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Abstract 

N-PLS, as the natural extension of PLS to N-way structures, tries to maximize the 

covariance between an X and a Y N-way data arrays. It provides a useful framework for 

fitting prediction models to N-way data. However, N-PLS by itself does not perform 

variable selection, which indeed can facilitate interpretation in different situations (e.g. 

the so-called “–omics” data). In this work, we propose a method for variable selection 

within N-PLS by introducing sparsity in the weights matrices WJ and WK by means of 

L1-penalization. The sparse version of N-PLS is able to provide lower prediction errors 

by filtering all the noise variables and to further improve interpretability and usability of 

the N-PLS results. To test Sparse N-PLS performance two different simulated data sets 
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were used, whereas to show its utility in a biological context a real time course 

metabolomics data set was used. 

 

Keywords: N-PLS, LASSO, Variable selection, Multiway models 

 

1. INTRODUCTION 

In the last decades, advances in technology have enabled the gathering of an 

increasingly amount of data in the field of biology and biomedicine [1]. The so called “-

omics” technologies such as genomics, epigenomics or transcriptomics, metabolomics, 

among others, produce hundreds, thousands or even millions of variables per dataset. 

Economic and logistic restrictions often lead to small sample sizes paired to these wide 

datasets, thus producing the recurring problem of I samples << J variables [2]. A wide 

variety of methods exist for dealing with these matrix-type data [3-5]. But sometimes, 

these IxJ datasets can be expanded by taking, for example, repeated measurements at 

different K time points for each individual, thus having IxJxK datasets that raise more 

methodological complications to the analyses. These datasets are called three-way data 

[6]. One useful tool for analysing three-way data, when some Y data structure is to be 

predicted, is N-PLS [7]. N-PLS reduces the inclusion of noise in the models and obtains 

more robust parameters (by reducing the number of parameters to be estimated in the 

model) when compared to PLS while, at the same time, producing easy-to-understand 

plots.  

 

Related to the problem of I << J datasets, comes the issue of variable selection. Variable 

selection is essential for facilitating e.g. biological interpretation of the results when 

analyzing “-omic” data sets [8]. It is often the case that the aim of these analyses is to 

find a new biomarker or a specific set of biomarkers, also called signature, to diagnose 

or predict the prognosis of a disease. The N-PLS algorithm does not provide (in general) 

inner variable selection, i.e. the variable selection procedure is not implemented within 

the algorithm, although some methods have been developed to perform it [9].  
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In this work, we propose the introduction of L1-penalization in the N-PLS algorithm to 

allow for variable selection within the model-fitting step. This penalization imposes a 

constrain to the weights matrices, shrinking the coefficients of the model, causing some 

of them to be exactly zero and thus performing variable selection at the same time. This 

approach should not only facilitate, e.g. biological, interpretation by producing a 

reduced model including fewer variables, but should also reduce prediction error by 

completely eliminating noise features [10] instead of just downweighting them as N-

PLS does. The method also allows to smoothly adjust its bias-variance trade-off by 

changing the amount of L1 penalization imposed on the model (Figure 1). 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

In Section 2, the methodological background related to the methods and how to 

combine them into an embedded version of the N-PLS model are presented. In Section 

3, the different datasets analyzed are introduced, both for the simulated and the real 

cases. Section 4 presents the results, and finally Section 5 the conclusions. 

 

2. METHODOLOGICAL BACKGROUND 

 

In the following paragraphs, a brief explanation of the methods N-PLS and Lasso is 

given before introducing our Sparse N-PLS algorithm: 

 

2.1. N-PLS 

 

N-PLS [11] studies relationships between some three-way (or N-way) X (e.g. I×J×K) 

data structure and any Y (e.g. I×L×M) data structure. It is the natural extension of PLS 

to N-way structures, which tries to maximize the covariance between X and Y data 

arrays. Considering X (IxJK) the unfolded version of X, N-PLS tries to find latent 

spaces WJ and WK that maximize the covariance between X and Y, so it can be 

expressed as: 

 

�	 = 	�(��|⊗|�
)� + 
�                                            (1) 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 4 

afterwards decomposing X from X using the improved N-PLS version expression [12], 

in order to obtain residuals with better statistical properties: 

 

�	 = 	��(�� ⊗ �
)� + 
�′                                         (2) 

 

In this case, WJ and WK refer to the weights of the second and third modes, 

respectively; whereas T matrix gathers the scores of the samples at each component 

extracted, in the 1st mode. |⊗| is the Khatri-Rao product and	⊗ the Kroncecker 

product, which forbid or allow (respectively) to take interactions between the different 

modes components into account. G is the core array (unfolded) of a Tucker3 

decomposition when using T, WK and WJ as loadings, in order to obtain a better (or at 

least not worse) approximation of the X array [13]. Finally,	
�’ incorporates the 

residuals. 

