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Abstract—A novel dielectrometer to measure the complex 

permittivity of high loss liquids is presented. The geometry consists 
of a reentrant cavity with insertion holes where the holder filled 
with liquid can be introduced readily. Radii of the insertion holes 
are large enough for a convenient pouring of the liquid. The 
electromagnetic analysis has been performed by a mixed mode-
matching and circuit technique with the purpose of taking the high 
accuracy and fast convergence of the mode-matching and the 
flexibility and versatility of the circuit method. The convergence of 
the method is studied, and a procedure to estimate the result for 
an infinite number of modes is proposed. A calibration procedure 
is presented to minimize the error introduced by the numerical 
method. Mode charts are shown to analyze the behavior of 
resonant parameters for every mode. Some reference liquids are 
measured at different resonant frequencies and results are 
compared with those provided by other models of the literature. 
 

Index Terms—Permittivity, High Loss Liquids, mode-matching, 
full-wave modeling, Reentrant Cavity. 
 

I. INTRODUCTION 
NTEREST in dielectric characterization of polar liquids at 
microwave frequencies has been increasing in recent last 

years because many applications derive from it, such as 
molecular characterization, dielectric heating, remote sensing, 
creation of tissue equivalent-materials or reference liquid 
standards, and design of calibration systems [1]-[3]. 

Many successful techniques have been developed to measure 
liquids’ permittivity at microwave frequencies. First, open-
ended coaxial probes were employed because their ease of use 
and their broadband characterization [4]-[5]. Later, in order to 
improve the accuracy of the measurements, transmission line 
techniques were developed, which are suitable to measure lossy 
materials (most of the liquids) at discrete frequencies [6]-[7]. 
Then, instead of transmission technique, better accuracy can be 
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obtained with resonant cells, since frequency measurements are 
more robust [8]. Although resonant techniques are typically 
used for low-loss materials, they can be used also for lossy 
materials if the cell provides a measurable quality factor. In fact, 
there are many configurations designed to measure liquids at 
microwave frequencies with resonant cells [9]-[17]. However, 
the measurement of high-loss liquids presents special difficulty 
in resonant cells. Only little amount of these materials can be 
placed inside the cell to obtain a measurable quality factor. 
Specially interesting is the work performed in [15], where the 
complex permittivity of high loss liquids is measured with 
resonant cylindrical cavities using symmetric modes TM0np and 
TE0np, and the quality factor is improved using low loss filling 
materials. In this sense, in last years, dielectric characterization 
of lossy liquids has been focused on microfluidic sensors [18]-
[21], which use a very small sample size, making difficult the 
sample preparation process. The cavity cell proposed in this 
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          (a)                  (b) 
Fig. 1. Geometry of the analyzed cavity. (a) 3D view (b) Side view with 
dimensions. 
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work has been specifically designed with manageable 
dimensions where any lossy liquid can be poured easily. 

Furthermore, the resonant cavities proposed in most of the 
papers of the literature employ only symmetric modes TM0np or 
TE0np [11]-[15]. In this work, we have performed a full-wave 
analysis, where the whole set of modes is taken into account 
(TMmnp, TEmnp and all its possible couplings and combinations, 
which produce hybrid modes HEmnp and EHmnp). 

A common method to analyze resonant cavities is the well-
known mode-matching because it provides very accurate 
results. The method consists of matching the modal fields of 
every region in order to accomplish the boundary conditions on 
the discontinuities [22]. This method is very useful, but it lacks 
flexibility, because one little modification of the structure 
implies the full reformulation of the problem. To overcome this 
inconvenient, generalized circuit method was developed in 
[23]-[24], which uses complete series of basis functions in order 
to generalize the analysis with basic elements characterized by 
admittance matrices. 

In this work, the resonant structure shown in Fig 1 has been 
analyzed by a recently developed technique [25]-[28], which 
combines both mode-matching and circuit method, combining 
the accuracy of mode-matching with the versatility of circuit 
analysis. 

The convergence of the solutions is discussed and a 
procedure to estimate the solution for an infinite number of 
modes is proposed. This improves the accuracy of the method 
and is very useful because modal methods must truncate the 
number of terms of the fields expansion. Furthermore, a 
calibration procedure is presented to minimize the error 
introduced by the numerical method. 

In section II, the theoretical analysis is carried out with detail. 
Then, the study of the convergence is shown in section III. A 
calibration procedure is presented in section IV. Finally, and to 
validate the cavity cell and the analysis method, some 
measurements of reference liquids have been carried out in 
section V. 

This paper is an extension of [27], where the proposed cavity 
was presented for the first time. In this expanded version, a 
deeper explanation of theoretical anal ysis is shown, and the 
study of the convergence is carried out, which gives a complete 
overview of the measurement procedure. The measurement 
system has been calibrated to improve the accuracy. Further 
results include more liquids measured with several resonant 
frequencies. 

