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Abstract: Assistive technologies help all persons with disabilities to improve their accessibility in
all aspects of their life. The AIDE European project contributes to the improvement of current
assistive technologies by developing and testing a modular and adaptive multimodal interface
customizable to the individual needs of people with disabilities. This paper describes the computer
vision algorithms part of the multimodal interface developed inside the AIDE European project.
The main contribution of this computer vision part is the integration with the robotic system and
with the other sensory systems (electrooculography (EOG) and electroencephalography (EEG)).
The technical achievements solved herein are the algorithm for the selection of objects using the
gaze, and especially the state-of-the-art algorithm for the efficient detection and pose estimation of
textureless objects. These algorithms were tested in real conditions, and were thoroughly evaluated
both qualitatively and quantitatively. The experimental results of the object selection algorithm were
excellent (object selection over 90%) in less than 12 s. The detection and pose estimation algorithms
evaluated using the LINEMOD database were similar to the state-of-the-art method, and were the
most computationally efficient.

Keywords: 3D object detection and pose estimation; assistive robotics; eye-tracking;
human–computer interface

1. Introduction

Approximately 80 million people in the European Union (one-sixth of its population) have
a disability. The percentage of people with disabilities is set to rise as the EU population ages [1].

Accessibility is a basic right for all persons with disabilities according to Article 9 of the
United Nations Convention on the Rights of Persons with Disabilities. The purpose of accessibility
is to enable persons with disabilities to live independently and to participate in all aspects of life.
Assistive technologies help all persons with disabilities to improve their accessibility in all aspects
of their life. Current trends in assistive technology for supporting activities of daily living (ADL),
mobility, communication, and so on are based on the integration of the capabilities of the user and
the assistive technologies. The improvement of the interaction and cooperation between the user and
the assistive technologies can be split into three main areas: (1) improvements of the assistive devices,
such as mechanical parts, electronic parts, etc.; (2) improvements of the user–technology interface;
and (3) improved shared control between the user and the assistive technology. The AIDE European
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project contributes to improving current assistive technologies by developing and testing a modular
and adaptive multimodal interface customizable to the individual needs of people with disabilities as
well as a totally new shared control paradigm for assistive devices that integrates information from the
identification of the residual abilities, behaviours, emotional state, and intentions of the user on one
hand and the analysis of the environment through the use of cameras and context factors on the other.
This paper describes the computer vision algorithms part of the multimodal interface developed within
the AIDE European project.

There are some examples of multi-modal architectures for the interaction and control of assistive
robotic devices. Specifically, Meng et al. presented a non-invasive brain–computer interface (BCI) for
controlling a robotic arm to complete reach-and-grasp tasks [2]. They used a Microsoft Kinect Motion
Sensor to locate and send the position of a target to the robot control system. Another interesting
recent paper presented an assisted feeding strategy that uses a Kinect camera and a modular robotic
arm to implement a closed-form system that performs assisted feeding [3]. In contrast to these works,
our approach uses two cameras (one looking at the environment in front of the user and the other
looking at the user) to locate real objects and the user’s mouth position, respectively. In addition, the
user wears a pair of eye-tracking glasses to recognise the object at which the user is looking. There are
also some works using invasive BCI systems in people with long-standing tetraplegia to control a
robotic arm to perform three-dimensional reach and grasp movements [4,5]. Some works can be
found in the literature reporting the control of an arm exoskeleton using multimodal interfaces.
Specifically, Pedrocchi et al. developed a novel system composed of a passive arm exoskeleton,
a robotic hand orthesis, and a neuromuscular electrical stimulation system driven by residual
voluntary muscular activation, head/eye motion, and brain signals in the framework of the MUNDUS
project [6]. In addition, Frisoli et al. presented a robotic-assisted rehabilitation training with an upper
limb robotic exoskeleton for the restoration of motor function in spatial reaching movements [7].
Then, they presented the multimodal control of an arm–hand robotic exoskeleton to perform activities
of daily living. The presented system was driven by a shared control architecture using BCI and
eye gaze tracking for the control of an arm exoskeleton and a hand exoskeleton for reaching and
grasping/releasing cylindrical objects of different size in the framework of the BRAVO project [8].
Most recently, Clemente et al. presented a motion planning system based on learning by demonstration
for upper-limb exoskeletons that allow the successful assistance of patients during activities of daily
living (ADL) in an unstructured environment using a multimodal interface, while ensuring that
anthropomorphic criteria are satisfied in the whole human–robot workspace [9]. In contrast to the
previous works, the AIDE multimodal control interface predicts the activity that the user wants to
perform and allows the user to trigger the execution of different sub-actions that compose the predicted
activity, and to interrupt the task at any time by means of the hybrid control interface based on a
system combining gaze tracking, electroencephalography (EEG), and electrooculography (EOG).

Most activities of daily living require complete reach-and-grasp tasks. The grasping task is a
common operation for fixed manipulators in a controlled environment, but assistive robotics have the
complexity that this environment is not fixed. Moreover, it should be solved in real-time in order to be
comfortable for humans and sufficiently precise to perform successful grasps of a variety of objects.
To sum up, a grasping task in multimodal assistive robotics requires the processing of a precise
location and orientation of common textureless objects in real-time. Some authors have solved it
using commercial tracking systems like Optitrack© or ART Track© [10–12], but these solutions require
the modification of the objects by adding specific marks. Our proposal employs a computer vision
approach that does not have that limitation. There are multiple technical approaches to solving this
problem, and despite the great advances made recently in the field of computer vision (especially
with the new deep learning techniques), it is still a difficult problem to solve effectively—specifically
when the 3D object is textureless. For well-textured objects, several methods based on appearance
descriptors like SURF or SIFT [13] can be employed to solve this problem. However, most common
objects in our context (home) are textureless.
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Considering the technical features required, these methods should be efficient, accurate, scalable,
and robust to changes in the environment (no controlled light conditions or occlusions).