 

For Y, similar results can be achieved when unfolding Y into Y: 

 

�	 = 	�(�� ⊗ ��)� + 
�                                        (3) 

 

Y scores vectors are called U, and weights vectors ��and ��, in the case of a three-way 

array. As for X, 
� incorporates the residuals. The model is estimated in such a way 

that the covariance between T and U is maximized [13]. Finally, the prediction model 

between X and Y can be expressed using an inner relationship between T and U: 

 

�	 = 	�� + 
�     (4) 

 

When Y variables have to be predicted on a new sample, score matrix T is worked out 

from Eq. (2), and by using Eq. (4) the scores U in Y space are calculated. Finally, the 

prediction for Y is obtained from Eq. (3).  

 

2.2. Lasso 

 

Lasso is a regression analysis method based on L1 penalization. It was first developed 

for linear models, and consists in minimizing the usual sum of squared errors, with a 
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bound on the sum of the absolute values of the coefficients [14]. This bound forces the 

coefficients of the model to shrink, potentially setting some of them to 0. Since its 

introduction to linear models, Lasso has been expanded to many other techniques such 

as generalized linear models, survival analysis and principal component analysis among 

others [15, 16], or even PLS [17]. The original LASSO for least squares is as follows: 

 

�� ����� = 	 argmin
"

#($% − �' − # (%)�))*
+

),-

.

%,-
 

(5) 

Subject to the restriction: 

#/�)/ ≤ 1
+

),-
 

 

Reducing s increases the penalization and forces shrinkage of the coefficients, 

producing a simpler model by setting some of them exactly to zero (Figure 2). Thus, 

assuming data are standardized, Lasso selects the most relevant features and discards 

the others. 

 

[INSERT FIGURE 2 ABOUT HERE] 

 

The solutions of equation (5) are easily shown to be 

 

��)����� = 123(��)45)(/��)45/ − 6)7                                       (6) 

  

where  ��)����� is the lasso estimated regression coefficient for variable j, ��)45 is the least 

squares estimate of regression coefficient for variable j, and 6 is the penalization 

coefficient determined by the condition  ∑ /�)/ ≤ 1+
),- 	(see appendix for details). 

 

2.3. Sparse N-PLS 

 

To introduce the L1-penalization in the N-PLS algorithm, we follow the approach of Lê 

Cao et al. [17]. The main difference between Le Cao et al. algorithm and that proposed 
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in this paper is that, besides dealing with N-way structures instead 2-way matrices, Le 

Cao et al. apply soft-thresholding on the loadings vectors for the X and Y spaces, 

performing variable selection on X and Y; whereas Sparse N-PLS applies soft-

thresholding to achieve sparse versions of the weights matrices for the second and third 

mode, thus performing selection in the different modes of X and not on Y Sparse N-

PLS. To achieve these sparse versions of weights wJ and wK for each latent variable, we 

introduce the soft-thresholding penalty function defined in equation (6), ��)����� =
123(��)45)(/��)45/ − 6)7, in the N-PLS algorithm right after the SVD at the wJ and wK 

determination. The complete algorithm is as follows: 

 

Center X and Y, and unfold X (and Y when necessary) into a two-way matrix. 