II. THEORETICAL MODELING 
The geometry of the cavity analyzed in this paper is 

presented in Fig. 1. This structure consists of a reentrant cavity 
with insertion hole, where the liquid holder can be inserted 
easily. The main circular cavity has radius R and height H. The 
reentrant metallic post has radius rp and height hp. The holder 
has internal and external radius rs and rt, respectively. The 
radius of the insertion hole is the same that the external radius 
of the holder (rt). 

The holes in the center conductor are so small compared with 
the wavelength that only evanescent modes exist. Therefore, the 

fields are strongly attenuated inside the holes. Then, dimension 
g must be taken large enough to ensure the complete vanishing 
of the fields at the end tops of the holders, so that a PEC can be 
considered there to simplify the analysis. 

In order to develop the modal analysis, the structure has been 
segmented in the following independent regions: 

Region 1: [0 < 𝑟𝑟 < 𝑟𝑟𝑠𝑠]  ∩ [0 < 𝑧𝑧1 < 𝐻𝐻 + 2𝑔𝑔] 

Region 2: [𝑟𝑟𝑠𝑠 < 𝑟𝑟 < 𝑟𝑟𝑡𝑡]  ∩ [0 < 𝑧𝑧2 < 𝐻𝐻 + 2𝑔𝑔] 

Region 3: �𝑟𝑟𝑡𝑡 < 𝑟𝑟 < 𝑟𝑟𝑝𝑝�  ∩ �0 < 𝑧𝑧3 < 𝐻𝐻 − 2ℎ𝑝𝑝� 

Region 4: �𝑟𝑟𝑝𝑝 < 𝑟𝑟 < 𝑅𝑅�  ∩ [0 < 𝑧𝑧4 < 𝐻𝐻] 

Every region has its own reference system of coordinates, 
which are related as follow: 

 �
𝑧𝑧1 = 𝑧𝑧2

𝑧𝑧3 = 𝑧𝑧2 − ℎ𝑝𝑝 − 𝑔𝑔
𝑧𝑧4 = 𝑧𝑧3 + ℎ𝑝𝑝

 (1) 

Inside every region, the full set of modes is considered, 
TMmnp and TEmnp modes. Thus, electric and magnetic fields 
inside every ith region can be expressed as a linear combination 
of TE and TM modes as follow [31]. 

 𝐸𝐸𝑧𝑧
(𝑖𝑖) = ∑ ∑ �sin(𝑚𝑚𝑚𝑚)

cos(𝑚𝑚𝑚𝑚)�
𝑇𝑇
𝑓𝑓𝑚𝑚(𝑟𝑟)2 cosh �𝛾𝛾𝑛𝑛

(𝑖𝑖)𝑧𝑧𝑖𝑖�∞
𝑛𝑛=0

∞
𝑚𝑚=0  (2) 

 𝐸𝐸𝑟𝑟
(𝑖𝑖) = ∑ ∑ −𝛾𝛾𝑛𝑛

(𝑖𝑖)

𝑘𝑘𝑐𝑐𝑐𝑐
(𝑖𝑖)   �sin(𝑚𝑚𝑚𝑚)

cos(𝑚𝑚𝑚𝑚)�
𝑇𝑇
𝑓𝑓𝑚𝑚′ (𝑟𝑟) �−2 sinh �𝛾𝛾𝑛𝑛

(𝑖𝑖)𝑧𝑧𝑖𝑖��∞
𝑛𝑛=0

∞
𝑚𝑚=0 −

∑ ∑ 𝑗𝑗𝜔𝜔𝜇𝜇𝑖𝑖

�𝑘𝑘𝑐𝑐𝑛𝑛′
(𝑖𝑖) �

2 �
cos(𝑚𝑚′𝜑𝜑)
−sin(𝑚𝑚′𝜑𝜑)�

𝑇𝑇
𝑚𝑚′

𝑟𝑟
 𝑓𝑓𝑚𝑚′(𝑟𝑟) �−2 sinh �𝛾𝛾𝑛𝑛′

(𝑖𝑖)𝑧𝑧𝑖𝑖��∞
𝑛𝑛′=1

∞
𝑚𝑚′=0

  

 

  (3) 

 𝐸𝐸𝜑𝜑
(𝑖𝑖) = ∑ ∑ −𝛾𝛾𝑛𝑛

(𝑖𝑖)

