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Abstract: Evidence shows that Smart Cities are starting to materialise in our lives through the gradual
introduction of the Internet of Things (IoT) paradigm. In this scope, crowdsensing emerges as a
powerful solution to address environmental monitoring, allowing to control air pollution levels in
crowded urban areas in a distributed, collaborative, inexpensive and accurate manner. However,
even though technology is already available, such environmental sensing devices have not yet
reached consumers. In this paper, we present an analysis of candidate technologies for crowdsensing
architectures, along with the requirements for empowering users with air monitoring capabilities.
Specifically, we start by providing an overview of the most relevant IoT architectures and protocols.
Then, we present the general design of an off-the-shelf mobile environmental sensor able to cope with
air quality monitoring requirements; we explore different hardware options to develop the desired
sensing unit using readily available devices, discussing the main technical issues associated with
each option, thereby opening new opportunities in terms of environmental monitoring programs.
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1. Introduction

Smart cities are revolutionising our view of the world, and their functioning achieves a very high
level of integration, coordination, and cooperation between ordinary objects, providing them with
some degree of intelligence. This novel paradigm provides a plethora of systems and technological
tools aimed at increasing our life quality, minimising the environmental impact of everyday activities,
and optimising resource usage. Such effects are more noticeable in urban areas with millions of
citizens, the so called mega cities, which in the near future will be more and more common [1]. The main
concept behind a Smart City is the integration of the physical world with the virtual world [2]. This is
achieved by providing additional capabilities such as environmental sensing and automatic behaviour
to common objects, allowing to capture and to analyse the data from the real world to ensure a better
operation of the virtual one.

There are several technologies/perspectives that simplify the process of creating a Smart
City. Figure 1 provides a global overview of available technologies from diverse perspectives,
which cover different aspects that allow creating a Smart City. Thus, in a Smart City, all daily
objects, called things, are equipped with extra capabilities, usually sensing and/or acting capabilities,
along with communication capabilities, to share information and to optimise their functional
operation. This way, and from a communications perspective, the Internet of Things (IoT) [3]
focuses on the intercommunication between all things, as well as on the communication between
things and data servers (Cloud or Fog/Edge). On the other hand, from an operational perspective,
Cyber Physical Systems (CPS) focus on the integration of these physical things with the computational
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process [4–6] to improve its functionally. Finally, from a service perspective, Cloud Computing [7,8]
and Edge/Fog [9–11] Computing focus on the data processing, and on the structure of the Central
servers or Local devices. In the remainder of the paper, we will focus on the Internet of Things
perspective, analysing available technologies and their adequacy in terms of implementation.
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Figure 1. Smart city structure.

Any city has several areas of concern to the authorities. In a smart city, all of these areas must have
some level of intelligence to minimise management efforts. Thus, there are various subareas of interest
including Smart Governance, Smart Mobility, Smart Utilities, Smart Buildings, and Smart Environment,
where the adoption of this paradigm can have a clear impact, being highly beneficial [12,13].

Sensing processes are one of the most important tasks in a smart city because they allow retrieving
the different parameters involved in different control processes. Examples of such processes include
transportation, energy management, air conditioning, etc. However, controlling air pollution in smart
cities stands out as a key issue, as it has severe consequences on human health, thereby making
environment sensing a critical task and a prominent service.

Currently, controlling pollution levels is an on-going effort undertaken by most European cities,
which invest a considerable amount of money in controlling the different hazards produced by poor
air quality. Considering these aspects, an index known as AQI (Air Quality Index [14]) was created to
classify the air quality, and it specifies different healthy risks, from Low to Very High.

Air quality assessment mainly relies on static monitoring stations, meaning that most cities are
endowed with at least one of these stations. Overall, there are about 1500 air quality monitoring
stations in Europe. However, the installation and maintenance of these stations is quite expensive.
In addition, installing new air monitoring stations is tough since, in crowded places, there is no
room for allocating them, meaning that they are typically installed in remote locations, such as parks
or sparsely populated areas, which is prone to produce data with little representativeness for the
overall population.

There are several air pollutant types, and various techniques can be adopted to measure them.
In general, air pollutants can be of two types: (i) primary air pollutants, which are gases or particles
emitted directly into the atmosphere, including carbon monoxide (CO), carbon dioxide (CO2),
particulate matter smaller than 10 microns (PM10), or particulate matter smaller than 2.5 microns
(PM2.5); and (ii) secondary air pollutants, which are gases produced by a chemical reaction between
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primary pollutants and some environment element, including ozone (O3), which is produced by
the combination of nitrogen oxides (NOx), Oxygen (O2), Volatile Organic Compounds (VOC), and
sunlight [15]. In addition, some pollutants are gases (i.e., CO2, CO, and Ozone), while others are
suspended particles in the air (PM10, and PM2.5). Usually, the process of gas monitoring relies on
chemical elements that react to the presence of these gases, while the monitoring of suspended particles
mostly relies on optical detection procedures.

By embracing the Smart City paradigm, crowdsensing becomes a solution able to cope with air
pollution monitoring since this novel paradigm assumes that a significant number of users perform
collaborative sensing tasks, thereby collecting data from different populated locations while doing
their daily activities. The collected data is periodically transmitted to a central server (Cloud) for data
storage and processing. Overall, this strategy implies that the sensors used must be cheap and tiny
enough for comfortable and easy transportation. Otherwise, it becomes hard to achieve a widespread
distribution and adoption. Besides, there must be a communications link for transmitting the acquired
data to a cloud-based server, where data are constantly being stored and processed.

To fulfil the first two requirements concerning price and size, we get advantage by using emerging
prototyping platforms such as Raspberry Pi or Arduino, which allow achieving the aforementioned
goals when combined with low-cost sensors available on the market. Such solutions, besides being
inexpensive, have the advantage of using compact, powerful, and easy-to-use hardware that is widely
adopted nowadays both in research and industry. These compact platforms can also be integrated in
vehicles, i.e., cars, bikes, or public transportation, making it easy to monitor different air pollutants
while the vehicle travels around the city.

On the other hand, smartphones are nowadays widely adopted devices that have become
ubiquitous. Thus, it becomes interesting to exploit their communication interfaces, such as Wi-Fi
or Cellular, for transmitting the acquired data from mobile sensors. With these issues in mind,
mobiles sensors must be able to create a communication link with smartphones to make such
interaction possible.

Recent literature suggests that, although there are several hardware options for creating different
types of sensors, there are none specific for air pollution monitoring from a crowdsensing perspective.
Hence, it becomes necessary to analyse the different options for creating a small, low-cost, mobile sensor
able to communicate with off-the-shelf smartphones in an Internet of Things type of environment.

This paper is organised as follows: Section 2 presents a literature overview of crowdsensing
projects. Section 3 provides an overview of the current IoT platforms and protocols that are able to
support environment-sensing solutions under the crowdsensing paradigm. Section 4 presents an
analysis of available architectures and technologies for creating a crowdsensing system while defining
the basic requirements for it. Section 5 presents a comparison of possible hardware configurations
for creating a mobile sensor able to perform air monitoring, transmitting the collected data via some
mobile sink (e.g., a smartphone) towards a datacenter for storage and processing. Section 6 studies the
main requirements of this type of sensors, thoroughly assessing some developed configurations that
fulfil the aforementioned requirements. Finally, Section 7 presents the conclusions of the present work.

