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Abstract: In this paper, we present a forward collision warning application for smartphones that
uses license plate recognition and vehicular communication to generate warnings for notifying the
drivers of the vehicle behind and the one ahead, of a probable collision when the vehicle behind does
not maintain an established safe distance between itself and the vehicle ahead. The application was
tested in both static and mobile scenarios, from which we confirmed the working of our application,
even though its performance is affected by the hardware limitations of the smartphones.
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1. Introduction

Intelligent Transportation System (ITS) is a technology, application or platform that, without
embodying intelligence as such, aims to improve the safety, mobility and efficiency of ground
transportation systems, making use of sensing, analysis, control and communications technologies.
ITS includes a wide range of applications that process and share information, enabling users to
be better informed, improve traffic management, minimize environmental impact and increase the
benefits of transportation to commercial users and the public in general. ITS applications sometimes
depend on Vehicular Networks (VNs) for communication. However, eight years after the introduction
of the Institute of Electrical and Electronics Engineers (IEEE) 802.11p standard [1] for vehicular
communication, vehicles used on a daily basis still lack the capability of communicating with one other.
This fact impedes the use of the many ITS safety applications that take advantage of the vehicular
network for data exchange. The obvious way to handle this problem is to use the available technologies
at the disposal of common users to develop solutions that are easily deployable, effortless to adopt
and, moreover, cost effective.

Our goal is to study the effects of integrating smartphones in VNs for the development of ITS
safety applications, aiming towards rapid acceptance of these kinds of applications by the general
public. The choice of smartphones here is not only justified by their wide availability and use, but also
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because they are evolving towards high performance terminals with multi-core microprocessors
packed with a sufficiently diverse group of sensors.

Warning generation on the detection of a high probability of collision has always been a topic
of interest among researchers. Early works include [2], which studied the use of radar technology
for detecting possible collisions. An effort by General Motors [3] resulted in the publication of [4],
dedicated to the design of a simulation tool to evaluate technical and functional specifications of
Forward Collision Warning (FCW) systems based on radar sensors. A beacon-based collision warning
system [5] was designed by Miller et al. in 2002 that did not require vehicles to be in the line of sight
for operation.

One of the first vision-based approaches was a simple algorithm to detect vehicles and warn
drivers when they are too close to the other vehicle, presented by Srinivasa [6]. An improved version [7]
combining the use of data from a forward-looking camera and a radar was proposed by the same author
a year later. Other approaches that rely on data from a camera for warning generation were presented
in [8–10]. The work in [11,12] was an investigation initiated by Volvo [13] on collision avoidance and
automatic braking by only making use of a car mounted with a radar and camera. Another application
that used a vision-based approach, depending on Sobel edge enhancement [14] and an optical flow
algorithm, is [15]. Chang et al. [16] studied the fusion of vision and Global Positioning System (GPS)
sensing for collision warning.

Misener et al. [17], on the other hand, described a cooperative collision warning project that
included forward collision warning, an intersection assistant, along with a blind-spot and lane change
assistant. First, each vehicle estimated its position combining data from GPS with information like
wheel speed, steering angle and yaw rate. Later, vehicles exchanged this information among themselves
to generate warnings as required. A similar application just based on the use of GPS and motion sensors
was presented in [18]. Fusion of data from Light Detection and Ranging (LiDAR) and other on-board
sensors that compute vehicle speed, acceleration and brake signal was used in the solution [19]
presented by Lei et al. Other related studies like [20] showed the positive effects of vibrotactile
feedback on steering wheel and seat-belt for FCW systems.

Thus, we have come across sensor-based solutions that aim to generate warnings when the
probability of collision is high. These solutions are mostly vision based, although there are others
that rely on GPS, radar technology or LiDAR. One thing these solutions have in common is that they
are dedicated systems and only applicable to scenarios for which they are designed. Our aim is to
develop ITS safety applications for smartphones in order to achieve rapid acceptance by the general
public. Here, we present a FCW application for smartphones, which uses vision and location data to
alert not only the user of the application, but also the driver of the car in front of a probable accident.
The application relies on Vehicle to Vehicle (V2V) communication for this purpose.

