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Abstract: Currently, one of the main challenges faced in large metropolitan areas is traffic congestion.
To address this problem, adequate traffic control could produce many benefits, including reduced
pollutant emissions and reduced travel times. If it were possible to characterize the state of traffic
by predicting future traffic conditions for optimizing the route of automated vehicles, and if these
measures could be taken to preventively mitigate the effects of congestion with its related problems,
the overall traffic flow could be improved. This paper performs an experimental study of the traffic
distribution in the city of Valencia, Spain, characterizing the different streets of the city in terms
of vehicle load with respect to the travel time during rush hour traffic conditions. Experimental
results based on realistic vehicular traffic traces from the city of Valencia show that only some street
segments fall under the general theory of vehicular flow, offering a good fit using quadratic regression,
while a great number of street segments fall under other categories. Although in some cases
such discrepancies are related to lack of traffic, injecting additional vehicles shows that significant
mismatches still persist. Thus, in this paper we propose an equation to characterize travel times
over a segment belonging to the sigmoid family; specifically, we apply logistic regression, being able
to significantly improve the curve fitting results for most of the street segments under analysis.
Based on our regression results, we performed a clustering analysis of the different street segments,
showing that they can be classified into three well-defined categories, which evidences a predictable
traffic distribution using the logistic regression throughout the city during rush hours, and allows
optimizing the traffic for automated vehicles.

Keywords: autonomous vehicles; intelligent transportation systems; SUMO; DFROUTER; traffic
prediction; traffic behavior; logistic regression; clustering; urban traffic; Valencia

1. Introduction

One of the critical problems for city authorities is the increase in carbon dioxide (CO2) emissions
caused by traffic congestion, resulting in increased travel times of vehicles being associated with
delays and inefficient use of fuel [1]. As we gradually move towards a new paradigm centered on
automated vehicles, we are able to empower traffic administrators with more sophisticated ways
of regulating traffic. The usual strategies to address this problem are based on semaphore timing
regulations. For instance, PDDL+ [2] is a planning approach for urban traffic control that efficiently
reduces congestion of specific roads. Another solution is the AI system proposed by Pozanco et al. [3]
that relies on a declarative automated planning strategy to generate control plans when the default
behavior should be overridden. Another strategy is the deployment of traffic agents on site [4] that
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are independently controlled by an on-line scheduling agent that is able to optimize the movement
and control of the traffic on intersections using schedule generated. Among these novel techniques of
handling traffic, centralized route management emerges as a solution offering authorities full control
of the traffic flow [5], thus allowing traffic optimization to reach maximum levels of effectiveness by
deciding the route to be followed by each individual vehicle. By gaining a priori knowledge of the
traffic congestion status, it becomes possible to optimize the route of new vehicles, especially in the
case of automated vehicles, which can rely on a centralized trusted agent to indicate the most adequate
route for each vehicle. An example of such approach was proposed by Chrpa et al. [6], a solution that is
able to perform intelligent routing of road traffic through congested urban areas to alleviate congestion,
and thereby improve the overall traffic flow. When progressing towards these new traffic management
paradigms, it becomes mandatory to gain full awareness of the behavior of the different street segments
of a city in terms of how travel time can vary depending on the number of vehicles simultaneously
traveling on a particular segment. In this work, we rely on realistic traffic models describing the traffic
behavior in the city of Valencia during rush hours, as detailed in our previous work [7]. In particular,
starting from induction loops measurements made available by the City Hall of Valencia [8], and by
using the DFROUTER [9] tool, along with a heuristic that iteratively refines the output produced
by this tool, we generate an Origin–Destination (O-D) traffic matrix that resembles the real traffic
distribution. This way we demonstrate the degrees of expected congestion, and also the impact of
unpredictable events that cause additional traffic in the city [10]. In this work, we extend our previous
contribution by analyzing, modeling and characterizing how traffic becomes distributed along a city,
gathering details about the number of vehicles traveling along the different street segments, as well
as their travel times [11], using the reference traffic as input load to the Simulation of Urban MObility
(SUMO) tool [12]. Post-processing of the gathered data allows merging segments when excessive
fragmentation is detected, characterizing the different streets in terms of travel time behavior under
variable traffic loads. In particular, we sample the travel times of vehicles entering a segment, along with
the number of vehicles already in that segment, allowing to extract a relation between street occupation
and delay. Through regression analysis, we show that a quadratic adjustment, despite agreeing with
traffic flow theory [13], is not adequate in many cases. Thus, we sought an alternative function able to
provide an adequate adjustment for most of the segments’ behaviors. In particular, logistic regression
emerged as the most convenient solution, offering clear improvements in the categorization of segments
for any scenario. In addition, by performing a clustering analysis, we were able to clearly identify three
independent categories, whose characteristics are then properly discussed.

