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ABSTRACT

Handwritten document transcription aims to obtain the contents of a document to provide efficient in-
formation access to, among other, digitised historical documents. The increasing number of historical
documents published by libraries and archives makes this an important task. In this context, the use of
image processing and understanding techniques in conjunction with assistive technologies reduces the
time and human effort required for obtaining the final perfect transcription. The assistive transcrip-
tion system proposes a hypothesis, usually derived from a recognition process of the handwritten text
image. Then, the professional transcriber feedback can be used to obtain an improved hypothesis and
speed-up the final transcription. In this framework, a speech signal corresponding to the dictation of
the handwritten text can be used as an additional source of information. This multimodal approach,
that combines the image of the handwritten text with the speech of the dictation of its contents, could
make better the hypotheses (initial and improved) offered to the transcriber. In this paper we study
the feasibility of a multimodal interactive transcription system for an assistive paradigm known as
Computer Assisted Transcription of Text Images. Different techniques are tested for obtaining the
multimodal combination in this framework. The use of the proposed multimodal approach reveals a
significant reduction of transcription effort with some multimodal combination techniques, allowing
for a faster transcription process.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Transcription of handwritten documents is an interesting ap-
plication field where converge the use of image processing (for
image feature extraction) and natural language processing (for
text recognition). This application can be used to obtain a text
transcription of handwritten notes and documents, such as his-
torical handwritten books; this last task is specially interesting
for the preservation of cultural heritage available in different li-
braries (Fischer et al., 2009). In recent years, Handwritten Text
Recognition (HTR) systems (Romero et al., 2012) have con-
tributed to speed up the transcription of these manuscripts.

HTR systems differ from Optical Character Recognition
(OCR) systems or scene text recognition systems in different
features. OCR and scene text recognition deal with separated
characters of different regular fonts, which makes possible to
easily isolate each character and classify it by using this seg-
mentation and, possibly, its context (Bissacco et al., 2013).
However, in HTR it is difficult to make character segmenta-
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tion and the written sequence must be taken as a whole, and
the characters in cursive style present a much higher variabil-
ity (even for the same writter). Moreover, OCR and scene text
recognition usually deal with the recognition of single words or
short word sequences (Jaderberg et al., 2014a), whereas HTR
deals with longer sequences (usually in the form of lines of
handwritten text). In contrast, text detection for HTR is usu-
ally easier than for scene text, because of the regular nature of
most handwritten documents that made them easy to segment
text blocks into lines.

HTR systems provide a draft transcription that human users
can amend with less effort than transcribing from scratch.
In these terms, HTR systems can be seen as a part of
an assistive technology. Assistive technologies have been
of traditional use in many fields of computer applications,
such as the Computer Aided Design (CAD) field (Machover,
1995), medical diagnosis (Doi, 2007), automatic driving (Malit,
2009), Computational Linguistics/Natural Language Process-
ing (CL/NLP) (Barrachina et al., 2009; Revuelta-Martı́nez
et al., 2012; Silvestre-Cerdà et al., 2013), and Pattern Recog-
nition and Image Processing (Romero et al., 2012).

In these tasks, the computer allows the human user to have



2

an easier and faster work, providing the final user with a series
of tools that allow to speed-up the process. Among these tools
appear some automatic processing elements, such as medical
data analysers, processors for data from driving sensors, speech
and handwritten text recognisers, image feature extractors, etc.
Apart from that, these systems need an interface that allows
the user to amend the possible errors obtained by the automatic
process. The interface tool could provide, by using underlying
systems that employ the results of the automatic process and
the user feedback, autonomous actions that avoid the user to
perform some of the corrections.

Consequently, the main objective in these systems is not ob-
taining the most accurate result from the automatic system,
but achieving the lowest effort for the human user (although
both facts could be correlated). This requires new evaluation
measures and frameworks that follow this criterion (minimis-
ing user effort) and are adapted to the corresponding task. For
example, for the transcription of speech or handwritten text, the
number of correction actions that the user has to perform (tak-
ing into account automatic corrections given by the system) is
a good measure of the effort.

In this assistive context, the multimodal paradigm arose as
a new form of improving these systems by reducing the final
user effort. The multimodal paradigm has experimented a spec-
tacular growth in the latest years because of the development
of mobile devices (Di Fabbrizio et al., 2009), where different
modalities (speech and touch mainly) are employed for the de-
vice management. In the case of Image or Natural Language
Processing tasks, multimodality has been applied to problems
where signals of different nature that represent the same final
object are available (Mihalcea, 2012; Potamianos et al., 2003;
Sebe et al., 2005; Granell and Martı́nez-Hinarejos, 2015b). In
any case, multimodality is strongly linked to human-computer
interaction, since the user may employ different modalities to
obtain a more ergonomic or faster interaction to achieve an ob-
jective.

One interesting computer assisted application where multi-
modality can provide productivity improvements is the tran-
scription of handwritten documents (Gordo et al., 2008). In
this case, the assistive system provides the final users an initial
draft transcription of the handwritten image. Then, the system
could supply with alternative transcriptions every time the user
makes an amendment, with the final aim of reducing the user
effort to obtain a perfect transcription.

An example of assistive framework that presents these fea-
tures is the Computer Assisted Transcription of Text Images
(CATTI) system (Romero et al., 2012). The CATTI system
takes as input the image to be transcribed, which is employed to
offer the user a first hypothesis and alternatives when the user
makes a correction. The obtention of the hypotheses is usu-
ally based on a HTR system. Since HTR systems commonly
take as input text lines, input images are usually text lines ob-
tained from page images. The obtention of text lines from an
initial page requires several steps that are common for degraded
documents: slope correction (Bloomberg et al., 1995), bright
normalisation, image cleaning (Villegas et al., 2015) and line
segmentation (Grüning et al., 2018). Current state of the art for

these methods provide high quality images of lines with a very
accurate segmentation.

The multimodality can be incorporated into CATTI by pro-
viding another signal that represents the same sequence of
words, e.g., a speech dictation of the text that can be processed
by an Automatic Speech Recognition (ASR) engine and gives
as a result different alternatives. HTR and ASR systems employ
similar models: optical/acoustical models for the basic units
(characters and phones, respectively), lexical models (to form
words from basic units), and language models (to form sen-
tences from words). These systems also can obtain results in
a similar format: single best hypothesis, n-best list of hypothe-
ses, or lattices to represent alternative hypotheses. Therefore,
its combination seems feasible despite of the different nature of
the signals and its asynchrony.