2. Application Features

The FCW application that we will present in this section is based on OpenALPR [21] and has
been designed to be used on bidirectional two-lane roads in urban areas. It is aimed at Android-based
smartphones or devices that possess at least a back camera and GPS. The device is to be placed on the
dashboard with the camera facing ahead, and the application aims to detect vehicles ahead that are too
close to the current vehicle using license plate recognition. Upon detection of the plate making use of
the back camera of the Android device, we can calculate the distance of the vehicle from the one ahead
since license plates have a fixed size depending on the geographical region. Note that, if more than
one license plate is detected in the frame, which means there are multiple vehicles present, distance is
only calculated for the vehicle ahead traveling in the same direction. Thus, we need to select only the
plate of the vehicle ahead and discard the others.

Figure 1 shows one of the photographs taken during our experiments with our Android FCW
application. It demonstrates the complete setup consisting of a dashboard-mounted Android device
with GPS, and a back camera; and a GRCBox [22] device that allows inter-vehicular communication.
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The GRCBox is equipped with at least two wireless network interfaces: one configured to act as
an access point and the other in ad-hoc mode; the device within the car with the application installed is
connected to the WiFi access point provided by the GRCBox. The GRCBox forwards all data received
from one interface to the other acting as a router; thus, the application is able to take advantage of the
vehicular network that is created using the interface working in the ad-hoc mode. We can see from the
figure that the license plate of a parked vehicle and the plate of the vehicle traveling ahead have been
recognized. Cases might arise where plates of vehicles coming from the opposite direction could also
be recognized. Thus, to detect and eliminate such cases, we take advantage of GPS data exchanged
among cars using V2V communication.

Figure 1. Experimental setup when testing our application.

Once cases like recognized plates of parked vehicles and those of vehicles coming from the
opposite direction have been eliminated, only the license plate of the vehicle traveling ahead remains.
Distance between the vehicle behind and the one ahead is calculated based on the size of the plate in
the image captured. If this distance is less than the average length of a car, then alerts are generated.
Furthermore, the vehicle ahead is informed of the situation using the GRCBox network.

3. Functional Details of the Application

The different steps that the application follows to detect situations when cars are too close to one
another and generate alerts are: broadcast of GPS and other application-related data by the vehicles;
recognition of the license plate of the car from the image gathered using the camera of the device in
which the application is installed; selecting the plate of the vehicle ahead among all recognized plates;
estimation of the distance between the vehicle ahead and the one behind; and finally, alerting the
drivers of both vehicles if a safe distance is not maintained. Now, let us look at each of these steps
in detail.

3.1. Vehicles Broadcast Message

As soon as the application is first started, the user needs to enter the vehicle plate number in
which the device would be placed and used. The application checks for a location fix and GRCBox
connectivity; and later, starts broadcasting messages as soon it has acquired two different location
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fixes, a couple of seconds apart. The two location fixes consist of the current and previous ones of the
device, which are constantly updated while the application keeps running.

A vehicle while broadcasting data, at the same time, listens for incoming messages from other
vehicles within its communication range. The messages used by our application, as can be seen in
Figure 2, contain a message Id, which is the actual license plate number of the vehicle entered by the
user, sender generated time stamp, the Internet Protocol (IP) address of the sender, the current and
previous location of the sender.

Figure 2. Structure of the packets used in our FCW application.

The broadcasting of messages is only stopped when the application is closed by the user on
terminating the journey. Note that only the vehicles in a one-hop radius will receive the message,
as no re-broadcasting or forwarding of messages takes place. The received message is saved by the
application in its database, adding a local time stamp. Entries in the database are overwritten when
new packets are received from the same source and are eliminated if no update is received from the
same source for a long time.