The rest of this paper is organized as follows: Section 2 presents some related work regarding
studies that predict traffic behavior using different approaches. Section 3 provides information on the
SUMO and DFROUTER tools, along with our iterative heuristic. Section 4 describes the methodology
that has been used to achieve the desired per-segment traffic modeling, starting from induction
loop data, and ending in a classification of the different street segments. In Section 5, we propose
an equation of the sigmoidal family to predict the behavior of the street segments that best fit with
a logistic regression. In Section 6, we analyze the behavior of traffic congestion through the logistic
regression in the city of Valencia and in a specific area of the same city, including clustering results.
Finally, Section 7 concludes the paper and discusses the relevance of the results obtained together with
their potential regarding future traffic management systems.

2. Related Work

In the last decades, many researchers have developed a wide range of predictive models of
vehicular traffic from many perspectives. Zhang and Rice [14] proposed a method to predict travel
times using a linear regression assuming a linear combination of covariates, and having a simple
structure. On the other hand, Guo et al. [15] proposed using an adaptive Kalman filter to predict traffic.
They used time series methods to know the future of traffic parameters, and to update selected stable
variables. Van Hinsbergen et al. [16] proposed to use a Localized Extended Kalman Filter by solving
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the slowness problem presented by these filters in large networks; in addition, they use local filters to
correct the state of proximity detectors, whose estimations are based on local and noisy sensor data,
to predict the state of the traffic.

Another work presented by Min and Wynter [17] develops a methodology to predict traffic based
on time-series, where the extension of the methodology has spatial and temporal interactions that are
dependent on road traffic context. Costa et al. [18] described the components of a Traffic Telco Big
Data architecture for the analysis and prediction of road traffic at a macro level, using the existing
infrastructure as a flow of data available in the telecommunications architecture.

Some works dealing with traffic prediction involve learning algorithms such as fuzzy logic [19],
although facing some problems such as low accuracy and efficiency. For instance, Onieva et al. [20]
presented a case study in which an automated vehicle must cooperate with a driver to achieve
cross-road maneuvers without risk, and developed a three layer hierarchical fuzzy rule-based system.
The first layer detects the type of maneuver that is needed, the second layer is the appropriate
speed to cross an intersection, and the third layer is the actual speed of the vehicle. Hodge et al. [21]
presented a binary neural network algorithm for short-term traffic flow prediction using univariate and
multivariate data from a single traffic sensor with temporal delays, and combining information from
multiple traffic sensors with time series prediction or spatial-temporal lags. Habtie et al. [22] presented
an approach to estimate the state of road traffic using the existing cellular network as a source of traffic
data, and use a model for estimating the state of the neural network. Porikli and Li [23] trained a set
of Hidden Markov Model chains corresponding to five traffic patterns (stop, heavy congestion, open
flow, moderate, and empty congestion), and then used a Maximum Likelihood criterion to determine
the state of the separated Hidden Markov Models. Differently from previous works, Kunt et al. [24]
focused on predicting the severity of motorway traffic accidents by employing twelve accident-related
parameters as input to an artificial neural network, a genetic algorithm, and pattern search methods.

Sananmongkhonchai et al. [25] proposed an algorithm based on cells to predict the travel time,
estimating the traffic conditions when having multiple GPS receivers integrated in taxis. However,
GPS accuracy depends on additional factors such as satellite geometry, signal blocking, atmospheric
conditions, and receiver design features. In addition, other studies (e.g., [26,27]) involve vehicle probes
for the prediction and detection of accidents in an automated manner. The problem of using raw probe
data is that the estimation accuracy is primarily based on driver behavior.

Previous works have developed a wide variety of traffic prediction models from different
perspectives, based on either statistical methods or computational intelligence. However, they have
drawbacks as these models are developed with synthetic data, assuming traffic conditions, and without
a realistic traffic flow.

This paper proposes an equation belonging to the sigmoid function to properly characterize the
travel time behavior of different streets based on the measured number of vehicles ahead, using as
input real traffic data. Additionally, we classify vehicular traffic behavior for the different streets
segments of the city of Valencia through a clustering algorithm, and use a statistical technique to
properly describe the clustering dataset.