The main lines of investigation in the field of 3D textureless object pose estimation are methods
based on geometric 3D descriptors, template matching, deep learning techniques, and random forests.

Methods based on geometric 3D descriptors employ the information extracted from the geometry of
the 3D models of the objects. There are two kinds of 3D descriptors: local descriptors and global descriptors.

On one hand, local descriptors are obtained from characteristic local geometric points from
the model. Once descriptors are calculated from the model and from the depth image from the RGB-D
camera, a matching correspondence can be obtained. The last stage is usually a refinement of the pose
using an iterative closest point algorithm (ICP [14] Among these methods [15] stand out FPFH [16],
PPF [17], and SHOT [18]. These methods are very computationally expensive (need several seconds
for estimating the object pose), but are robust to occlusions. One of the most employed methods
is the point pair features (PPFs). This method was developed by Drost et al. [17] and employs the
depth image for estimating local descriptors using normals of the object. Later, several authors have
optimised the original implementation, greatly reducing the computational cost of the algorithm
(Stefan et al. [19] still requires between 0.1 and 0.8 s for processing an image). However, the algorithm
is still too heavy for real-time use.

On the other hand, global descriptors encode the shape of the 3D model in a single vector.
The main global descriptor classes are VFH [20], OUR-CVFH [21], and ESF [22]. In contrast to the
local descriptors, and as the main disadvantages, it is necessary to first have the 3D reconstruction of
the object, as well as to segment the scene before estimating the pose of the object. In addition, these
methods are very sensitive to the occlusion of the object. On the other hand and as a main advantage,
they are computationally efficient. These types of descriptors are usually used for their efficiency
in problems of classification or 3D model retrieval. In addition, note that these geometric methods
(both local and global descriptors) can also use the colour information of the object (if it is available),
increasing the robustness of the method (e.g., the local descriptor CSHOT [23]).

Methods based on template matching efficiently search through the generated set of templates of
a 3D model employing a sliding window approach to find the most similar template within an image,
as well as its 2D location using a similarity criterion. Once the most similar template is determined
within the image, the initial pose of the 3D object is inferred from the one associated with the template.
Within these methods, the algorithm LINEMOD++ [24] stands out. This algorithm is one of the
most-employed algorithms by the scientific community for estimating the pose due to its high efficiency
and robustness. Specifically, Hinterstoisser et al. [24] were the first to use this LINEMOD detection
method to estimate the pose of objects. The LINEMOD method uses the information extracted from the
gradients of a colour image and the surface normals. This information is subsequently quantified so that
the search for the most similar template is carried out efficiently. Then, Hinterstoisser et al. [24] added
a post-process stage in order to strengthen the detection method by eliminating some of the possible
false positives. The last stage is a refinement of the pose using an ICP algorithm. This implementation
was enhanced by Kehl et al. [25] to increase its scalability.

Another similar template method was proposed by Hodaň et al. [26]. Unlike the original LINEMOD++
method, they initially limit the search to certain areas of the image, by means of a simple filtering
technique. The matching between the templates and the remaining possible locations within the
image is done with a voting procedure based on hashing. To refine the pose, they use particle swarm
optimization (PSO) [26] in place of the ICP algorithm. Following the same line, Zhang et al. [27]
proposes that in addition the detection method be invariant to scale, consequently reducing the number
of templates on which to perform the search. Despite all these modifications, these methods [25–27] are
less precise and more computationally expensive than the LINEMOD++ method. The main limitation
of methods based on templates is that they are very sensitive to object occlusion. On the contrary, they
are usually computationally efficient methods when compared with methods based on 3D descriptors
or deep learning techniques.
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Recently, multiple methods have appeared that address the problem of estimating the pose of
a 3D object through the use of deep learning techniques. Among the most popular methods are the
SSD-6D [28], BB8 [29], Pose-CNN [30], and [31,32] methods. The main advantages of these methods
are that they allow estimation of the pose using only the RGB sensor information, the scalability, and
the robustness against occlusion. However, and as one of the main disadvantages, most of these
methods need a large amount of training images to detect and estimate the pose of an object. Moreover,
there is the added difficulty of estimating the actual pose associated with the training images. This
supposes a great effort and time of work on the part of the user, as much the compilation of images of
the 3D model as the estimation of the pose in each of them. To solve this type of limitation, methods
such as the SSD-6D [28] method have been used to estimate the pose of objects using deep learning
techniques using only synthetic images extracted from the original 3D model. However, these methods
can have problems when there are substantial differences between the appearance of the synthetic
images of the 3D model and the appearance of the images captured by the camera [28] (e.g., local
changes in the illumination due to specular reflections). In turn, simply the change in the specifications
of the capture sensor in the test phase can substantially influence the results [33]. To mitigate this
problem, it is necessary to obtain 3D models of 3D objects with photorealistic quality. Although these
methods present promising results, the 3D models of the objects must have colour information so
that the pose can be detected and estimated correctly. This is a problem because it is common to only
have access to a CAD model of the object without colour, or models are obtained through the use of a
depth camera/RGB-D and KinectFusion technology [34], resulting in non-photorealistic models. It is
importand to remark that training these models requires high-end equipment and/or a lot of time once
the training information is ready. On the other hand, except for the SSD-6D [28] method that works at
10 fps, these are very computationally expensive, preventing their use in real-time. In addition, all
these methods need a high-performance GPU.