       Let u be some column of Y, and set f (number of components)=1 

1. wT=uTX/uTu 
2. Build Z by refolding w according to the modes dimensions 
3. Determine wJ y wK by SVD 
4. L1-penalization inclusion 

a. Apply soft-thresholding on wJ:   9:%
)∗ = 123(9:%

))(/9:%
)/ − 6))7     

b. Apply soft-thresholding on wK:  9:%<∗ = 123(9:%<)(/9:%</ − 6<)7   

c. Input the new w as kronecker(wK, wJ) 
5. t=Xw/wTw 
6. q=YTt/norm(YTt) 
7. u=Yq 
8. Check for convergence. If it is achieved, continue; otherwise, go to 1 
9. b = (TTT)-1TTu; where T=[t1 t2… tf] 
10. Deflate both X and Y: X = X-twT and Y = Y-tbqT 
11. f = f+1. Continue from step 1 until a good description of Y 

 

In this work, we perform both the standard regression (continuous response) and the 

discriminant version of the N-PLS model, i.e. N-PLS-DA. In the case of N-PLS-DA, Y 

is a y vector formed by ones and zeros, each of the two values related to one of the two 

classes to be segregated. 

 

3. MATERIAL AND METHODS  

In order to show the performance of the Sparse N-PLS model proposed, three different 

analyses have been performed: two of them using simulated data sets, and one using a 

real data set from metabolomics data. A description of each one of them is given below. 
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3.1 Synthetic data 1 

 

First, we tested our implementation of the L1 penalized N-PLS using data simulation. In 

total, fourteen different scenarios with different signal-to-noise ratios were tested. 

Tuning of the models was performed by 20 repetitions of 10-fold cross-validation.  

 

Our simulations consisted on three-way X arrays with I=50 samples, J=50 variables and 

K=3 times, where variables were simulated randomly from different kinds of 

distributions (Poisson, Normal and Uniform) with varying parameters. 

 

If Normal: =~	?(μ, B)				where				μ	~	?F10, 	10I				and					B	~	Γ(5, 	1) 

 

If Poisson: =~	M(6)			where				6	~	?F10, 	2.5I 

 

If Uniform: =~	P(Q, R)			where				Q	~	?F10, 	10I			and			R	~	?F100, 	10I 

 

Only 5 out of the 50 variables were used to construct the response  Y. They were chosen 

randomly from the X array and assigned randomly the following coefficients: 0.4, 0.5, 

0.6, 0.7 and 0.9. In the first run, only one of the three times of the third mode was 

involved in the creation of, in this case, vector y. In the second run, the three times were 

involved, but with different coefficients for each variable. In all simulations, random 

Normal and Poisson errors were added in different amounts to y. For each combination 

of type and amount of random error, simulations were repeated 100 times. Ability to 

select the real variables involved in y generation as well as median and 1st and 3rd 

quartiles of the mean squared error are provided for each simulation run. 

 

3.2 Synthetic data 2 

 

To further test the performance of the method in selecting highly correlated variables, 

simulated data resembling the ones of a toxicogenomics data set by Heijne et al. [18] 

was analysed. In this work, the effect of the hepatotoxicant bromobenzene in rats was 

studied. Groups of rats were treated with different doses of this toxic compound 
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dissolved in corn oil for a 48 hours period. At three time points from the start of the 

treatment, rats were sacrificed. Liver samples were used to extract mRNA for 

microarray profiling and blood and urine was used for metabolite profiling. 

Additionally, 21 physiological parameters were recorded: Glucose, A/G ratio, GSH, 

Body Weight, Creatin, GGT, Urea, Kidneys, Kidney/BW, Triglycerides, Liver, 

Albumin, Total Protein, ALP, Liver/BW, Bilirubin, LDH, Phospholipids, Cholesterol, 

ASAT, ALAT.  

 

In this work, simulated profiles from 14 of these 21 physiological parameters were used 

to discriminate between two of the different groups (High and Low doses evolution). 25 

samples for high doses and 25 for low doses were simulated, adding to the pattern 

random normal noise, with standard deviation 0.1. 

 

Figure 3 represents time course levels of the seven patterns corresponding to the 14 

physiological parameters evaluated for high and low dose treatment groups. These 

variables can be grouped attending to their common patterns in the following groups; i) 

ALAT, ASAT, LDH and GSH; ii) Creatin and Albumin; iii) Kidney and Cholesterol; 

iv) Liver, Phospholipids and Triglycerides; v) Glucose; vi) A/G Ratio and vii) Urea. 