3. Overview of the Simulation Tools Used

In this section, we provide some details about the SUMO traffic simulator [12]. We also introduce
DFROUTER [9], and briefly explain how it allows us to generate a traffic matrix detailing origins and
destinations (typically known as O-D matrix) for SUMO based on induction loop data.

3.1. SUMO

Usually, the traffic model consists of obtaining some variables, such as the departure and arrival
times, the route followed by the different vehicles, and the streets that vehicles pass through.

SUMO [12] performs the simulation of vehicular mobility through a detailed microscopic
modeling of cities and vehicles. In fact, being an open source simulator, it is constantly being improved,
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and is widely accepted by the scientific community. Its features include support for different map
formats including OpenStreetMap, importing road networks in multiple formats, and generating
routes with multiple sources. In addition, it offers high-performance simulation capabilities through
the TraCI interface, such as interactive access to the simulation of route traffic, retrieving values from
simulated objects and manipulating their behavior “online”, and enabling many more features when
coupled with another simulator such as OMNeT++ [28].

The flow of traffic is simulated microscopically, meaning that each vehicle movement within
the road network is individually modeled. This feature allows us to constantly know each vehicle’s
location, speed, acceleration, time of departure, and time of arrival. By default, each time step has
a duration of one second, which allows a discrete simulation of continuous mobility in space.

3.2. O-D Matrix Generation with DFROUTER

One of the packages included by the SUMO simulator version 0.20.0 is the DFROUTER tool.
This tool has been designed for road scenarios based on the main idea that roads are equipped with
induction loops that allow measuring the inflow and outflow of the roads. DFROUTER can reconstruct
the number of vehicles and routes to be injected into the simulator of the road network, based on the
data obtained from induction loops such as the number of vehicles, flows, and speeds, to achieve
the desired O-D traffic matrix. In other words, this tool, starting from induction loop counts for the
different streets of a city, is able to estimate the possible vehicle routes that match such input.

In a previous work [7], we used induction loop data provided by the City Hall of Valencia, Spain,
as input to DFROUTER. These data sets were generated by 520 induction loop detectors deployed
throughout the city, and correspond to the rush hour (between 8:00 and 9:00 a.m.) for a typical Monday.
In that work, we noticed that there was a significant mismatch between the traffic generated and the
original data. We then introduced an iterative heuristic that compensates for this error by refining
the output provided by this tool in order to achieve an O-D matrix that resembles the real traffic
distribution. Figure 1 shows that, as a result, the output of the DFROUTER using our iterative heuristic
process achieves a high level of matching with the reference data, resulting in an error lower than
0.0001%, and thus being significantly better than the initial DFROUTER output.
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Figure 1. Traffic flow modeling for Valencia. Results with and without our iterative heuristic [10].
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4. Methodology

In this section, we describe the procedure followed to characterize the traffic in the city of Valencia,
Spain, from a microscopic perspective, and starting from OpenStreetMap road layouts. In particular,
our goal is to characterize individual street segments in terms of average travel times experienced
by vehicles for different degrees of congestion, being the latter estimated based on the number of
vehicles found ahead by a vehicle when just entering a segment. To achieve this goal, we found
necessary to first perform some preprocessing, as in many cases the presence of micro-segments
(streets unnecessarily partitioned in many short segments) impeded an adequate analysis of the
behavior of vehicles traversing particular streets, as we can see in Figure 2. Then, we used the SUMO
tool coupled with the OMNeT++ simulator to study the traffic flow for the entire city of Valencia based
on a realistic traffic trace, as described in the previous section.

http://openstreetmap.org/copyright http://openstreetmap.org
Copyright OpenStreetMap and contributors, under an open license

Convert to

Figure 2. Example of unnecessary street partitioning.

Below, we describe the methodology followed to characterize and predict traffic for the different
street segments. Our proposed methodology is the following: first, we unify segments whenever
required; next, we predict the number of vehicles in each segment; and, finally, we characterize the
different street segments through a regression analysis, which is later complemented by a clustering of
these results to achieve a proper classification. Below, we detail the algorithms we proposed to unify
segments, to predict the traffic time, and to characterize the different segments according to vehicle
travel times.

4.1. Unifying Segments

Usually, when the city map is converted to a format accepted by SUMO for simulation, certain
characteristics of the map must be eliminated, such as bicycle paths, pedestrian paths, train tracks, etc.
This conversion has a drawback because it causes the streets to be intercepted by other ways, different
from those used by vehicles, and the SUMO simulator acts by partitioning those streets. In many cases,
the unnecessary partitioning of streets causes inconveniences such as:

1. Streets are partitioned into tiny segment sizes, often measuring less than 7.5 m (size of a vehicle
plus inter-vehicular security gap).

