will have an associated error, one due to the

uncertainty in the energy measurement and the other due to the uncertainty in

the measurement of position of the interaction. Another source of error that

can affect our matching algorithm is non-collinearity. So far we have assumed

13



that the two emitted photons are back-to-back and this is in general not true.

This source of error has been widely analysed [18] and it is known to be ±0.25o

(0.5o FWHM).

All these errors will be taken into account in the cosine matching algorithm

in the following way. If θg,i and θi are the measured values, then if

| cos θg,i − cos θi| 6 εcos θ , (11)

we can say that the cosines are compatible up to some confidence level given

by εcos θ. This last term will account for the error of the geometric angle, the

Compton angle and non-collinearity.3

For the geometric angle, the errors associated to the coordinates will be

given by the intrinsic spatial error of the detector. In order to be more realistic,

these errors should also include noise associated to the electronics. For a multi-

layer detector, if the layers are different, the error will also depend on the

thickness and the type of material. For the representative example analysed in

Subsection 6.2 we shall use some generic values based on the latest available

experimental estimations [19, 20]. As for the energy measurement error, we

have two main sources of uncertainty, the so-called Doppler-broadening effect

and the error of the detector. This analysis will be performed in the following

subsection.

6.1. Compton angle error

One important source of uncertainty is the Doppler-broadening effect. This

is nothing but the effect introduced by the initial momentum of the electron.

The Compton formula (2) is obtained by assuming that the electron is initially

at rest. This approximation may be valid at very high energies, however in our

case, the effect is rather sizeable as we shall see next. This effect can be taken

3However, as we have already mentioned at the beginning, in this work we will not present

details of the full matching algorithm as it highly depends on the number of layers, and thus

on the geometry of the final detector. This will be presented in a future work.
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into account in our Monte Carlo simulations by both PENELOPE and GATE.4

Consider an incident photon of energy Eγ = 511 keV that deposits an

amount of energy Edep in a material. The energy of the outgoing photon can

thus be expressed as E′γ = Eγ − Edep. The Compton formula for an electron

initially at rest can then be rewritten in the form

cos θ = 1−mc2
(

1

Eγ − Edep
− 1

Eγ

)
. (12)

In Fig. 7 we can observe the prediction of this formula for a given Edep = 123

keV (vertical blue-dashed line) in terms of cos θ (left) and of θ (right). The

pink-orange (dark) distribution represents the distribution due to the Doppler-

broadening effect, for the possible scattered angles for a given Edep for a LaBr3

block. The yellow (light) distribution is the result of fitting the data from the

previous distribution to a Gaussian. We can observe two things. First, that the

distribution obviously does not follow a Gaussian distribution (it is much more

peaked) and second, that it is peaked at the value given by the previous Compton

formula (12). We can thus conclude that we can treat the Doppler effect as an

error associated to the Compton angle given by (12) as it has already been done

many times in the literature. However, by treating it as a Gaussian error we

would be largely overestimating the error in many cases. For our analysis it is

desirable to strictly keep the errors under control in order to precisely filter the

wrong LORs by means of Compton cone matching. Our chosen approach will

be not to treat this error as Gaussian but to propagate it with Monte Carlo

simulation techniques as described next.

For the energy error associated to the detector, we shall suppose that it does

follow a Gaussian distribution with an energy resolution of 10% (FWHM) in

one case, and 15% in a second case.

Our approach for the error propagation technique consists in the follow-

4In order to load the correct physics package that simulates the Doppler-broadening effect

in GATE one has to set the physics model as PenelopeModel or LivermoreModel for the

Compton interactions. The StandardModel package assumes the high energy approximation

for which the initial momentum of the electron can be neglected.
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Figure 7: Distribution of cos θ (left) and θ (right) for a given Edep = 123 keV due to the

Doppler-broadening effect (pink-orange, dark) and the result of fitting the data to a Gaussian

distribution (yellow, light).

ing. For each simulated event, that will obviously follow the previously shown

Doppler distribution, we additionally insert a random displacement for the en-

ergy, obeying the Gaussian distribution corresponding to the uncertainty asso-

ciated to the detector resolution. This way, the final distribution that we obtain

accounts for both errors. The result is shown in Fig. 8 for a 10% (left) and a

15% (right) uncertainty in the energy measurement. We can observe that in

the first case the final distribution is still rather peaked and it is not well fitted

by a Gaussian (which is also shown in yellow/light). In the second case as the

detector error is larger, the final result is slightly better fitted by a Gaussian.