2. Crowdsensing Architectures in the IoT Context: Literature Overview

Following the Smart City paradigm, and focusing on the data collection domain, the concept
of crowdsourcing has been introduced to refer to scenarios where a large group of people, through
different devices and technologies, actively participate in the data acquisition process [16]. Once data
are collected, they are sent to a central server for analysis, and feedback will eventually be returned to
citizens through actions and services aimed at improving their life quality.

Crowdsensing is a subtype of crowdsourcing where sensors are the actual sources of the data
gathered [17]. If air quality sensors are used, crowdsensing becomes a good alternative to traditional
stationary air quality stations whereby small sensors are distributed to a large group of people that
seamlessly contribute to the system while doing their everyday tasks [18].
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In the literature, we can find several works related to crowdsensing systems applied to air
monitoring. Air-cloud [19] is a system to monitor the concentrations of PM2.5 using crowdsensing in
China. It focuses on the analysis of the mechanical sensor design to optimise air reception, as well
as on data fusion techniques. The sensor calibration process relied on neural network tuning using
laboratory measurements as input.

U-Air [20] shows how to analyse the data obtained from different sources, such as traffic levels,
weather conditions, and pollution using various Big Data techniques, evidencing how these techniques
allow inferring environmental pollution levels with better granularity.

Researchers from Zurich University [21] have also designed a prototype to monitor ozone levels
using a sensor that is connected to the smartphone via an USB cable. The Smart City project in
Serbia [22] seeks similar goals, relying on a commercial sensor by Libelium [23] for measuring various
air pollutants using the public transport system.

Devarakonda et al. [24] propose a system with two types of sensors: (i) a sensor based on Arduino
Mega128 to install in vehicles that costs about $700; and (ii) a personal sensor that is smaller than
previous ones, and that costs about $400 for end-user applications. In this work, Google technology is
used for data processing.

Mead et al. [25] analyse the behaviour of electrochemical sensors to monitor air pollution in urban
scenarios. They design two types of sensors (static and mobile) based on the PIC18F67J10 microchip,
and they show how to deal with electrochemical sensors.

Manna et al. [26] propose a sensor to monitor air pollution on roads, and to track vehicles
which cause pollution, by using a sensor based on Arduino, an electrochemical CO gas sensor,
and RFID technology.

In addition, we can find several technological approaches for fabricating small sensors.
For instance, Hjiri et al. [27] use Al-doped ZnO (AZO) nanoparticles to create a highly sensitive
CO gas sensor. Instead, Borini et al. [28] use graphene oxide to create humidity and temperature
sensors with ultrafast response times (30 ms). Chen et al. [29] analyse the use of nanowires to fabricate
gas sensors due to their characteristics: ultrasensitive, higher selectivity, low power consumption,
and fast response. In addition, Zaatar et al. [30] show how to use the fiber optic evanescent wave to
monitor air pollution.

Even though there are different studies that provide a wide set of approaches for air pollution
monitoring through crowdsensing, or that provide an isolate analysis of sensing technologies, there is
no specific hardware solution that is widely available for regular users, and different alternatives have
not yet been compared in a detailed manner. Thereby, an exhaustive analysis of the different solutions
available to create a small, low-cost device endowed with both air quality sensors and communication
capabilities, would represent a step forward in this challenging and fascinating area.

3. Internet of Things Protocols Overview

In recent years, the Internet of Things (IoT) has become one of the most challenging research
topics, offering a wide range of novel solutions for Smart Cities [3,31]. These proposals mainly analyse
the intercommunication between devices, and involve a large variety of domains like home-based
solutions [32], intelligent transportation systems [33], healthcare [34], safety and security [35,36],
industrial control [37], and environmental monitoring. Thus, the analysis of the sensor design must be
able to cope with IoT protocols, which will be described in this section.

The main principle underlying the IoT paradigm is that all “things” are, or must be, connected to
the Internet, and interact with each other to create developed areas that promote sustainability and a
high life quality in multiple key areas [13,38].

The main characteristic of these things is that they are constrained devices such as small sensors,
meaning they have restricted processing/storage capacity, restricted battery, restricted communication
characteristics, i.e., Low Bandwidth, Low Data Rate, Low Coverage, etc. With this in mind, the Internet
of Things has created a subset of protocols divided into various layers, similar to the traditional Internet
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stack, but taking into account the restrictions of the Internet of Things in terms of processing, battery
capacity, and communication capabilities of embedded devices. Figure 2 summarises the different
layers defined for IoT, and the differences towards the traditional Internet: (i) the Infrastructure
Layer typically relies on wireless technologies, like ZigBee, LoRa, or Bluetooth Low Energy (BLE); (ii)
the Addressing Layer focuses on the analysis of the addressing issues to achieve compatibility with
Internet protocols; (iii) the Transport Layer is the same than for the TCP/IP (Internet) protocol stack,
so either TCP or UDP are available, although UDP is typically used; (iv) the Messaging Layer defines
protocols to transmit data towards the servers; (v) the Message Format Layer defines encoding types
to store and transmit data; and (vi) the Semantic Layer defines the structure of the data.

Below, we will describe the most important protocols involved in the Internet of Things at these
different layers.

Zigbee, LoRa, BLE, NFC, 
Sigfox, WiFi, LTE 

6LowPAN

UDP

XML, JSON, EXI,MessagePack

MQTT-SN, CoAP, XMPP-IoT
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Figure 2. IoT protocols.

3.1. Infrastructure Layer

Currently, there are several communication technologies for the Internet of Things. Notice that,
while any communications technology would allow us to create a network for IoT, not all of them
take device restrictions into account. Theoretically, 5G allows a lot of possibilities to be offered in the
context of the Internet of Things [39]. Similarly, new technologies such as LoRA or SIGFOX allow
network sensors to remain connected due to their large coverage.

Below, we make a brief analysis of the possible wireless technologies for IoT.
5G Network [40] is the fifth generation cellular network architecture, designed to support great

amounts of data, high speed, configurability, etc. from new emerging technologies such as Internet of
Things. Currently, it is in the first phase, where new standards and services will be defined, but soon it
shall become the default cellular network technology.

ZigBee [41] is based on the IEEE 802.15.4 standard, and it was designed for Wireless Sensor
Networks. Its main characteristics are its small size and low power consumption. Usually, the
transmission range can vary from 10 to 100 m, depending on the output power. The main drawback of
this technology, though, is that current smartphones are not equipped with ZigBee interfaces.

Wi-Fi [42] is based on the IEEE 802.11 standard, and it was designed for Wireless Local Area
Networks. The evolution of this technology provides several variants operating in the 2.4 GHz or in
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the 5 GHz band, being currently the 802.11n version the most widespread option. The transmission
range for standard interfaces is about 100 m.

LoRa [43] is a LPWAN (Low-Power Wide-Area Network) technology designed to optimise
different aspects such as communication range, battery lifetime, and costs, supporting thousands
of devices headed for the Internet of Things in several domains including sensing, metering,
and machine-to-machine (M2M) communications.

Theoretically, LoRa achieves a transmission range of more than 15 km in rural environments,
and of more than 2 km in dense urban areas. Its bandwidth ranges between 250 bps and 50 Kbps in
different frequencies: 169 MHz, 433 MHz, and 868 MHz in Europe, and 915 MHz in North America.

SIGFOX [44] is an emerging technology that offers a proprietary telecommunications network to
support Internet of Things solutions. It was designed for LPWA (Low-Power Wide-Area) networks
operating in the ISM 868 MHz band, reaching distances greater than 1 km. Since the selected ISM
band is restricted, the communications could be of up to 12 bytes per message, and up to 140 messages
per day.