�𝑘𝑘𝑐𝑐𝑐𝑐
(𝑖𝑖)�

2
𝑚𝑚
𝑟𝑟
� cos(𝑚𝑚𝑚𝑚)
− sin(𝑚𝑚𝑚𝑚)�

𝑇𝑇
𝑓𝑓𝑚𝑚(𝑟𝑟) �−2 sinh �𝛾𝛾𝑛𝑛

(𝑖𝑖)𝑧𝑧𝑖𝑖��∞
𝑛𝑛=0

∞
𝑚𝑚=0

+∑ ∑ 𝑗𝑗𝜔𝜔𝜇𝜇𝑖𝑖
𝑘𝑘𝑐𝑐𝑛𝑛′

(𝑖𝑖) �
sin(𝑚𝑚′𝜑𝜑)
cos(𝑚𝑚′𝜑𝜑)�

𝑇𝑇
𝑓𝑓𝑚𝑚′
′ (𝑟𝑟) �−2 sinh �𝛾𝛾𝑛𝑛′

(𝑖𝑖)𝑧𝑧𝑖𝑖��∞
𝑛𝑛′=1

∞
𝑚𝑚′=0

  (4) 

𝐻𝐻𝑧𝑧
(𝑖𝑖) = ∑ ∑ �sin(𝑚𝑚′𝜑𝜑)

cos(𝑚𝑚′𝜑𝜑)�
𝑇𝑇
𝑓𝑓𝑚𝑚′(𝑟𝑟) �−2 sinh �𝛾𝛾𝑛𝑛′

(𝑖𝑖)𝑧𝑧𝑖𝑖��∞
𝑛𝑛′=1

∞
𝑚𝑚′=0  

  (5) 

 𝐻𝐻𝑟𝑟
(𝑖𝑖) = ∑ ∑ 𝑗𝑗𝜔𝜔𝜀𝜀𝑖𝑖

�𝑘𝑘𝑐𝑐𝑐𝑐
(𝑖𝑖)�

2
𝑚𝑚
𝑟𝑟
� cos(𝑚𝑚𝑚𝑚)
− sin(𝑚𝑚𝑚𝑚)�

𝑇𝑇
𝑓𝑓𝑚𝑚(𝑟𝑟)2 cosh �𝛾𝛾𝑛𝑛

(𝑖𝑖)𝑧𝑧𝑖𝑖�∞
𝑛𝑛=0

∞
𝑚𝑚=0

−∑ ∑
𝛾𝛾𝑛𝑛′

(𝑖𝑖)

𝑘𝑘𝑐𝑐𝑛𝑛′
(𝑖𝑖) �

sin(𝑚𝑚′𝜑𝜑)
cos(𝑚𝑚′𝜑𝜑)�

𝑇𝑇
 𝑓𝑓𝑚𝑚′
′ (𝑟𝑟)2 cosh �𝛾𝛾𝑛𝑛′

(𝑖𝑖)𝑧𝑧𝑖𝑖�∞
𝑛𝑛′=1

∞
𝑚𝑚′=0

 

  (6) 

 𝐻𝐻𝜑𝜑
(𝑖𝑖) = ∑ ∑ −𝑗𝑗𝜔𝜔𝜀𝜀𝑖𝑖

𝑘𝑘𝑐𝑐𝑐𝑐
(𝑖𝑖) �sin(𝑚𝑚𝑚𝑚)

cos(𝑚𝑚𝑚𝑚)�
𝑇𝑇
𝑓𝑓𝑚𝑚′ (𝑟𝑟)2 cosh �𝛾𝛾𝑛𝑛

(𝑖𝑖)𝑧𝑧𝑖𝑖�∞
𝑛𝑛=0

∞
𝑚𝑚=0 −

∑ ∑
𝛾𝛾𝑛𝑛′

(𝑖𝑖)

�𝑘𝑘𝑐𝑐𝑛𝑛′
(𝑖𝑖) �

2
𝑚𝑚′

𝑟𝑟
� cos(𝑚𝑚′𝜑𝜑)
−sin(𝑚𝑚′𝜑𝜑)�

𝑇𝑇
𝑓𝑓𝑚𝑚′(𝑟𝑟)2 cosh �𝛾𝛾𝑛𝑛′

(𝑖𝑖)𝑧𝑧𝑖𝑖�∞
𝑛𝑛′=1

∞
𝑚𝑚′=0

 

  (7) 
where the primed subscripts 𝑚𝑚′,𝑛𝑛′ are used for TE modes and 
non-primed subscripts 𝑚𝑚,𝑛𝑛 are associated with TM modes. 
Material’s permittivity and permeability of every region are 
denoted by 𝜀𝜀𝑖𝑖 and 𝜇𝜇𝑖𝑖. Propagations constants 𝛾𝛾𝑛𝑛

(𝑖𝑖) are obtained 
enforcing boundary conditions of perfect electric conductor 
(PEC) on zi=0 and zi= hi, where hi is the total height of the ith 
region (h1=h2=H+2g, h3=H-2hp and h4=H). Thus, 𝛾𝛾𝑛𝑛

(𝑖𝑖) = 𝑗𝑗𝑗𝑗𝑗𝑗
ℎ𝑖𝑖

. 
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Wave numbers of every region 𝑘𝑘𝑐𝑐𝑐𝑐
(𝑖𝑖) are related with the 

propagation constant and resonant frequency as follow. 