3.2. Plate Recognition

While the communication between devices using our application is happening in the background,
at the same time, the back camera of the smartphone or tablet is used to capture images, processed to
recognize license plates within the image, if any. For this purpose, the following sequence takes place:
detection of possible plate regions, converting regions of interest into monochromatic images, character
analysis, edge detection, deskewing, segmentation of characters, Optical Character Recognition (OCR)
and the generation of results based on region-wise known templates. Let us at a look at each of
these steps:

• Detect regions of interest: The first step, which is also the most processing-intensive step, involves
the detection of regions of interest where potential license plates might exist. The common face
detection algorithm called Local Binary Patterns (LBP) [23] is used for this purpose. An image
may contain one or more regions of interest, each of which goes though the next phases.

• Monochromatic conversion: This part of the sequence is associated with the conversion of the
regions of interest detected in the previous phase into black and white images based on the
algorithms proposed by Wolf-Jolion [24] and Sauvola [25].

• Character analysis: Once converted to black and white, character analysis algorithms take over
trying to find character-sized regions in ascending order of sizes, by starting to look for smaller
ones first. Regions with connected blobs that are roughly similar to license plate characters and
equal vertical alignment are marked for processing.

• Edge detection: Hough transformation [26] is employed to detect all four edges of the plates since
they are linear in nature. This step also takes into account information like character height from
the previous phase and the ratio of actual plate width and height depending on the geographical
region to make a best guess of the precise position of the plate in the image.

• De-skewing:Now, any rotation or skew that might exist is corrected by remapping the plate region.
• Segmentation of characters: This phase is related to cleaning of the plate region by removing

speckles and edges so that they are not mistaken for characters like the letter “l” or the number“1”.
Furthermore, all characters are separated, and the vertical histogram is used to detect gaps in
characters.

• OCR: This involves analysis of individual characters and the computation of confidence.
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• Result generation: In the last part of the sequence, the best possible character combination is
searched in the context of the known plate pattern that corresponds to the different regions of
the world.

3.3. Selection of the Relevant Plate

We know more than one plate may appear in images captured by devices running our application
if we have vehicles coming from the opposite direction or vehicles parked, along with the one traveling
ahead. Thus, to eliminate the probability of false alarms, we have devised the same direction test. Using
this test, we can detect vehicles in motion and traveling in the same direction as the user of the
application. This way, we can ignore vehicles that are parked or moving in the opposite direction and
focus on just the plate of the vehicle in front of us that is moving in the same direction.

Figure 3 depicts the idea behind the same direction test. It involves the construction of displacement
vectors for each neighboring vehicle, from the current and previous location information contained in
the messages received from them. This information is looked up using the plate number recognized
with the help of the smartphone camera and using the plate number as the key for requesting a query
to the database storing the messages received. Remember that each vehicle while broadcasting their
location information also sends its actual plate number as the message Id. Now, the displacement
vector of the neighboring vehicle is compared with the displacement vector of the receiving or current
vehicle, and the angle between them is measured. In this figure, CAR-A is following CAR-B, their
displacement vectors are constructed from previous locations A1 and B1, and current locations A2 and
B2, respectively. If the measured angle (θ) between the displacement vectors is less than a predefined
threshold, we consider the two vehicles to be mobile and traveling in the same direction.

Figure 3. The same direction test.

Note that only the vehicles ahead will be able to satisfy the same direction test when the application
is used in scenarios consisting of bidirectional two-lane roads, where one lane is used by vehicles
moving in each direction. Thus, this test when coupled with an algorithm that selects the largest
recognized plate among all the plates of vehicles moving in the same direction, we are able to
successfully select the relevant license plate belonging to the vehicle traveling just ahead.

3.4. Distance Calculation

For the calculation of the distance between two vehicles, we rely on image processing and not on
GPS data due to their inaccuracy. This is calculated in the following manner.