Near Field Communications (NFC) [45] was designed for communications between two nearby
devices (closer than 4 cm). It main target applications are smartphone-based payments and IoT
solutions such as access control, or inventory systems. However, its distance requirements and
intermittent connectivity features make it a poor option for our purposes.

Bluetooth [46] was designed for Personal Area Networks, purposely having a maximum coverage
range of 10 meters by default. Currently, it is used for transmitting information between personal
devices, such as smartphones, smartwatches, and headsets.

Bluetooth Low Energy [47], or Bluetooth Smart, is the name under which Bluetooth version 4
is known. Its main advantage, when compared to previous versions, is using very low power,
being nowadays one of the best options for IoT applications. Similarly to previous Bluetooth
specifications, the coverage range is of 10 m.

3.2. Addressing Layer

The addressing layer defines the logic address of the packets by assigning a specific address to all
possible nodes. These protocols deal with the packet forwarding problem, which in the TCP/IP model
is handled by IPv4 and/or IPv6.

6lowPAN [48] (IPv6 over Low power Wireless Personal Area Networks) allows using IPv6 over
networks based mainly in the IEEE 802.15.4 standard.

It is designed for resource-constrained devices by reducing the size of the address to 64 or 16 bits,
depending on whether it is for a Local Network or a Personal Area Network, respectively; it uses
default values for specifying the network.

3.3. Messaging Layer

The messaging layer defines protocols for data transmission systems considering IoT restrictions.
RESTful [49] (Representational state transfer) is a Web-based architecture to exchange or to

manipulate Web resources through a textual representation using preset stateless operations; it means
that each message must have all the required information to complete the request. It follows a
client/server model based on the HTTP protocol, and relies on its functions: (i) GET, to retrieve a
resource; (ii) POST, to create a resource; (iii) PUT, to change the state of a resource; and (iv) DELETE,
to delete a resource. The data representation typically adopts the XML or JSON formats.

Figure 3 presents a basic overview of a Restful Architecture under the client/server model.
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Client Server

(1) HTTP request

(2) HTTP response

Figure 3. Basic RESTful architecture.

There is a specification [50] for constrained nodes and networks called Constrained RESTful
Environments (CoRE) Link Format. It specifies a set of links to discover resources, and to access these
resources in a Machine-to-Machine (M2M) environment.

MQTT [51] (Message Queue Telemetry Transport) is a lightweight messaging protocol based
on the publisher/subscriber scheme that runs on top of the TCP/IP protocol. It is also designed for
constrained networks with limited bandwidth.

The MQTT is composed by three elements: publishers, subscribers, and a message broker.
A subscriber, which wants to receive a message related to a specific topic, must subscribe to the
message broker; next, when a publisher sends/publishes a message related a certain topic, it is
transmitted to all subscribers subscribed to this topic.

MQTT has three transmission Quality of Service (QoS) levels: (i) QoS 0: At most once.
The message is sent once, but it does not check for ACKs to confirm message reception. (ii) QoS 1:
At least once. The message could be sent more than once to each subscriber. (iii) QoS 2: Exactly once.
The message is sent exactly once using four-way handshaking.

MQTT-SN [52] (MQTT Sensor Network) has been designed to be similar to MQTT, but considering
the restrictions of wireless communication environments, such as limited bandwidth, short message
length, etc., running over UDP or on Non-IP environments. For interoperating with standard MQTT
environments, it needs an MQTT-SN Gateway which connects MQTT-SN nodes, such as constrained
sensors, to the MQTT network. Figure 4 shows a basic MQTT architecture.

Broker Susbcriber

(1) sub(topic)

(3) send(data)
Publisher

(2) pub(topic,data)

MQTT-SN
Gateway

MQTT-SN
Client

MQTT-SN Environment

Figure 4. Basic MQTT (Message Queue Telemetry Transport) architecture.

CoAP [53] (Constrained Application Protocol) is a generic web protocol designed for constrained
environments with restricted network capacities and restricted devices, allowing these devices to
communicate with the Internet or other constrained devices. It implements a compressed subset of the
REST model implementing GET, POST, PUT, and DELETE operations over UDP.

CoAP reduces the message header and restricts message exchange, reducing the network
overhead. It is very useful for Machine-to-Machine (M2M) communication, and for the Internet
of Things (IoT).

CoAP can be easily translated to HTTP for seamless integration with existing Web systems,
while reducing network requirements.

XMPP [54] (Extensible Messaging and Presence Protocol) is a message-oriented communications
protocol based on XML. Initially, it was called Jabber, and it was designed for instant messaging
(IM). It allows federations among various XMPP servers, and even communication with different
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technologies using XMPP gateways. Currently, it is also used for VoIP, video, gaming, or even for IoT
applications. Figure 5 shows the basic architecture of an XMPP-based system.

XMPP

Server

XMPP

Client

XMPP

Server

Other

Technology

XMPP

Client

XMPP

Client

XMPP

Gateway

Figure 5. Basic XMPP (eXtensible Messaging and Presence Protocol) architecture.

The specification for IoT is XEP-0323: Internet of Things—Sensor Data [55], which provides
the architecture, basic operations, and data structures for sensor data communication, including a
hardware abstraction model for the interconnection of constrained devices.

sMAP [56] (Simple Measuring and Actuation Profile) is an example of how RESTful web services
can be simplified, while still allowing instruments and other producers of physical information to
directly publish their data in a central server.

3.4. Message Format Layer

The Message Format layer presents all data encoding types to store and transmit structured data
for IoT applications.

XML [57] (eXtensible Markup Language) is a markup language for encoding documents in a text
format that is understandable by both human and machines. XML is designed to store data units
called entities, where all data structures and document descriptions are achieved through markups.
Using these markups, it is possible to create any logical data structure in an easy way.

JSON [58] (JavaScript Object Notation) is a format notation to encode structured data
(attribute-value pair or array) using human-readable text. It was designed to replace XML by
reducing its complexity. It is very common in web systems, especially in AJAX-style ones. It uses
pairs (object_id:object_value) and brackets to provide complex object structuring for fitting data in a
text document.

EXI [59] (Efficient XML Interchange) is a binary and compact representation of XML or JSON
documents. It aims at resource-constrained devices and networks, attempting to reduce the size of the
data and the computational requirements when compared to other compressors such as gzip. The EXI
coder is based on events, and it follows a simplified Huffman coding to create a binary document.

MessagePack [60] is a binary serialization format that encodes messages faster and in a more
compact manner than traditional methods such as JSON or XML. This is possible since small integer
values are encoded in a single byte, while strings require only an extra byte to identify them.
This simplifies the encoding process, but it has some limitations, such as the size of strings or numbers,
the number of the key/value association map, etc.

Table 1 shows a representation of sensor data using XML and JSON encoding, and Table 2 shows
a representation of sensor data using EXI and MessagePack encoding, respectively. We can observe
that the EXI encoding and the MessagePack are much smaller (163 and 186 bytes) than the encoding
achieved using XML (474 bytes) or JSON (357 bytes).
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Table 1. Example of data representation using typical encoding types.