Finally, the last types of methods are those based on forest classifiers. Some examples of these
methods are those proposed by Brachmann et al. [35,36] in which they predict the 3D coordinates of
an object as well as the labels assigned to each class by means of a random forest. Then, they use the
RANSAC algorithm to estimate the initial pose. This method is very robust to the occlusion problem.
Another outstanding work is the method of Tejani et al. [37]. They use the “latent-class Hough forest”
method with the extracted information (features) of the LINEMOD algorithm on RGB-D patches to
estimate the pose of the object. This method is invariant to scale and also allows estimation of the pose
of multiple instances of the same 3D object.

In summary, this paper presents the computer vision algorithms developed in the AIDE
multi-modal architecture for human assistive robotics that is able to give accessibility to persons
with disabilities. The main contribution of this computer vision component is the integration with
the robotic system and with the other sensory systems (EOG and EEG). The technical achievements
solved are the algorithm for the selection of objects using the gaze and especially the state-of-the-art
algorithm for the efficient detection and pose estimation of textureless objects. These algorithms
were tested in real conditions with patients, and were also thoroughly evaluated both qualitatively
and quantitatively. This paper is organised as follows. Section 2 presents the experimental setup with
the multi-modal interface composition, the integration with the robotic system, and the developed
computer vision algorithms. Section 3 shows quantitative and qualitative experimental results to
evaluate the computer vision algorithm, and finally, Section 4 presents the conclusions and the future
work planned.

2. Materials and Methods

2.1. Experimental Section

All participants were sitting in an electric wheelchair in front of a desk. Moreover, a Jaco2 robot is
attached to the wheelchair (see Figure 1). In addition, the multimodal interface is composed of: (1) a pair
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of gaze-tracking glasses and a hybrid brain–computer interface (BCI) based on electroencephalography
(EEG) and electrooculography (EOG); (2) context recognition sensors: two cameras to locate the object’s
position and the user’s mouth position; (3) sensors for the monitoring of physiological parameters
(breathing rate, heart rate, heart rate variability, galvanic skin response); and (4) a central server (YARP)
for the communication. YARP stands for Yet Another Robot Platform. The experiments and results
presented in this paper focused on the algorithms used for gaze-tracking and context recognition.

Figure 1. AIDE system integrates three different hardware modules: (i) a full-arm robotic exoskeleton or
a Jaco2 robot; (ii) multimodal interfaces, consisting of a pair of gaze-tracking glasses (Tobii glasses) and a
hybrid brain–computer interface (BCI) based on electroencephalography (EEG) and electrooculography
(EOG); and (iii) context recognition sensors: a RGB-D camera to locate the object’s pose and a camera
to compute the user’s head and mouth pose.

2.2. Calibration Methods Robot <-> RGB-D Camera

The objective of the calibration between the RGB-D camera and the robot is to make it possible to
transform the coordinates system from the camera to the coordination system of the robot. This problem
in robotics is known as hand–eye calibration. Specifically, it consists of estimating the homogeneous
rigid transformation between the robot hand, or end-effector, to the camera as well as to the world
coordinate system (see Figure 2). In the developed platform, the world coordinate system coincides
with the robot base and the camera is not in the final effector of the robot but in a fixed position
outside the robot. Let the rigid transformation of the robot-base to the end-effector be bBee, and
c Am be the transformation of the camera to an augmented reality mark system. This system is an
Aruco [38] mark mounted on a known pose on the robot thanks to a printed piece as can be seen in
Figure 3. The transformation eeUm between the mark and the robot end-effector is calculated using the
CAD schematics of the robot and the printed piece. Thanks to this, the position and orientation of the
end-effector can be expressed regarding the robot base and the camera system as shown in Equation (1).
From this equation (Direct Calibration), the direct transformation bTc can be easily extracted .

However, due to inaccuracies in the measurements and transformations obtained from the robot
kinematics, Aruco detection, and U transformation, the following four optimisation methods were
employed to increase the accuracy.

1. Standard Calibration: The implementation of the shape registration method in C++ [14].
2. XS Calibration: The c1 method of Tabb et al. [39].
3. XS2 Calibration: The c2 method of Tabb et al. [39].
4. Ransac Calibration: The OPENCV library implementation in C++ of the random sample

consensus method (RANSAC optimization).
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Figure 2. Schematic of the robot—camera problem.

Figure 3. Calibration program.

Methods 1 and 4 employ the strategy of estimating the transformation between a cloud of 3D
points expressed in the robot base and a cloud of the same points expressed in the camera system.
Methods 2 and 3 were developed by Tabb et al. [39], and are based on the homogeneous matrix equation
AX = ZB where Z is the transformation from camera to robot base and X is the transformation from
robot base to world coordinate. The difference between both methods is the cost function employed
for the optimisation of transformations, as shown in Equations (2) and (3), respectively.