In this paper, we research the use of multimodal combina-
tion techniques for improving the performance of the CATTI
framework, and in particular the interaction effort of the CATTI
user. The baseline CATTI system employs HTR to obtain
the initial draft transcription to be amended using the inter-
active protocols. We explore how the addition of a speech
signal with the dictation of the handwritten text improves the
CATTI performance by using multimodal combination of HTR
and ASR results. Four different multimodal combination tech-
niques are tested and compared with the use of a single modal-
ity in CATTI. Results show that multimodal combination can
provide significant effort reductions for the final user.

Thus, the main contribution of the paper is to demonstrate
that including multimodality (image and speech) as input for
the CATTI system reduces substantially, by using proper multi-
modal combination techniques, the user effort when transcrib-
ing handwritten text lines.

The paper is organised as follows: Section 2 specifies the
particulars of the new multimodal CATTI system; Section 3
presents the different multimodal combination techniques; Sec-
tion 4 details the experimental framework (data, conditions, and
assessment measures); Section 5 shows the results of the dif-
ferent experiments; Section 6 offers the final conclusions and
future work lines.

2. Computer Assisted Transcription of Text Images

Many documents used every day include handwritten text
and, in many cases, it would be interesting to recognise these
text images automatically. However, state-of-the-art handwrit-
ten text recognition systems (HTR) can not suppress the need of
human work when high quality transcriptions are needed. HTR
systems can achieve fairly high accuracy for restricted applica-
tions with rather limited vocabulary (reading of postal addresses
or bank checks) and/or form-constrained handwriting. How-
ever, in the case of unconstrained transcription applications, the
current HTR technology typically only achieves results which
do not meet the quality requirements of practical applications.
Therefore, once the full recognition process of one document
has finished, heavy human expert revision is required to really
produce a transcription of standard quality. Such a post-editing
solution is rather inefficient and uncomfortable for the human
corrector.
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A way of taking advantage of the HTR system is to com-
bine it with the knowledge of a human transcriber, constituting
the so-called Computer Assisted Transcription of Text Images
(CATTI) scenario (Romero et al., 2012). As previously com-
mented, in this framework the automatic HTR system and the
human transcriber cooperate interactively to obtain the perfect
transcript of the text images. At each interaction step, the sys-
tem uses the text image and a previously validated part (prefix)
of its transcription to propose an improved output. Then, the
user finds and corrects the next system error, thereby providing
a longer prefix which the system uses to suggest a new, hope-
fully better continuation.

Speech dictation of the handwritten text can be used as an
additional information source in the CATTI process. Taking
into account both the handwritten text image and the speech
signal the system can, hopefully, propose a better transcription
hypothesis in each interaction step. This way, many user correc-
tions are avoided. In this section we review the classical HTR
and ASR framework and formalise the multimodal CATTI sce-
nario where both sources help each other to improve the system
accuracy.

2.1. HTR and ASR Framework

The traditional HTR and ASR recognition problems aim to
recover the text represented in an input signal, and therefore
they can be formulated in a very similar way. However, the in-
put signal for HTR systems usually is a segmented line of a dig-
italised handwritten document (Romero et al., 2015), whereas
in ASR the input is a voice signal. Then, the problem is finding
the most likely word sequence, ŵ, for a given handwritten text
line image or a speech signal represented by a feature vector
sequence x = (x1, x2, . . . , x|x|) (Toselli et al., 2004), that is:

ŵ = arg max
w∈W

P(w | x) = arg max
w∈W

P(x | w)P(w) (1)

where:

• W denotes the set of all permissible sentences,

• P(w) is the probability of w = (w1,w2, . . . ,w|w|) approx-
imated by the language model (Jelinek, 1998) (usually
modelled by a n-gram word language model), and

• P(x | w) is the probability of observing x by assuming
that w is the underlying word sequence for x, evaluated by
the optical or acoustical models for HTR and ASR respec-
tively (typically it is approximated by concatenated hidden
Markov models -HMMs- that model the different charac-
ters or phonemes or by Deep Neural Networks -DNN- that
model this probability distribution).

The search (or decoding) of ŵ is carried out by the Viterbi al-
gorithm (Jelinek, 1998). From this dynamic-programming de-
coding process, we can obtain not only a single best hypothesis,
but also a huge set of best hypotheses. These solutions can be
presented in the form of a n-best list or compactly represented
into a lattice, such as a Word Graph (WG) or a Confusion Net-
work (CN) (Jurafsky and Martin, 2009).

A WG is a weighted directed acyclic graph that represents
a huge set of hypotheses in a very efficient way. It is defined
as a finite set of nodes Q and edges E, including an initial
node νI ∈ Q and a set of final nodes F ⊆ (Q − νI). Each
node ν is associated with a horizontal position for HTR or a
time point for ASR of x, given by t(ν)∈[0, |x|], where t(νI) = 0
and ∀νF∈F t(νF) = |x|. Their edges are labelled with words and
weighted with scores derived from the optical/acoutical and lan-
guage model probabilities computed during the decoding pro-
cess.

A complete path of a WG is a sequence of nodes starting
with node νI and ending with a node in F. Complete paths
correspond to whole decoding hypotheses.

A CN is also a directed, acyclic and weighted graph that
shows at each point which word hypotheses are competing or
mistakable. Therefore, the segmentation information (t(ν) in
WGs) is not available here. Each hypothesis goes through all
the nodes by choosing one word from each position. To cope
with different length hypotheses, the *DELETE* arcs are used.
The words and their posterior probabilities are stored in the
edges, and the total probability of the words contained in a sub-
network (all edges between two consecutive nodes) sum up to
1. It is important to note that confusion networks add paths that
are not in the original recognition. Figure 1 provides an exam-
ple of a n-best list, a lattice formatted as WG representing these
n-best hypotheses, and an equivalent CN1.

2.2. CATTI Formal Framework

As previously explained, in the CATTI framework the user is
directly involved in the transcription process, since he/she is re-
sponsible for validating and/or correcting the system hypothesis
during the transcription process. The system takes into account
the handwritten text image and the feedback of the user in order
to improve these proposed hypotheses. The more information
the system has about what is written in the handwritten text
line image, the better the proposed hypotheses are, and there-
fore, fewer user interactions are needed to obtain the perfect
transcript. In this work, in addition to the handwritten text line
image, we study how the CATTI system can take advantage of
the speech dictation of the text that the images contain.

