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Abstract

N-PLS, as the natural extension of PLSNeway structures, tries to maximize the
covariance between atiand a¥Y N-way data arrays. It provides a useful framework fo
fitting prediction models tdN-way data. However, N-PLS by itself does not perfor
variable selection, which indeed can facilitateerptetation in different situations (e.g.
the so-called “—omics” data). In this work, we poep a method for variable selection
within N-PLS by introducing sparsity in the weights masi¢¢’ andW" by means of
L1-penalization. The sparse versionNePLS is able to provide lower prediction errors
by filtering all the noise variables and to furtlmprove interpretability and usability of

the N-PLS results. To test SparBePLS performance two different simulated data sets



were used, whereas to show its utility in a biatagjicontext a real time course

metabolomics data set was used.
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1. INTRODUCTION

In the last decades, advances in technology hawablenh the gathering of an
increasingly amount of data in the field of biologgyd biomedicine [1]. The so called “-
omics” technologies such as genomics, epigenonri¢sanscriptomics, metabolomics,
among others, produce hundreds, thousands or eitlkonmof variables per dataset.
Economic and logistic restrictions often lead tcareample sizes paired to these wide
datasets, thus producing the recurring problerhsaEmples << variables [2]. A wide
variety of methods exist for dealing with these nimatype data [3-5]. But sometimes,
theselxJ datasets can be expanded by taking, for examgbeated measurements at
differentK time points for each individual, thus havihgIxK datasets that raise more
methodological complications to the analyses. Tlizdasets are called three-way data
[6]. One useful tool for analysing three-way dat&en someY data structure is to be
predicted, ifN-PLS [7].N-PLS reduces the inclusion of noise in the modets@btains
more robust parameters (by reducing the numberadmeters to be estimated in the
model) when compared to PLS while, at the same, tpreducing easy-to-understand

plots.

Related to the problem bk< J datasets, comes the issue of variable selectianabMe
selection is essential for facilitating e.g. biat@d interpretation of the results when
analyzing “-omic” data sets [8]. It is often theseahat the aim of these analyses is to
find a new biomarker or a specific set of biomaskelso called signature, to diagnose
or predict the prognosis of a disease. NHELS algorithm does not provide (in general)
inner variable selection, i.e. the variable setec{irocedure is not implemented within

the algorithm, although some methods have beernamaae to perform it [9].



In this work, we propose the introduction of L1-pkration in theN-PLS algorithm to
allow for variable selection within the model-fittj step. This penalization imposes a
constrain to the weights matrices, shrinking thefftcients of the model, causing some
of them to be exactly zero and thus performingalde selection at the same time. This
approach should not only facilitate, e.g. biologicaterpretation by producing a
reduced model including fewer variables, but shalkb reduce prediction error by
completely eliminating noise features [10] insteddust downweighting them as-
PLS does. The method also allows to smoothly adjasbias-variance trade-off by

changing the amount of L1 penalization imposednhenmodel (Figure 1).

[INSERT FIGURE 1 ABOUT HERE]

In Section 2, the methodological background relatedthe methods and how to
combine them into an embedded version ofNHRLS model are presented. In Section
3, the different datasets analyzed are introdubeth for the simulated and the real

cases. Section 4 presents the results, and fiSaltyion 5 the conclusions.

2. METHODOLOGICAL BACKGROUND

In the following paragraphs, a brief explanationtleé method$\N-PLS and Lasso is

given before introducing our SpafePLS algorithm:

2.1. N-PLS

N-PLS [11] studies relationships between some thrag-(or N-way) X (e.g.[xJIxK)
data structure and ang (e.g.I1XxLxM) data structure. It is the natural extension oEPL
to N-way structures, which tries to maximize the comace betweerX andY data
arrays. ConsideringX (IxJK) the unfolded version oKX, N-PLS tries to find latent
spacesW’ and WK that maximize the covariance betwe¥nand Y, so it can be

expressed as:

X = TWX|QIW)T + Ry (1)



afterwards decomposing from X using the improved-PLS version expression [12],

in order to obtain residuals with better statidtpr@perties:

X = TGWKQ WHT + Ry’ (2)

In this case,W’ and W" refer to the weights of the second and third mpdes
respectively; wherea$ matrix gathers the scores of the samples at eastpanent
extracted, in the *1 mode. |®| is the Khatri-Rao product ar® the Kroncecker
product, which forbid or allow (respectively) tkéainteractions between the different
modes components into accour@. is the core array (unfolded) of a Tucker3
decomposition when usirb, WX andW as loadings, in order to obtain a better (or at
least not worse) approximation of theé array [13]. FinallyRx' incorporates the

residuals.