 �𝑘𝑘𝑐𝑐𝑐𝑐
(𝑖𝑖)�

2
= �𝛾𝛾𝑛𝑛

(𝑖𝑖)�
2

+ 𝜀𝜀𝑖𝑖𝜇𝜇𝑖𝑖(2𝜋𝜋𝑓𝑓𝑟𝑟)2 (8) 
Function 𝑓𝑓𝑚𝑚(𝑟𝑟) is defined as a linear combination of Bessel 

functions. 
 𝑓𝑓𝑚𝑚(𝑟𝑟) = 𝐴𝐴𝑖𝑖𝐽𝐽𝑚𝑚�𝑘𝑘𝑐𝑐𝑐𝑐

(𝑖𝑖)𝑟𝑟� + 𝐵𝐵𝑖𝑖𝑌𝑌𝑚𝑚�𝑘𝑘𝑐𝑐𝑐𝑐
(𝑖𝑖)𝑟𝑟� (9) 

where 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖  are the amplitudes of the fields in the ith region, 
and they are vectors of dimension 2x1, whose components are 
the sine and cosine contributions of the electromagnetic fields. 
For every region, those amplitudes have a different value. In 
region 1, A1 is an unknown and B1=0 because the center r=0 is 
included in the region. In regions 2 and 3, both 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖  are 
unknowns. In region 4, A4 is an unknown and B4 is determined 
enforcing the boundary conditions of PEC on r=R. Thus, B4 has 
the following expressions for TM and TE modes. 

 𝐵𝐵4𝑇𝑇𝑇𝑇 =
−𝐽𝐽𝑚𝑚�𝑘𝑘𝑐𝑐𝑐𝑐

(4)𝑅𝑅�

𝑌𝑌𝑚𝑚�𝑘𝑘𝑐𝑐𝑐𝑐
(4)𝑅𝑅�

 (10) 

 𝐵𝐵4𝑇𝑇𝑇𝑇 =
−𝐽𝐽𝑚𝑚′

′ �𝑘𝑘
𝑐𝑐𝑛𝑛′
(𝑖𝑖) 𝑅𝑅�

𝑌𝑌𝑚𝑚′
′ �𝑘𝑘

𝑐𝑐𝑛𝑛′
(𝑖𝑖) 𝑅𝑅�

 (11) 

The function 𝑓𝑓𝑚𝑚′ (𝑟𝑟) is the first derivative of 𝑓𝑓𝑚𝑚(𝑟𝑟). 
In order to match the tangential fields on every discontinuity, 

we have made use of circuital procedure [23]-[24], which 
consists of approaching the tangential fields on every jth 
interface by a complete series expansions of basis functions so 
that every region is characterized generically and independently 
of the others. The basis functions are defined as follow. 

  𝑒𝑒𝑧𝑧
(𝑗𝑗) = ∑ ∑ �sin(𝑘𝑘𝑘𝑘)

cos(𝑘𝑘𝑘𝑘)�
𝑇𝑇

�
𝛼𝛼𝑘𝑘𝑘𝑘𝑠𝑠  
𝛼𝛼𝑘𝑘𝑘𝑘𝑐𝑐

�∞
𝑙𝑙=0 cos �𝑙𝑙𝑙𝑙

ℎ𝑒𝑒
𝑧𝑧𝑒𝑒�∞

𝑘𝑘=0  (12) 

  𝑒𝑒𝜑𝜑
(𝑗𝑗) = ∑ ∑ �sin(𝑘𝑘′𝜑𝜑)

cos(𝑘𝑘′𝜑𝜑)�
𝑇𝑇

�
𝛽𝛽𝑘𝑘′𝑙𝑙′
𝑠𝑠  
𝛽𝛽𝑘𝑘′𝑙𝑙′
𝑐𝑐 �∞

𝑙𝑙′=1 sin �𝑙𝑙
′𝜋𝜋
ℎ𝑒𝑒
𝑧𝑧𝑒𝑒�∞

𝑘𝑘′=0 (13) 