The process starts when the system proposes a full transcrip-
tion ŝ of the handwritten text line image. If, in addition to the
handwritten text line image, the speech dictation is available,
the system takes it into account to propose a hopefully better
hypothesis. Then, the user reads this transcription until find-
ing a mistake and makes a mouse action (MA) m, or equiv-
alent pointer-positioning keystrokes, to position the cursor at
this point. By doing so, the user is already providing some very
useful information to the system: he is validating a prefix p
of the transcription, which is error-free, and in addition, he is
signalling that the following word e located after the cursor is
incorrect. Hence, the system can already take advantage of this
fact and directly propose a new suitable suffix (i.e., a new ŝ) in
which the first word is different from the first wrong word of

1For the sake of simplicity, the probabilities have been omitted.
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(c) Lattice as Confusion Network.

Fig. 1. Output formats for recognition systems. The n-best list presents the n output hypotheses of higher probability obtained during the decoding process,
ordered from higher to lower. Lattice representations provide the same information in a more compact format; in the case of Word Graph, segmentation
is kept, whereas in Confusion Network it gets lost. The three representations in the figure are for the same output result. Probabilities are not shown for
the sake of clarity.

the previous suffix. This way, many explicit user corrections
are avoided (Romero et al., 2009). If the new suffix ŝ corrects
the erroneous word, a new cycle starts. However, if the new
suffix has an error in the same position than the previous one,
the user can make a new MA or can enter a word v to correct
the erroneous one. This last action produces a new prefix p (the
previously validated prefix followed by the new word v). Then,
the system takes into account the new prefix to suggest a new
suffix and a new cycle starts. This process is repeated until a
correct transcription is accepted by the user.

In Figure 2 we can see an example of the CATTI process.
In this example, without interaction with a CATTI system, a
user should have to correct about three errors from the origi-
nal recognised hypothesis (“abadia”, “segun” and “el”). Using
CATTI only one explicit user-correction is necessary to get the
final error-free transcription: the iteration 1 only needs a MA,
but in the iteration 2 a single mouse action does not succeed and
the correct word needs to be typed.

Formally, in the traditional CATTI framework (Romero et al.,
2012), the system uses a given feature sequence, xhtr, represent-
ing a handwritten text line image and a user validated prefix p
of the transcription. In this work, in addition to xhtr, a sequence
of feature vectors xasr, which represents the speech dictation of
the handwritten text line image, is used to improve the system
performance. Therefore, the CATTI system should try to com-
plete the validated prefix by searching for a most likely suffix ŝ
taking into account both sequences of feature vectors:

ŝ = arg max
s

P(s | xhtr, xasr, p) (2)

Making the naive assumption that xhtr does not depend on xasr,
and applying the Bayes’ rule, we can rewrite Equation (2) as:

ŝ = arg max
s

P(xhtr | p, s) · P(xasr | p, s) · P(s | p) (3)

where the concatenation of p and s is w. As in conventional
HTR and ASR, P(xhtr | p, s) and P(xasr | p, s) can be approx-
imated by HMMs or DNN, and P(s | p) by a language model
(usually an n-gram) conditioned by p. Therefore, the search

must be performed over all possible suffixes of p (Romero et al.,
2012).

This suffix search can be efficiently carried out by using
Word Graphs (WG) (Romero et al., 2012) or Confusion Net-
works (CN) (Granell et al., 2016) obtained from the combina-
tion of the HTR and ASR recognition outputs. In each interac-
tion step, the decoder parses the validated prefix p over the WG
or CN and then continues searching for a suffix which max-
imises the posterior probability according to Equation (3). This
process is repeated until a complete and correct transcription
of the input text line image is obtained. Therefore, the com-
bination techniques applied on the HTR and ASR recognition
results may have an impact on the interactive process. Section 3
describes different combination options for the two modalities.

3. Multimodal Combination

Multimodal combination is a problem that has been faced in
different recognition systems. This section presents the differ-
ent alternatives according the stage of the recognition system
where the combination is performed (Section 3.1) and the spe-
cific techniques that are employed in this work (Section 3.2).

3.1. Combination alternatives

The combination of natural language recognition systems al-
lows to improve the recognition accuracy. In most cases, this
combination can be performed in three different stages of the
recognition process (Li, 2005): in the feature extraction stage
(feature combination), in the search process (probability com-
bination), and in the decoding output (hypothesis combination).

• Feature combination: Feature combination is performed
concatenating the different features at feature vector level
to form a new feature vector sequence to be used in the
recognition process (Potamianos and Neti, 2001). This
combination method usually requires synchronous paral-
lel feature streams.
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Image

Speech

ITER-0 p
ŝ la abadia de Toledo a mano de xpiānos segun el dicho es

ITER-1 m ⇑
p la
ŝ cibdad de Toledo a mano de xpiānos segun el dicho es
m ⇑
p la cibdad de Toledo a mano de xpiānos

ITER-2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- -

ŝ sigue el dicho es
v segund
p la cibdad de Toledo a mano de xpiānos segund
ŝ dicho es

FINAL v #
p ≡ t la cibdad de Toledo a mano de xpiānos segund dicho es

Fig. 2. Example of CATTI operation using mouse-actions (MA). Starting with an initial recognised hypothesis ŝ from combination of both modalities, the
user validates its longest well-recognised prefix p, making a MA m, and the system emits a new recognised hypothesis ŝ. As the new hypothesis corrects
the erroneous word, a new cycle starts. Now, the user validates the new longest prefix p, which is error-free, making another MA m. The system provides
a new suffix ŝ taking into account this information. As the new suffix does not correct the mistake, the user types the correct word v, generating a new
validated prefix p. Taking into account the new prefix, the system suggests a new hypothesis ŝ. As the new hypothesis corrects the erroneous word, a new
cycle starts. This process is repeated until the final error-free transcription t is obtained. The underlined boldface word in the final transcription is the only
one which was corrected by the user. Note that in the iteration 2 it is needed two user interactions (a MA and then, to type the correct word). However, the
iteration 1 only needs a user interaction (a MA).