ForY, similar results can be achieved when unfoldingto Y:

Y =UQ"®QY)" +Ry (3)

Y scores vectors are calle and weights vecto®-andQY, in the case of a three-way
array. As forX, Ry incorporates the residualBhe model is estimated in such a way
that the covariance betwe@nandU is maximized [13]. Finally, the prediction model
betweenX andY can be expressed using an inner relationship leetveandU:

U = TB+Ry (4)
WhenY variables have to be predicted on a new sampbee soatrixT is worked out
from Eq. (2), and by using Eg. (4) the scotks Y space are calculated. Finally, the
prediction forY is obtained from Eq. (3).

2.2. Lasso

Lasso is a regression analysis method based orehAlipation. It was first developed

for linear models, and consists in minimizing treual sum of squared errors, with a



bound on the sum of the absolute values of theficaafts [14]. This bound forces the
coefficients of the model to shrink, potentiallyttsey some of them to 0. Since its
introduction to linear models, Lasso has been ed@a@ano many other techniques such
as generalized linear models, survival analysis@mtipal component analysis among

others [15, 16], or even PLS [17]. The original L&S for least squares is as follows:

J

1
plasse = arg;nin Z(}’i = Bo — zxijﬁj)z
=1

j=1

()

Subject to the restriction:
J
Dlgl=<s
j=1

Reducing s increases the penalization and forces shrinkagethef coefficients,
producing a simpler model by setting some of thesctly to zero (Figure 2). Thus,
assuming data are standardized, Lasso selects dbergievant features and discards

the others.
[INSERT FIGURE 2 ABOUT HERE]

The solutions of equation (5) are easily showneo b
pjasse = sgn(BF) (B — (6)

where B}“ss" is the lasso estimated regression coefficienvéwiablej, B]-LS is the least
squares estimate of regression coefficient foraide j, and 1 is the penalization

coefficient determined by the conditioZr§=1|ﬁj| < s (see appendix for details).

2.3. SparseN-PLS

To introduce the L1-penalization in thePLS algorithm, we follow the approach of Lé

Caoet al.[17]. The main difference between Le Cao et aloallym and that proposed



in this paper is that, besides dealing with N-waycures instead 2-way matrices, Le
Cao et al. apply soft-thresholding on the loadingstors for theX andY spaces,
performing variable selection oX and Y; whereas Sparse N-PLS applies soft-
thresholding to achieve sparse versions of the m®igatrices for the second and third
mode, thus performing selection in the differentde® of X and not onY Sparse N-

PLS. To achieve these sparse versions of weighesdw" for each latent variable, we

introduce the soft-thresholding penalty functionfimed in equation (6),81“55" =
sgn(BF)(|BF°| — 1), in theN-PLS algorithm right after the SVD at the’ andw”

determination. The complete algorithm is as follows

CenterX andY, and unfoldX (andY when necessary) into a two-way matrix.

Letu be some column of, and set f (number of components)=1

1. w'=u"X/u'u

2. Build Z by refoldingw according to the modes dimensions

3. Determinew’ y wX by SVD

4. L1-penalization inclusion
a. Apply soft-thresholding om™ /" = sgn(@/)(|w/| - 2))*
b. Apply soft-thresholding ow": wF* = sgn(WF)(|wF| — 40"
c. Input the neww as kronecker(®, w”)

5. t=Xw/w'w

6. g=Yt/norm(yt)

7. u=Yq

8. Check for convergence. If it is achieved, contimt@erwise, go to 1

9. b=(T'T)*T u; whereT=[t; t,... t]

10. Deflate bothX andY: X = X-tw' andY = Y-tbg"
11.f = f+1. Continue from step 1 until a good descriptioryof

In this work, we perform both the standard regmsgcontinuous response) and the
discriminant version of thBl-PLS model, i.eN-PLS-DA. In the case df-PLS-DA,Y
is ay vector formed by ones and zeros, each of the &lweg related to one of the two

classes to be segregated.

3. MATERIAL AND METHODS
In order to show the performance of the Sp&tdel.S model proposed, three different
analyses have been performed: two of them usinglated data sets, and one using a

real data set from metabolomics data. A descriptiogach one of them is given below.