The general equation of the lens is:

1
f
=

1
d0

+
1
di

(1)

where f is the focal length of the lens, do is the distance of the object from the lens and di is the distance
between the lens and the image formed, as seen in Figure 4. However, we also know that,

do

di
=

ho

hi
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∴ di =
hido

ho
(2)

where ho is the actual height of the object (O) and hi is the height of the image (I) formed on the
camera sensor.

ho f

hi
do di

O

I

Figure 4. Refraction by convex lens when the object is beyond 2 f .

Now, substituting Equation (2) in (1), we have:

1
f
=

1
do

+
ho

hido

∴ do = f (1 +
ho

hi
) (3)

However, since hi is unknown, it must be calculated indirectly as follows. In the image file of
height h f produced by the camera, let the height of object in the image file be hi f . Thus, on the camera
sensor of height hs, the height of the real image formed is given by the following equation.

hi =
hi f hs

h f
(4)

Now, substituting Equation (4) in (3), we have:

∴ do = f (1 +
hoh f

hi f hs
) (5)

Thus, we use Equation (5) for calculating the distance between the two vehicles from images
taken from the vehicle following the other.

3.5. Alert User and the Car Ahead

Finally, once the distance between the two vehicles has been calculated, we check if the cars
are too close, and in that case, we generate a warning and also caution the driver ahead by sending
an alert making use of the GRCBox communication. Now, we have to define a safe distance, for which
upon non-compliance, alerts would be generated. Many government agencies like the Road Safety
Authority (RSA) [27] of Ireland and the Department of Motor Vehicles [28], State of New York,
suggest the two-second rule. According to this rule, the minimum safe distance between two vehicles,
one following the other, varies according to the velocity of the vehicle behind. It should be at least
the distance that the trailing vehicle would cover maintaining the same speed for two seconds.
This should provide enough time for the driver of the car behind to react if the car ahead comes to
an abrupt stop. The application is intended for deployment in urban scenarios where speed limits
usually vary between 40 and 60 kmph in most countries, resulting in safe distance varying within
22–33 m following the two-second rule. Such large distances are never maintained between vehicles in
urban traffic. Therefore, this would render the application unproductive, and it could be considered
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more of a nuisance if it starts warning drivers when the distance between two cars is over 30 m, causing
unnecessary distractions. More reasonable, in this case, would be to maintain a distance of one car
length between two vehicles; in other words, the car behind should leave a sufficient gap between
itself and the vehicle in front, so that another vehicle could fit in that gap. Since most family-sized
cars are within 5 m in length, we select this distance as the minimum safe distance in our application,
and thus, if the distance between two vehicles is less than 5 m, it starts displaying warnings.

4. The Vehicular Network

The proper functionality of our FCW application is dependent on the availability of a vehicular
network for data exchange. However, vehicles used on a daily basis still lack the capability to
communicate with one another. Thus, for creating a network of vehicles, we employed GRCBoxes.
A GRCBox is a low-cost connectivity device based on the Raspberry Pi [29], which enables V2X
communication and encourages the integration of smartphones into vehicular networks. The necessity
for a device such as the GRCBox arose due to the difficulty in creating an ad-hoc network merely
using smartphones.

Figure 5 explains how our application works paired with the GRCBox. As can be seen from the
figure, each vehicle carries a GRCBox mounted inside to create the vehicular network. Devices of
passengers inside the car are connected to the GRCBox, which allows our FCW application to perform
data exchange. Here, let us assume that CAR-A and CAR-B are using the designed application, CAR-A
approaches CAR-B and fails to maintain the safe distance. Our FCW application detects this, generates
a warning for the driver in CAR-A and also sends a message to the vehicle in front taking advantage
of the vehicular network created using the GRCBox. CAR-B receives this information from CAR-A;
hence, the driver of CAR-B is also alerted.

Figure 5. The experiments with our application in a real scenario.