2. Such small sizes do not allow to characterize the segment profile correctly.
3. Inconsistent graphs are obtained when applying the regression analysis to predict traffic behavior.

To understand the solution adopted to address this issue, we should mention that the
IDentification (ID) that represents a street segment is composed of two parts, where the first part
is the code identifying the street, and the second part is the sequential code assigned by SUMO to
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each street partition. The proposed procedure tries to unify those street segments whenever possible
if certain conditions are met. To achieve this, it is necessary to have a dictionary that stores all the
segments without intersections, as well as a dictionary that stores all the connections of those segments.
Then, we must compare each connection of the different segments to determine whether they meet the
conditions required to perform segment unification. In particular, the conditions that a set of segments
must meet to be reunified are the following:

1. The street to be reunified must be a set of partitioned segments.
2. The adjacent segment should not have another segment that intersects it.
3. The street ID codes must be the same for segments to be reunified.
4. Segments to be reunified must have consecutive numbers in their sequential part of the ID.

Once all these conditions have been met, at least two segments can be renamed and unified to
achieve the correct prediction of the traffic, according to Algorithm 1.

Algorithm 1 Segment reunification strategy.
Require: Road Network file, edges files
Ensure: Reunified segment file

1: edgeConnectedNoIntersection[] ← dictionary that stores all edges without intersections
2: for all edge in Road Network file do
3: edge_id ← store the edge id of the road network file
4: connections[] ← dictionary that stores all connections for that edge id
5: for all connection in Road Network file do
6: connection_ f rom← store the edge id(from) of the road network file
7: connection_to← store the edge id(to) of the road network file
8: if (connection_ f rom = edge_id) and (connection_to not in connections) then
9: connections[edge_id] ← connection_to

10: end if
11: end for
12: if edge_id partition = TRUE then
13: lenEdgeConnect ← length of dictionary in a specific edge id
14: street_id ← code of the street
15: for i = 0 to length(connections[edge_id]) do
16: if (lenEdgeConnect = 1) and (connections[edge_id][i] partition = TRUE) and

(street_id in edge_id) and (street_id in connections[edge_id][i]) then
17: edgeConnectedNoIntersection[edge_id] ← connections[edge_id][i]
18: else
19: edge_id ← has some intersecting segments, cannot reunify
20: end if
21: end for
22: else
23: edge_id ← is not split, reunification is unnecessary
24: end if
25: end for

4.2. Per-Segment Travel Time Prediction

In this section, our goal is to predict the travel time associated to each segment for different degrees
of congestion, being the latter measured as the number of vehicles located in the segment just before
a new vehicle enters it (νn). We propose Algorithm 2 to achieve this prediction; in particular, we have to
consider the input time (tνin) and the output time (tνout) of the vehicle in the segment, as well as the number
of lanes of the segment (ln) where the vehicle is traveling. Input times (tin) for vehicles entering a segment
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on lane ln are registered in matrix (ln,tin), while output times (tout) for vehicles leaving the segment at
lane ln are then registered in matrix (ln,tout). To avoid erroneous values for the travel time prediction
associated to each segment, it is necessary to perform a sorting of the matrix by tin. The number of
vehicles in the segment just before a vehicle joins it (νn) will increase as long as tνin is less than tνout ,
and both refer to the same lane. Then, the travel time of each vehicle in the segment will be obtained
(∆t). As a final step, according to Algorithm 2, an average of the travel times (∆̄t) associated to different
degrees of congestion (number of vehicles in the segment before a new vehicle enters that segment) will
be included in a file, along with the number of vehicles in that segment (ν).

Algorithm 2 Extraction of travel times vs. load samples.
Require: Reunified segment file, Segment-info files
Ensure: Statistical learning by segment files

1: for segment in Reunified segment file do
2: segmentConnected[] ← vector that stores all edge ids connected
3: for s=0 to length(segmentConnected) do
4: segment_in f o← Read lines segmentConnected[s] in Segment-info files
5: segmentSorted[][] ← sort_by_tin(segment_in f o)
6: for tin=0 to length(segmentSorted) do
7: νn ← number vehicles per segment in each lane
8: for tout = tin to tout >= 0 step −1 do
9: if (segmentSorted[tin][ln] = segmentSorted[tout ][ln]) and (segmentSorted[tin][tνin] <=

segmentSorted[tout ][tνout ]) then
10: νn = νn + 1 increase the number of vehicles if the condition is met
11: end if
12: end for
13: end for
14: ∆̄t ← average of the travel times for different degrees of congestion
15: ν ← number of vehicles in the segment before a new vehicle enters the segment
16: end for
17: end for