3.1 Synthetic data 1

First, we tested our implementation of the L1 perealN-PLS using data simulation. In
total, fourteen different scenarios with differesignal-to-noise ratios were tested.

Tuning of the models was performed by 20 repet#tioh10-fold cross-validation.

Our simulations consisted on three-wéayrrays withi=50 samples)=50 variables and
K=3 times, where variables were simulated randonrymf different kinds of

distributions (Poisson, Normal and Uniform) withryiag parameters.

If Normal: X~ N (un,0) where u~]\f(10, 10) and o~T(5, 1)

If Poisson:X~ P(1) where A~ N (10, 2.5)

If Uniform: X'~ U(a,b) where a~N(10, 10) and b~ N (100, 10)

Only 5 out of the 50 variables were used to corsthe respons&’. They were chosen
randomly from theX array and assigned randomly the following coedfits: 0.4, 0.5,
0.6, 0.7 and 0.9. In the first run, only one of theee times of the third mode was
involved in the creation of, in this case, vegtom the second run, the three times were
involved, but with different coefficients for eacfariable. In all simulations, random
Normal and Poisson errors were added in differemduats toy. For each combination
of type and amount of random error, simulationsem@&peated 100 times. Ability to
select the real variables involved yngeneration as well as median arii ahd &
guartiles of the mean squared error are provideddoh simulation run.

3.2 Synthetic data 2

To further test the performance of the method lectimg highly correlated variables,
simulated data resembling the ones of a toxicog&r®uaata set by Heijnet al. [18]
was analysed. In this work, the effect of the hefmaicant bromobenzene in rats was

studied. Groups of rats were treated with differdoses of this toxic compound



dissolved in corn oil for a 48 hours period. Atetrtime points from the start of the
treatment, rats were sacrificed. Liver samples wesed to extract mRNA for
microarray profiling and blood and urine was usenl imetabolite profiling.
Additionally, 21 physiological parameters were meea: Glucose, A/G ratio, GSH,
Body Weight, Creatin, GGT, Urea, Kidneys, Kidney/BWriglycerides, Liver,
Albumin, Total Protein, ALP, Liver/BW, Bilirubin, DH, Phospholipids, Cholesterol,
ASAT, ALAT.

In this work, simulated profiles from 14 of thesk ghysiological parameters were used
to discriminate between two of the different gro@idsgh and Low doses evolution). 25
samples for high doses and 25 for low doses wemeilated, adding to the pattern

random normal noise, with standard deviation 0.1.

Figure 3 represents time course levels of the s@atterns corresponding to the 14
physiological parameters evaluated for high and thvge treatment groups. These
variables can be grouped attending to their compadterns in the following groups; i)
ALAT, ASAT, LDH and GSH; ii) Creatin and Albuminiji) Kidney and Cholesterol;
Iv) Liver, Phospholipids and Triglycerides; v) Gase; vi) A/G Ratio and vii) Urea.

[INSERT FIGURE 3 ABOUT HERE]

3.3 Real dataset study

Rat serum samples preparation

Six-week-old male Oncins France Strain A (OFA) rg280-240 g) were purchased
from Charles River (Barcelona, Spain) and acclineatito laboratory conditions for at
least 7 days. Animals were housed (12-h light-aadde, 21-25°C, 30—-70% humidity,
woodchip bedding) and fed ad libitum with a staddehow diet (Scientific Animal
Food and Engineering, Augy, France). Rats werethetged with sodium thiobarbital
(0.1 g/kg), and blood was collected by cardiac purec After coagulation and
centrifugation (1,000 g for 10 min at 4°C), seruamgles were aliquoted and stored at -
80°C until the analysis. All the experimental pagls were approved by the

Institutional Animal Ethics Committee. 40 pL of ser sample were mixed with 120 pL



of methanol. After vortexing, samples were keptzdt °C for 20 min. Samples were
centrifuged (14000 g, 4 °C, 15 min) and the sugams transferred to clean tubes and
evaporated to dryness. Samples were resuspen@@d.ib of water, centrifuged (14000
g, 4 °C, 5 min), and the clean supernatants trenesféo HPLC vials for their LC-MS
analysis. Rats serum samples were separated ingtaaps of sizes 8 and 6 and
subsequently fortified with a set of metabolitesgenerate the patterns showed in
Figure 4. Metabolites and final concentrations um@isummarized in Table 1.