• Probability combination: In probability combination
methods the recognition class probabilities are com-
bined before the final search process. The probabil-
ity combination can be performed synchronously (Her-
nando et al., 1995) combining the observation probabil-
ities of the optical/acoutical models frame-by-frame, or
asynchronously (Dupont and Luettin, 2000) combining
the probabilities at a higher-level, such as characters or
phonemes. Synchronous probability combination requires
synchronous parallel feature streams, while asynchronous
probability combination allows to combine asynchronous
parallel feature streams of the same nature (they use the
same higher-level unit, such as in audio-visual speech
recognition).

• Hypothesis combination: The last stage where the com-
bination can be performed is at recogniser output (Fis-
cus, 1997). In this stage, the hypotheses obtained after
the completion of the search process from each recogniser
are combined. In hypothesis combination the parallel fea-
ture streams can be synchronous or asynchronous, and the
only restriction is that all feature streams must represent
the same final sequence of words.

Since HTR and ASR systems share most part of the recogni-
tion process, the possibility of combining both systems arises
immediately. This combination would take advantage from
two different data sources. However, this multimodal combi-

nation can not be performed easily at the input (feature com-
bination) or during the recognition process (probability combi-
nation) given the different nature of these modalities and the
asynchrony with respect to each other. Therefore, the easiest
way of performing this multimodal combination is to combine
the output results of both systems by using a hypothesis combi-
nation method, which is the option we selected for this work.

3.2. Hypothesis combination techniques

Many techniques on joining results have been proposed
with the idea of reducing the error in the combined output.
Some examples are: Recogniser Output Voting Error Reduc-
tion (ROVER) (Fiscus, 1997), N-best ROVER (Stolcke et al.,
2000), Lattices Rescoring (Stolcke et al., 1997), and Confu-
sion Network Combination (CNC) (Evermann and Woodland,
2000). These methods can be used to combine the outputs of
recognition systems of different modalities that represent the
same sentence. They all effectively improve the recognition
performance, even though each one presents different charac-
teristics.

3.2.1. Recogniser Output Voting Error Reduction (ROVER)
The widely used ROVER method (Fiscus, 1997) misses part

of the information contained in the recognition outputs as it per-
forms the combination by voting (at word level) among the dif-
ferent system outputs using only the 1-best hypothesis.
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The ROVER method is implemented in two modules. In the
first one, the 1-best decoding outputs are aligned and combined
in a word transition network (with a structure similar to a con-
fusion network). Then, the second module (the voting search
module) evaluates each subnetwork to select the best scoring
word (using a voting scheme) for the new transcription.

Voting is performed as follows: for each subnetwork the
number of occurrences of each word w in the corresponding
subnetwork i is accumulated in an array N(w, i), and normalised
by dividing N(w, i) by the number of combined systems (Ns) to
scale the frequency of occurrence to the unity. Moreover, de-
pending on the voting scheme, the confidence scores for word
w in the subnetwork i are measured and normalised in an array
C(w, i). The confidence score of NULL transition arcs can be
defined by the Conf(@) parameter.

The balance between using word frequency and confidence
scores can be adjusted by means of a parameter α:

Score(w, i) = α
(

N(w, i)
Ns

)
+ (1 − α)C(w, i) (4)

The voting search module offers the following three different
voting schemes:

1. Frequency of occurrence. In the voting by frequency of
occurrence scheme all confidence scoring information is
ignored, i.e. the α parameter is set to 1.

2. Frequency of occurrence and average word confidence.
In this voting method, the confidence score of each word w
in the array C(w, i) is set to the average value of the appear-
ance of this word w in the subnetwork i. Both parameters
α and Conf(@) must be trained a priori.

3. Frequency of occurrence and maximum confidence. In
the last voting scheme, the confidence score of each word
w in the array C(w, i) is set to the maximum value of the
appearance of this word w in the subnetwork i. In this
case, both parameters α and Conf(@) must be also trained
a priori.

3.2.2. N-best ROVER
The combination of multiple hypotheses can produce an out-

put more accurate than combining only the 1-best hypothesis.
This is the idea behind the N-best ROVER method (Stolcke
et al., 2000), which uses n-best outputs to perform the com-
bination.

This method works in three steps. In a first step, the n-best
h hypotheses from the decoding of a feature vector sequence
x by using different systems S i are aligned like in the ROVER
method. Then, in a second step the normalised and weighted
log-linear word posteriors are estimated for each system. In the
last step, the combined word posterior is computed as a linear
combination.

The word posteriors for each word w and system i are com-
puted for each subnetwork j by log-linear score weighting, fol-
lowed by a normalisation over all hypotheses.

Pi(w | x) =

∑
h:w∈h

exp
(∑

j
λi jsi j(h | x)

)
∑
∀h

exp
(∑

j
λi jsi j(h | x)

) (5)

where si j(h | x) is the log-score, and λi j are the log-score com-
bination weights for the subnetwork j of the hypothesis h of the
system i. Then, the combined posterior can be computed as a
linear combination:

P(w | x) =
∑

i

µiPi(w | x) (6)

where µi represents the system weight.
Finally, the combined hypothesis is formed by the concate-

nation of the most probable word hypotheses at each position
in the alignment. Therefore, like ROVER, this method presents
the following constraint: the result of the combination is com-
posed of a single hypothesis.

3.2.3. Lattices Rescoring
Combining multiple lattices on a new lattice not only may

improve the most likely hypothesis, but also this new lattice
may contain better hypotheses than the most likely. The N-
best List and Lattices Rescoring method (Ostendorf et al., 1991;
Stolcke et al., 1997) optimises the word-level recognition scores
and constructs a word lattice from all information contained in
the lattices to combine.

This algorithm has two components. In the first one, the
scores of the hypotheses contained in the lattices to combine
are weighted by using a parameter, and then all these hypothe-
ses are aligned and merged in one n-best list. In the second one,
the optimisation of the word-level recognition scores is made
by means of the substitution of the normalisation term P(x) of
Equation (1) by a finite sum over the set W of all the hypotheses
in the joint n-best list:

P(x) =
∑
w∈W

P(w | x) (7)

Finally, a new combined lattice is build from the rescored
n-best hypotheses.

3.2.4. Confusion Network Combination
Another way to obtain a combined lattice is the use of Confu-

sion Network Combination (CNC) methods. The bimodal CNC
method presented in (Granell and Martı́nez-Hinarejos, 2015a)
is a special case of CNC where the hypotheses of one modality
are used to minimise the word error present in the other modal-
ity hypotheses. In a first step, both CN are aligned by similarity
based on a gram matching error. The gram matching between
the words of both modalities (wA and wB) is assessed by using
the quadratic mean of the Character Error Rate (CER) and the
Phoneme Error Rate (PER) between those words:

E(wA,wB) =

√
CER(wA,wB)2 + PER(wA,wB)2

2
(8)

Where CER and PER are the Levensthein distance between
the words of both modalities, CER at character level, and PER



7

at phoneme level by using the phonetic transcriptions of the
recognised words, and E represents the gram matching error.