During the real experiments with our application, cars used in the test had a GRCBox mounted
within to be able to communicate. The GRCBox consists of a controller, which is a RaspberryPi,
an optional battery as a power source and a USB hub to connect various network interfaces.
Each GRCBox has a minimum of two WiFi network interfaces, of which one works as an access
point, and the other one is used to create an ad-hoc network. The smartphones and mobile devices
used to run our application connect to the GRCBox using the interface working as the access point, and
then, the data to be sent are forwarded to the other nodes using the ad-hoc network. Thus, the GRCBox
acts as a router for the exchange of data. Even though the GRCBox is supposed to be equipped
with 802.11p for vehicular communication, we used 802.11a devices instead, since 802.11p-enabled
hardware was not available while setting up the GRCBox to perform the tests. In future experiments,
we intend to use 802.11p-compatible hardware to take advantage of the Wireless Access in Vehicular
Environments (WAVE) standard.
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A minimalist hardware setup of the GRCBox device would require a RaspberryPi as the controller
and two USB WiFi interfaces. The current model available officially is the Raspberry Pi 3 Model B+,
which is on sale for $35. A USB WiFi interface would cost around $10 each. Thus, setting up a GRCBox
device that allows communication among vehicles would cost a total of around $55, which we consider
as a very accessible price. The required software that the GRCBox uses can be downloaded, and it
comes with a well-documented manual for easy setup. Once the GRCBox device is up and running,
our safety application would be able to function taking advantage of the communication networks
that the GRCBox supports.

5. Results

We have performed various tests both in scenarios with and without mobility. The experiments in
scenarios without mobility were to first tune some application parameters and later check the usability
of the application in actual scenarios involving mobility.

5.1. Static Experiments

In the first scenario, we studied the application performance when no mobility was involved.
Photographs of cars that were not mobile were acquired from a parking area, and these images were
processed by the Android devices to fine-tune our application. However, before that, we wanted to
make sure that our methodology, used to calculate the distance between the cars from the plate size,
was able to provide enough accuracy. Thus, we took photographs of a car at a known distance away
from the Android camera and processed them to calculate the distance.

Table 1 lists the results obtained, and it can be noted that, as distance increases, the error in the
calculated distance also increases, but we are more or less able to get the distance from the images, thus
confirming that the developed theory holds. The error involved is nearly insignificant when compared
to GPS-related errors. This error could be the result of inaccuracy in the measured plate size in the
images; or due to the imprecision in focal length and camera sensor-related information supplied by
the Android Operating System (OS), used to estimate the distance between vehicles.

Table 1. Comparison of the actual distance with calculations using Equation (5).

Actual Distance (m) Calculated Distance (m)

3 3.0
5 4.9
8 7.8

10 9.7

Processing time of images is an important parameter for determining the usability of our FCW
application. Thus, in our initial experiment, we wanted to study the time taken by different Android
devices to process and identify the license plate for various resolutions. In this experiment, we studied
the time taken by five different devices, namely the Nexus 7 tablet, Motorola Moto G-3, Nexus 5X,
Nexus 6 and Samsung Galaxy Note 10.1. The Nexus 7 had a quad-core 1.2-GHz processor and 1 GB
Random Access Memory (RAM). Similarly, the Moto G-3 possessed a 1.4-GHz quad-core processor
and 2 GB RAM. The Nexus 5X was equipped with a 2-GB RAM, a hexa-core processor with four
cores running at 1.4 GHz and the other two at 1.8 GHz. The Nexus 6 had a specification of 3 GB
RAM and 2.7-GHz quad-core processor. Finally, Note 10.1 came with a 3-GB RAM and 2.3-GHz
quad-core processor.