Proceeding in the same manner (using our error propagating approach) for

different energies one obtains the distribution of cos θ and its error as a function

of Edep. This is shown in Fig. 9 in orange (light) at 68.2% confidence level for an

energy resolution of 10% (FWHM). In order to obtain this error distribution we

have binned the distributions of cos θ for each given energy (that include both

contributions from the Doppler effect and the energy resolution of the detector

i.e., as the one shown in Fig 8) into very small bins (of ∼ 0.0001 for cos θ) and

we have summed the bin contributions until we reached the desired confidence

level.

In Fig. 9 in blue (dark) we show the 1σ error for cos θ following the standard
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broadening effect and the detector error (pink-orange, dark), and the result of fitting the data

to a Gaussian distribution (yellow, light) for a 10% (left) and 15% (right) detector energy

resolution.
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Figure 9: Left: cos θ and its associated 68.2% confidence level error bars as a function of

Edep using error propagation (blue, dark) and Monte Carlo techniques (orange, light). The

continuous (red) line represents the function (12). Right: same as previously, zooming in one

of the regions.

error propagation formula i.e.,

σcos θ =
√

(σdetcos θ)
2 + (σDoppler)2 , (13)

with

σdetcos θ =

∣∣∣∣
∂ cos θ

∂Edep

∣∣∣∣ σEdep
=

mc2

(Edep − Eγ)2
σEdep

, (14)

where σdetcos θ is the error of cos θ associated to the uncertainty of the energy

measurement and where σEdep
in this case is 10% FWHM (translating it into 1σ

confidence level σEdep
≈ 0.0425Edep). The 1σ error associated to the Gaussian
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fit of the Doppler effect is given by σDoppler and the final expression σcos θ is

given by the squared root of both contributions summed quadratically.

We can observe that the central value, using our method, is slightly shifted

from the value predicted by (12). This is due to the fact that the distribution

from Fig. 7 is slightly asymmetric for larger values of Edep. We can also observe

that there is a region for Edep greater than ≈ 0.34 MeV, which is the maximum

permitted value for Edep for which cos θ = −1. This region appears due to the

Doppler effect and the detector blurring that push some of the values towards

that region. Thus, one can in fact experimentally measure these theoretically

forbidden values of the energy and associate them to a value of cos θ and an

error. This particular region is larger than the part shown in the plot. However

for our analysis we will only keep the part we have shown, as the remaining

region is subject to strong statistical fluctuations due to the low number of

events.

We can thus conclude that the our proposed Monte Carlo error propagation

method is more realistic as it does not overestimate the errors by assuming that

they follow a Gaussian distribution. Here, we have only considered 511 keV

incident photons. Similar plots can be obtained for different incident energies,

that will be needed in the case of multiple hits lying in the same time coincidence

window.

6.2. Geometric angle error

For the previous analysis we only had one parameter Edep. This allowed us

to perform the error propagation with Monte Carlo simulations in a rather sim-

ple way. For the geometric errors however, one cannot perform such an analysis

in a reasonable way for all the possible cases, performing a reasonable number

of simulations or obtaining results independently of the final geometry of the

detector or the layer configuration. In this case, we shall only use error propa-

gation and assume Gaussian distributions. This, however, does not suppose a

real issue as the experimentally measured values for the intrinsic spatial errors

are subject to broadening effects associated to the electronics.
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Defining the auxiliary variables xA1A2 ≡ xA1 − xA2 , xB1A1 ≡ xB1 − xA1

etc., by the usual error propagating method, we obtain the following result for

σcos θg,1 :

σ2
cos θg,1 =

(xB1A1

u · v − cos θg,1
xA1A2

u2

)2
σ2
xA1A2

+
(xA1A2

u · v − cos θg,1
xB1A1

v2

)2
σ2
xB1A1

+ (x→ y, z) , (15)

where the rest of the contributions to the formula are obtained, as shown

schematically, by substituting x by y and by z. Similarly one can obtain the ex-

pression for σcos θg,2 . The expressions for σ2
xA1A2

, σ2
xB1A1

, etc., are simply given

by

σ2
xA1A2

= σ2
xA1

+ σ2
xA2

, σ2
xB1A1

= σ2
xB1

+ σ2
xA1

, ... . (16)

As we have already mentioned, the geometric angle error highly depends on

the geometry of the detector i.e., cos θg,i depends on the moduli of the vectors

ui and vi that depend, among other things, on the inter-layer distance.