In a second step a new CN is composed on the basis of the
Bayes theorem, assuming a strong independence between both
modalities, by using three editing actions: combination, inser-
tion, and deletion of subnetworks. Given two subnetworks,
S NA and S NB, the word posterior probabilities of the combined
subnetwork S NC are obtained by applying a normalisation on
the logarithmic interpolation of the smoothed word posterior
probabilities of both subnetworks:

P(w | S NC) = P(w | S NA)αP(w | S NB)1−α (9)

For insertion and deletion, the subnetwork to insert or to
delete is combined with a subnetwork with an only *DELETE*
arc with probability 1.0.

4. Experimental Framework

In this section, the used data, and the system setup (features,
models, and evaluation metrics) are presented.

4.1. Corpora

Two handwritten document datasets and three spoken cor-
pora were used in the experiments. All these corpora are de-
scribed in the following parts.

4.1.1. Handwritten text: Cristo Salvador
The Cristo Salvador corpus was employed previously in dif-

ferent works (Alabau et al., 2011, 2014; Granell and Martı́nez-
Hinarejos, 2015a) related to multimodal combination. This cor-
pus is a handwritten book of the XIX century provided by Bib-
lioteca Valenciana Digital (BiValDi). It is a single writer book
with different image features that have some problems, such as
smear, background variations, differences in bright, and bleed-
through (ink that trespasses to the other surface of the sheet). It
is composed of 53 pages (page 41 is presented in Figure 3(a)).
This corpus is available with the pages divided into lines (such
as shown in Figure 4).

This corpus presents a total number of 1,172 lines, with a
vocabulary of 3,287 different words. For training the optical
models for this HTR corpus, a partition with the first 32 pages
(675 lines) was used. The obtained optical models modelled
the set of 78 symbols present in this corpus, taking into account
lowercase and uppercase letters, numbers, punctuation marks,
special symbols, and blank spaces.

Test data was composed of the lines of page 41 (24 lines, 222
words), that was selected for being, according to preliminary
error recognition results, a representative page of the whole test
set (the remaining 21 pages, 497 lines). The multimodal test
set is composed of a single page because the speech acquisition
would not be feasible for the whole standard test set.

4.1.2. Handwritten text: Rodrigo
The Rodrigo corpus (Serrano et al., 2010) is composed of

a set of 853 pages written by a single writer in 1545, entitled
“Historia de España del arçobispo Don Rodrigo”. The topic of

(a) Page 41 of Cristo Salvador.

(b) Page 515 of Rodrigo.

Fig. 3. A page example for each handwritten text corpus.
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Fig. 4. Examples of Cristo Salvador handwritten lines.

Fig. 5. Examples of Rodrigo handwritten lines.

the book is historical chronicles of Spain. Most pages (as page
515 shown in Figure 3(b)) form a single block with well sepa-
rated lines (usually 25 lines per page), written in calligraphical
text. The corpus is available with the separated lines, which are
the source for feature extraction (Figure 5 shows an example of
separated lines). The corpus has a total of 20,356 lines in PNG
format and a vocabulary size of about 11,000 words. For train-
ing the optical models, a standard partition with a total number
of 5000 lines (about 205 pages) was used.

The test set for this HTR corpus was composed of two pages
that were not included in the training part (pages 515 and 579)
and that were representative of the average error of the stan-
dard test set (of about 5000 lines). These two pages contain 50
lines and 514 words. As happened with Cristo Salvador, these
two pages where selected to allow a reasonable speech acqui-
sition for the multimodal experiments. The set of 106 sym-
bols present in this corpus gets modelled by the corresponding
optical models, which take into account lowercase and upper-
case letters, numbers, punctuation marks, special symbols, and
blank spaces.

4.1.3. Speech: Albayzin, Cristo Salvador and Rodrigo
For the training of the ASR acoustical models we used a

partition of the Spanish phonetic corpus Albayzin (Moreno
et al., 1993). This corpus consists of a set of three sub-corpus
recorded by 304 speakers using a sampling rate of 16 KHz
and a 16 bit quantisation. The training partition used in this
work includes a set of 4800 phonetically balanced utterances,
specifically, 200 utterances read by four speakers and 25 utter-
ances read by 160 speakers, with a total length of about 4 hours.
Acoustical models cover a total of 25 phones (23 monophones,
short silence, and long silence), and they were estimated from
this corpus.

Test data for ASR was the product of the acquisition of the
dictation of the contents of the lines of the test pages of each
handwritten corpus using a sample rate of 16 KHz and an en-
coding of 16 bits (to match the conditions of Albayzin data). In
the case of Cristo Salvador, the ASR test data was composed
of the acquisition of the lines of the page 41 by five different
native Spanish speakers (i.e., a total set of 120 utterances, with
a total length of about 9 minutes), while in the case of Rodrigo,
seven different native Spanish speakers read the 50 handwritten
test lines (those of pages 515 and 579), giving a total set of 350

Fig. 6. Example of feature vectors sequence.

utterances (about 15 minutes).

4.2. System setup

In this work we employed and compared systems based
on HMM and on deep learning models. The HTR and ASR
recognition systems based on HMM were implemented by us-
ing the iATROS recogniser (Luján-Mares et al., 2008), and
the HTR and ASR recognition systems based on deep learn-
ing were implemented by using the Laia (Puigcerver et al.,
2016) and EESEN (Miao et al., 2015) recognisers. The SRILM
toolkit (Stolcke, 2002) was used to obtain CN from the WG
recognition outputs.

4.2.1. Features
Handwritten text features are computed in several steps from

line images. These steps are different depending on the final
models used. Common steps are slant correction by using the
maximum variance method (Pastor et al., 2004) and a size nor-
malisation. In the case of the deep learning models, the input
is the line image after performing these common steps and the
process described in (Villegas et al., 2015).