 

[INSERT FIGURE 3 ABOUT HERE] 

 

3.3 Real dataset study 

 

Rat serum samples preparation 

 

Six-week-old male Oncins France Strain A (OFA) rats (200–240 g) were purchased 

from Charles River (Barcelona, Spain) and acclimatized to laboratory conditions for at 

least 7 days. Animals were housed (12-h light-dark cycle, 21–25°C, 30–70% humidity, 

woodchip bedding) and fed ad libitum with a standard chow diet (Scientific Animal 

Food and Engineering, Augy, France). Rats were anesthetized with sodium thiobarbital 

(0.1 g/kg), and blood was collected by cardiac puncture. After coagulation and 

centrifugation (1,000 g for 10 min at 4°C), serum samples were aliquoted and stored at - 

80°C until the analysis. All the experimental protocols were approved by the 

Institutional Animal Ethics Committee. 40 µL of serum sample were mixed with 120 µL 
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of methanol. After vortexing, samples were kept at -20 ºC for 20 min. Samples were 

centrifuged (14000 g, 4 ºC, 15 min) and the supernatants transferred to clean tubes and 

evaporated to dryness. Samples were resuspended in 80 µL of water, centrifuged (14000 

g, 4 ºC, 5 min), and the clean supernatants transferred to HPLC vials for their LC-MS 

analysis. Rats serum samples were separated in two groups of sizes 8 and 6 and 

subsequently fortified with a set of metabolites to generate the patterns showed in 

Figure 4. Metabolites and final concentrations used are summarized in Table 1. 

 

LC-MS analysis 

 

Liquid chromatography–mass spectrometry (LC-MS) analyses of rat serum samples 

were performed in an Agilent 1290 Infinity LC system coupled to an Agilent 6550 Q-

TOF mass spectrometer equipped with an ESI source (Agilent Technologies, Santa 

Clara, CA, USA). LC-MS grade solvents (i.e. water, acetonitrile and methanol) were 

acquired from Fisher Scientific (Loughborough, UK). All the LC-MS additives and 

standards were acquired from Sigma–Aldrich/Fluka (Madrid, Spain). Metabolites were 

separated on an Zorbax SB-Aq column (100 x 2.1 mm; 1.8 µm) (Agilent Technologies, 

Santa Clara, CA, USA). Mobile phases consisted of (A) 1mM ammonium fluoride and 

(B) acetonitrile. The separation was conducted under the following gradient at a flow of 

0.3 mL/min: 0 min 3 % (B); 0–2 min 40 % (B); 2-5 min 7 % (B); 5-7 min 50 % (B); 7-

12 min 100% (B); 12-16min 100% (B); 16-16.5 min 3% (B); 16.5-18 min 3% (B). 

Sample and column temperatures were maintained at 4 ºC and 40ºC, respectively. The 

injection volume was 5 µL. The instrument was tuned in the 50-1700 m/z range using an 

Agilent tune mix in 2GHz extended dynamic range mode (mass resolving power 25,000 

FWHM). Detection was performed in ESI (-) mode in the 50-1000 m/z range. A 

reference solution (m/z 119.0360 and m/z 980.0164) was used to correct small mass 

drifts during acquisition. The following conditions were employed: capillary voltage, 

3.5 kV; nozzle voltage -1.0 kV; fragmentor voltage, 175 V; gas temperature, 200 ºC; 

drying gas (nitrogen), 14 L/min; nebulizer gas (nitrogen), 35 psi; sheath gas 

temperature, 350 ºC; and sheath gas flow (nitrogen), 11 L/min. The acquisition rate was 

set at 4 spectra/s in all cases. Data preprocessing was performed using ProgenesisQI 

software (Nonlinear Dynamics, UK). The MS-data was arranged in an array structure  

with I x J x K dimensions, where “I” denotes the number of rats used in the assay (i.e., 

objects); “J” denotes the total number of features detected in the LC-MS analysis (i.e., 
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variables) and “K” denotes he time points selected for rats` serum collection (i.e., three 

time points). 

 

 

[INSERT FIGURE 4 ABOUT HERE] 

 

[INSERT TABLE 1 ABOUT HERE] 

 

3.3 Software 

 

Both N-PLS and Sparse N-PLS analyses were performed using the authors’ Sparse N-

PLS package [19] available at CRAN (version 0.3.31). A comprehensive description of 

this software can be found elsewhere [20]. 