Figure 6 shows the time taken to process and identify plates in images of resolutions of High
Definition (HD), Video Graphics Array (VGA) and Quarter Video Graphics Array (QVGA) for the
different devices. The time taken for processing HD images varied from 1.8–4.2 s depending on the
device, while it ranged from 1.4–3.3 s when considering VGA, and for QVGA, it was between 1.1
and 2.6 s. Thus, lower resolution images were processed faster, and devices with faster processors
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performed better. The Samsung Note shows the best performance, followed by Nexus 6, Nexus 5X,
Moto G-3 and the Nexus 7 tablet. Note that even with the best processing times achieved by the
Samsung Note of 1.8 s for HD, 1.4 s for VGA and 1.1 s for QVGA resolutions, it is still very high when
compared with dedicated image processing devices.
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Figure 6. Time taken to process images of different resolutions by different devices.

The Android OS, while encoding Joint Photographic Experts Group (JPEG) images, accepts
a parameter called quality, the value of which can range between zero and 100. The value of zero
produces images of maximum compression, while 100 compresses for the max quality. Next, we want
to check if this parameter had a role to play in the processing time of images for plate recognition.

In Figure 7, we can see that, when the value of the quality parameter was varied from 20–80,
the processing time increased sightly for higher values of quality. Higher resolution images were more
affected than the lower resolution ones. We have varied the value of the quality parameter from 20–80,
as values below 20 resulted in images with very low visually-perceived quality, while values over 80
did not produce any significant improvement. All the processing was done by one device, which was
the Moto G-3 in this case. Note that, for the QVGA resolution, the processing time was nearly fixed at
2.2 s, even with the variation of the JPEG quality, while for VGA, it rose from 2.7–2.8 s, and for HD
images, it ranged from 3.7–4 s.

So far, we have seen that lower resolution images are processed faster, and the quality of the
image has very little or no effect on the processing time for lower resolution images, while in the
case of higher resolution, there is an increase in the time taken to detect plates. Another important
factor that should also be taken into account is the accuracy or the degree to which the identified plate
number and the actual license registration number match. Furthermore, we want to determine whether
parameters like image resolution and quality had any effect on the accuracy of the identified plate.

Figure 8 depicts the effects of JPEG image quality on the accuracy of plate recognition. An accuracy
of one reflects an exact match where the identified plate perfectly coincides with the actual plate,
while zero indicates no match or no plate was detected in the image, whereas values in between zero
and one imply a partial match. Note that the resolution of QVGA showed a huge improvement of
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accuracy, varying from 0.12–0.5, with a boost in the image quality. For higher resolutions of VGA
and HD, it ranged from 0.83–0.89 and lied between 0.89 and 0.91, respectively, depending on the
quality parameter. This suggests the use of higher resolutions rather than lower ones for the purpose
of our application.
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Figure 7. Plate processing time with Moto-G3 for different JPEG qualities.
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Figure 8. Accuracy of plate recognition for different JPEG qualities.
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Another physical factor that could effect the performance of our application is ambient light.
Thus, to study the effect of lighting conditions, we decided to perform three sets of experiments in
variable lighting conditions in the daytime, at dawn/dusk and during the night.

Figure 9 illustrates how the accuracy of the plate recognition changed with altered lighting
conditions for various resolutions. Here, low lighting conditions refer to conditions during the night,
with the presence of insufficient light from street lamps to nearly no light at all in some images,
resulting in grainy, unclear and dark images. While medium ambient light refers to the time when the
Sun was just about to rise, or right after it had set. Lastly, high ambient light encompassed all tests that
we have performed during the daytime. From the graph, we can see that for QVGA resolution in this
set of experiments, we had very little success recognizing plates, even during the daytime; while for
VGA images, accuracy varied from 0.37–0.78, with the best performance in medium lighting conditions,
as reflections from the plates caused problems in recognition when exposed to high ambient light.
For the highest resolution of HD, we were able to achieve accuracy values between 0.52 and 0.86
depending on the amount of ambient light. Note that due to the small size of the dataset used for this
experiment, the confidence interval was high in all cases.
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Figure 9. Accuracy of plate recognition in different lighting conditions.