However, in the case of HMM a more complex sequence of
steps is used. First, a bright normalisation is performed. Af-
ter that, a median filter of size 3 × 3 pixels is applied to whole
image. Next, the common steps (slant correction and size nor-
malisation) are aplied. Finally, each preprocessed line image
is represented as a sequence of feature vectors. To do this, the
text line image is divided into squared cells. From each cell,
three features are calculated: normalised grey level, horizontal
grey level derivative and vertical grey level derivative. Columns
of cells (frames) are processed from left to right and a feature
vector is constructed for each frame by stacking the three fea-
tures computed in its constituent cells. The way these three fea-
tures are determined is described in (Toselli et al., 2004). In this
work, final feature vectors for HMM are of 60 dimensions. In
Figure 6 we can see an example of the feature vectors sequence
obtained from the image in the CATTI example (Figure 2).

With respect to speech features, Mel-Frequency Cepstral Co-
efficients (MFCC) are extracted from the audio files. The
Fourier transform is calculated every 10 ms over a window of
25 ms of a pre-emphasised signal. Next, 23 equidistant Mel
scale triangular filters are applied and the filters outputs are log-
arithmised. Finally, to obtain the MFCC a discrete cosine trans-
formation is applied. In this work, the first 12 MFCC and log
frame energy with first and second order derivatives are used,
resulting in a 39 dimensional feature vector (Rabiner and Juang,
1993).
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Table 1. Architecture of the optical models based on deep neural networks.

Parameters Cristo Salvador Rodrigo
CNN Layers 3 5
Filters {16,32,48} {16,32,48,64,80}
Kernel size 3 × 3 3 × 3
MaxPool size 2 × 2 2 × 2
Dropout {0,0.2,0.2} {0,0,0.2,0.2,0.2}
RNN Layers 3 5
BLSTM Units 256 256

4.2.2. Models
Optical and acoustical HMM models were trained by using

HTK (Young et al., 2006). On the one hand, symbols on the op-
tical models are modelled by a continuous density left-to-right
HMM with 14 and 4 states for Cristo Salvador and Rodrigo,
respectively, and 32 gaussians per state. On the other hand,
phonemes on the acoustical model are modelled as a left-to-
right HMM with 3 states and 64 gaussians per state.

Optical models based on deep learning were trained by using
Laia (Puigcerver et al., 2016). Those optical models are Con-
volutional Recurrent Neural Networks (CRNN) (Choi et al.,
2016), which consist of a convolutional (CNN) and a recurrent
(RNN) blocks with the architecture detailed in Table 1 for each
corpus. The convolutional blocks, are composed of convolu-
tional layers with filters composed by different features maps.
Each convolutional layer has kernel sizes of 3 × 3 pixels, hori-
zontal and vertical strides of 1 pixel, LeakyReLU as activation
function, and a maximum pooling layer with non-overlapping
kernels of 2 × 2 pixels only at the output of the first two layers
for Cristo Salvador and at the output of the first three layers
for Rodrigo. Then, the recurrent blocks are composed of differ-
ent recurrent layers composed of 256 Bidirectional Long-Short
Term Memory (BLSTM) units. Finally, a linear fully-connected
output layer is used after the recurrent block. The first part of
the architechture is very similar to that employed in OCR and
scene text detection and recognition, where CNN blocks are
employed for single character recognition (Wang et al., 2012;
Jaderberg et al., 2014b). The second part of the architechture
(the recurrent layers) allow to model the connection of the cur-
sive text.

Acoustical models based on deep learning were trained by
using EESEN (Miao et al., 2015). This acoustical deep model
is a Recurrent Neural Network (RNN) composed of 351 inputs
for 9 neighbouring frames of cepstral features, 6 hidden layers
with 250 BLSTM units, and an output layer with a softmax
function (Graves et al., 2013).

The lexicon models for both systems are in HTK lexicon for-
mat, where each word is modelled as a concatenation of sym-
bols for HTR or phonemes for ASR.

The language models (LM) were estimated directly from the
transcriptions of the pages included on the HTR training sets
(32 pages for Cristo Salvador, and about 205 pages for Ro-
drigo) by using the SRILM ngram-count tool (Stolcke, 2002).
The models were 2-gram with Kneser-Ney back-off smooth-

ing (Kneser and Ney, 1995). The Cristo Salvador language
model was interpolated with the whole lexicon in order to avoid
out-of-vocabulary words, and it presents a perplexity of 742.8
for the test data. In contrast, the Rodrigo language model
presents for the test a 6.2% of out-of-vocabulary words and a
perplexity of 298.4. Although language models could be en-
riched with external sources, the antiquity and the topic of the
books makes difficult to find representative texts to enhance the
language models.

4.2.3. Evaluation Metrics
Different evaluation measures have been adopted. On the one

hand, the quality of the transcription without any system-user
interactivity is given by the well known word error rate (WER),
which is a good estimation of the user post-edition effort. It
is defined as the minimum number of words to be substituted,
deleted or inserted to convert the hypothesis into the reference,
divided by the total number of reference words. In addition, the
oracle WER represents the best WER that can be obtained from
a lattice.

On the other hand, the CATTI performance is given by the
word stroke ratio (WSR), which can be also computed using
the reference transcription. After each CATTI hypothesis, the
longest common prefix between the hypothesis and the refer-
ence is obtained and the first mismatching word from the hy-
pothesis is replaced by the corresponding reference word. This
process is iterated until a full match is achieved. Therefore,
the WSR can be defined as the number of user interactions that
are necessary to produce correct transcriptions using the CATTI
system, divided by the total number of reference words. This
definition makes WER and WSR comparable. The relative dif-
ference between them gives us a good estimation of the reduc-
tion in human effort (EFR) that can be achieved by using CATTI
with respect to using a conventional HTR system followed by
human post-editing.

For both measures WER and WSR, confidence intervals of
95% were calculated by using the bootstrapping method with
10,000 repetitions (Bisani and Ney, 2004). In order to con-
firm the statistical significance, p-values with a threshold of
significance of α = 0.05 were calculated through the Welch t-
test (Welch, 1947) by using the statistical computing tool R (R
Core Team, 2017).

5. Experimental Results

Multimodal combination allows to enrich the CATTI hy-
potheses from different sources of information (in this case
HTR and ASR). Several experiments were performed in order
to test our multimodal proposal by using two different hand-
written text datasets (Cristo Salvador and Rodrigo). Two dif-
ferent decoding approaches were tested, traditional HTR and
ASR based on Hidden Markov Models (HMM) and the state-
of-the-art HTR and ASR based on deep learning. Moreover,
the performance of this multimodal proposal was tested by us-
ing the four different combination techniques described in Sec-
tion 3.