LC-MS analysis

Liquid chromatography—mass spectrometry (LC-MS)lym®s of rat serum samples
were performed in an Agilent 1290 Infinity LC systeoupled to an Agilent 6550 Q-
TOF mass spectrometer equipped with an ESI soukgdefit Technologies, Santa
Clara, CA, USA). LC-MS grade solvents (i.e. watetonitrile and methanol) were
acquired from Fisher Scientific (Loughborough, UR)JI the LC-MS additives and
standards were acquired from Sigma—Aldrich/Flukadktd, Spain). Metabolites were
separated on an Zorbax SB-Aqg column (100 x 2.1 tnjum) (Agilent Technologies,
Santa Clara, CA, USA). Mobile phases consistedAdflimM ammonium fluoride and
(B) acetonitrile. The separation was conducted utigefollowing gradient at a flow of
0.3 mL/min: 0 min 3 % (B); 0—2 min 40 % (B); 2-5mi7 % (B); 5-7 min 50 % (B); 7-
12 min 100% (B); 12-16min 100% (B); 16-16.5 min 3%&); 16.5-18 min 3% (B).
Sample and column temperatures were maintained®@tahd 40°C, respectively. The
injection volume was fL. The instrument was tuned in the 50-1T@&range using an
Agilent tune mix in 2GHz extended dynamic range enfdass resolving power 25,000
FWHM). Detection was performed in ESI (-) mode het50-1000 m/z range. A
reference solution (m/z 119.0360 and m/z 980.01649 used to correct small mass
drifts during acquisition. The following conditiongere employed: capillary voltage,
3.5 kV; nozzle voltage -1.0 kV; fragmentor voltadd5 V; gas temperature, 200 °C;
drying gas (nitrogen), 14 L/min; nebulizer gas rggen), 35 psi; sheath gas
temperature, 350 °C; and sheath gas flow (nitrqgeln)./min. The acquisition rate was
set at 4 spectra/s in all cases. Data preprocesgisgperformed using ProgenesisQI
software (Nonlinear Dynamics, UK). The MS-data veasanged in an array structure

with | x J x K dimensions, where “I” denotes themther of rats used in the assay (i.e.,

objects); “J” denotes the total number of featutetected in the LC-MS analysis (i.e.,



variables) and “K” denotes he time points seledtedats” serum collection (i.e., three

time points).

[INSERT FIGURE 4 ABOUT HERE]

[INSERT TABLE 1 ABOUT HERE]

3.3 Software

Both N-PLS and SparsB-PLS analyses were performed using the authorsisgpa
PLS package [19] available at CRAN (version 0.3.&Lyomprehensive description of

this software can be found elsewhere [20].

4. RESULTS AND DISCUSION

4.1 Synthetic data 1

Results of the different simulations carried outlom first synthetic dataset are provided
in Table 2. They show that SpafdePLS outperformdN-PLS regarding mean squared
prediction error. When performing Spafdd’LS, the true variables were almost always
included in the selected model. Median number g trariables selected in each model
was 5 (100%) in most of the simulations (9 out 4f.1n the other 5 simulations, the

median number of true variables selected was 4 J8Ukese simulations were the ones
consisting in the more complex and noisy model# #e three times of the third mode
affecting Y and lower signal-to-noise ratios. Also, a varyi@gount of other noise

variables were erroneously included in the mod&dts€ positives). The amount of

noise variables that were included in the Sp&l$d_S models increased as the signal-
to-noise ratio of the data decreased, ranging framedian of 2 (4.4%) to a median of 7

(15.6%) noise variables included in the worst-casrilation.

[INSERT TABLE 2 ABOUT HERE]

4.2. Synthetic data 2

10



In this case, the goal was to test the ability prSeN-PLS for gathering those relevant
variables within the Lasso selection procedure ewéhe case that these variables show
correlation. Table 3 summarizes the model coefitsi@btained in the data set analysis.
Overall, results of the analysis showed good agee¢mwith the structure of the data.
All the variables following the pattern i (i.e., A, ASAT, LDH and GSH) were
selected by the method and similar coefficientsewassigned Additionally, Creatinine
and Albumin (pattern ii) were also selected withnitar coefficients. Interestingly, the
A/G ratio (pattern vi), a variable uncorrelated dth the others was also selected.
However, the rest of the patterns were not consdiselected by the model, probably
because selection was also performed on the thidenand only the third element of

the third mode was selected (Table 3).

