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A new single-layer metamaterial lens antenna aimed to operate at 10GHz is proposed in this paper. The lens antenna consists of
twelve capacitively coupled unit cells distributed along a ring and illuminated by an open-ended circular waveguide with a metallic
resonant ring. The theory of characteristic modes is used to analyze the metamaterial lens, in order to provide an insight into the
radiation characteristics of the antenna. The proposed antenna has been optimized, obtaining a large bandwidth and a maximum
directivity of 12.88 dBi at 10GHz.

1. Introduction

Metal lenses have attracted an increasing interest during the
last decade due to their multiple applications [1–9]. In this
context, different lenses have been recently proposed aimed
at maximizing the gain and the efficiency of the radiating
structures. These lenses are formed by periodic structures,
for example, EBG (electromagnetic band gap) or FSS (fre-
quency selective surfaces), which provide the aforementioned
characteristics in a low-profile shape. In [1, 2], a type of FSS,
the so-called metallic hole array (MHA), was used to design a
low-profile planar lens at millimeter-wave frequencies, while
in [3], an extended version was proposed, which was fed by
two open-ended waveguides.

Periodic structures are also used to design transmitarrays
[4, 5] and reflectarrays [6] by means of an intensive study of
the physical model of the feed element and the unit cell.
Additionally, the compactness of metamaterial lens antennas
makes them very attractive for the low-cost development of
metal lenses at terahertz frequencies [7], thin planar lenses
for massive MIMO applications in the millimeter-wave

band [8], or ultrathin planar lens antennas based on gradi-
ent metasurfaces [9].

So far, the design of the proposed metal lenses has been
based on the analysis of the unit cell with infinitely periodic
boundary conditions. However, the truncation of the lenses
in a finite number of elements leads to inaccurate results.
An alternative to this analysis consists of using the theory
of characteristic modes (TCM). This theory was initially
formulated by Garbacz and Turpin [10] and then refined
by Harrington and Mautz [11, 12]. The TCM was shown to
be really helpful for the analysis and design of several antenna
structures [13]. The popularity of this theory relies on the fact
that it provides a very clear understanding of the radiating
behavior of metallic and dielectric bodies, which ease the
design process. In [11], an extensive explanation about the
TCM and how to compute the characteristic eigencurrents
and eigenvalues for a conducting body can be found.

In addition to the first applications of the TCM reviewed
in [13], this theory has been recently used to analyze the
bandwidth of a 2× 2 bowtie array with a metasurface [14],
design electrically small unmanned aerial vehicle (UAV)
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antennas [15], design and analyze slotted planar structures
[16], or study some canonical structures such as spheres or
cylinders [17]. Moreover, a single-layer metal lens formed
by a central circular metallic ring surrounded by a set of
eight metallic rings was analyzed using the TCM in [18],
a wideband low-profile metasurface antenna was modeled
and optimized using characteristic modes in [19], and a
low-profile lens using metallic cylinders was investigated
in [20] using the TCM.

This paper presents a new low-profile metallic lens
antenna formed by twelve metallic rings distributed in a sin-
gle layer and arranged along a ring, as illustrated in Figure 1.
The structure is analyzed using the TCM, by means of the
commercial electromagnetic simulators CST [21] and FEKO
[22], in order to provide some physical insight into the
radiating characteristics of the antenna.

The paper is organized as follows: Section 2 presents the
geometry of the proposed antenna and the design procedure,
Section 3 describes the characteristic modes of the metallic
structure and the radiating behavior associated with the
antenna, Section 4 shows the main results obtained with the
design proposed at 10GHz, and, finally, Section 5 highlights
the main conclusions.

2. Antenna Structure

The complete system, formed by a feeding circular wave-
guide and a single-layer lens antenna, is shown in
Figure 1(b). As can be observed, the feeding element is a
circular aperture with a resonant ring, placed at a distance
f from the single-layer lens in the z-axis. The metallic ring
attached to the circular aperture is used to maximize the
gain and minimize the crosspolar level of the feeder. By
optimizing the structure for the frequency band of interest
(9–11.5GHz), the resulting dimensions are the following:
t = 1 27mm, Dw = 19 35mm, and Df = 33 89mm, where t
is the thickness of the metallic ring and Dw and Df are the
internal and external diameter, respectively.

Considering the previous feeder, the lens has been
optimized to maximize the gain and minimize the side-
lobe level and the crosspolar level of the antenna. As a
result, the following dimensions have been obtained: Di =
10 88mm, Do = 15 58mm, r = 30 55mm, Dl = 76 68mm,

and f = 13 85mm, where Di and Do are the internal and
external diameter, respectively, of the metallic ring, r is the
radius of the ring where the twelve unit cells are distributed,
Dl is the diameter of the lens, and f is the focal length.