  ℎ𝑧𝑧
(𝑗𝑗) = ∑ ∑ �sin(𝑢𝑢′𝜑𝜑)

cos(𝑢𝑢′𝜑𝜑)�
𝑇𝑇

�
𝑐𝑐𝑢𝑢′𝑣𝑣′
𝑠𝑠  
𝑐𝑐𝑢𝑢′𝑣𝑣′
𝑐𝑐 � sin �𝑣𝑣

′𝜋𝜋
ℎℎ
𝑧𝑧ℎ�∞

𝑣𝑣′=1
∞
𝑢𝑢′=0  

  (14) 

  ℎ𝜑𝜑
(𝑗𝑗) = ∑ ∑ �sin(𝑢𝑢𝑢𝑢)

cos(𝑢𝑢𝑢𝑢)�
𝑇𝑇

�𝑑𝑑𝑢𝑢𝑢𝑢
𝑠𝑠  
𝑑𝑑𝑢𝑢𝑢𝑢𝑐𝑐

� cos �𝑣𝑣𝑣𝑣
ℎℎ
𝑧𝑧ℎ�∞

𝑣𝑣=0
∞
𝑢𝑢=0  (15) 

where 𝛼𝛼,𝛽𝛽, 𝑐𝑐,𝑑𝑑 are the coefficients of the basis functions. 
Superscripts s and c refer to the sinus and cosines weights of the 
basis functions. Subscripts k, l, u and v have been associated 
with those of the electromagnetic fields inside of the structure 
as shows table I. Due to the number of modes needed in each of 
the regions is not the same, we have renamed the summation 
indexes of the fields of every ith region with subscripts mi and 
ni. In the same way, the parameters he and hh are associated with 
the total height of the different regions; and ze and zh are 
associated with the axial reference of coordinates of every 
region (zi). All these associations are shown in table I.  

TABLE I 
ASSOCIATIONS OF BASIS FUNCTIONS PARAMETERS WITH FIELDS PARAMETERS 

Interface k= l= u= v= he= ze= hh= zh= 
j=1 m2 n2 m1 n1 h2 z2 h1 z1 
j=2 m2 n2 m3 n3 h2 z2 h3 z3 
j=3 m4 n4 m3 n3 h4 z4 h3 z3 

 
Now, instead of matching directly the tangential fields on 

every discontinuity such as in classical mode-matching method, 
the tangential fields of each of the regions are approached on 
every interface by the basis function defined above. This 
procedure consists of generalize the classical mode-matching 
method using generic basis functions, since the basis functions 
are unalterable, while the fields change for every little 
modification of the structure. Then, we must enforce the 
following equalities on the discontinuities or interfaces. 

Interface j=1, r=rs 
 𝐸𝐸𝑧𝑧

(1)�
𝑟𝑟=𝑟𝑟𝑠𝑠

= 𝑒𝑒𝑧𝑧
(1) and 𝐸𝐸𝑧𝑧

(2)�
𝑟𝑟=𝑟𝑟𝑠𝑠

= 𝑒𝑒𝑧𝑧
(1) (16) 

 𝐸𝐸𝜑𝜑
(1)�

𝑟𝑟=𝑟𝑟𝑠𝑠
= 𝑒𝑒𝜑𝜑

(1) and 𝐸𝐸𝜑𝜑
(2)�

𝑟𝑟=𝑟𝑟𝑠𝑠
= 𝑒𝑒𝜑𝜑

(1) (17) 

 𝐻𝐻𝑧𝑧
(1)�

𝑟𝑟=𝑟𝑟𝑠𝑠
= ℎ𝑧𝑧

(1) and 𝐻𝐻𝑧𝑧
(2)�

𝑟𝑟=𝑟𝑟𝑠𝑠
= ℎ𝑧𝑧

(1) (18) 

 𝐻𝐻𝜑𝜑
(1)�

𝑟𝑟=𝑟𝑟𝑠𝑠
= ℎ𝜑𝜑

(1) and 𝐻𝐻𝜑𝜑
(2)�

𝑟𝑟=𝑟𝑟𝑠𝑠
= ℎ𝜑𝜑

(1) (19) 

Interface j=2, r=rt 
 𝐸𝐸𝑧𝑧

(2)�
𝑟𝑟=𝑟𝑟𝑡𝑡

= 𝑒𝑒𝑧𝑧
(2) and 𝐸𝐸𝑧𝑧

(3)�
𝑟𝑟=𝑟𝑟𝑡𝑡

= 𝑒𝑒𝑧𝑧
(2) (20) 

 𝐸𝐸𝜑𝜑
(2)�

𝑟𝑟=𝑟𝑟𝑡𝑡
= 𝑒𝑒𝜑𝜑

(2) and 𝐸𝐸𝜑𝜑
(3)�

𝑟𝑟=𝑟𝑟𝑡𝑡
= 𝑒𝑒𝜑𝜑

(2) (21) 