4.3. Segment Behavior Characterization with Polynomial Regression

Once the process described above to estimate travel times in a segment for different degrees
of congestion is completed, the next step is to characterize and classify the behavior of the different
segments. In particular, we seek to determine the relationship between the number of vehicles in
a segment (x values), and the average travel time of vehicles (y values) for each particular segment.
To achieve this goal we perform regression to obtain the best curve fit describing the nonlinear
relationship between segment congestion and travel time. Because traffic theory, in general, considers
that the relationship between traffic load and travel time tends to vary quadratically [13], to perform
the fitting, we used function f (x) = ax2 + t f f in a first attempt. Thus, the chosen expression is able to
adequately represent this parabolic behavior starting from the free flow travel time (no congestion),
represented by constant t f f in this function, and then increasing as the number of vehicles ahead in
a segment (represented by x) increases.

Once the regression results for all the segments tested where obtained, we observed that the
expected quadratic behavior was indeed taking place in many of the segments, although other special
cases were also detected. Figure 3 presents different representative cases corresponding to the patterns
we observed. The first class of polynomial regression curves, which illustrates the expected pattern
according to traffic engineering theory, is shown in Figure 3a. As can be seen, when a vehicle entering
a segment finds many vehicles ahead, it will, on average, experience much higher travel times,
with differences up to 1000% being possible and expected. However, other patterns were also obtained,
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as traffic flow properties also cause other types of behavior to take place, especially when modeling
a very large city such as Valencia. For instance, the second class of curve represents a behavior that
is just the opposite compared to the previous one. As shown in Figure 3b, this kind of curve shows
an increase followed by a decrease in the time traveled as we increase the number of vehicles ahead.
Such behavior is explained by different factors, including the departure of vehicles from the segment,
as they turn to join other segments, and, more important, the presence of traffic lights that tend to
accumulate vehicles on the segment, being that vehicles finding many vehicles ahead usually means
that the accumulation period was long, and the semaphore is about to turn green.

In addition to the two types of behavior described above, there are also other cases taking
place, as exemplified in Figure 3c,d. Regarding the behavior observed in Figure 3c, we can see
that the travel time remains constant regardless of the number of vehicles in the segment, typically
meaning that there are no semaphores (areas in the periphery of the city), no junctions, and that the
capacity of the segment is much higher than the number of vehicles detected during the simulation
(typically multi-lane segments), and so congestion effects are not perceived. Finally, the behavior of
the last group, as described in Figure 3d, corresponds to one-lane segments rarely visited by vehicles
according to the traffic patterns used as input. Thus, we do not have enough information to characterize
the behavior of the segment at higher loads, as the traffic flow levels are minimal.
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Figure 3. Segment Classification: (a) increasing; (b) decreasing; (c) constant; and (d) unique.



Sensors 2018, 18, 2020 9 of 19

Overall, we find that the characterization of the behavior of the segments in this scenario has
not been done accurately in many cases where the vehicular load remained low. Thus, we deem it
appropriate to saturate with additional vehicles the different segments of the city, and then improve our
awareness regarding the behavior of all segments with the different degrees of congestion. In addition,
we also know what happens with the second class of the curve shown in Figure 3b, which represents
an abnormal situation according to the traffic theory. To achieve this goal, it is necessary to use the
Equation τs,n =

σs

ωs
· ϕn + λ presented in a previous work [11], to gradually increase the number of

vehicles in our reference traffic scenario for Valencia until a higher saturation level is reached. This
is achieved by assigning a variable number of additional vehicles to be injected at each traffic source
location. The variation of the total number of vehicles injected in this scenario ranges from 2271 to 34,065.

The effect of saturating our scenarios with more vehicles is significant, as the prediction of
the resulting traffic through the quadratic regression now suppresses the second class (decreasing)
detected above, being that only three types of behavior remain, as shown in Figure 4. The first type,
called incremental, agrees with general traffic theory, merely stating that the greater the number of
vehicles ahead, the greater becomes the travel time along a street. As shown in Figure 4b, segments
that previously had a decreasing trend now clearly have an increasing behavior, therefore meeting
traffic theory. However, the segments belonging to the constant classification continue to persist for
the same characteristics (see Figure 4c), as the location of the segment in areas of the periphery of the
city, which do not have links with other streets, remain mostly uncongested. In addition, the segments
having a unique behavior also persist, as they are in general very small segments only sporadically
visited by vehicles (see Figure 4d).