Thus, taking into account all that we have learned so far from our experiments, we decided to use
the HD resolution due to its dominant performance in different lighting conditions and better accuracy
of recognition compared to the lower resolutions. On the subject of regarding which quality settings to
use for the HD resolution, we decided on the quality value of 70. Even though, in our experiments
in static scenarios, we found out that the quality of images had little effect on the gained accuracy
in the case of HD resolution and also resulted in the increase of processing time on using higher
quality images. However, taking into account that real scenarios would involve motion, blurring
and the effects of vibrations, which would make it harder to recognize the plates, we considered that
image quality could have a role to play. Furthermore, from Figures 7 and 8, we had the best accuracy
(0.91 or 91%) for HD for a quality value of 70, but of course, the processing time with Moto G-3 was
four seconds on average. This is about 8% more than the time required to process HD images of the
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lowest considered quality settings of 20. Thus, the default settings used JPEG images of HD resolution,
with a quality value of 70, which the user can change according to his or her needs.

5.2. Dynamic Experiments

In this section, we present the results we have achieved in tests we performed with our Android
FCW application, using the settings we have defined from the study of the application in scenarios
without mobility. Experiments performed in this section were undertaken using two real vehicles,
one following the other at all times, each equipped with a GRCBox for communication, and an Android
tablet running the developed application, as shown in Figure 1. The aim of our outdoor experiments
with mobility was to try and find a good threshold value for the same direction test that was used by the
application to discard plates of vehicles not in motion, or coming from the opposite direction, and to
see how our application performed in challenging real scenarios.

Figure 10a shows one of the two routes taken during our outdoor experiments. This route was
about 9.25 km long with very little turns and curves, hence the vehicles could move at a high velocity.
On the other hand, Figure 10b depicts a 3.76-km route, around the Universidad Politécnica de Valencia,
where some turns or curves are present and this allowed vehicles to move at a moderate speed.

Figure 11 presents the observations from the same direction test that was used to detect if vehicles
were traveling in the same direction. A comparison has been made between the use of unfiltered GPS
locations and Kalman-filtered [30] location data for the evaluation of the same direction test. The Kalman
filter used here was a simple one that just took into account the location data. From this graph, we can
see that the average angles evaluated by the same direction test using unfiltered data for scenarios
presented in Figure 10a,b were 9.83 and 8.73 degrees; while, using the Kalman filter, similar values
of 10.95 and 10.73 were observed, respectively. Since for both filtered and unfiltered data, it can be
observed that the worst case values were within 12.5 degrees, 12.5 degrees was selected as the default
threshold for the same direction test in our application.

During our assessment of the same direction test involving real cars, we also studied the effect
of distance on plate recognition as we tried to identify the license plate of the car ahead. Figure 12
displays the results obtained. This graph reassures us of our choice of HD resolution as the default
image resolution for our application, as other lower resolutions failed to perform well in this scenario.
Let us look closely at the first two groups of observation taken between 4–8 m and 8–12 m, when the
vehicle behind moves closer to the vehicle ahead; it is seen that the accuracy of the plate recognition
increased. In between 4 and 8 m, the accuracy was about 0.61 for HD images, which was much lower
than what we observed in our experiments without mobility. The lower accuracy was the result of
an increased number of failures in an attempt to recognize the plate as a consequence of the problems
that the device faced to stabilize the images from motion-related vibration issues. Note that, in our
experiments, we have also included results when two vehicles were four meters apart, even though
warning generation started at 5 m, because the application needed to keep alerting the drivers even
when the distance was less than 5 m. We have no results from below four meters, as it was difficult to
emulate such dangerous situations in real experiments, and also due to the fact that the plate of the
car ahead was outside the captured frame in some of the cases when the two cars were very close to
each other.