 𝐻𝐻𝑧𝑧
(2)�

𝑟𝑟=𝑟𝑟𝑡𝑡
= ℎ𝑧𝑧

(2) and 𝐻𝐻𝑧𝑧
(3)�

𝑟𝑟=𝑟𝑟𝑡𝑡
= ℎ𝑧𝑧

(2) (22) 

 𝐻𝐻𝜑𝜑
(2)�

𝑟𝑟=𝑟𝑟𝑡𝑡
= ℎ𝜑𝜑

(2) and 𝐻𝐻𝜑𝜑
(3)�

𝑟𝑟=𝑟𝑟𝑡𝑡
= ℎ𝜑𝜑

(2) (23) 

Interface j=3, r=rp 
 𝐸𝐸𝑧𝑧

(3)�
𝑟𝑟=𝑟𝑟𝑝𝑝

= 𝑒𝑒𝑧𝑧
(3) and 𝐸𝐸𝑧𝑧

(4)�
𝑟𝑟=𝑟𝑟𝑝𝑝

= 𝑒𝑒𝑧𝑧
(3) (24) 

 𝐸𝐸𝜑𝜑
(3)�

𝑟𝑟=𝑟𝑟𝑝𝑝
= 𝑒𝑒𝜑𝜑

(3) and 𝐸𝐸𝜑𝜑
(4)�

𝑟𝑟=𝑟𝑟𝑝𝑝
= 𝑒𝑒𝜑𝜑

(3) (25) 

 𝐻𝐻𝑧𝑧
(3)�

𝑟𝑟=𝑟𝑟𝑝𝑝
= ℎ𝑧𝑧

(3) and 𝐻𝐻𝑧𝑧
(4)�

𝑟𝑟=𝑟𝑟𝑝𝑝
= ℎ𝑧𝑧

(3) (26) 

 𝐻𝐻𝜑𝜑
(3)�

𝑟𝑟=𝑟𝑟𝑝𝑝
= ℎ𝜑𝜑

(3) and 𝐻𝐻𝜑𝜑
(4)�

𝑟𝑟=𝑟𝑟𝑝𝑝
= ℎ𝜑𝜑

(3) (27) 

Applying the orthogonal properties of the basis functions, the 
coefficients 𝛼𝛼,𝛽𝛽, 𝑐𝑐,𝑑𝑑 can be obtained in two different ways 
(once per each side of the interface).  

Interface j=1, r=rs 
 𝛼𝛼1 = 〈𝐸𝐸𝑧𝑧

(1)�
𝑟𝑟=𝑟𝑟𝑠𝑠

, 𝑒̃𝑒𝑧𝑧
(1)〉 and 𝛼𝛼1 = 〈𝐸𝐸𝑧𝑧

(2)�
𝑟𝑟=𝑟𝑟𝑠𝑠

, 𝑒̃𝑒𝑧𝑧
(1)〉 (28) 

 𝛽𝛽1 = 〈𝐸𝐸𝜑𝜑
(1)�

𝑟𝑟=𝑟𝑟𝑠𝑠
, 𝑒̃𝑒𝜑𝜑

(1)〉 and 𝛽𝛽1 = 〈𝐸𝐸𝜑𝜑
(2)�

𝑟𝑟=𝑟𝑟𝑠𝑠
, 𝑒̃𝑒𝜑𝜑

(1)〉 (29) 

 𝑐𝑐1 = 〈𝐻𝐻𝑧𝑧
(1)�

𝑟𝑟=𝑟𝑟𝑠𝑠
, ℎ�𝑧𝑧

(1)〉 and 𝑐𝑐1 = 〈𝐻𝐻𝑧𝑧
(2)�

𝑟𝑟=𝑟𝑟𝑠𝑠
, ℎ�𝑧𝑧

(1)〉 (30) 

 𝑑𝑑1 = 〈𝐻𝐻𝜑𝜑
(1)�

𝑟𝑟=𝑟𝑟𝑠𝑠
, ℎ�𝜑𝜑

(1)〉 and 𝑑𝑑1 = 〈𝐻𝐻𝜑𝜑
(2)�

𝑟𝑟=𝑟𝑟𝑠𝑠
, ℎ�𝜑𝜑

(1)〉 (31) 

Interface j=2, r=rt 
 𝛼𝛼2 = 〈𝐸𝐸𝑧𝑧

(2)�
𝑟𝑟=𝑟𝑟𝑡𝑡

, 𝑒̃𝑒𝑧𝑧
(2)〉 and 𝛼𝛼2 = 〈𝐸𝐸𝑧𝑧

(3)�
𝑟𝑟=𝑟𝑟𝑡𝑡

, 𝑒̃𝑒𝑧𝑧
(2)〉 (32) 