A particularity that we have observed in the increasing behavior (see Figure 4a,b) when applying
the quadratic regression to the segments of the city is the fact that they often fail to adjust properly to
the relation of the number of vehicles ahead and the time traveled. This causes a high standard error,
meaning that the regression does not adequately represent the actual behavior of the segment. Due to
this inconvenience, we considered necessary to find another type of regression that better adjusts to
the behavior of the segments of the city to reduce the prediction error.
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Figure 4. Segment Classification with uniform traffic load regulation: (a) increasing; (b) behavior of
a segment previously showing a decreasing behavior; (c) constant; and (d) unique.

5. Proposed Predictor of Vehicular Travel Times

In Section 4.3, when analyzing the behavior of the traffic in a city following general traffic theory
criteria, we can observe that the polynomial regression fitting results can be deemed inadequate for
most segments. For this reason, our aim is to find an alternative mathematical function that better
adapts to the behavior that characterizes the different segments of the city. In this paper, we propose
using a mathematical function that belongs to the logistic family of functions. In particular, we picked
the sigmoid function to represent the growth patterns detected in our data set. Thus, we have a logistic
regression to predict the outcome of a variable that can adopt a limited number of categories based
on independent or predictor variables, and this kind of regression is used to model the probability
of an event that occurs as a function of other factors [29]. To this end, we rely on the simple sigmoid
function defined by the following mathematical expression:

f (x) =
1

1 + e−x

Since we have to adapt the curve of this function to the travel time in free-flow conditions
(zero vehicles ahead), we add a parameter b to the equation, together with a second term of the initial
function to make this possible. In particular, parameter t f f allows defining such free-flow travel time:

f (x) =
1

1 + eb−x
−

1
1 + eb

+ t f f (1)

Finally, to be able to adapt Equation (1) to meet the actual maximum value for the travel
times measured, we extend this equation by adding parameter a, and determine its corresponding
displacement in the axis of the abscissa with the parameter c, as shown in Equation (2).

f (x) =
a

1 + eb−
x
c

−
a

1 + eb
+ t f f (2)

This equation is the one adopted for the regression analysis that follows.

6. Traffic Congestion Behavior Analysis

In the previous section, we have presented a function that better adapts to the behavior of the
segments of our target city through a logistic regression. We now study the behavior of the city under
different degrees of vehicular congestion. This is achieved by regulating the number of vehicles in
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our simulation following the same method described earlier, based on taking the standard number of
vehicles during rush hours and injecting an extra number of vehicles in each street segment, according
to Zambrano-Martinez et al. [10], and using our Equation τs,n =

σs

ωs
· ϕn + λ. In particular, we vary the

total number of additional vehicles injected into the simulation from 2271 to 34,065. Notice that the
total number of segments for this scenario is 9859.

Once the simulation results were obtained, the processes described in Algorithms 1 and 2 were
performed. The process of characterization and classification of the behavior of the different segments
in the city was determined by the relationship between the number of vehicles existing in the segment
(abscissa axis) and the average travel time in that segment (ordered axis). When concluding with the
logistic regression based on Equation (2), for all the segments, we can observe similar patterns as in the
quadratic approach, with most segments showing an increasing behavior, and few segments showing
a constant/unique free-flow characteristic.

6.1. Validation of the Logistic Regression

To achieve the characterization and classification of the segments, we performed the logistic
regression using Equation (2), which gives a better fit than using the second order polynomial function,
substantially reducing the mean standard error from 25.6477 to 7.3587, as shown in Figure 5. In detail,
we found that most of the standard error values for the logistic regression remain below 25 s, and the
segments with a standard error greater than 50 s represent less than 1% of the segments of the vehicular
network of the city. On the other hand, the standard error associated to the quadratic regression can go
beyond 300 s, and the error associated to most street segments is greater than 50 s.
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Figure 5. Standard error of regressions.

Figure 6 shows some examples that illustrate how the logistic regression was able to significantly
improve the curve fitting error when compared to the standard approach, based on quadratic regression.
Therefore, it becomes clear that, by using a logistic regression to characterize the behavior of the
segments, the travel time predictions for different travel loads are significantly improved.
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Figure 6. Several examples where the logistic regression outperforms the quadratic regression.