(bBee ←→c Am ∗m Uee) (1)

c1 =
i=0

∑
n−1
||AiX− ZBi||2F (2)

c2 =
i=0

∑
n−1

∣∣∣∣∣∣Ai − ZBiX−1
∣∣∣∣∣∣2

F
(3)
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2.3. Eye-Tracking Detection

The hardware selected for this task was the Tobii© Pro Glasses 2. This hardware is a mobile
lightweight gaze tracker recording both point-of-regard and scene in front of the subject. The gaze
point data are sampled at 100 Hz with a theoretical accuracy and Root Mean Square (RMS) precision
of 0.5◦ and 0.3◦, respectively [40]. This device has two main components: head unit and recording
unit. The head unit is a glasses-shaped device with a full-HD RGB camera with a frame rate of 25 fps.
The Tobii© Pro Glasses recording unit can record to a Micro-SD (not used in this project), and has
battery support and two network interfaces (wireless and Ethernet). A C++ library was developed
that receives the video streaming of the glasses and the synchronized gaze point. No Tobii© SDK or
proprietary software was employed for this project. The developed software can configure the glasses
to work at different image resolutions, set-up frame rates (until 25 fps), and transmits via wireless or
Ethernet connection. For this application, only the wireless connection was employed due to some
issues detected during the integration phase of the project. Specifically, Tobii© Glasses internally
implement a UDP broadcast and an IP6 discovering devices protocol which is incompatible with
the YARP system. Gaze information is received in datagram ASCII. code via UDP protocol, and the
streaming video is encoded in H264 (also received using a UDP protocol).

The gaze position obtained from the Tobii© Glasses is enhanced using a median filter, obtaining a
more stable gaze point. In addition, due the higher acquisition rate of the gaze position than the RGB
camera (100 Hz vs. 25 fps), the median filter allows the filtered gaze position to be synchronized with
the RGB image.

A deep learning method called YOLOV2 [41] in combination with the gaze point gives us the
initial detection of the desired object. There are other deep learning methods to detect objects, such as
Faster-RCNN [42] or SDD [43]. However, YOLOV2 was chosen due its great efficiency and robustness in
real-time. Specifically, YOLOV2 was trained with the COCO image database [44], which has 91 classes
from the YOLOV2 . These classes cover most of the desired objects to manipulate (e.g., glasses, cutlery,
microwave, etc.) in this project. Moreover, in the event that a desired object was not in the dataset,
it could been trained. Finally, as a result of this stage, the class of the user-selected object is sent to the
object detection and pose estimation stage.

2.4. Detection and Pose Estimation

The method developed for the detection and pose estimation was derived from the detection
method of Stefan et al. [24], known as LINEMOD. The eye-tracking stage gives the ID of the object to
track, so the Hinterstoisser et al. algorithm [24] only has to search one class of model. Consequently, it is
more efficient, has a lower rate of false positives, and removes the scalability problem of different classes
of objects that the Hinterstoisser et al. algorithm experiences.

The LINEMOD method starts with 2D images (colour and depth) synthetically rendered from
different points of view and scales of the object 3D model. Viewpoints are uniformly sampled around
the object, like going over a virtual sphere with the object in its center. For each of the viewpoints, a set
of a RGB-D images and the virtual camera pose {R, t} are saved. Then, a vector of distinctive points,
as well as their associated descriptors, are calculated using the RGB-D information, as described in
Hinterstoisser et al. [24]. This method defines a template as V = ({Om}m∈M, ρ). O is the template
feature (surface normal orientation or gradient orientation). M is the image information (RGB or
depth). ρ is a vector of features locations r in the template image. Then, the generated templates
are compared in the region of interest (ROI) of the scene image I at location c based on a similarity
measurement over its neighbours ω:

(I, V, c) = ∑
r∈ρ

max
v∈c+ω

fm(Om(ω), Im(v)))). (4)
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This function fm(Om(r), Im(v)) measures the cosine similarity of the features. Then, an empirical
threshold is defined based on the score similarity score in order to decide if it is a match. The template
matching stage (Equation (4)) was efficiently implemented taking advantage of the SSE instructions
of modern CPUs. Furthermore, the detected templates could contain duplicate object instances,
so a template clustering algorithm is performed aggregating templates with similar spatial location.
However, this detection method can still throw false positives, so as in the original work, the colour
information (in the HSV colour space) and the depth information (using an iterative closest
point algorithm) were employed to filter these errors. Finally, the pose associated {R, t} with the
most similar template was refined with an iterative closest point algorithm—specifically with the
point-to-plane version.

The main contribution of this part is the optimisation of the LINEMOD detection method [45].
This method was redesigned in order to be multi-processing, so it was split into two independent
parts: one process is responsible for extracting the colour information from the RGB image (gradients),
while another process is responsible for extracting the depth information (normals from the surface).
These processes do not share memory between them so they can be executed in independent physical
cores for an optimum performance. Moreover, the post-processing part [24] was also optimised with
a multi-threading approach, responsible for eliminating false positives and refining the initial pose
obtained. This post-processing part is performed by an ICP algorithm and checking the colour for each
of the possible templates in different threads. These threads share memory in order to finish early the
execution when one thread finds a valid template. Our method is summarised in Figure 4.
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2.5. Mouth Pose

The first step in the pose estimation of the mouth is to detect and recognise the user’s face.
Face recognition algorithms generally use 2D images for feature extraction and matching [46]. In order to
achieve better performance and accuracy, 3D images captured via RGB-D cameras can be employed [47].
Therefore, we decided to employ one for this project. Specifically, we chose the Intel® RealSense™ SR300
RGB-D camera. This camera implements a short-range (maximum 1.20 m) coded light 3D imaging system.
The small size of the SR300 provides system flexibility to allow design into a wide range of products.