 𝛽𝛽2 = 〈𝐸𝐸𝜑𝜑
(2)�

𝑟𝑟=𝑟𝑟𝑡𝑡
, 𝑒̃𝑒𝜑𝜑

(2)〉 and 𝛽𝛽2 = 〈𝐸𝐸𝜑𝜑
(3)�

𝑟𝑟=𝑟𝑟𝑡𝑡
, 𝑒̃𝑒𝜑𝜑

(2)〉 (33) 

 𝑐𝑐2 = 〈𝐻𝐻𝑧𝑧
(2)�

𝑟𝑟=𝑟𝑟𝑡𝑡
, ℎ�𝑧𝑧

(2)〉 and 𝑐𝑐2 = 〈𝐻𝐻𝑧𝑧
(3)�

𝑟𝑟=𝑟𝑟𝑡𝑡
, ℎ�𝑧𝑧

(2)〉 (34) 

 𝑑𝑑2 = 〈𝐻𝐻𝜑𝜑
(2)�

𝑟𝑟=𝑟𝑟𝑡𝑡
, ℎ�𝜑𝜑

(2)〉 and 𝑑𝑑2 = 〈𝐻𝐻𝜑𝜑
(3)�

𝑟𝑟=𝑟𝑟𝑡𝑡
, ℎ�𝜑𝜑

(2)〉 (35) 

Interface j=3, r=rp 
 𝛼𝛼3 = 〈𝐸𝐸𝑧𝑧

(3)�
𝑟𝑟=𝑟𝑟𝑝𝑝

, 𝑒̃𝑒𝑧𝑧
(3)〉 and 𝛼𝛼3 = 〈𝐸𝐸𝑧𝑧

(4)�
𝑟𝑟=𝑟𝑟𝑝𝑝

, 𝑒̃𝑒𝑧𝑧
(3)〉 (36) 

 𝛽𝛽3 = 〈𝐸𝐸𝜑𝜑
(3)�

𝑟𝑟=𝑟𝑟𝑝𝑝
, 𝑒̃𝑒𝜑𝜑

(3)〉 and 𝛽𝛽3 = 〈𝐸𝐸𝜑𝜑
(4)�

𝑟𝑟=𝑟𝑟𝑝𝑝
, 𝑒̃𝑒𝜑𝜑

(3)〉 (37) 

 𝑐𝑐3 = 〈𝐻𝐻𝑧𝑧
(3)�

𝑟𝑟=𝑟𝑟𝑝𝑝
, ℎ�𝑧𝑧

(3)〉 and 𝑐𝑐3 = 〈𝐻𝐻𝑧𝑧
(4)�

𝑟𝑟=𝑟𝑟𝑝𝑝
, ℎ�𝑧𝑧

(3)〉 (38) 

 𝑑𝑑3 = 〈𝐻𝐻𝜑𝜑
(3)�

𝑟𝑟=𝑟𝑟𝑝𝑝
, ℎ�𝜑𝜑

(3)〉 and 𝑑𝑑3 = 〈𝐻𝐻𝜑𝜑
(4)�

𝑟𝑟=𝑟𝑟𝑝𝑝
, ℎ�𝜑𝜑

(3)〉 (39) 

where <·,·> denotes the inner product operation, and 𝑒̃𝑒 and ℎ�  
denotes the expressions of the basis functions (12)-(15) without 
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the coefficients 𝛼𝛼,𝛽𝛽, 𝑐𝑐,𝑑𝑑. 
Then, from the previous equations, a system of matrix 

equations can be formulated, where the unknowns are 
amplitudes (Ai and Bi) of the fields (𝐸𝐸(𝑖𝑖),𝐻𝐻(𝑖𝑖) ) in every region. 
Since there are amplitudes for TM and TE modes, we are going 
to define the following vectors of amplitudes in every region of 
the structure in order to simplify the notation: 

 𝑎𝑎1 = [𝐴𝐴1𝑇𝑇𝑇𝑇,𝐴𝐴1𝑇𝑇𝑇𝑇] (40) 
 𝑎𝑎2 = [𝐴𝐴2𝑇𝑇𝑇𝑇,𝐴𝐴2𝑇𝑇𝑇𝑇,𝐵𝐵2𝑇𝑇𝑇𝑇 ,𝐵𝐵2𝑇𝑇𝑇𝑇] (41) 
 𝑎𝑎3 = [𝐴𝐴3𝑇𝑇𝑇𝑇,𝐴𝐴3𝑇𝑇𝑇𝑇,𝐵𝐵3𝑇𝑇𝑇𝑇 ,𝐵𝐵3𝑇𝑇𝑇𝑇] (42) 
 𝑎𝑎4 = [𝐴𝐴4𝑇𝑇𝑇𝑇,𝐴𝐴4𝑇𝑇𝑇𝑇] (43) 
The resulting system of matrix equations is shown in (44), 