 

4. RESULTS AND DISCUSION  

 

4.1 Synthetic data 1 

 

Results of the different simulations carried out on the first synthetic dataset are provided 

in Table 2. They show that Sparse N-PLS outperforms N-PLS regarding mean squared 

prediction error. When performing Sparse N-PLS, the true variables were almost always 

included in the selected model. Median number of true variables selected in each model 

was 5 (100%) in most of the simulations (9 out of 14). In the other 5 simulations, the 

median number of true variables selected was 4 (80%). These simulations were the ones 

consisting in the more complex and noisy models, with the three times of the third mode 

affecting Y and lower signal-to-noise ratios. Also, a varying amount of other noise 

variables were erroneously included in the models (false positives). The amount of 

noise variables that were included in the Sparse N-PLS models increased as the signal-

to-noise ratio of the data decreased, ranging from a median of 2 (4.4%) to a median of 7 

(15.6%) noise variables included in the worst-case simulation. 

 

[INSERT TABLE 2 ABOUT HERE] 

 

4.2. Synthetic data 2 
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In this case, the goal was to test the ability of Sparse N-PLS for gathering those relevant 

variables within the Lasso selection procedure even in the case that these variables show 

correlation. Table 3 summarizes the model coefficients obtained in the data set analysis. 

Overall, results of the analysis showed good agreement with the structure of the data. 

All the variables following the pattern i (i.e., ALAT, ASAT, LDH and GSH) were 

selected by the method and similar coefficients were assigned Additionally, Creatinine 

and Albumin (pattern ii) were also selected with similar coefficients. Interestingly, the 

A/G ratio (pattern vi), a variable uncorrelated to all the others was also selected. 

However, the rest of the patterns were not considered/selected by the model, probably 

because selection was also performed on the third mode and only the third element of 

the third mode was selected (Table 3). 

 

[INSERT TABLE 3 ABOUT HERE] 

 

4.3. Results of the metabolomics  dataset 

 

Simulated data sets provide a useful suitable first approach to test the performance of 

the new Sparse N-PLS model. However, to exemplify Sparse N-PLS utility in a more 

complex context, the proposed method was faced to the analysis of a real dataset, which 

was derived from a metabolomics study. In the metabolomics data sets usually hundreds 

of variables, with high noise and high correlation are obtained, which dramatically 

hinders biomarker discovery and variable selection for predictive models building. 

Thus, real processed rat serum samples were used to artificially generate two different 

groups by adding a set of standards at different final concentrations that additionally 

showed different trends along time (Figure 4). In our opinion, this experimental design 

provides a suitable frame work to assess Sparse NPLS capabilities when facing real -

omics data sets. 

 

Our cross-validation procedure (20 repetitions of 5-fold cross-validation) selected as the 

optimum parameter values 30 features of WJ, 3 features of WK and 2 components. 

Therefore, 60 variables among the initial 1220 obtained from the LC-MS analysis (30 in 

each component) were selected by our final Sparse N-PLS model. Out of the four 

variable classes which were different between both groups by design (Table 1), our 
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model included at least one representative variable for each class. The model also 

included other variables not present among the four controlled variable classes, but 

many of them showed similar patterns to those included and could be derivatives or 

adducts of the original metabolites. Overall, the selection provided by the new model 

showed a quite feasible result, where not only the real assignable variables (added 

metabolites) but also those interfering ones can be selected. A list of all the selected 

variables is presented in Table 4. The first column lists those variables selected by 

Sparse N-PLS, while the second column indicates on which component these variables 

were selected. The third column shows whether these variables belong or not to one of 

the classes described in Table 1. Finally, column four shows whether those variables 

that do not belong to any of the assayed classes follows or not a pattern similar to those 

variables included (Table 1). Interestingly, variables of the classes 1, 2 and 3 and its 

derivatives or analogues were all exclusively selected in the first component and 

variables of the class 4 and its derivatives or analogues were all exclusively selected in 

the second component. Variables with different patterns to those of the four 

experimentally generated classes were included in both components, but were more 

prominent in the second one (13 in the first component versus 20 in the second).  

 

[INSERT TABLE 4 ABOUT HERE] 

 

Finally, the performance of our Sparse N-PLS model was compared with the (standard) 

N-PLS model. To this end, the metabolomics data set was analysis using both 

approaches. The Sparse N-PLS model clearly discriminated between the two rat groups 

(Figure 5A). However, similar groups’ separation was also obtained by using N-PLS 

(Figure 5B). The differences between both models appear when comparing Figs 5B vs 

5G, and 5C vs 5H, related to WJ and WK, respectively; or Figs 5D vs 5I, and 5E vs 5J 

respectively, which are alternative WJ and WK representations. For interpretation 

purposes, it seems better to compare Figs 5B vs 5G for WJ, and Figs. 5E vs 5J for WK. 