XML Encoding (474 bytes) JSON Encoding (357 bytes)

<?xml vers ion = " 1 . 0 " encoding ="UTF−8" ?>
<trace >

<id >trace1 </id >
<values >

<captures >
< l a t i t u d e >39.470577 </ l a t i t u d e >
<longitude >−0.3336604</ longitude >
<ozone>56</ozone>

</captures >
<captures >

< l a t i t u d e >39.470652 </ l a t i t u d e >
<longitude >−0.3343365</ longitude >
<ozone>68</ozone>

</captures >
<captures >

< l a t i t u d e >39.470892 </ l a t i t u d e >
<longitude >−0.3359987</ longitude >
<ozone>59</ozone>

</captures >
</values >

</trace >

{
" t r a c e " : {

" id " : " t r a c e 1 " ,
" values " : {

" captures " : [
{

" l a t i t u d e " : " 3 9 . 4 7 0 5 7 7 " ,
" longi tude " : " −0.3336604" ,
" ozone " : " 5 6 "

} ,
{

" l a t i t u d e " : " 3 9 . 4 7 0 6 5 2 " ,
" longi tude " : " −0.3343365" ,
" ozone " : " 6 8 "

} ,
{

" l a t i t u d e " : " 3 9 . 4 7 0 8 9 2 " ,
" longi tude " : " −0.3359987" ,
" ozone " : " 5 9 "

}
]

}
}

}

Table 2. Example of data representation using compressed (binary) encoding types.

EXI Encoding (163 bytes) MessagePack Encoding (186 bytes)

80 40 67 47 26 16 36 5a 80 24 06 d2 c9 50 08 84
3a 39 30 b1 b2 98 80 ee cc 2d 8e ac ae 75 00 48
25 8d 85 c1 d1 d5 c9 95 ce a0 00 00 96 c6 17 46
97 47 56 46 5a 80 44 2 c cc e4 b8 d0 dc c0 d4 dc
dc 0a 6 c 6 f 6e 67 69 74 75 64 65 a8 04 43 0b 4 c
0b 8 c cc cc cd 8d 8 c 0d 00 66 f7 a6 f6 e6 5a 80
44 10 d4 d9 00 0 c 02 cc ce 4b 8d 0d cc 0d 8d 4 c
80 0 c 83 0b 4 c 0b 8 c cc cd 0 c cc cd 8d 40 0d 01
0d 8e 10 00 c0 2 c cc e4 b8 d0 dc c0 e0 e4 c8 00
c8 30 b4 c0 b8 cc cc d4 e4 e4 e0 dc 00 d0 10 d4
e5 ea 80

81 a5 74 72 61 63 65 82 a2 69 64 a6 74 72 61 63
65 31 a6 76 61 6 c 75 65 73 81 a8 63 61 70 74 75
72 65 73 93 83 a8 6 c 61 74 69 74 75 64 65 a9 33
39 2e 34 37 30 35 37 37 a9 6 c 6 f 6e 67 69 74 75
64 65 aa 2d 30 2e 33 33 33 36 36 30 34 a5 6 f 7a
6 f 6e 65 a2 35 36 83 a8 6 c 61 74 69 74 75 64 65
a9 33 39 2e 34 37 30 36 35 32 a9 6 c 6 f 6e 67 69
74 75 64 65 aa 2d 30 2e 33 33 34 33 33 36 35 a5
6 f 7a 6 f 6e 65 a2 36 38 83 a8 6 c 61 74 69 74 75
64 65 a9 33 39 2e 34 37 30 38 39 32 a9 6 c 6 f 6e
67 69 74 75 64 65 aa 2d 30 2e 33 33 35 39 39 38
37 a5 6 f 7a 6 f 6e 65 a2 35 39

3.5. Semantic Layer

The Semantic layer presents all approaches that describe a logical representation of things in the
IoT context. Therefore, in sensing approaches, we can find several representative examples:

SensorML [61] is an standard model based on XML encoding for describing sensors and
measurement processes. It is developed by the Open Geospatial Consortium, describing a wide
range of sensors for different types of architectures, including remote sensors, in-situ sensors and
dynamic sensors, among others.

Semantic Sensor Net Ontology [62] describes sensors and observations, avoiding to describe
domain concepts, location, time, etc. It is developed by the W3C Semantic Sensor Networks Incubator
Group (SSN-XG).

Web of Things [63] specifies a data model to describe physical devices connected to the Web
(Internet) using JSON encoding. It was created for the Mozilla project, and was formally submitted to
W3C for discussion.

Taking into account that the previously described protocols, a sensor device must be able to cope
with a subset of them to allow the exchange of data between the sensors and a central server.

4. Mobile Sensing Requirements

Normally, the sensing process is made through a Wireless Sensor Network (WSN) [64,65], which is
composed by a set of nodes or sensors that collect data and send it towards a central sink or gateway.
The latter carries out processing tasks, or merely resends collected data to a server for storage and



Sensors 2018, 18, 460 10 of 28

processing. Usually, all sensors are resource-constrained devices, and the central sink or gateway
has fewer restrictions, often being connected to the power network. Currently, most Wireless Sensor
Networks are based on the IoT architecture since it allows us to work with constrained devices and
restricted networks.

Figure 6 shows the basic structure of a Wireless Sensor Network. We can see that the
communications link between the sensors and the sink/gateway is wireless, typically relying on
ZigBee, and that the communications link between the sink/gateway and the central server is typically
a more robust link, either wired (e.g., Ethernet) or wireless (e.g., Wi-Fi or Cellular).

WSN

Sensor

Node
Sink

Central

Server

Figure 6. Wireless Sensor Network structure.

The support for mobility in a Wireless Sensor Network [66,67] can be achieved through different
strategies, including sensor mobility, as shown in Figure 7a, or by having mobility on both sensors and
gateway, as shown the Figure 7b. Finally, we have crowdsensing architectures where the gateway and
the sensor are the same, or are packed together. Commonly, the best way to implement crowdsensing
is through smartphones, since nearly all people carry one with them nowadays, and they are endowed
with several sensors and communication interfaces. Figure 8 shows an example of a crowdsensing
architecture where a smartphone is used as the gateway between the sensor and a Central Server.
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Crowdsensing solutions need to be widely disseminated and adopted by users to be successful.
In addition, to achieve such widespread acceptance, the impact on the users’ everyday activities
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must be low. This means that any deployed application must operate in the background and avoid
consuming excessive resources, while requiring only a minimal user participation. Concerning the
sensor itself, if external to the smartphone, it should be cheap, small, easy to use, and comfortable
to carry. ProcessStorageBLE Man. Rest APISmartphone Sta�cMobileSensorAnalog Sensor Microcontroller BLE Manager BLE WiFi / LTE ServerProcessStorageRest API Present

Figure 8. Crowdsensing architecture overview.

Crowdsensing approaches have two basic architectural components [68]: a mobile component for
the data acquisition process, and a central server for data storage and processing.

The mobile component must be able to collect environmental parameters, transmitting them
towards the central server. The data acquisition process is based on smartphone sensors, or on
small external sensors accessible via smartphone, and the transmission process usually relies on
smartphone connectivity towards the Internet. Despite delegating transmission tasks on smartphones,
external sensing devices must still be endowed with communication capabilities to transfer the
collected data to the smartphone. Thus, the sensing device should be equipped with a wireless
communications interface, being technologies such as Wi-Fi, Bluetooth, RFID, NFC, and ZigBee good
candidate solutions.

The central processing server must be able to receive the transmitted data from the sensors,
store and process the data, as well as properly present the obtained results to system managers.
In addition, in some cases, they perform remote communication with the mobile devices for
configuration tasks, thereby allowing to dynamically change the sensing behaviour.