[INSERT TABLE 3 ABOUT HERE]

4.3. Results of the metabolomics dataset

Simulated data sets provide a useful suitable &ipgiroach to test the performance of
the new SparsBl-PLS model. However, to exemplify SpafdePLS utility in a more
complex context, the proposed method was faceldetamalysis of a real dataset, which
was derived from a metabolomics study. In the nwtabics data sets usually hundreds
of variables, with high noise and high correlatiare obtained, which dramatically
hinders biomarker discovery and variable selecfion predictive models building.
Thus, real processed rat serum samples were usatifioally generate two different
groups by adding a set of standards at differerdl fconcentrations that additionally
showed different trends along time (Figure 4). im opinion, this experimental design
provides a suitable frame work to assess SparseSNRbpabilities when facing real

omicsdata sets.

Our cross-validation procedure (20 repetitions-66l8 cross-validation) selected as the
optimum parameter values 30 features\Wt 3 features oWX and 2 components.
Therefore, 60 variables among the initial 1220 ioletéh from the LC-MS analysis (30 in
each component) were selected by our final Spired.S model. Out of the four

variable classes which were different between lgythups by design (Table 1), our

11



model included at least one representative varifdneeach class. The model also
included other variables not present among the @mntrolled variable classes, but
many of them showed similar patterns to those geduand could be derivatives or
adducts of the original metabolites. Overall, tieéestion provided by the new model
showed a quite feasible result, where not only riged assignable variables (added
metabolites) but also those interfering ones carsddected. A list of all the selected
variables is presented in Table 4. The first colulmts those variables selected by
SparseN-PLS, while the second column indicates on whicingonent these variables
were selected. The third column shows whether thiasables belong or not to one of
the classes described in Table 1. Finally, coluour shows whether those variables
that do not belong to any of the assayed classlesvor not a pattern similar to those
variables included (Table 1). Interestingly, vakésbof the classes 1, 2 and 3 and its
derivatives or analogues were all exclusively detkan the first component and
variables of the class 4 and its derivatives otcanees were all exclusively selected in
the second component. Variables with different ggatt to those of the four
experimentally generated classes were includedoth bomponents, but were more

prominent in the second one (13 in the first congmbversus 20 in the second).

[INSERT TABLE 4 ABOUT HERE]

Finally, the performance of our Spafdd®’LS model was compared with the (standard)
N-PLS model. To this end, the metabolomics data veas analysis using both
approaches. The SpaePLS model clearly discriminated between the twograups
(Figure 5A). However, similar groups’ separationswalso obtained by using-PLS
(Figure 5B). The differences between both modefgeapwhen comparing Figs 5B vs
5G, and 5C vs 5H, related W’ andW¥, respectively; or Figs 5D vs 51, and 5E vs 5J
respectively, which are alternativd/? and W" representations. For interpretation
purposes, it seems better to compare Figs 5B vioB®/”, and Figs. 5E vs 5J favX.

For W’, it seems quite clear that the selection made BparseN-PLS allows a clear
interpretation of the metabolites responsible far $eparation between the two groups.
In the first component, those metabolites belonginthe classes 1, 2 and 3 (see Table
4) are represented. While, the second componeneiated to completely independent

metabolites (with respect to component one), whmhid be related to the separation of

12



rats 6 and 13 from the rest. Many of these metlare from class 4 (Table 4),
although some of them are not apparently relateshyoof the designed variable groups.

These interpretations are much more difficult tondwen usingN-PLS due to the high
number of variables to deal with in the second &belites) mode, so from this
perspective the proposed approach seems to impMe®eS when trying to directly
select the variables of interest (metabolites irs tbase). However, it should be
highlighted that variable selection is out of tRd°LS scope. These results show that
when variable selection is of prior relevance faoterpretation or validation purposes

SparseN-PLS comes up as a valid alternative.

For the interpretation dV¥, Figs. 5 E and J have been selected. These piots, $or
the first component, a similar pattern, althougtlight shift downwards is observed for
N-PLS. The similar trend observed for both methddsngths the use of the Spafde
PLS results, as it provides extra information asuassed above. However, regarding the
second component, they did not provide the samdtyeghich could be related to the
clear separation of rats 6 and 13 observed in 8paRLS (Fig. 5A).