For WJ, it seems quite clear that the selection made from sparse N-PLS allows a clear 

interpretation of the metabolites responsible for the separation between the two groups. 

In the first component, those metabolites belonging to the classes 1, 2 and 3 (see Table 

4) are represented. While, the second component is related to completely independent 

metabolites (with respect to component one), which could be related to the separation of 
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rats 6 and 13 from the rest. Many of these metabolites are from class 4 (Table 4), 

although some of them are not apparently related to any of the designed variable groups. 

 

These interpretations are much more difficult to do when using N-PLS due to the high 

number of variables to deal with in the second (metabolites) mode, so from this 

perspective the proposed approach seems to improve N-PLS when trying to directly 

select the variables of interest (metabolites in this case). However, it should be 

highlighted that variable selection is out of the N-PLS scope. These results show that 

when variable selection is of prior relevance for interpretation or validation purposes 

Sparse N-PLS comes up as a valid alternative. 

 

For the interpretation of WK, Figs. 5 E and J have been selected. These plots show, for 

the first component, a similar pattern, although a slight shift downwards is observed for 

N-PLS. The similar trend observed for both methods strengths the use of the Sparse N-

PLS results, as it provides extra information as discussed above. However, regarding the 

second component, they did not provide the same result, which could be related to the 

clear separation of rats 6 and 13 observed in Sparse N-PLS (Fig. 5A). 

 

[INSERT FIGURE 5 ABOUT HERE] 

 

5. CONCLUSIONS 

 

Overall, the results presented here show that Sparse N-PLS provides a straightforward 

method for variable selection in both synthetic and real experimental data sets. Sparse 

N-PLS reduces mean squared error compared to N-PLS in our synthetic simulations 

(although this might not always be the case). Furthermore, when the model was 

challenged to analyze a real metabolomic data set, it was able to identify all the 

discriminating metabolite classes between the two defined groups. Significantly from a 

biological point of view, the model is able to retrieve correlated variables when they are 

related to the response. In summary, the new Sparse N-PLS method enables variable 

selection and simplifies data interpretation, which is of utmost importance in the data 

analysis of untargeted approaches focus on the discovery of new biomarkers in 

biomedicine. Still, further work is required to compare this intra variable selection 
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method with other variable selection procedures (e.g. selectivity ratio, permutation tests, 

etc.) and assess for the best one, globally or at each problem at hand. 
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Appendix 

 

Derivation of the soft-thresholding operator as a solution of the Lasso lagrangian form:  

 

1. Assuming X (matrizied version of X) is composed of orthogonal columns, the least-

squares solution is 

 

��45 = (STS)U-ST$ = ST$                                           (A. 1) 

 

2. Using the Lagrangian form, an equivalent problem to that considered would be 

 

min"
-
* ‖$ − S�‖** + 6‖�‖-                                            (A. 2) 

 

3. Expansion of the first term gives 

 

   
-
* $T$ − $TS� + -

* �T�                                              (A. 3) 

 

Since  $T$  does not contain any of the variables of interest, it can be discarded, and we 

can consider the following equivalent problem 

 

min" W−$TS� + -
* ‖�‖*X + 6‖�‖-                                    (A. 4) 

  

Which can be rewritten as 

 

min" # −��)45�) + 1
2 �)* + 6/�)/

Y

),-
 

                     

So, we have a sum of objectives as the objective function. Since each of them 

corresponds to a separate βj, this means that each variable may be solved individually 

 

4. For a certain j, we want to minimize 

(A. 5) 
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ℒ) = −��)45�) + -
* �)* + 6/�)/                                           (A. 6) 

 

If  ��)45 > 0, then �) ≥ 0 , otherwise we could just change its sign and get a lower value 

for the objective function. Correspondingly, if ��)45 < 0, then �) ≤ 0 

 

5. In the first case, if ��)45 > 0 and �) ≥ 0, then 

 

ℒ) = −��)45�) + -
* �)* + 6�)                                           (A. 7) 

 

After differentiating respect to �) and setting equal to zero, we get �) = ��)45 − 6 . Since 

�) ≥ 0,  the right-hand side must be nonnegative, so the solution would be 

 

��)����� = (��)45 − 6)7 = 123(��)45)(/��)45/ − 6)7                     (A. 8) 

 

Which is the soft-thresholding operator. 