Taking the aforementioned considerations into account, Figure 8 shows a basic hardware
architecture applicable to air quality sensing applications that should include: (i) a mobile sensor;
(ii) a smartphone; and (iii) a central server. The proposed architecture resembles various approaches
from different authors [19–21,68]. Moreover, as shown in Figure 9, the crowdsensing process basically
includes five different tasks: (i) sampling process; (ii) filtering process; (iii) data transfer; (iv) data
processing; and (v) results presentation. Notice that all these tasks could be done by different hardware
components; for instance, the filtering task could be done by the sensor, the smartphone, or even
the central server, depending on the system characteristics. Moreover, characteristics associated to
sensing, filtering, and transmission tasks could be defined based on parameters obtained from the
processing step.

Sampling

Process

Filtering

Process

Data

Transfer

Data

Processing

Results

Presentation

Configure

Configure

Figure 9. Crowdsensing steps.



Sensors 2018, 18, 460 12 of 28

Sampling process refers to the process of capturing pollutant measurements, including the
calibration process, where electrical signals are translated to pollution units, filters, fault detection and
diagnosis, etc.

Sensor calibration, in Commercial Off-The-Shelf (COTS) sensors such as electrochemical ones,
is a process that depends on the physical sensor characteristics, temperature, etc. Basically, electrical
outputs must be translated to pollution units, and often there is no lineal relation. The calibration is
commonly made in advanced laboratories, taking into account samples taken with different pollution
levels and for different temperatures and humidity conditions [69,70]. However, in urban scenarios,
the auto calibration procedure is too complicated because all sensors are distributed among different
users. Alvear et al. [71] proposed a method to calibrate off-the-shell sensors using mathematical
regressions based on high-accuracy samples obtained through the fixed stations deployed in a city.
Once a mobile sensor is near to these stations, these samples are used to adjust the translation equation
(electrical signal to pollution values).

Using COTS, the sampling error and its diagnostics can be a problem [71]. Nevertheless,
when focusing on a Crowdsensing solution using a large number of mobile sensors (smart city
scenario), this problem could be solved by accounting for redundant data and statistical analysis
(i.e., Kriging allows us to deal with sampling error).

Filtering process refers to deleting redundant and/or wrong measurements caused by the sensors
reading oscillations. By using mobile sensors, the filtering process also has to deal with temporal
variations, as describe in [68,71], adjusting samples to a same temporal fragment.
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Figure 10. Data handling process as described in [68]: (a) sampling process; (b) filtering process after
adjusting the temporal variations; (c) data analysis using a semivariogram of the captured data used
for interpolating the entire area using the Kriging technique; and (d) pollution distribution map.
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Data transfer process refers to the upload of data from the sensor to the cloud (Central servers),
including sensor-smartphone and smartphone-server communications. In is achieved through the
previously described IoT protocols.

Data processing refers to the interpolation technique used to recreate a pollution distribution
map. It could be made by different methods (Kriging, IDW, and Nearest neighbour Spatial Averaging)
as described in [72]. Currently, the most used method is the Kriging interpolation technique, where a
semivariogram is calculated for create a complete pollution map.

Results presentation refers to the way results are presented to the system administrator. The most
useful representation is a graphical map for the target region.

Figure 10 presents the data handling process, as the authors described in [68], showing the four
processes for handling pollution information in order to recreate a complete pollution map for a certain
target area.

4.1. Basic Smartphone Software Architecture

Concerning smartphones, they are devices widely used nowadays for any task, and characterised
by powerful computing capabilities, large amounts of memory, and several embedded sensors and
communication interfaces [73]. We consider smartphones as the best gateway option for connecting
mobile sensors with a central server. In addition, they can perform CPU-intensive tasks such as data
filtering or data fusion, simplifying sensor requirements and design to mere data acquisition and data
relaying towards the smartphone.

Since the smartphone must act as a gateway between sensor and cloud server, it must manage at
least two network interfaces: one to collect data from the sensor (Sensing middleware), and another one
to upload data to a central server (Cloud middleware). Although both tasks must run independently,
the data uploading process is often not made in real time, contrarily to the sensor data collection
process, which is a task that should be done very frequently, especially if we aim at a simplified sensor
design, as shown in Figure 11. Moreover, modules to process and store the collected data are also
needed. By assuming that the smartphone becomes responsible for all the computationally intensive
tasks, it becomes necessary to analyse which are the actual basic requirements when designing a
mobile sensor for crowdsensing solutions.
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Figure 11. Smartphone software architecture overview.

4.2. Functional Requirements of the Mobile Sensor

Despite relying on smartphones for providing system intelligence, basic mobile sensor
requirements still involve:

Processing: The sensor must be able to process the measured data, perform basic filtering tasks,
and transfer data to an external device. Anyway, in terms of processing power, requirements are low.
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Storage: By assuming that a links towards a smartphone or a similar device is available, the sensor
does not need to actually store large amounts of collected data. In fact, since data can be seamlessly
relayed to the smartphone in real time, the sensor can limit its internal storage to only a few samples.

Communication: Sensors do not need to have a direct connection to the cloud server via
Internet, but they still need to transfer the collected data to the smartphone. Thus, sensors require a
communications link compatible with current smartphone technologies like Wi-Fi, Bluetooth, or NFC.

Autonomy: Sensors must be able to operate for long periods using a small power supply. Thus,
energy optimisation becomes a key requirement to take advantage of small batteries.

Size: Sensors need to be transported by users, or to be quickly installed in vehicles (e.g., bicycle,
motorcycles, and cars). Thus, they must be small enough for the sake of aesthetics and comfort.

Price: To be attractive to users, sensors must be as cheap as possible. Otherwise, it becomes
difficult to meet the broad dissemination requirements of crowdsensing approaches.

4.3. Basic Mobile Sensor Design

To fulfil the technical requirements, a basic mobile sensor should be composed of a sensor device
able to monitor the differences between different pollutant levels, a communications module for
transferring the data collected, and a microcontroller/microcomputer acting as a central element for
managing all tasks.

Figure 12 shows a basic mobile sensor design, and the main characteristics to consider. As shown,
the sensor hardware module must be able to connect to a microcontroller/microcomputer, a connection
that typically relies on an analog/digital port. Similarly, the communications module must also be
connected to the microcontroller via an UART or USB port. Thus, the microcontroller becomes a
central element in the sensing module, being responsible for managing the interactions between all
the elements. Communica�onModuleSensorModuleSensor Node Firmware / SOApplica�onsMicrocontrollerProcessor Flash/RAMAnalog I/O Digital I/OBa�eryAnalogI/O DigitalI/O

Figure 12. Mobile sensor design.

Overall, the sensing module must be equipped with different analog ports, UART/USB ports,
a processor, and flash memory (ROM or RAM).

5. Overview of Available Hardware and Software

In recent years, the appearance of different embedded prototyping platforms, such as Raspberry
Pi or Arduino, which are complemented by a large variety of compatible electronic components,
paved the way for the creation of diverse applications related to IoT. When specifically focusing
on environmental monitoring requirements, we find that there are different development options,
including different types of sensor, and various communication interfaces.

Commercially, several companies offer small and yet powerful boards, along with a large variety
of electronic components for personalising them according to user needs. In addition, there are
various companies offering extra modules or add-ons such as Seeedstudio [74], which offers their own
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sensors for developing personalised frameworks based on Grove technologies. Similarly, Adafruit [75]
provides different embedded platforms, as well as all kinds of electronic components, including
personalised add-ons for batteries, communication modules, and sensor boards compatible with the
most widely extended platforms: Raspberry Pi, Arduino, BeagleBone, Intel Edison, or Intel Galileo.