For both HTR corpora and decoding approaches, the uni-
modal post-edition baseline values were obtained. Next, the
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classical unimodal CATTI was tested. Then, both modalities
were combined by using the different combination techniques.
Finally, the new multimodal CATTI proposal was tested.

In order to optimise the experimental results, the values of the
main decoding parameters (beam, word insertion penalty, . . . )
were tuned. In the CATTI experiments, the limit of mouse ac-
tions was set to 3. The different combination parameters were:
frequency of occurrence voting scheme for ROVER (since the
multimodal combination is performed without training), uni-
form weights (λ = 1 and µ = 0.5) for N-best ROVER, and
combination weight of 0.5 for the Lattices Rescoring and CN
Combination techniques.

5.1. HMM Based Decoding for Cristo Salvador

Table 2 presents the obtained general HMM based results for
the Cristo Salvador corpus. As can be observed in the unimodal
post-edition results, speech recognition does not seem to be a
good substitute for handwriting recognition in this task. How-
ever, the ASR oracle WER value is similar to the HTR oracle
WER.

Regarding the unimodal CATTI results presented in the top-
right part of the table, the estimated interactive human effort
(WSR) required for obtaining the perfect transcription from
the HTR decoding represents 8.2% of relative effort reduction
(EFR) over the HTR baseline WER (p-value = .541). However,
no effort reduction can be considered when only ASR is used at
the input of the CATTI system.

As expected, in the multimodal experiments the use of all
hypotheses in the combination (used by Lattices Rescoring and
CN Combination) allows to obtain better post-edition results
than using only a single hypothesis (which is the limitation of
ROVER and N-best ROVER). The best result was obtained by
using the CN Combination method with a 29.3%±2.5 of WER,
which represents a relative improvement over the HTR baseline
WER (32.9% ± 6.8) of 10.9% (p-value = .296). The best ora-
cle WER (10.3%) was obtained by using the Lattices Rescoring
method. Results show that WER improvements are not signif-
icant with respect to HTR baseline WER, but the oracle WER
values are substantially lower in the case of lattice combina-
tion methods. Therefore, an outstanding effect of multimodal
lattices combination in interactive transcription systems can be
expected, since this low oracle WER is related to the amount
and quality of the alternatives offered by the combination tech-
nique (the lower the oracle WER, the more and better alterna-
tives).

Regarding the obtained results in the multimodal CATTI ap-
proach, the use of the ROVER and N-best ROVER combination
methods produce worse results when comparing with the uni-
modal HTR CATTI baseline WSR (30.2% ± 6.4), although dif-
ferences are no statistically significant (p-value > .010). In con-
trast, the values obtained by the CN Combination and Lattices
Rescoring methods not only represent improvements, but these
improvements are also statistically significant (p-value < .001).
Concretely, the overall best result (13.7%±2.0) was achieved by
using the Lattices Rescoring method and it represents a relative
improvement of 54.6% over the unimodal HTR CATTI WSR,
and an EFR of 58.4% over the unimodal HTR baseline WER.

5.2. Deep Learning Based Decoding for Cristo Salvador

The obtained results for the deep learning based decoding
experiments for the Cristo Salvador corpus are presented in Ta-
ble 3. In the unimodal post-edition results, the deep learning
based decoding offers statistically significant (p-value < .001)
better transcriptions that the HMM based decoding, for both
modalities, although the results of ASR are still quite poor.

In the unimodal CATTI experiments, only in the HTR case
some effort reduction can be considered. Concretely, it presents
a WSR equal to 4.1%, which represents 53.9% of relative effort
reduction over the HTR baseline (WER equal to 8.9%, p-value
= .051).

In the multimodal experiments, the best result was obtained
by using the CN Combination method with a 8.4% ± 1.6 of
WER, which represents a relative improvement over the HTR
baseline WER (8.9% ± 4.2) of 5.6% (p-value = .864). The best
oracle WER (0.2%) was obtained by using the Lattices Rescor-
ing method. Although these WER improvements are not statis-
tically significant, the oracle WER values obtained in the case
of lattice combination methods are exceptionally low.

In the multimodal CATTI approach, the use of the ROVER
and N-best ROVER combination methods produce worse re-
sults when comparing with the unimodal HTR CATTI baseline
WSR (4.1% ± 2.9). On the other side, the use of CN Combina-
tion and Lattices Rescoring methods improves the performance.
The overall best result (1.8% ± 0.6) was achieved by using the
Lattices Rescoring method and it represents a relative improve-
ment of 56.1% over the unimodal HTR CATTI WSR (p-value
= .091), and an EFR of 79.8% over the unimodal HTR baseline
(WER value equal to 8.9%, p-value < .001).

5.3. HMM Based Decoding for Rodrigo

The same procedure was followed with this corpus. In Ta-
ble 4 the obtained general HMM decoding results are shown.
With the post-edition experiments, we confirmed that speech
recognition is not a good substitute for historical handwriting
recognition. However, as happened with the HMM decoding
in Cristo Salvador, for this corpus both modalities also present
similar oracle WER values.

The obtained WSR value (36.2% ± 3.6) in the unimodal
HTR CATTI experiment represents a relative effort reduction
of 7.9% over the Rodrigo unimodal HTR baseline (WER equal
to 39.3% ± 4.1, p-value = .304). Nevertheless, in the case of
unimodal ASR neither can any effort reduction be considered.

Regarding the multimodal results, in post-edition all tech-
niques present similar performances, except ROVER, that
present a statistically significant worse result (p-value = .016).
However, in the CATTI experiments Lattices Rescoring and CN
Combination methods presented significantly better results than
ROVER and N-best ROVER (p-value < .001), which is in con-
sonance with their oracle WER results.

In the post-edition experiments, the best result (35.9%± 1.6)
was obtained by using the CN Combination method, and it rep-
resents 8.7% of relative improvement over the HTR baseline
(WER equal to 39.3% ± 4.1, p-value = .138). Meanwhile,
the Lattices Rescoring method allowed to obtain the best oracle
WER (10.6%).
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Table 2. Cristo Salvador HMM Based Experimental Results. The relative human effort reduction (EFR) represents the relative difference between the
obtained CATTI WSR over the unimodal HTR post-edition WER value.