The mouth pose is obtained using the landmark detection API of the RealSense™ SDK.
The algorithm employed returns 78 facial landmark points. For this project, we selected two pupil
landmarks and two extreme points of the mouth (left and right). Using these two last 3D points (L and
R) we estimate the mouth pose as follows:

Mp =
~LR
2

+ L. (5)

The point Mp is the center point of the mouth and the origin of the mouth pose. We set the axis so
that the x-axis is in the ( ~LR) direction, z-axis is in the direction from Mp to the camera, and the y-axis
is calculated to be a right-handed coordinate system. In addition, based on the colour information of
the detected pupil landmarks, we can estimate if the user is blinking their eyes and know if it is the left
or the right eye. For this work, all mouth landmarks were employed to detect when the mouth is open
using the area of a convex hull calculated from all of the mouth points provided by the SDK.

3. Results

In this section, the results of different experimental sessions to evaluate the methods and/or
algorithms reported in this paper are described.

3.1. Calibration between Camera and Robot

The position and orientation errors measured using different calibration approaches are shown in
Figure 5. The most accurate method regarding position error was the standard method. In the case of
orientation error, the most accurate methods were XS and XS2 followed by the standard method. After the
evaluation of all the methods, we selected the standard one, which had the best results regarding position
error and an admissible accuracy regarding orientation error. Moreover, the comparison of the influence
of using different number of calibration points can be found in Appendix A.

Figure 5. Position and orientation errors using different calibration methods: (a) Position error
measured as a distance from the correct position; (b) Norm of the orientation error vector computed by
Rodrigues’ expression.
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3.2. Detection and Pose Estimation

In this section, the quantitative results of the detection and pose estimation method are described.
These results are compared with the works of other authors. Finally, a detailed analysis of the
computational performance of the algorithm was carried out, and as in the quantitative analysis, it is
compared with the work of other authors.

3.2.1. Quantitative Validation of the Detection and Pose Estimation of 3D Objects

To quantitatively evaluate the developed method, the LINEMOD dataset [24] was used. Although
there are other datasets (e.g., T-LESS [48], Tejani [37], among others), the LINEMOD dataset is
undoubtedly the most used by the scientific community to quantitatively evaluate detection and
pose estimation methods. The LINEMOD dataset is formed by 15 3D non-textured objects, of which
13 colour 3D models are available (see Figure 6). Each model has a sequence of RGB-D images (around
1200 images in each), in which multiple objects appear from different points of view and distances
(in a cluttered environment). Each image has the associated real pose (“ground truth”) of the object
and the intrinsic parameters of the RGB-D camera employed for acquiring the image.

Figure 6. Some 3D models of the LINEMOD dataset.

The most common metrics employed for comparing the different methods are:

• Average distance (AD): This metric was introduced by Hinterstoisser et al. [24] and is the most
employed to quantitatively evaluate the accuracy of pose estimation [19,26–29,49]. Given a set of
vertices of a 3D model, M, the actual rotation and translation [R, t] (“ground truth ”) and their
estimations [R̂, t̂]:

mAD =
1
|M| ∑

x∈M
||(Rx + T)− (R̂x− T̂)||2. (6)

when the 3D object is symmetrical, like some of the LINEMOD models (“cup”, “bowl”, “box”,
and “glue”):

mAD =
1
|M| ∑

x1∈M
min
x2∈M

||(Rx1 + T)− (R̂x2 − T̂)||2. (7)

Traditionally, it is considered that the pose is correct if mAD ≤ kmd, d being the diameter of
the object, and km a coefficient ≥ 0. Generally a km = 0.1 is used (i.e., 10% of the diameter of
the object).

• Shotton criteria (5 cm 5◦): Using this criteria [24] a pose is considered correct if the rotational error
is less than five degrees and the translational error is less than 5 cm. Please note that this metric
does not take the size of the object into account.

• 2D Bounding Box: This metric calculates the intersection over union (IoU) [50] between the 2D
bounding box obtained by projecting all the vertices of the 3D object with the real pose “ground
truth ” in the image and the 2D bounding obtained by projecting all the vertices of the object with
the estimated pose. A pose is correct if IoU > 0.5.
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• 2D Projections: This metric [36] sets a pose as valid if:

mProj =
1
|M| ∑

x∈M
||K(Rx + T)− K(R̂x− T̂)||2 (8)

is less than 5 pixels. M is the set of vertices of the 3D model, K is the matrix of intrinsic parameters,
[R̂, t̂] is the estimated pose and [R, t] is the true pose. It should be noted that this metric is the
most appropriate when you want to estimate the pose of 3D objects in an Augmented Reality
system, and so was not used in this work.

• F1-Score. Given PR as true positive, TPR the recall ratio (true positive rate), and PPV the
precision ratio (positive predictive value), F1 = 2 PR

PPV+TPR is defined. This metric has been used
in References [28,37].

3.2.2. Comparison of the Results with State-Of-The-Art Methods

Firstly, it is worth noting that unlike other authors, quantitative evaluation using the main
metrics was carried out in this work. This is of vital importance, since the results obtained often vary
substantially depending on the metric employed.

When comparing the results of our method with some of the most popular methods (Table 1) on the
LINEMOD dataset and with the AD metric, the results obtained are similar to those of the LINEMOD++
method proposed by Hinterstoisser et al. [24] (95.7% versus 96.6%). This is reasonable since the method
developed in this work is based mainly on the LINEMOD++ algorithm. Specifically, the proposed method
presents a series of modifications of LINEMOD++ in order to optimise the performance in real scenarios.