Finally, we also tried to repeat the same experiments involving motion, during the night time,
to make a comparison of how the application performed under low light conditions. We were unable to
identify plates during the night using all three different resolutions due to several reasons: the camera
equipped in the smartphones found it hard to focus in low light conditions; vehicles usually had lights
near the license plate that were present to help illuminate the plate in darkness; however, these lights
in our case made it more difficult for the camera to focus, and when the car behind closed in on the car
ahead, reflections due to its headlights made the plate illegible. Thus, we see that external factors like
ambient light played a huge role and affected the performance of our application. Along the same
lines, other environmental factors like rain or fog could have an adverse effect on the application
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performance as identifying the license plate from images captured under such circumstances would be
more difficult.

(a) Route-I without many curves.

(b) Route-II with some curves and turns.

Figure 10. Routes used during the outdoor evaluation.
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Figure 11. Results of the same direction test.
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Figure 12. Accuracy of the recognized plates for varying distances during daytime, in scenarios
involving motion.

6. Conclusions

We have presented an Android FCW application that uses plate recognition and inter-vehicular
communication to alert drivers on getting too close to the vehicle in front. The designed application



Sensors 2018, 18, 00 15 of 17

warns drivers of the vehicle behind and the vehicle ahead, when a defined safe distance of 5 m is not
maintained. We have performed various experiments with our application in static scenarios, as well
as scenarios involving motion. It was found that the designed application works and achieves better
performance with mobile devices with faster processors. From our experiments with the application in
static scenarios, we established the default settings used by our application, which includes capturing
HD images encoded to JPEG with a quality value of 70. These settings can be modified by the users
as per their needs. Our application is able to function effectively in bidirectional two-lane roads,
capable of detecting plates of cars coming from the opposite direction or static parked cars and
discarding these cases without warning generation with the help of a test that we have designed,
named the same direction test. This test performs well and helps to make sure that for warning generation,
only the distance to the license plate of the vehicle just ahead is considered. The same direction test
depends on a threshold, and from our experiments with the application involving actual moving
vehicles, we established that a threshold value of 12.5 degrees is adequate for this test. The purpose
of developing a FCW application for mobile devices was to study the integration of smartphones
with VNs for designing cost-effective ITS solutions that can achieve rapid acceptance among the
general public. Observations with our FCW application show that integration of smartphones with
VNs indeed opens a new horizon for ITS applications. Even though this preliminary version of the
application is functional, the mobile devices took too long to recognize license plates (in the order of
seconds), which is the biggest reason that might impede the adoption of the solution. Critical safety
applications, such as the one we have presented here, need to process more than one image per second,
for performance-related reliability. Thus, at the moment, we are concentrated on reducing the image
processing time required by the application. Another issue that affected the application was the poor
camera quality of the devices used in the experiments. The cameras on the devices were not powerful
enough to stabilize images captured when in motion and in conditions involving low light. We are
optimistic that the quality of the hardware would only improve with time, and thus, more powerful
devices of the future will allow us to take better advantage of this kind of application. Furthermore,
a possible improvement for the subsequent version of the application would be making it capable
of functioning on roads with multiple lanes for each direction of traffic. In such scenarios, situations
might arise where unwanted warnings are generated upon identification of the plate of a vehicle
within the communication range, traveling in a different lane, but moving in the same direction as the
vehicle behind. This issue has been left as future work and needs to be addressed.
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Abbreviations

The following abbreviations are used in this manuscript:

FCW Forward Collision Warning
GPS Global Positioning System
HD High Definition
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
ITS Intelligent Transportation System
JPEG Joint Photographic Experts Group
LBP Local Binary Patterns
LiDAR Light Detection and Ranging
OCR Optical Character Recognition
OS Operating System
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QVGA Quarter Video Graphics Array
RAM Random Access Memory
RSA Road Safety Authority
V2V Vehicle to Vehicle
VGA Video Graphics Array
VNs Vehicular Networks
WAVE Wireless Access in Vehicular Environments
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