 

6. In the other case, if  ��)45 < 0  and  �) ≤ 0, then   

 

ℒ) = −��)45�) + -
* �)* − 6�)                                      (A. 9) 

 

After differentiating respect to  �)  and setting equal to zero, we get  �) = ��)45 + 6 . 

Since we need  �) ≤ 0 the solution is 

 

��)����� = 123(��)45)(/��)45/ − 6)7                                   (A. 10) 

 

Which, again, gives the soft-thresholding operator. 
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Figure 1: Bias-variance trade-off as a function of model complexity. In-sample error (error on 

the same data used to fit the model) and out-of sample error (error on new data) are 

represented along different values of model complexity. Increasing the amount of L1-

penalization reduces model complexity, thus producing an increase in bias at the same time 

it produces a decrease in variance. This results in less overfitting.
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Figure 2: : Effect of the parameter s, imposing the L1-penalization restriction, 

in the estimation of the model coefficients. When s is large, the estimated 

least square coefficients are not modified, since they lie inside the defined 

restriction space (grayed area). When s decreases, coefficients are shrunken 

towards zero in order to satisfy the imposed restriction.
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Figure 3: Patterns for the 14 different variables in both groups: High 

doses (red lines) and low doses (black lines).
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Figure 4: Expected patterns for the four different metabolite 

classes in group 1 (n=8) and group 2 (n=6). 
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Figure 5. Plots of the Sparse N-PLS 

model (left), and the N-PLS model 

(right). Score plots of the two first 

components in the T matrix (A, F); 

weighting plots of the WJ matrix (B, 

G); weighting plot of the WK matrix 

(C, H); plots of the loadings of the 

second (D, I) and third (E, J) modes. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

Table 1. List of metabolites for each variable class. Metabolites are grouped attending to their 

physical and chemical properties. Class A, comprises fatty acid; Class B, comprises bile acids; 

Class C, comprises amino acids; Class D comprises miscellaneous compounds. 

 

Variable Class Metabolites 

A 

Capric Acid, Lauric Acid, Myristic Acid, 
Myristoleic Acid, Palmitic Acid,  

Palmitoleic Acid, Octadecanoic Acid, Oleic 
Acid, Linoleic Acid, Linolenic Acid 

B 

Cholic acid, Glycocholic acid, Taurocholic 
acid, Chenoeoxycholic acid, 

Glycochenodeoxycholic acid, 
Taurochenodeoxycholic acid, Deoxycholic 

acid, Glycodeoxycholic acid, 
Taurodeoxycholic acid, Lithocholic aid, 

Glycolithocholic acid, Taurolithocholic acid 

C 
Valine, Leucine, Isoleucine, Phenylalanine,  

Methionine, Cysteine, Proline, Tyrosine, 
Aspartic acid, Alanine, Glycine, Lysine 

D 

Ornithine, Glutamate, Glutamine, Citrulline, 
Arginine, Argininosuccinic Acid, γ-glutamyl-

glutamic acid, γ-glutamyl-glutamine, γ-
glutamyl-2aminobutyric acid, ophthalmic acid  
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Table 2. Results of the analyses performed using N-PLS and Sparse N-PLS on the different simulations. 

Median (1st, 3rd quartile) of the mean squared error and a 95% confidence interval for the difference in 

mean squared error between Sparse N-PLS and N-PLS is also provided. True variables selected column 

indicates the median of the occasions these are included in the models, as well as the 1st and 3rd quartiles 

(True positives). Noise variables selected column presents analogous results for the Noise variables (False 

positives). 