Looking in detail at the obtained results (see Tables 1 and 2) and comparing with the results
obtained from other similar works, our method improved upon the results of [17,26,27,35]. It also
exceeded by a wide margin the method SSD-6D [28], since it got 76.3% using the RGB information
and 90.9% with the RGB-D information compared to the 95.7% obtained in our method. Note also
that it improved the accuracy of the method of Brachmann et al. [36] when it only used the colour
information (50.2%). In addition, the described method improved the BB8 [29] method with or without
refinement of the pose (62.7%).

On the other hand, it matched the results obtained by the method of Zhang et al. [51]. In contrast,
the method of Brachmann et al. [36] was more accurate when the depth information was employed
in addition to the colour information; specifically, it achieved 99.0% with the AD metric in the
LINEMOD dataset.

When comparing with the work of [19], it is worth remarking that they only show the best results
of 8 of the 13 3D objects available in the LINEMOD database. Consequently, if we calculate the average
obtained using the AD metric of our method for these models, we obtained 96.5% versus 97.8% of the
method of Hinterstoisser [19].

Finally, it can be concluded that although more precise methods have appeared in recent years [28]
(all of them based on deep learning techniques), especially when the objects are partially visible, our
method was not only accurate enough compared to many of the methods in the scientific literature
(see Tables 1 and 2), but it was also (as will be seen in the next section) the fastest of all the methods
analysed in this work, allowing pose estimation in real-time with only the requirement of a 3D model
(not necessarily with colour) of the 3D object.

Additionally, Figure 7 shows some qualitative results of the estimated pose using our method in
the LINEMOD++ database. Specifically, a projection was done of a bounding box calculated using the
estimated pose (in green) and the ground truth pose (in red).
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Table 1. Comparison of the results between different detection and pose estimation methods on the
LINEMOD dataset [24] using the AD metric and km = 0.1, given as the percentage of objects in which
the pose was estimated with an error smaller than 10% of the object diameter.

Sequence Our Method LINEMOD++ [24] Drost [17] Hodaň et al. [26] Brachmann et al. [35] Hinterstoisser et al. [19]

Ape 97.3% 95.8% 86.5% 93.9% 85.4% 98.5%
Benchwise 95.4% 98.7% 70.7% 99.8% 98.9% 99.8%

Driller 93.0% 93.6% 87.3% 94.1% 99.7% 93.4%
Cam 95.0% 97.5% 78.6% 95.5% 92.1% 99.3%
Can 97.0% 95.9% 80.2% 95.9% 84.4% 98.7%
Iron 98.7% 97.5% 84.9% 97.0% 98.8% 98.3%

Lamp 99.2% 97.7% 93.3% 88.8% 97.6% 96.0%
Phone 97.1% 93.3% 80.7% 89.4% 86.1% 98.6%

Cat 98.8% 99.3% 85.4% 98.2% 90.6%
Hole punch 92.8% 95.9% 77.4% 88.0% 97.9%

Duck 99.1% 95.9% 46.0% 94.3% 92.7%
Cup 97.7% 97.1% 68.4% 99.5%
Bowl 97.8% 99.9% 95.7% 98.8%
Box 99.2% 99.8% 97.0% 100.0% 91.1%
Glue 96.9% 91.8% 57.2% 98.0% 87.9%

Mean 95.7% 96.6% 79.3% 95.4% 92.5% 97.8%

Sequence Zhang et al. [27] Kehl et al. [32] Zhang et al. [51] BB8 [29] SSD-6D with RGB-D [28]

Ape 96.3% 96.9% 93.9%
Benchwise 90.4% 94.1% 99.8%

Driller 95.2% 96.2% 94.1%
Cam 91.3% 97.7% 95.5%
Can 98.2% 95.2% 95.9%
Iron 98.8% 98.7% 97.0%

Lamp 91.4% 96.2% 88.8%
Phone 92.7% 92.8%

Cat 91.8% 97.4% 98.2%
Hole punch 97.8% 96.8% 88.0%

Duck 91.8% 97.3% 94.3%
Cup 99.6% 99.6%
Bowl 99.9% 99.9%
Box 99.8% 99.9% 100.0%
Glue 94.6% 78.6% 98.0%

Mean 94.7% 95.8% 95.7% 62.7% 90.9%

Table 2. Results of our detection and pose estimation system on the LINEMOD dataset [24] using
different metrics. The percentage is calculated as the number of times that the pose was estimated
correctly with respect to the total number of images for each of the sequences. AD: average distance;
IoU: intersection over union.

Model 6D Pose (5 cm 5◦) 6D Pose (AD) 2D Bounding Box (IoU) F1-Score (AD)

Ape (1235) 98.94% 97.33% 98.86% 0.9864
Bench Vise (1214) 95.46% 95.46% 95.46% 0.9768

Driller (1187) 93.09% 91.24% 93.85% 0.9542
Cam (1200) 95.08% 94.50% 95.17% 0.9717
Can (1195) 97.07% 91.88% 97.07% 0.9577
Iron (1151) 98.70% 98.00% 98.87% 0.9899

Lamp (1226) 99.26% 98.04% 99.26% 0.9901
Phone (1224) 97.11% 97.11% 97.11% 0.9853

Cat (1178) 98.89% 98.89% 98.89% 0.9944
Hole punch (1236) 92.80% 91.35% 92.72% 0.9547

Duck (1253) 99.12% 96.96% 99.12% 0.9846
Cup (1239) 97.74% 97.74% 97.66% 0.9881
Bowl (1232) 97.81% 97.81% 97.81% 0.9889
Box (1252) 99.28% 99.28% 99.28% 0.9963
Glue (1219) 96.97% 90.26% 96.97% 0.9495

Mean 97.15% 95.72% 97.20% 0.9779
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Figure 7. Results visualisation of the estimated pose using the LINEMOD dataset. The bounding
box projection of the actual pose is shown in red, and the estimated pose by our method is shown in
green (best viewed in colour).