6.2. Clustering Results with Logistic Regression

In the previous section, we highlighted the benefits of adopting a function belonging to the logistic
family r to properly represent the behavior of the different streets in a city in terms of their travel time
characteristic for different traffic loads. Once this step was completed, we then proceeded to perform
an appropriate classification of the different streets according to their pattern. Thus, we applied a
clustering technique to correctly classify the different groups of streets according to their behavior.

The number of street segments for this scenario is 9859, as referred to in Section 6. The representation
of each characterized group was done using a learning machine technique called K-means [30], and we
used the parameters of the logistic regression in Equation (2) to perform an automatic categorization
of the different street segments, assigning each segment to a specific category according to its behavior.
With respect to the parameters used as input for the characterization of the segments, we have
parameter a, which allows us to discriminate between increasing and constant trends, as it represents
the amplitude of the regression curve in the ordinate axis. Likewise, parameter c gives us the
characteristic of the maximum extension of the sigmoid curve on the abscissa axis, which represents
the number of vehicles in the segment. Another input parameter for the classification procedure is t f f ,
which represents the travel time on a segment when there are no vehicles ahead, and that helps us to
distinguish segments according to their free-flow speeds. Finally, we use a parameter called f (x)max

that represents the highest travel time associated with a particular segment.
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The K-means clustering method clearly identifies three clusters. We then used the Principal
Component Analysis (PCA) [31] procedure to reduce the graphical representation of the four input
parameters to two dimensions, and thus be able to understand the classification of the segments in
a visual manner. Figure 7 shows the result of applying K-means clustering to the city of Valencia.
We observe that the percentage of segments with the expected increasing behavior is 81.76%. Likewise,
we can observe that the percentage of segments within the constant category is 1.91%, while 16.33% of
segments of the city belong to the unique segments family, which are in general quite small segments
than remain despite applying our segment reunification algorithm.

In general, the presence of segments characterized by a constant value, even though many vehicles
are injected into the segments of the city, can be a problem in the sense that such behavior is not realistic.
On the other hand, the unique segments do not reflect the effects of traffic saturation because many
of them still represent very small partitions, as in the case of a roundabout that fails to accomplish the
conditions of Algorithm 1, impeding several very small segments from being unified. For this reason,
a more in-depth analysis of the actual segment lengths has been performed. We found that there were
segments having a length that is less than the length of a standard vehicle. Thus, for our study and
overall purpose of predicting traffic delays, such segments are useless. In fact, each segment whose size is
inferior to, at least, the length of the vehicle plus the inter-vehicle space, can be discarded. To achieve this,
we opted for the criterion proposed by Cal y Mayor and Cárdenas [32], which is a theory of vehicular
flow that accounts for vehicle flow, speed, density, interval, and the spacing between vehicles. According
to these authors, the fundamental equation of the vehicular is able to relate a constant approximate speed,
the average free time interval between two vehicles, and their average spacing. Thus, we applied it to
our scenario, and the obtained result is very close to 20 m in length for any segment, which gives us
a threshold to filter out any segments that measure less than 20 m. Figure 8 shows that segment lengths
of the different categories follow a Gaussian distribution, and we can visually perceive the effect of such
filtering threshold. In fact, a high percentage of segments belonging to the unique family are below this
threshold. With respect to the other two categories, only a small percentage of these segments fall below
the threshold. Thus, we consider it to be adequate for our purposes.
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Figure 7. Segment classification with logistic regression by clustering.
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Figure 8. Normal distribution of segments length.

After filtering out these small street segments, we proceed to identify what is now the actual
percentage of segments that belong to each category by again applying the clustering algorithm,
and retrieving its corresponding visual representation through the PCA procedure. Figure 9 shows that
the percentage of segments in the first category now grows up to 92.03%, and that the percentage of
segments in the unique category drops to only 6.81%, which is a significant decrease. Finally, a similar
number of street segments (1.15%) remains in the constant behavior category.
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Figure 9. Segment classification through clustering for the logistic regression, after applying the
filtering threshold.
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Figure 10 provides an overview of the actual geographical distribution of the streets segments
belonging to each of these categories in the city of Valencia. As expected, all major city arteries belong
to the “increasing” category, being that only very small and remote segments, located in secondary
streets, belong to the two other categories.

Figure 10. Geographical distribution of the segments classification.