Focusing on final solutions, TST [76] offers products in the field of Smart Cities (Waste
Management, Industrial Control, Light Control, etc.), basing their solutions on their own hardware
platform. Likewise, Libelium [23] is a company providing various products in the field of monitoring
(Environment monitoring, Agriculture, Water monitoring, etc.); most of the components, and the
programming tool used, are based on the Arduino platform. However, from a crowdsensing
perspective, the solutions offered are inadequate due to the relatively large sizes of the devices,
being mostly oriented for public infrastructure deployment.

Based on the state of the art, we now provide an in-depth analysis of the different hardware and
software components applicable to our mobile air quality sensing context.

To enable air quality data acquisition, specialised pollution sensors must be connected to a
microcontroller or microcomputer via an analog or digital port. Moreover, for communication
tasks, the microcontroller/microcomputer must be connected to the communications module via
an USB port or UART interface. In this sense, available options will depend on the microcontroller/
microcomputer characteristics.

5.1. Microcontroller/Microcomputer-Based Embedded Systems

Despite the lightweight processing constraints, there are several options available for embedded
systems acting as central elements in the sensor design. In fact, it is possible to use microcomputers such
as Raspberry Pi, BeagleBone, or Intel Edison, which use a standard operating system, and that allow
developing applications for sensing tasks in a straightforward manner. Alternatively, it is possible to
use a microcontroller board such as Arduino, and develop application-specific firmware instead.

Raspberry Pi is one of the most popular microcomputers worldwide. It is a low-cost and
small-sized computer that allows connecting standard PC peripherals including a monitor, a keyboard,
and a mouse. It was designed to explore computing, and it supports different Operating Systems:
Raspbian, which is based on Debian, and also Ubuntu Mate or Windows 10 IoT Core, thereby allowing
to use several programming languages. In addition, all Raspberry Pi versions benefit from several
input/output ports operating at 5 Volts, thus being ideal for all sorts of IoT projects.

There are different versions of the Raspberry Pi, as shown Figure 13, being model A and type 2
the most commonly used. They have different characteristics, e.g., Type B offers better performance
in terms of memory and processing, but Model A consumes much less power. Recently, Raspberry
Pi 3 has appeared, offering better features than previous versions, being the major difference the
integration of a Bluetooth and a Wi-Fi module, thereby facilitating communication tasks in the scope
of IoT projects.

Figure 13. Overview of different Raspberry Pi models.

BeagleBone is a small computer running a Linux Operating System called Angstrom,
and supporting various software distributions such as Android or Ubuntu. It has an USB port
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for connecting distinct peripherals, along with an HDMI port for video connection, allowing to use
it as a regular computer. It has two 46 pin headers which operate at 3.3 V, allowing to augment the
available functionalities by connecting different digital or analog devices like sensors or actuators.

Commercially, we can find several Beaglebone versions, being Beaglebone Black the most
commonly used (see Figure 14).

Figure 14. Beaglebone Black microcomputer overview.

Intel Edison is a tiny but powerful computer developed by Intel. It is designed for IoT
applications, targeting at both prototypes and commercial solutions with performance constraints.
It supports a modified Linux distribution (Yocto) as its Operating System, and it integrates both Wi-Fi
and Bluetooth 4.0 interfaces. In addition, it can benefit from two types of expansion board: an Arduino
Expansion board, and a mini breakout board (see Figure 15).

Figure 15. Intel Edison with two extension boards.

Pycom [77] is a microcontroller based on the ESP32 chip with 24 GPIO pins, 2 UARTs, 1 SPI and
1 I2C port, using a firmware based on micropython. It can be equipped with several communication
interfaces such as Wi-Fi, Bluetooth Low Energy, LoRA, and Sigfox. Moreover, using an expansion
board, it can integrate an SD Card, as well as different sensors such as Gyroscope, Accelerometer,
or GPS (see Figure 16).
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Figure 16. Pycom module.

Arduino Uno is an open source prototyping platform characterised by easy-to-use hardware
and software. It has several analog and digital input/output pins to connect sensors, actuators or
complementary boards, allowing to create a wide variety of IoT solutions. Arduino has its own
programming language based on Wiring, and its own Arduino Software based on Processing [78].
It has a central microcontroller, and an USB port for programming and to supply power.

Arduino nano is a tiny prototyping platform that maintains the Arduino Uno concept, using the
same programming languages and the same libraries. It was also developed for prototyping solutions,
but it is smaller than the standard Arduino, and it has less available memory (see Figure 17).

Figure 17. Arduino Nano module (right) and Arduino Uno module (left).

Table 3 allows comparing these five embedded systems by providing a summary of the most
significant technical details.
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Table 3. Comparison of different processing module components.

Board CPU Speed Memory/Storage Power Comp. Ports A/D Size and Weight USB Ports/Wireless Interfaces Price Operating Systems

Raspberry Pi Model A 700 MHz 256 MB/SD (4 GB) 0.8 W 0/30 6.5 × 5.5 cm/100 g 1 USB port/- $25 Raspbian

Raspberry Pi 2 900 MHz 1 GB/SD (4 GB) 1.5 W 0/30 8.4 × 5.5 cm/136 g 4 USB ports/- $35
Raspbian

Ubuntu Mate
Windows 10 IoT

Raspberry Pi 3 1.2 GHz 1 GB/SD (4 GB) 1.8 W 0/30 8.4 × 5.5 cm/136 g 4 USB ports/Wi-Fi and Bluetooth $40
Raspbian

Ubuntu Mate
Windows 10 IoT

Beagle Bone 720 MHz 512 MB/SD (4 GB) 1.0 W 14/6 8.4 × 5.5 cm/100 g 1 USB port/- $75 BeagleBone Linux

Intel Edison 500 MHz 1 GB/SD (4 GB) 0.6 W 14/6 5.9 × 2.8 cm/82 g -/Wi-Fi and Bluetooth $90 Yocto Project

Pycom 32 MHz 1 kB/32 kB 0.2 W 14/6 6.8 × 5.4 cm/100 g Wi-Fi, Bluetooth and LoRa $45 Micropython

Arduino Uno 32 MHz 1 kB/32 kB 0.2 W 14/6 6.8 × 5.4 cm/100 g -/- $25 Processing-based

Arduino Nano 16 MHz 512 B/16 kB 0.2 W 14/6 4.2 × 1.8 cm/20 g -/- $10 Processing-based
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Operating Systems for IoT Microcomputers

The choice of an adequate Operating System is a very important issue in the design of a sensor
since it will shape the corresponding software architecture. Thus, we now proceed by analysing the
different operating systems available for the microcomputers referred above.

Raspbian is the most common operating system designed for Raspberry Pi. It is supported by
all Raspberry Pi versions, and it has two versions: (i) a complete version with a graphical interface
and many development tools which facilitate the development of solutions, but that consumes a lot of
resources; and (ii) a lite version, without graphical interface, and with just a basic set of preinstalled
software, allowing to add only those packages that are actually required.

Since it is a Linux-based operating system, it supports several programming languages like C,
C++, Java, Scratch, Python, or BASH.

Ubuntu MATE is an option for Raspberry Pi microcomputers that is supported by model 2 and
model 3. This operating system attempts to be simple from the end user perspective, integrating
several entertainment applications, although it is also possible to add development tools to it.