[INSERT FIGURE 5 ABOUT HERE]

5. CONCLUSIONS

Overall, the results presented here show that 8p&RLS provides a straightforward
method for variable selection in both synthetic agal experimental data sets. Sparse
N-PLS reduces mean squared error compareld-RLS in our synthetic simulations
(although this might not always be the case). Funtore, when the model was
challenged to analyze a real metabolomic data isetas able to identify all the
discriminating metabolite classes between the teftndd groups. Significantly from a
biological point of view, the model is able to ree correlated variables when they are
related to the response. In summary, the new Sp&RES method enables variable
selection and simplifies data interpretation, whiglof utmost importance in the data
analysis of untargeted approaches focus on theowksg of new biomarkers in

biomedicine. Still, further work is required to cpare this intra variable selection

13



method with other variable selection procedures. @lectivity ratio, permutation tests,

etc.) and assess for the best one, globally aaclt problem at hand.

14



Appendix
Derivation of the soft-thresholding operator a®ktson of the Lasso lagrangian form:

1. AssumingX (matrizied version oK) is composed of orthogonal columns, the least-

squares solution is
B = XTX)XTy = XTy (A. 1)
2. Using the Lagrangian form, an equivalent problerthat considered would be
ming 2 [ly — X113 + AllB1l; (A.2)
3. Expansion of the first term gives
YTy —yTXB+ B (A3

Since yTy does not contain any of the variables of inteiestin be discarded, and we

can consider the following equivalent problem

ming (=y"XB + 3 11B1l;) + AllBll; (A 4)

Which can be rewritten as
P 1
mﬁinz ~BEB; + 587 + 21 (A. 5)
j=1

So, we have a sum of objectives as the objectiveetion. Since each of them

corresponds to a separgiethis means that each variable may be solved ishaiy

4. For a certaif we want to minimize

15



A 1
Lj=— jLSﬁj +§'8j2 +’1|Bj| (A.6)

If ﬁfs > 0, thenp; = 0, otherwise we could just change its sign ancagetver value

for the objective function. Correspondinglygif* < 0, theng; < 0
5. In the first case, |/ > 0 andg; > 0, then
5 1
Lj = —BSB; + B} + 2B; (A.7)

After differentiating respect t8; and setting equal to zero, we @et= A]-LS — A . Since

p; = 0, the right-hand side must be nonnegative, sethgion would be
om0 = B = 0" = sgnBE B - 2 (~.8)
Which is the soft-thresholding operator.

6. In the other case, if/° <0 and g; <0, then

5 1
L; = —prp; +§'8j2 — AB; (A.9)

After differentiating respect t@; and setting equal to zero, we ggt= A]-LS + 1.

Since we need; < 0 the solution is
a5 = sgn(Br)(|BF°| - D* (A. 10)

J

Which, again, gives the soft-thresholding operator.
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Figure 1: Bias-variance trade-off as a function of model complexity. In-sample error (error on
the same data used to fit the model) and out-of sample error (error on new data) are
represented along different values of model complexity. Increasing the amount of L1-
penalization reduces model complexity, thus producing an increase in bias at the same time
it produces a decrease in variance. This results in less overfitting.
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Table 1. List of metabolites for each variable class. M etabolites are grouped attending to their
physical and chemical properties. Class A, comprises fatty acid; Class B, comprises bile acids;

Class C, comprises amino acids,; Class D comprises miscellaneous compounds.

Variable Class Metabolites
Capric Acid, Lauric Acid, Myristic Acid,
Myristoleic Acid, Palmitic Acid,
Palmitoleic Acid, Octadecanoic Acid, Oleic
Acid, Linoleic Acid, Linolenic Acid
Cholic acid, Glycocholic acid, Taurocholic
acid, Chenoeoxychoalic acid,
Glycochenodeoxycholic acid,
B Taurochenodeoxycholic acid, Deoxycholic
acid, Glycodeoxychalic acid,
Taurodeoxycholic acid, Lithocholic aid,
Glycalithochalic acid, Taurolithocholic acid
Valine, Leucine, Isoleucine, Phenylalanine,
C Methionine, Cysteine, Proline, Tyrosine,
Aspartic acid, Alanine, Glycine, Lysine
Ornithine, Glutamate, Glutamine, Citrulline,
Arginine, Argininosuccinic Acid, y-glutamyl-
glutamic acid, y-glutamyl-glutamine, y-
glutamyl-2aminobutyric acid, ophthalmic acid

A




Table 2. Results of the analyses performed using N-PL S and Sparse N-PL S on the different s mulations.
Median (1%, 3 quartile) of the mean squared error and a 95% confidence interval for the differencein
mean squared error between Sparse N-PLS and N-PL S is also provided. True variables selected column
indicates the median of the occasions these are included in the models, as well as the 1¥ and 3rd quartiles