In order to improve the performance of the feeding aper-
ture, the spherical phase distribution of the field on the lens is
transformed into a uniform phase distribution above the
lens, as indicated in Figure 2. Although the aforementioned
optimization is performed in transmission, the lens can also
be analyzed in reception to study the focusing effects of the
lens. To do so, the metallic lens is illuminated by a plane wave
using the full-wave electromagnetic tool CST [21].

The total field at a point in space is the sum of the incident

field E i produced by the primary feeder and the scattered

fields E s produced by the rings. The induced currents in

the rings depend on the incident field E i and will be analyzed
using the TCM in Section 3. If an isolated metallic ring is illu-
minated by a plane wave (see Figure 3(a)), it can be observed
that, in the central part of the ring, the waves are not trans-
mitted, which is equivalent to a cancellation of the incident
waves with the fields near the induced currents. Nevertheless,
if the complete lens consisting of twelve coupled rings is illu-
minated, as shown in Figure 3(b), there are more intense
fields in the focal area, also produced by the sum of the inci-
dent plane wave and the near fields of the metallic structure.

The behavior described is caused by the induced currents
in the rings, which depend on the incident field and on the
equivalent impedance of the rings. These currents produce
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Figure 1: Geometry of the proposed lens antenna: (a) top view and (b) lateral view.

Open-ended
waveguide

a with resonant ring

Spherical phase
distribution

Collimating lens

Uniform phase
distribution

y

x
Ei + Es

Ei

f

Figure 2: Schematic view of the proposed single layer lens antenna.
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a diffracted field throughout the space, which is added to the
incident field. At the broadside, the incident field and the dif-
fracted field are in phase; that is, the phases of the waves are
compensated with the phase of the impedance of the metallic
ring, and, consequently, the radiation pattern is maximized at
this direction. Note that the design in transmission already
takes into account all these effects.

From Figure 3(b), the focal distance (f = 13 85mm) can
be deduced. This distance coincides with the focal distance
at which the feeder was located for the optimization of the
lens in transmission. Such focal distance, along with the
diameter of the complete lens (Dl = 76 68mm), confers
the antenna f /Dl ratio of 0.18.

3. Analysis of Characteristic Modes

As exposed in [10, 11] and [13], the characteristic modes (Jn)
are real current modes that are extracted at every frequency
from the generalized impedance matrix of the antenna. These
characteristic modes form a set of orthogonal functions that
can be used to expand the total current in the surface of the
antenna, as described in the following equations:

J =〠
n

Vi
nJn

1 + jλn
, 1

Vi
n =∮

s
Jn ⋅ E

ids, 2

where Jn are the characteristic currents on the conducting
body, λn are the eigenvalues, and Vi

n is the modal excitation
coefficient expressed in (2). Associated with each eigenvalue,
a characteristic angle can be defined as

αn = 180∘ − arctan λn 3

Observe that modes are capacitive for αn > 180∘, induc-
tive for αn < 180∘, and resonate for αn = 180∘ [13].

Nowadays, characteristic modes can be calculated using
commercial electromagnetic simulators, such as CST [21]
or FEKO [22]. In the next subsection, these simulators will
be used to extract the characteristic modes associated with

the proposed lens in order to evaluate the additional physical
insight that the TCM brings into the radiation behavior of
the antenna.

3.1. Characteristic Mode Analysis of the Proposed Planar Lens
Antenna. In order to reveal the operation mechanism of the
proposed lens antenna, the analysis of the modal behavior
of the twelve metallic rings that form the antenna is investi-
gated. The first four characteristic modes (Jn) in the set of
twelve metallic rings are plotted in Figure 4. As can be seen,
currents of mode 1 form a loop inside and outside the total
structure. modes 2 and 3 are a pair of degenerated modes
[13], representing the modal current of the dominant modes,
which generate a broadside radiation pattern. These broad-
side modes are the desired modes for the antenna design.
Finally, mode 4 is a high-order mode. Radiation patterns
associated with the first four modes of the proposed lens
are shown in Figure 5.

The characteristic angle of the fundamental mode (mode
2 for vertical polarization) is shown in Figure 6(a). It is
observed that the phase is about 160∘ at 10GHz, and the
variation is smaller than 14∘ for frequencies between 9GHz
and 11.5GHz, which allows a design with a large bandwidth.
Figure 6(b) shows the modal significance, where it is
observed that the 4 modes have similar values so it is
necessary to analyze the contribution of each mode to the
total radiated power of the proposed lens antenna for a plane
wave illumination with vertical polarization. The results
are shown in Figure 6(c), where mode 2 is the desired
mode for broadside radiation.