Angstrom is a modified Linux optimised for Beaglebone microcomputers. It has no graphical
interface, and it supports several programming languages such as Python, C, Java, or BASH.
In addition, it has its own programming language called BoneScript, which is based on the node.js
language.

Yocto Project is a complete embedded Linux development environment with tools and methods to
facilitate the creation of embedded systems. It can be configured to run Arduino-based or Linux-based
programs, thereby offering a great flexibility.

Micropython [79] is a Python 3.5 implementation optimised for running in microcontrollers.
It allows interacting via a prompt, executing commands or running scripts in an autonomous way. It is
entirely compatible with python, and it includes modules for accessing low-level hardware.

Table 4. Comparison of different operating systems.

Operating System Booting Time (s) Min. Memory (MB) Graphical Interface Type Programming
Languages

Raspbian 25 150 Yes Multi-thread

C
Java
Python
Scratch

Raspbian Lite 15 50 No Multi-thread

C
Java
Python
Scratch

Ubuntu MATE 30 200 Yes Multi-thread
C
Java
Python

Yocto Project 20 150 No Multi-thread

C
Java
Python
Arduino-based

Angstrom Linux 15 100 No Multi-thread

C
Java
Python
Bonescript

Windows 10 IoT 35 250 No Multi-thread
Visual Studio
C

Micropython <1 <1 No Multi-thread
Python
-

Processing-based <1 <1 No Single-thread
Wiring
-

Windows 10 IoT Core is a Windows 10 based operating system oriented to Internet of Things
projects using small devices. It is supported by Raspberry Pi 2 and 3, Arrow DragonBoard 410c,
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and MinnowBoard MAX. Windows 10 IoT Core relies on the rich, extensible Universal Windows
Platform (UWP) API for building solutions. It can be used together with the Visual Studio environment
for programming.

Table 4 shows a brief comparison of the different Operating Systems currently available.

5.2. Air Pollution Sensors

Nowadays, we can find a wide variety of sensing technologies (see Figure 18) for gas detection
(Metal oxide semiconductor, polymer, carbon nanotubes, moisture absorbing materials, Optics,
Acoustics, etc.) as shown in [80]. Each technology has different properties, calibration processes
and costs, among other characteristics, and so a comparison between these different technologies is
required.

Figure 18. Different types of air pollution sensors.

To evaluate the different sensing technologies, we must mainly consider some characteristics,
especially when focusing on the design of small mobile sensors: (i) sensibility, which refers to the
range of values that the sensor can measure; (ii) selectivity, which is the capability of reacting only to
the target gas; (iii) linearity, which is the rate of change with respect to gas variations; (iv) response
time, which is the time required to start measuring correctly; (v) power consumption; and (vi) price.

In the market, we can easily find various gas sensors for air pollution monitoring, being the
three following types of sensors the most common: electrochemical, semiconductor, and infrared.
These have a wide range of prices and characteristics. Below we provide more details about each of
these sensor types:

Electrochemical gas sensors measure the concentration of some air pollutant by oxidizing or
reducing its internal porous membrane, thereby producing current changes. Usually these sensors
behave quite linearly, allowing to make accurate measurements. They typically operate at 5 V, having
a power consumption of about 600 mW; most pollution sensors in this category cost between $100
and $400.

Semiconductor gas sensors are the most common gas sensors because of their low cost and high
sensitivity. They have an internal conductive material that increases their conductivity level in the
presence of a specific air pollutant. These sensors are nonlinear and have a low selectivity, adding
difficulty to the monitoring process. Usually they operate at 5 V, having a power consumption in the
500–900 mW range, and they cost between $10 and $35.

Moisture absorbing material sensors are used for measuring temperature and humidity.
Their dielectric constant varies according to the water content in the environment. They operate
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at 5 V, having a power consumption of about 0.5 W. In addition, they are very cheap, with a price of
about $5.

Infrared sensors measure gas/element variations by detecting interferences in an infrared laser.
They are specially adequate for monitoring pollutants such as fine particulate matter sized less than
10 micrometers (PM10), or fine particulate matter sized less than 2.5 micrometers (PM2.5). They usually
operate at 5 V, having a power consumption of about 1W, and their cost is about $40.

Table 5 provides a brief summary of the most significant aspects of these different types of sensors
for comparison purposes.

Table 5. Comparison of different sensing module components.

Sensor Type Sensitivity Selectivity Linearity Response Time Power Comp. Size (cm) Price

Electrochemical Medium Medium High Medium 0.6 W 2.0 × 4.0 $200
Semiconductor High Low Low Low 0.5 W 2.0 × 4.0 $10–$35

Moisture Absorbing High Medium High High 0.5 W 2.0 × 4.0 $5
Infrared High Low Medium High 1.0 W 15.0 × 10.0 $40

5.3. Communications Modules

Although the RFID [81] standard was developed for IoT solutions, there are currently several
options available for providing communications between the sensors and the mobile terminal (usually
a smartphone), as shown in Section 3. Figure 19 shows some communication modules examples. We
now proceed to analyse the technical characteristics associated to the different available options.

The main characteristics to consider are: (i) distance, that is, the wireless coverage range;
(ii) communication type, which refers to the characteristics of the channel over which messages are
transmitted—usually two types are considered, i.e. serial-based, when a communications channel
is open to transmit a stream of data, or message-based, when the data are transmitted via a unique
message; (iii) message size, which refers to the maximum size of the message when the communication
is message-based; (iv) power consumption; and (v) price.

Figure 19. Example of some communication modules.

Table 6 shows a brief summary of the most significant aspects to consider in terms of
communication modules.
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Table 6. Comparison of different network module components.

Module Communication Type Max. Message Size Data Rate Distance Power Comp. Price

Wi-Fi Serial-based - +54 Mbps 100 m 0.5 W $10
NFC Message-based 32 kB 424 Kbps 0.04 m 0.1 W $35

ZigBee Message-based 128 bits 250 Kbps 100 m 0.1 W $40
SIGFOX Message-based 96 bits 140 msg/day +1 km 0.3 W $60

LoRa Message-based 0.1, 1 or 10% TimeOnAir 250–5400 bps 2–15 km 0.1 W $45
Bluetooth Serial-based - +2.1 Mbps 10 m 0.2 W $10

Bluetooth LE Message-based 160 bits 1 Mbps 10 m 0.05 W $15

We can observe that all options are relatively cheap, with prices in the range from $40–$50, but the
more widely used in the market, i.e., Wi-Fi and both Bluetooth and Bluetooth Low Energy, are the
cheapest ones, with prices in the range $10–$15. In terms of power consumption, the best option is
Bluetooth Low Energy (0.05 W), although ZigBee, LoRA and NFC also exhibit low power consumption
levels. In terms of bitrate, the best performing technology is Wi-Fi, being that typical wireless sensing
technologies, such as LoRA, ZigBee, or SIGFOX, have a low bitrate. Regarding the communications
type, there are two options: (i) Wi-Fi and Bluetooth, which open a serial communications channel
for transmitting a stream of bytes; and (ii) Bluetooth Low Energy, ZigBee, Sigfox, LoRA, and NFC,
which transmit a message per iteration.

6. Mobile Air Pollution Sensor Design

The design of a small and cheap mobile sensor is a basic requirement for air pollution monitoring.
After analysing the main technical characteristics of hardware components available in the market,
it quickly becomes evident that there are several options for creating a mobile air quality sensor for
crowdsensing in the Internet of Things context.