 Mean Squared Error Variable selection 

 

N-PLS sparse N-PLS 
95% CI for 

difference 

True 

variables 

selected 

Noise 

variables 

selected 

One time      

Normal error 

(sd=1) 

85.58 

(71.36, 96.24) 

66.23 

(52.72, 90.54) 
[-21.97, -9.72] 5 (5, 5) 3 (1, 6) 

Normal error 

(sd=1.5) 

103.16 

(85.98, 114.21) 

90.71 

(70.54, 121.8) 
[-16,32, 0.61] 5 (5, 5) 2 (1, 6) 

Normal error 

(sd=2) 

116.2 

(101.05, 135.47) 

99.17 

(84.34, 121.62) 
[-23.93, -8.02] 5 (4.75, 5) 4 (2, 12) 

Normal error 

(sd=3) 

166.33 

(134.1, 199.73) 

149.57 

(117.21, 198.9) 
[-26.84, 2.10] 5 (3, 5) 4 (1, 11) 

Poisson error 

(mean=1) 

86.46 

(70.46, 99.98) 

60.03 

(45.83, 101.65) 
[-26.66, -9.52] 5 (5, 5) 3 (1, 5) 

Poisson error 

(mean=3) 

109.21 

(92.02, 131.57) 

83.08 

(67.22, 107.67) 
[-32.09, -16.21] 5 (5, 5) 3 (1, 6) 

Poisson error 

(mean=5) 

138.29 

(108.9, 153.86) 

99.55 

(78.81, 125.76) 
[-40.58, -21.47] 5 (4,5) 5 (2, 11) 

Three times      

Normal error 

(sd=1) 

165.1 

(137.81, 202.86) 

107.97 

(91.79, 126.32) 
[-68.02, -46.07] 5 (3,5) 5 (2, 11) 

Normal error 

(sd=1.5) 

171.95 

(147.6, 206.47) 

115.75 

(98.58, 133.18) 
[-69.71, -49.51] 5 (3, 5) 6 (2, 12) 

Normal error 

(sd=2) 

195.57 

(159.96, 230.1) 

122.73 

(100.32, 145.4) 
[-85.29, -59.27] 4 (3, 5) 7 (3, 19) 

Normal error 

(sd=3) 

245.71 

(199.71, 292.2) 

130.97 

(107.48, 169.2) 
[-125.2, -92.03] 4 (3, 4.5) 7 (2, 18) 

Poisson error 

(mean=1) 

153.67 

(135.87, 193.6) 

103.92 

(85.16, 123.6) 
[-65.17, -45.07] 5 (3, 5) 5 (2, 5) 

Poisson error 

(mean=3) 

186.22 

(154.9, 213.56) 

115.77 

(91.33, 134.17) 
[-79.64, -57.47] 4 (3, 5) 6 (3, 13) 

Poisson error 

(mean=5) 

205.18 

(169.3, 236.78) 

118.58 

(94.83, 140.54) 
[-98.13, -73.24] 4 (3, 5) 6 (3, 15) 
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Table 3.Coefficients of the model Coefficients:     

              T1 T2    T3 
Glucose        0  0 0.000 
Phospholipids  0  0 0.000 
Kidney         0  0 0.000 
Liver          0  0 0.000 
Cholesterol    0  0 0.000 
Tryglycerids   0  0 0.000 
A/G ratio      0  0 0.077 
Urea           0  0 0.000 
Creatinine     0  0 0.082 
Albumin        0  0 0.076 
ALAT           0  0 0.221 
ASAT           0  0 0.221 
LDH            0  0 0.221 
GSH            0  0 0.101 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

Table 4: Variables selected by the final sparse N-PLS model and their corresponding assigned variable 

classes. 

Variable Component Variable Class 
Profile similar to 

variable class 

V8, V16 1 A - 

V27, V28, V32 1 B - 

V54 1 C - 

V58 2 D - 

V187, V466, V853 1 - A 

V470 1 - B 

V388, V405, V422, V660, V661, 

V672 

1 
- C 

V112, V151, V179, V434, V449, 

V587, V608, V612, V967, V990 
2 - D 

V95, V180, V527, V955, V1034, 

V1056, V1165, V1183, V1512, 

V2041, V2463, V2520, V2683 

1 - - 

V897, V1235, V1322, V1354, 

V1378, V1389, V1535, V1601, 

V1627, V1647, V1711, V1715, 

V1729, V1873, V1935, V1945, 

V2011, V2077, V2180, V2616 

2 - - 
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• A new version of N-PLS for embedding LASSO-based variable selection, Sparse N-
PLS, is presented. 

• Both N-PLS and Sparse N-PLS are compared in a metabolomics scenario 
• Sparse N-PLS method enables variable selection and simplifies data interpretation. 