Figure 8 depicts two objects employed in the AIDE project and its pose estimation. Please note that
the spoon CAD model was obtained by scanning the actual object using a KinectFusion algorithm [34]
and a RGB-D camera, while the plate CAD model was modelled using Autocad 3ds Max. This example
sustains the affirmation that our algorithm works with models with poor and high quality.
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Figure 8. Qualitative results visualisation of the estimated pose of two project objects. The spoon
model was scanned and the plate was modelled.

3.2.3. Computational Cost

One of the objectives of this work was to design a detection and pose estimation system that
worked in real-time so that the grasping system could correct the position and orientation of the object.
This feature is very interesting in our use case because the user selects the object of interest through
an eye-tracking system that works in real time so they can change the objective quickly. In addition,
it allows the grasping of moving objects. It is important to note that the performance analysis was
done with the limitation that only one object is detected and estimated simultaneously (common in
grasping systems).

The developed method had a total computational cost of 0.032 s (31.72 fps) obtained using a
battery test of sequences of the LINEMOD dataset, as can be seen in Table 3.

Table 3. Breakdowns of time in seconds of the detection and pose estimation algorithm on each of the
sequences of the LINEMOD dataset. The algorithm implemented in the project (multi-core version)
improved upon the performance of the LINEMOD++ algorithm by a factor of three [24].

Sequence Total Time (One-Core) Total Time (Multi-Core)

Ape (1235) 0.1070 0.0401
Bench Vise (1214) 0.0581 0.0289

Bowl (1231) 0.0748 0.0316
Cam (1200) 0.0646 0.0319
Can (1195) 0.0597 0.0288
Cat (1178) 0.0698 0.0308
Cup (1239) 0.0896 0.0367

Driller (1187) 0.0582 0.0291
Duck (1253) 0.0836 0.0333
Box (1252) 0.0830 0.0344
Glue (1219) 0.0837 0.0335

Hole punch (1236) 0.0831 0.0343
Iron (1151) 0.0621 0.0300

Lamp (1226) 0.0577 0.0287
Phone (1224) 0.0624 0.0288

Mean 0.0731 0.0320
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The developed method considerably improved the computational cost in comparison with
other similar works. Specifically, it exceeded by a factor of 3× the method on which it is based
(LINEMOD++) [24] (see Table 3), obtaining very similar results in precision (see the previous Section 2).
This is due to the optimisation performed in the original method. Table 3 shows the times obtained with
our parallelized algorithm and without parallelizing. Please note that the tests were performed using
the same number of templates as those cited by Hintertoisser et al. [24]. Specifically, 1235 templates
were used for each of the 3D models.

In addition, compared with other works (Table 4), our method considerably decreased the
computational cost using only the CPU. In more detail, when compared to detection and pose
estimation methods based on deep learning techniques [29,31] (with the exception of the SSD-6D
method [28] that works at 10 fps), these are very computationally expensive, preventing their use in
real-time. Furthermore, all of these methods require a high-performance GPU. In fact, the implemented
method exceeded in efficiency the following template matching methods [24,26,27], methods based on
geometric descriptors [17,19], and methods based on random forest [36,52–54].

Another outstanding aspect is that the implemented method estimates the pose independently
in each frame; that is, it does not use tracking techniques such as the one proposed by Tan et al. [55].
This makes it possible in future work to further reduce the computational cost if combined with any of
these tracking techniques. It is also important to remark that the obtained time results were calculated
after the analysis of the complete image captured by the camera (in this case of size 640 × 480).
However, in our case it was only necessary to analyse the regions of the image obtained from the
eye-tracking phase, and consequently the times obtained were further reduced.

The equipment employed for testing our algorithm was a computer with Intel Core i7-7700
(3.60 GHz) with 16 GB of RAM and an Orbbec Astra S RGB-D camera. Our method was implemented
in C++ with OpenMP. The optimisation in the detection algorithm was performed in the LINEMOD
algorithm implementation of the OPENCV library.

Table 4. Time comparison (seconds) of different methods for detection and pose estimation.

Method Time (seconds) Use GPU

LINEMOD++ [24] 0.12 s x
Hodaň et al. [26] 0.75 to 2.08 s

√
Brachmann et al. [36] 0.45 s x

Drost et al. [17] 6.30 s x
Hinterstoisser et al. [19] 0.1 to 0.8 s x
Doumanaglou et al. [53] 4 to 7 s x

Tejani et al. [52] 0.67 s x
BB8 [29] 0.30 s

√
Zhang et al. [51] 0.80 s –
Zhang et al. [27] 0.70 s x
Michel et al. [54] 1 to 3 s x

Do et al. [31] 0.10 s
√

SSD-6D [28] 0.10 s
√

Ours 0.03 s x

3.3. Mouth Pose System

The mouth pose algorithm was tested with different users during experimental sessions as can be
seen in Figure 9. In this figure, pupil landmarks are coloured yellow while mouth landmarks are red.
3D coordinates are written on the top of the images, and on the top-left corner there are three circle
indicators. These indicators change colour to green when the user has their mouth open or if the user
is blinking their eyes. These events are also communicated as numerical values and written in blue
text on the image. As can be seen, the algorithm worked well with/without facial hair, with glasses,
and with different genders.
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Figure 9. Qualitative results visualisation of the estimated mouth pose with five users. Red points are
the mouth landmarks and yellow points the pupil landmarks. The top-right circles indicate if the user
has their mouth or the eyes open (green) or closed (red) (best viewed in colour).