If focusing on the mobile sensor/smartphone wireless connection, the best option is using
Bluetooth Low Energy since it is able to fulfil all requirements (low power consumption, low price,
and small-sized modules) whereas all other options have different drawbacks. For instance, the ZigBee
technology, despite being the most extended technology for wireless sensor networks due to its low
power consumption, is not supported by current smartphones. The SIGFOX technology has very
strict restrictions regarding the number of messages that it is possible to generate per time slot, thus
having little applicability to our aims. The Wi-Fi technology, although being widely used and having a
large coverage range, consumes more power and is typically used for Internet connectivity. Finally,
the major problem of the NFC technology is its coverage range (only about 4 cm).

In terms of sensor device prototyping, the best option for creating a small and cheap mobile
sensor for air pollution monitoring is the Semiconductor gas option. Notice that it is cheaper than
the electrochemical sensor, and even though the latter is more accurate, the error introduced can be
mitigated by combining information from other nearby users. Concerning infrared sensors, they are
only applicable to a specific type of pollutant (fine particulate), while moisture absorbing sensors are
mostly used to measure temperature and humidity.

Next, we propose and evaluate some possible configurations for the different studied boards
using a semiconductor gas sensor for pollution monitoring, and a Bluetooth Low Energy interface
as the transmission technology. For all the proposed hardware configurations, it is possible to use
an external USB charger as a power supply to offer more autonomy, while maintaining the support
for mobility.

Figure 20 shows the four solutions we have developed to evaluate the different hardware options,
and Table 7 shows a comparison between these solutions.
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Figure 20. Proposed mobile sensing solutions for air quality monitoring.

Table 7. Comparison of the four different solutions proposed.

Module Extras Network Power Comp. Weight Price Flexib. Develop. Comp. Power

RPi 3 +converter – 2000 mW 200 g e90 ? ? ? ? ? ? ? ? ?
Beaglebone – +BLE usb 1500 mW 150 g e110 ? ? ? ??? ? ? ?
Intel Edison

+breakout
+expansion – 1000 mW

100 g
200 g e130 ? ? ? ??? ? ? ?

Arduino +circuit +BLE uart 600 mW 60 g e55 ??? ? ? ? ???

The first hardware option we propose is based on the Raspberry Pi platform (see Figure 20a). Since
it has no analog ports, it has to be provided with an analog/digital converter. For this purpose, we
propose using GrovePi [82], which is an extension board that allows connecting several analog/digital
grove ports to a Raspberry Pi in an easy way. Furthermore, since the Raspberry Pi has several USB
ports, we propose using a standard USB Bluetooth module for Raspberry Pi 2, or the built-in Bluetooth
module for Raspberry Pi 3. With this solution, it becomes possible to run several programming
languages, as it is possible to install a Linux or a Windows 10 IoT operating system, and there are a
lot of development efforts around it. This configuration has a power consumption of about 2000 mW,
a total weight of 200 g, and it costs about $90. Overall, it is the most power-hungry solution among
the four proposed, but it becomes the best option for quick prototyping due to its flexibility and large
community of developers.

The second hardware approach relies on the BeagleBone board (see Figure 20b). It has several
analog ports, allowing us to connect the sensor directly to this board without any intermediate device.
In addition, since the BeagleBone has a USB port, it is possible to use a standard USB Bluetooth module.
It runs a Linux-based operating system, allowing it to run different programming languages, but there
are not too many developments or projects focusing on this solution. This configuration has a power
consumption of about 1500 mW, a total weight of 150 g, and it costs about $110, thus being one of the
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most expensive options. It is not a very useful prototyping platform since it has characteristics that are
similar to the Raspberry Pi, but it has a smaller developer community and less support.

The third hardware solution we propose is based on the Intel Edison platform (see Figure 20c).
It has an embedded Bluetooth interface, but it does not provide an analog port to directly connect the
sensor. For this purpose, it is possible to use: (i) the Arduino expansion board; or (ii) the Breakout
board [83]. The first sensor connection option is very simple, however the sensor becomes excessively
large. Regarding the second option, the overall size remains small, but it is necessary to make an
ad hoc circuit to connect the sensor. The Edison board supports a Linux-based operating system
(Yocto) including the possibility to run Arduino-based scripts. For this last configuration, the power
consumption is of about 1000 mW, the total weight is 200 g, and it costs about $130, making it the most
expensive option. It is useful mostly for end solutions due to its price.

The last embedded solution we propose is based on the Arduino platform (see Figure 20d). Since
it was designed for these types of solutions, it becomes easy to connect a sensor via the existing analog
ports; nevertheless, USB ports are not available, and so a Bluetooth module must be connected via an
UART port for both Arduino Uno and Arduino Nano boards. This solution only runs Arduino-based
scripts, reducing the programming flexibility, but we can find a lot of developments using this platform.

For the Arduino Uno solution, the power consumption is about 600 mW, the total weight is 150 g,
and it costs about $55. This option is improved by the Arduino Nano solution, which has a power
consumption of about 600 mW, a total weight of 60 g, and it costs about $50. The latter option is better
than all others in terms of consumption, weight, and price, having as its only drawback the limited
memory/CPU resources. It is also useful for restricted environments where the power consumption is
very limited.

7. Conclusions and Future Work

Smart Cities is a trending topic, and many research efforts are being made worldwide to
progress towards that new paradigm which encompasses several areas including smart government,
smart transport, smart environment, and smart grid. Since air pollution is considered to be one of the
most significant health risks worldwide, smart environment obviously becomes a very important area
in the Smart City context.

Although air monitoring stations have been sparsely deployed in most large cities for controlling
pollution levels, these are not enough to provide a detailed view of the pollutants’ distribution in a city.
In this sense, crowdsensing emerges as a good option to monitor the different pollutants by combining
small mobile sensors and smartphones. Since current smartphones have much memory and high
computing capabilities, mobile sensors can be kept minimal, focusing on data acquisition tasks alone.

In this paper, we have analysed the most relevant Internet of Things architectures and protocols,
along with the requirements of an embedded mobile sensor platform from a crowdsensing perspective,
identifying the basic tasks the sensor must be able to perform. Besides, an analysis of the hardware
architecture requirements has been done, and candidate off-the-shelf hardware components have been
analysed. Finally, several complete hardware configurations meeting all the design requirements have
been developed and compared in terms of power consumption, weight, and cost. Overall, we have
found that the Arduino Nano platform, despite having very limited resources, is able to fulfil the
established requirements, thus being the most recommendable alternative in terms of price, weight,
and power consumption features.

Regarding other hardware alternatives, microcomputers such as Raspberry Pi, BeagleBone, or
Intel Edison are more powerful and flexible by supporting a standard Operating System, thereby
allowing to quickly deploy any application. We believe that the Raspberry Pi solution can be the best
option for quick prototyping. For more professional solutions, requiring higher processing capacity, the
Intel Edison becomes a better option, although imposing a higher overhead in terms of development
time. Finally, Arduino becomes an option for very restricted environments.
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Overall, we find that a hardware solution applicable to all IoT contexts, and meeting low size and
low power requirements, along with adequate communication interfaces and battery capacity, is still
missing, although in years to come many more products are expected.

The next steps in this research line are to test the adequacy of the proposed solutions not only in
the mobile user context, but also in other contexts including coupling these sensors to vehicles such as
cars, buses, bikes, or even flying vehicles (multicopters).
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