6.3. Hotspot-Based Traffic Congestion Behavior

In this section, we focus on situations where a public event reaches a high number of people for
a restricted area, causing the city to experience a heterogeneous congestion effect. For this scenario,
which we named “hotspot”, we have chosen an area of 270 m radius centered on the Mestalla football
stadium, and that has 106 different predicted routes passing nearby. The strategy to achieve our goal is
to gradually inject vehicles in this scenario from 100 to 10,000, which are scattered throughout an area
including a total of 887 segments. Thus, this scenario combines both “regular vehicles”, just passing
by that area as in a regular day (departing and arriving), and “hotspot vehicles”, which depart
from the hotspot area and move to any random destination. Our goal is to study the effects of such
asymmetric congestion states when compared to the situation studied earlier, where congestion is
more homogeneous. In particular, we want to show if such localized traffic congestion can generate
conditions that allow performing a better characterization of the different street segments in terms of
their associated travel times prediction curve.

For this scenario, we applied Algorithms 1 and 2 to the segments that belong to the
hotspot, and obtained the travel times prediction. Afterwards, we applied the logistic regression
(see Equation (2)), and obtained the behavior of the different street segments. Again, we found that the
behaviors of the segments within this area belong to the same three categories reported before: increasing
trend, unique value, and constant value. As explained previously, the presence of micro-segments in
these scenarios persist as they cannot be reunified since they fail to meet the four conditions presented
in Section 4.1. Thus, we again applied a filter to the length of these segments to discard excessively tiny
ones that are irrelevant in the scope of our case study. We then proceeded to perform the automatic
classification through the clustering algorithm together with the PCA, to visualize those groups in
a two-dimensional space. As shown in Figure 11, the clustering technique now shows that 97.21%
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of the street segments belong to the main category, meaning that the majority of street segments can
now be properly characterized in terms of travel time behavior for different vehicle congestion levels.
The two remaining groups are now associated to a very low percentage of segments: 1.7621% for a the
unique value category, and 1.0279% for the constant time case. Likewise, we can observe in Figure 12
the geographical location of the segments within the studied scenario, differentiated according
to their behavior. We can see that the segments for which we have a poor delay characterization
(unique/constant value cases) are indeed not quite relevant from a global perspective, being that for
the majority a clear view of the travel behavior can be obtained, and such per-segment characterization
used as input to a larger route planning system.
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Figure 11. Segments classification through clustering for the logistic regression in the hotspot scenario.

Figure 12. Geographical distribution of the segments in the different clusters for the hotspot scenario.
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7. Conclusions and Future Work

Having a realistic traffic model for a specific target city is a key requirement to obtain meaningful
simulation results when issues such as traffic density and traffic patterns can have an impact on the
conclusions derived from experiments. Achieving such realistic models typically requires describing
traffic in terms of Origin–Destination (O-D) matrices. In addition, if aimed at developing advanced
traffic management solutions, it becomes further necessary to have a more in-depth understanding of
how traffic is distributed in a particular city, which basically requires performing a correct analysis
and classification of such traffic.

The starting point of this paper was a realistic traffic model for Valencia derived in a previous
work. Then, the contribution of this paper was the characterization of all the street segments in
Valencia in terms of travel times when vehicles face different degrees of congestion. To achieve this
characterization, we started by processing the map of the target area in order to merge segments
of the same street whenever unnecessary fragmentation was detected and could be reversed.
Then, we performed simulation experiments using SUMO to retrieve the travel times of vehicles
when facing different degrees of traffic saturation on the traveled segment. Finally, using different
regression strategies, we performed curve adjustment to obtain an expression that allowed us to
characterize these travel times.

Once all segments where characterized, our next contribution was to apply clustering to
automatically classify segments according to their travel time behavior. In particular, we applied the
K-means technique to generate the clusters, followed by a Principal Component Analysis to extract
the main clustering features that enable visual representation. The results of the clustering process
clearly define three categories: segments with incremental traffic delays (the majority), segments with
constant delays (typical loads do not cause congestion), and single value results, corresponding to
small segments rarely visited by vehicles. We complemented this study with an analysis of segments
lengths to filter out segments that are too small, and so not representative for our traffic analysis.
We also showed how the street segment characterization could be improved by causing very high
congestion levels in a hotspot scenario, situation where more than 97% of the segments could be
characterized adequately.

As future work, we plan to develop a centralized traffic management platform that, based on
the per-segment travel delay characterization provided in this paper, is able to globally minimize
vehicle travel times by accounting for congestion, and to perform load balancing. Once the platform
is developed, the impact of having different types of vehicles will be studied, with their respective
characteristics such as maximum speed, allowed traffic schedules, and specialized lanes for public
service vehicles. This will allow us to know the efficiency of the platform when accounting for the
various types of vehicles available (e.g., buses and trucks) on the overall traffic flow.
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