Experiment Post-edition CATTI
WER Oracle WER WSR EFR

Unimodal HTR 32.9% ± 6.8 27.5% 30.2% ± 6.4 8.2%
Unimodal ASR 43.3% ± 3.4 27.4% 35.1% ± 3.5 −6.7%
Multimodal (ROVER) 32.7% ± 2.9 32.7% 32.8% ± 2.6 0.3%
Multimodal (N-best ROVER) 33.3% ± 2.9 33.3% 35.9% ± 2.6 −9.1%
Multimodal (Lattices Rescoring) 31.3% ± 2.6 10.3% 13.7% ± 2.0 58.4%
Multimodal (CN Combination) 29.3% ± 2.5 13.4% 14.1% ± 2.2 57.1%

Table 3. Cristo Salvador Deep Learning Based Experimental Results. The relative human effort reduction (EFR) represents the relative difference between
the obtained CATTI WSR over the unimodal HTR post-edition WER value.

Experiment Post-edition CATTI
WER Oracle WER WSR EFR

Unimodal HTR 8.9% ± 4.2 1.8.% 4.1% ± 2.9 53.9%
Unimodal ASR 31.4% ± 3.4 8.5% 10.4% ± 2.0 −16.9%
Multimodal (ROVER) 14.0% ± 2.5 14.0% 7.7% ± 2.2 13.5%
Multimodal (N-best ROVER) 8.8% ± 1.8 8.8% 9.0% ± 2.0 −1, 1%
Multimodal (Lattices Rescoring) 8.6% ± 1.7 0.2% 1.8% ± 0.6 79.8%
Multimodal (CN Combination) 8.4% ± 1.6 0.3% 2.7% ± 1.1 69.7%

Table 4. Rodrigo HMM Based Experimental Results. The relative human effort reduction (EFR) represents the relative difference between the obtained
CATTI WSR over the unimodal HTR post-edition WER value.

Experiment Post-edition CATTI
WER Oracle WER WSR EFR

Unimodal HTR 39.3% ± 4.1 28.0% 36.2% ± 3.6 7.9%
Unimodal ASR 62.9% ± 2.2 29.5% 47.2% ± 2.3 −20.1%
Multimodal (ROVER) 44.9% ± 1.8 44.9% 44.8% ± 1.7 −14.0%
Multimodal (N-best ROVER) 38.4% ± 1.8 38.4% 41.0% ± 1.8 −4.3%
Multimodal (Lattices Rescoring) 37.2% ± 1.7 10.6% 25.2% ± 1.6 35.9%
Multimodal (CN Combination) 35.9% ± 1.6 14.8% 27.0% ± 1.8 31.3%

On the other hand, the use of the ROVER and N-best ROVER
combination methods on the multimodal CATTI does not im-
prove the unimodal HTR baseline WSR (36.2% ± 3.6). How-
ever, the CN Combination and Lattices Rescoring combina-
tion methods allow to obtain statistically significant improve-
ments with an EFR higher than 30% over the HTR baseline
WER (p-value < .001). The Lattices Rescoring combination
method allowed to obtain the overall best WSR result, specifi-
cally 25.2%±1.6 of WSR, which represents a relative improve-
ment of 30.4% over the unimodal HTR baseline WSR (p-value
< .001).

5.4. Deep Learning Based Decoding for Rodrigo

Table 5 presents the obtained results for the deep learning
based decoding experiments for the Rodrigo corpus. As for
the Cristo Salvador corpus, the deep learning based decoding
offers statistically significant (p-value < .001) better transcrip-
tions that the HMM based decoding, for both modalities. How-
ever, the results of ASR are still quite poor due to the difficulty
of the task.

In the unimodal CATTI experiments, only in the HTR case
some effort reduction can be considered. Concretely, it presents
a WSR equal to 8.4%, which represents 29.9% of relative effort
reduction over the HTR baseline (WER equal to 12.0%, p-value
= .063).

Unlike previous multimodal experiments, in this case, the
best results were obtained by using the Lattices Rescoring
method with a 11.9% ± 1.2 of WER, and 6.6% of oracle WER.

In the multimodal CATTI approach, only the use of the Lat-
tices Rescoring method produce better results when comparing
with the unimodal HTR CATTI baseline WSR (8.4% ± 2.3).
Specifically, 7.6% ± 0.9 of WSR, which represents a relative
improvement of 9.5% over the unimodal HTR CATTI WSR (p-
value = .550), and an EFR of 36.6% over the unimodal HTR
baseline (WER equal to 12.0%, p-value < .005).

6. Conclusions

In this paper, we have proposed the use of multimodal com-
bination techniques for improving the CATTI system presented
in previous works.
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Table 5. Rodrigo Deep Learning Based Experimental Results. The relative human effort reduction (EFR) represents the relative difference between the
obtained CATTI WSR over the unimodal HTR post-edition WER value.

Experiment Post-edition CATTI
WER Oracle WER WSR EFR

Unimodal HTR 12.0% ± 3.1 8.4% 8.4% ± 2.3 29.9%
Unimodal ASR 50.4% ± 2.3 22.3% 19.5% ± 1.7 −62.6%
Multimodal (ROVER) 23.2% ± 1.8 23.2% 15.8% ± 1.7 −31.8%
Multimodal (N-best ROVER) 13.0% ± 1.3 13.0% 9.7% ± 0.9 19.1%
Multimodal (Lattices Rescoring) 11.9% ± 1.2 6.6% 7.6% ± 0.9 36.6%
Multimodal (CN Combination) 13.4% ± 1.5 8.0% 8.6% ± 0.9 28.2%

By means of multimodal combination techniques, we have
confirmed the benefits of using speech as an additional source
of information for the assisted transcription of historical
manuscripts.

The use of lattice combination techniques permits to obtain
transcription outputs with a reduced error. This error reduc-
tion is due to the fact that the combination may produce new
bigrams that increase the search alternatives, and that the ad-
justment of the word posterior probabilities can increase the
probabilities of the correct words. The main advantage of the
presented approach is that the error reduction produced by lat-
tice combination techniques allows to reduce significantly the
human effort when using an assistive transcription system.

The obtained results show that there is still room for improve-
ment. We propose for future improvement the use of sentences
in the handwritten text corpus instead of lines, in order to make
multimodality more natural. Moreover, our future work aims at
the improvement of the user interaction with more ergonomic
feedback modalities, such as on-line handwritten text recogni-
tion.
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