To assess the stability of the developed method, some extreme positions, partial face occlusion,
and wearing an eye-tracking system were tested (shown in the second row of Figure 9).

3.4. Eye-Tracking System

To evaluate the performance of object selection using the estimation of gaze point and detection
of the type of object already selected, an experiment was conducted with 10 healthy subjects.
The experiment consisted of the selection and detection of three kinds of objects (a glass, a bottle, and
a fork) wearing the Tobii Glasses. The user had to select the object whose name is shown on a screen
in front of the user. The name of the objects appeared randomly, and when the object was selected
an audio feedback was provided to the user. The performance of the system was near-excellent since
the percentage of average success was 90% and seven out of eleven users only had two or less fails in
20 trials (see Table 5). Regarding the average selection and detection time, the average selection time
of all users was around 10 s and the average detection time of all users was around 1 s (see Table 5).
Therefore, the users required around 11 s on average to select and detect the object with which they
want to interact. Moreover, we measured the angular movements of the neck during the experimental
session. The maximum range of motion of each joint was: flexion 15.27◦, extension 7.5◦, lateral rotation
(right) 68.08◦, lateral rotation (left) 41.01◦, lateral flexion (right) 14.54◦, and lateral flexion (left) 35.86◦.

Table 5. Object selection using the estimation of gaze point and detection of the type of object.

Users Average Selection Standard Average Detection Standard Number Successes FailuresTime (s) Deviation Time (s) Deviation of Trials

user 1 10.00 13.68 1.02 0.05 20 20 0
user 2 6.38 5.64 1.00 0.02 20 20 0
user 3 18.81 32.52 0.98 0.04 20 20 0
user 4 4.97 2.15 0.96 0.05 20 16 4
user 5 24.63 46.31 0.96 0.05 20 15 5
user 6 6.39 6.98 1.08 0.69 20 18 2
user 7 4.04 1.02 0.96 0.04 20 19 1
user 8 6.05 5.30 1.03 0.03 20 15 5
user 9 14.75 17.32 0.97 0.02 20 18 2
user 10 5.151 1.90 1.06 0.05 20 19 1

3.5. Experimental Results

The algorithms and methods presented in this paper were tested in real environments with
healthy subjects and subjects with different neurological conditions. The subjects used the hybrid BCI
system to trigger the movements of the Jaco2 robot: EEG to control the open/close movement of the
gripper and EOG to trigger the movement to grasp the selected object. In Figure 10, some images of
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the experiments are shown. The performance of the system was very good, and it is out of the scope of
this paper to report on the results regarding the use of the hybrid BCI system.

Figure 10. Images of the context recognition and eye-tracking systems in experimental tests. Examples of
object detection (cup and bottle) with the estimated gaze position (blue circle). Snapshots of the
experiments: grasping a bottle using the Jaco2 robot.

4. Conclusions

The AIDE project has developed a complete assistive robotic solution with a novel and
revolutionary modular and adaptive multimodal human–machine interface. The computer vision
algorithms have an essential role, as has been shown in this manuscript. On one hand, the object
selection algorithm is a very useful and natural robot–human interface because the user only needs to
stare at the desired object. Furthermore, the complete selection made by the users only costs around
11 s, with an average success of 90% in the test performed. On the other hand, a major contribution
presented here is the real-time detection and pose estimation method of textureless objects that allows
for precise grasping tasks. As shown in the results, this algorithm outperformed the state-of-the-art in
terms of computational cost, with similar precision results to the top methods. A thorough evaluation
was made against the popular LINEMOD so that the results can be compared with future methods.
Finally, a mouth pose algorithm was employed with the objective of safely operating the robot system.
Moreover, the complete assistive robotic system and sensing solution is mounted on a wheelchair,
giving a great deal of independence and accessibility to motion-disabled people.

As a future work regarding the detection and pose estimation topic, it is planned to explore
a deep learning approach. The main problems of the deep learning methods of pose estimation is
that they are not in real-time and it is difficult to obtain the ground-truth data for the training. It is
planned to design convolutional neural network that can be computed very quickly, like the YOLO
or SSD methods. Furthermore, this model should be able to learn from synthetic generated images.
This approach could improve the weaknesses of our method and maintain its strengths.
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Appendix A. Experimental Validation: Detailed Figures

Appendix A.1. Comparing the Influence of Using Different Numbers of Calibration Points for Each Method
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Figure A1. Results obtained by the direct calibration method using different numbers of calibration points.
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Figure A2. Results obtained by the standard calibration method using different numbers of
calibration points.
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Figure A3. Results obtained by the RANSAC calibration method using different numbers of
calibration points.
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Figure A4. Results obtained by the XS calibration method using different numbers of calibration points.
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Figure A5. Results obtained by the XS2 calibration method using different numbers of calibration points.
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