(True positives). Noise variables selected column presents analogous results for the Noise variables (False

positives).
Mean Squared Error Variable selection
True Noise
95% CI for
N-PLS sparse N-PLS _ variables variables
difference
selected selected
Onetime
Normal error 85.58 66.23
[-21.97, -9.72] 5(5,5) 3(1,6)
(sd=1) (71.36, 96.24) (52.72, 90.54)
Normal error 103.16 90.71
[-16,32, 0.61] 5(5,5) 2(1,6)
(sd=1.5) (85.98, 114.21) (70.54, 121.8)
Normal error 116.2 99.17
[-23.93, -8.02] 5(4.75, 5) 4(2,12)
(sd=2) (101.05, 135.47) | (84.34,121.62)
Normal error 166.33 149.57
[-26.84, 2.10] 5(3,5) 4(1,11)
(sd=3) (134.1,199.73) | (117.21,198.9)
Poisson error 86.46 60.03
[-26.66, -9.52] 5(5,5) 3(1,5)
(mean=1) (70.46, 99.98) (45.83, 101.65)
Poisson error 109.21 83.08
[-32.09, -16.21] 5(5,5) 3(1,6)
(mean=3) (92.02, 131.57) | (67.22, 107.67)
Poisson error 138.29 99.55
[-40.58, -21.47] 5(4,5) 5(2,11)
(mean=5) (108.9, 153.86) | (78.81, 125.76)
Threetimes
Normal error 165.1 107.97
[-68.02, -46.07] 5(3,5) 5(2,11)
(sd=1) (137.81, 202.86) | (91.79, 126.32)
Normal error 171.95 115.75
[-69.71, -49.51] 5(3,5) 6(2,12)
(sd=1.5) (147.6, 206.47) | (98.58, 133.18)
Normal error 195.57 122.73
[-85.29, -59.27] 4(3,5) 7 (3, 19)
(sd=2) (159.96, 230.1) | (100.32, 145.4)
Normal error 245.71 130.97
[-125.2, -92.03] 4(3,4.5) 7 (2,18)
(sd=3) (199.71,292.2) | (107.48,169.2)
Poisson error 153.67 103.92
[-65.17, -45.07] 5(3,5) 5(2,5)
(mean=1) (135.87, 193.6) (85.16, 123.6)
Poisson error 186.22 115.77
[-79.64, -57.47] 4(3,5) 6 (3, 13)
(mean=3) (154.9,21356) | (91.33, 134.17)
Poisson error 205.18 118.58
[-98.13, -73.24] 4(3,5) 6 (3, 15)
(mean=5) (169.3, 236.78) | (94.83, 140.54)




Table 3.Coefficients of the model Coefficients:
T1 T2 T3

Glucose 0 0 0.000
Phospholipids O 0 0.000
Kidney 0 0 0.000
Liver 0 0 0.000
Cholesterol 0 0 0.000
Tryglycerids 0 0 0.000
A/G ratio 0 0 0.077
Urea 0 0 0.000
Creatinine 0 0 0.082
Albumin 0 0 0.076
ALAT 0 0 0.221
ASAT 0 00.221
LDH 0 00.221
GSH 0 0 0.101



Table 4: Variables selected by the final sparse N-PLS model and their corresponding assigned variable

classes.

Variable Component Variable Class Profile smilar to

variable class
V8, V16 1 A -
V27,V28,V32 1 B g
V54 1 C -
V58 2 D -
V187, V466, V853 1 -
V470 1 B
V388, V405, V422, V660, V661, 1 ) c
V672
V112, V151, V179, V434, V449, ) b

V587, V608, V612, V967, VI90

V95, V180, V527, V955, V1034,
V1056, V1165, V1183, V1512, 1 - -
V2041, V2463, V2520, V2683

V897, V1235, V1322, V1354,
V1378, V1389, V1535 V1601,
V1627, V1647, V1711, V1715, 2 - -
V1729, V1873, V1935 V1945,
V2011, V2077, V2180, V2616




* A new version of N-PLS for embedding LASSO-based variable selection, Sparse N-
PLS, is presented.

* Both N-PLS and Sparse N-PLS are compared in a metabolomics scenario
» Sparse N-PLS method enables variable selection and simplifies data interpretation.