Here, for simplicity, we shall only give a representative example for the

errors of cos θg,1 for the two-layer LaBr3-LYSO configuration (Fig. 12) from

Section 7. In this case we have three possible dominant combinations (case (a)

from Fig. 6), and three sub-dominant ones (case (b) from Fig. 6). They are

schematically shown in Fig. 10. Same analysis is valid for cos θg,2.

We consider that the annihilation takes place within the FOV of the inner

detector which is composed by the thin LaBr3 layers.5 In case (a) from Fig. 10,

we consider that one of the two photons suffers a Compton interaction within

the inner layer and that it is absorbed by the outer LYSO detector. As for the

other photon, we consider that it interacts in another LaBr3 layer via Compton

scattering or photoelectric absorption, or that it does not interact at all with

this layer, but is directly absorbed by the outer LYSO detector. As for case

5The size of each LaBr3 block will be 32×32×3 mm3 and for the outer LYSO detector, the

blocks will be of 32×32×20 mm3.
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Figure 10: Schematic representation of the possible interaction configurations, for cases (a)

and (b) from Fig. 6, for the interaction points A1, A2 and B1 needed to calculate cos θg,1. P

stands for possible multi-scattering events that end with a photoelectric absorption.

(b), it is similar to case (a), except the Compton interaction of the first photon

takes place in the LYSO layer. This last configuration is subdominant.

In all cases, both (a) and (b), the dominating term in the expression for

σcos θg will be given by the vector whose modulus is smaller. Here we shall assign

it a value of 10 mm (this case corresponds, for example, to an annihilation that

takes place close to the corner of the inner LaBr3 cube from Fig. 12). The

other modulus will have a generic value of 30 mm, which is approximately the

inter-layer distance. Spanning all possible angles, assigning an uncertainty of 1

mm for x and y and 1.5 for DOI we obtain the error distribution as a function

of cos θg from Fig 11.

7. Multi-layer configuration

By using current technology i.e., SiPM pixelated detectors attached to mono-

lithic block scintillators, one is not able to distinguish among several Compton

interactions with enough precision. The easiest way around in order to benefit

from Compton interactions with monolithic detectors is by using a multi-layer

detector. Two possible configurations are shown in Fig. 12. In order to fully

exploit the potential of this multi-layer configuration several inner layers that
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Figure 11: Cosθg ± 1σ error as a function of cos θg .

favour Compton scattering should be used (such as LaBr3). The most outer

layer should be a LYSO layer, in order to favour the photoelectric effect and

thus, the total absorption of the incident photons. Also, with this configura-

tion, if the photon passes through the inner layers (without interacting) and

ends up interacting for the first time with the outer layer, the detector behaves

as a traditional LYSO-based PET. The inter-layer distance should be, in prin-

ciple, equal or greater than 3 cm in order to ensure a reasonable time-of-flight

resolution (∼ 100 ps) [21, 22, 23] thus, in order to be able to distinguish the

time-ordering of the hits.

The choice for the thickness of the LaBr3 layer is not a trivial task and

needs further analysis. For this purpose, we shall characterize the material

intrinsically, independently of the geometry of the final configuration of the

whole detector.

We will use a LaBr3 block of dimensions 32×32 mm2 of surface6 and variable

thickness h. Nine point sources of 511 keV γ-rays are placed uniformly at 3 mm

from the detector surface, as shown in Fig. 13. The photon emission will be

isotropic in order to cover for all possible incident angles. We will divide the

possible interactions of this first LaBr3 layer with a 511 keV incident photon

6Which is the size of the standard digital Philips SiPM detectors [24] that we will use for

our experimental setup.
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Figure 12: Representation of two possible multi-layer configurations for a PET detector. The

thin inner layers are composed by LaBr3 blocks of dimensions of of 32×32×3 mm3, and the

thick (most outer) layers are composed by LYSO blocks of dimensions 32×32×20 mm3. The

number of blocks per layer is given by 4-10 (left) and 4-10-18 (right). The distance in between

two consecutive layers is ∼ 30 mm.

into the categories shown in Fig. 14. The possibilities are:

(a) one Compton interaction and escapes the scintillator in the forward direc-

tion (our definition of forward for this particular case is given by all the

points with z < 0 as shown in Fig 13.)