As it has been discussed in the previous paragraph, the
characteristic angle of the metallic ring indicates an inductive
behavior involving a phase shift, as shown in Figure 6(a). In
the proposed antenna, the unit cells receive a wave with a
nonuniform phase distribution that must be compensated.

The two modes (mode 2 and mode 3) will lead to a
linearly polarized antenna and facilitate the understanding
of the modal behavior. By doing so, the characteristic mode
analysis provides insightful guidelines for the excitation and
implementation of the lens antenna.
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Figure 3: Simulation of an incident plane wave at 10GHz in (a) a metallic ring (unit cell) and (b) the proposed lens antenna. Color scale is
valid for both plots.
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Figure 4: Modal currents of the proposed lens on the XY plane at 10GHz: (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4.
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Figure 5: Modal radiation pattern of the proposed lens at 10GHz. (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4.
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3.2. Metamaterial Lens Antenna with Feeding Structure. In
the proposed design, aimed to operate at 10GHz, a rectangu-
lar to circular waveguide transition (model 1764 of FLANN)
has been used to allow the feeding of the structure by means
of a standard rectangular waveguide flange. Figure 7 shows

two pictures of the fabricated prototype. The feeder (circular
waveguide aperture with a resonant ring) has been fabricated
in aluminum with a milling machine and has been attached
to the transition. The lens’ rings have been fabricated in a
copper sheet and attached to a foam layer with the same
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Figure 6: Modal parameters of the proposed lens: (a) characteristic angle, (b) modal significance, and (c) contribution of each mode to the
total radiated power (including also the power of high-order modes).
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Figure 7: Pictures of the fabricated prototype: (a) complete structure and (b) lens.
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height as the focal distance to guarantee the correct separa-
tion between the lens and the feeder.

The total surface current in the proposed lens antenna at
10GHz is illustrated in Figure 8. As can be observed, the
current distribution is similar to the one of dominant mode
2 (see Figure 4(b)). This mode has the same polarization as
the incident wave and, consequently, provides the greatest
contribution of power, as shown in Figure 6(c) (the total
power includes the power of modes two and three, shown
in Figure 6(c), and the power of higher-order modes).

4. Results

Figure 9 shows the measured S11 parameter of the fabricated
lens antenna. As can be observed, measured and simulated
results are quite similar, with a good matching (S11≤ 10 dB)
starting at 9.5GHz, approximately, in both cases. The level
of the S11 is kept below −10 dB up to 11.5GHz. The response
might have been extended beyond this upper frequency limit,
but, as it will be seen later, the gain decays at 11GHz and,
hence, it does not worth to consider a larger bandwidth.

Figures 10 and 11 show the radiation pattern on the H-
plane and E-planes, respectively, at 10GHz. The simulation
of the crosspolar component is not included in the graph
because the results of the simulator are ideal values. The axial

symmetry of the radiation pattern (both planes present the
same −3 dB beamwidth and the same main beam shape)
guarantees a good crosspolar level, below −35 dB within the
main beam.

Figure 12 shows the maximum gain of the lens antenna at
different frequencies. As can be observed, the maximum gain
is above 11.8 dBi and the radiation efficiency is above 90%
from 9.5GHz to 11.5GHz. This high efficiency is caused by
the use of low-loss materials in the manufactured prototype.
Observe the aforementioned decay of the maximum gain
from 11 to 11.5GHz. At these frequencies, the rings are far
from resonance and, consequently, the performance worsens.

The obtained maximum directivity is 12.88 dBi at
10GHz, which corresponds to a directivity increase of
5.71 dB with respect to an open-ended waveguide with the
same aperture size as the feeder of the proposed lens antenna,
as can be observed in Figure 13.
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Figure 8: Surface current of the proposed lens antenna at 10GHz.
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Figure 10: Normalized electric field radiation pattern in the H-
plane of the proposed lens antenna at 10GHz: simulated (SIM)
and measured (MEAS) copolar and crosspolar components.
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of the proposed lens antenna at 10GHz: simulated (SIM) and
measured (MEAS) copolar and crosspolar components.
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5. Conclusion

In this paper, a new design for a metal lens formed by twelve
metallic rings has been presented. The lens has been analyzed
using characteristic modes in order to evaluate the perfor-
mance of the currents on the metallic rings and provide a
physical insight into the lens operation. An open-ended
waveguide with a resonant ring is used as the primary feed
for the metallic lens. The resulting structure improves the
maximum directivity with respect to the feeder along a large
bandwidth (more than 5dB) and provides a good crosspolar
level (better than −35 dB).
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