(b) one Compton interaction and escapes backward

(c) a direct photoelectric absorption

(d) two Compton interactions and escapes forward

(e) two Compton interactions and escapes backward

(f) one Compton interaction and a photoelectric effect

(g) two Compton interactions and a photoelectric effect.

Any other possibility can be safely neglected as its probability will be extremely

low.

Thus, the thickness of the layer plays a key role, as it has to be as thick as

possible in order to ensure a high rate of interactions with this first detector

22



Figure 13: A LaBr3 detector formed by a 32 × 32 mm2 block with variable thickness h and 9

point sources uniformly distributed. The region considered as forward is the region given by

the negative z region, where other detector layers can be placed.

C C
C

C

C

P

(a) (d) (g)

h ...
C

(b)

P

(c)

C C

(e)

C
P

(f)

Figure 14: Categories for the possible interactions with a LaBr3 layer for a 511 keV incident

photon, where C stands for Compton, P stands for photoelectric and h for the thickness of

the block. The trajectory of the photon is schematically given by the arrow. If the arrow of

the escaping photon points downwards it means that the photons escapes forward, whereas if

it points upwards means that it escapes backward.

and, it has to be thin enough in order to obtain a dominant percentage of events

of the type (a) with a small rate of events of the type (f) and (g) (events that

will introduce noise). It also has to be thin enough to ensure a good spatial

resolution. Here we shall analyse three possible values for h: 3, 4 and 5 mm.

The results for the obtained percentages are shown in Table 2. They are

calculated as follows. Out of the total number of incident photons (on the

surface of the detector) that we shall denote Ntot, the number of events that

interact at least once with the layer will be represented by NL1 . Thus, out of

Ntot, the percentage of the events that interact at least once with the layer will
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Table 2: Percentages for the interactions with the LaBr3 layer as functions of h (mm).

h L1 A B C D E F G L1,A

3.0 21.2 41.5 23.4 14.3 4.2 3.6 8.6 2.7 8.8

4.0 26.4 39.5 22.0 14.3 4.6 3.9 9.9 3.5 10.4

5.0 30.9 37.9 20.7 14.3 5.0 4.0 11.0 4.4 11.7

be given by

L1 = (NL1/Ntot) · 100 . (17)

The following percentages are calculated with respect to NL1
and the categories

are: (A) percentage of events of the type (a) from Fig. 14 (meaning that if NA is

the number of events of the type (a) then A = (NA/NL1) · 100), (B) percentage

of events of the type (b), and so on.

The last category is given by L1,A which is the percentage of events of the

type (a) out of Ntot i.e., if NA is the number of events of the type A then

L1,A =
NA
Ntot

· 100 =
A · L1

100
. (18)

This percentage is the one that we aim to improve by increasing the thickness

h of the LaBr3 layer.

We can observe that even if A decreases with h (obviously because the

probability to suffer multi-scattering grows with h), L1,A increases. This is

due to the fact that L1 dominates over A in (18), as the number of events that

interact with the layer NL1
grows faster than the decrease rate of A. Events of

the type (c), which are photoelectric effects with no previous scattering are also

useful, as they do not introduce any additional blurring. Events of the type (b)

can be useful in the case of multi LaBr3 layers if it does not occur in the first

layer. Finally (d) and (e) are events that can potentially be discarded through

the cone matching algorithm.
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8. Conclusions

We have presented the physical characterization of a future PET that will

incorporate the Compton effect. We have shown that Compton interactions can

be a rich source of information that can help match the true coincidences and

discard random, scattered and multiple events, thus building the true LORs.

We have demonstrated that the matching algorithm, that was first thought in

terms of cone matching, can be treated equivalently in a simple form in terms

of geometric and Compton angles. We have also presented a rigorous error

treatment both with Monte Carlo techniques and with standard error propaga-

tion. In a future publication we will analyse possible geometries, simulate a full

PET detector and apply the Compton algorithm presented herein, in order to

quantify the potential improvement over state-of-the-art PET detectors.

The physical development of this new PET apparatus is currently an under-

going process in our group. Based on the results of the simulations, the most

suitable geometry will soon be chosen. For now, special efforts are being made

in obtaining a good spatial and TOF resolution for LaBr3 moduli of different

thickness and different inter-layer distances. The final goal of this project is to

perform tests with small animals as soon as the final geometry is optimized.
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