where one can notice that there are 12 equations for 12 
unknown amplitudes. 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝐹𝐹1 · 𝑎𝑎1 = 𝐹𝐹2 · 𝑎𝑎2
𝐹𝐹3 · 𝑎𝑎1 = 𝐹𝐹4 · 𝑎𝑎2
𝐺𝐺1 · 𝑎𝑎1 = 𝐺𝐺2 · 𝑎𝑎2
𝐺𝐺3 · 𝑎𝑎1 = 𝐺𝐺4 · 𝑎𝑎2
𝑄𝑄1 · 𝑎𝑎2 = 𝑄𝑄2 · 𝑎𝑎3
𝑄𝑄3 · 𝑎𝑎2 = 𝑄𝑄4 · 𝑎𝑎3
𝑅𝑅1 · 𝑎𝑎2 = 𝑅𝑅2 · 𝑎𝑎3
𝑅𝑅3 · 𝑎𝑎2 = 𝑅𝑅4 · 𝑎𝑎3
𝑆𝑆1 · 𝑎𝑎3 = 𝑆𝑆2 · 𝑎𝑎4
𝑆𝑆3 · 𝑎𝑎3 = 𝑆𝑆4 · 𝑎𝑎4
𝑇𝑇1 · 𝑎𝑎3 = 𝑇𝑇2 · 𝑎𝑎4
𝑇𝑇3 · 𝑎𝑎3 = 𝑇𝑇4 · 𝑎𝑎4

 (44) 

The expressions of matrices F, G, Q, R, S and T are obtained 
solving the inner products shown in (28) to (39). 

The previous system of equation can be rewritten in a more 
compact form using matrix notation. 

 𝑋𝑋 · 𝑎⃗𝑎 = 0 (45) 
where 𝑎⃗𝑎 is a column vector with the whole set of unknown 
amplitudes of the fields inside the analyzed structure. 

Last equation can be associated with an eigenvalue problem, 
whose non-trivial solutions are given by the roots of the 
absolute value of the determinant of X. 

 |det[𝑋𝑋]| = 0 (46) 
In this formula, X is a function of geometric dimensions of 

the cavity, resonant frequency and material properties of the 
different regions (permittivity and permeability). In resonant 
problems, the direct or forward solution consists of obtaining 
the resonant frequencies of the structure from the known 
material parameters and geometric dimensions, whereas the 
inverse or backward solution consists of obtaining any other 
parameter (permittivity, permeability or geometric dimensions) 
from the known resonant frequency [22]. This fact is very 
important, since modal methods provides this possibility unlike 
the classical FEM or FDTD methods employed by commercial 
software. More detailed explanation about eigenvalue problem 
of mode-matching is provided in [29]-[ 30]. 

III. STUDY OF THE CONVERGENCE 
In the resolution of (45), the infinite series of fields 

expansions must be truncated to solve viably the system of 
equations. Then, in equations (2)-(7), summation of angular 
variable φ, whose subscript is mi, is truncated to Mi terms, and 

summation of axial variable zi, whose subscript is ni, is 
truncated to Ni terms. Then, the total number of modes 
considered in the ith region is MixNi. 

The truncation of the series has an important influence on the 
convergence behavior. For this reason, it is important to study 
carefully the convergence of the proposed method with the 
analyzed cavity. In fact, two important aspects have been 
considered in this paper. First, the relation between the modes 
of the different regions must be established properly in order to 
ensure the fastest and most accurate convergence of the method. 
Secondly, we have provided a fitting procedure with which the 
solution of the problem calculated with infinite number of 
modes can be achieved. This fact is very important because of 
the impossibility of applying the method with infinite number 
of modes, not even with a very high number of modes due to 
numerical problems produced by solving (46). 

The modal analysis performed in this section is a variant 
performance of the classical mode-matching method, but at the 
end, the procedure is analogous. For this reason, the proposed 
method is under the influence of the well-known relative 
convergence of the mode-matching, which establishes that the 
solution converges to a different set of answers for every 
different choice of modes in each of the regions [32].  

The establishment of the relation between the modes of 
different regions has been studied by many authors for many 
years [32]-[35]. All of them agree with the principle that the 
convergence is ensured when the wavelength spatial resolution 
is the same in both sides of the discontinuity, but it is difficult 
to find a useful expression to apply it in practice. Especially 
interesting is the contribution of [35], which gives an optimal 
and practical expression using only the dimensions of the 
waveguide (𝑑𝑑𝑖𝑖) and the number of modes (𝑃𝑃𝑖𝑖)  in the ith region.  

 𝑃𝑃𝑖𝑖
𝑑𝑑𝑖𝑖

= 𝑃𝑃𝑖𝑖+1
𝑑𝑑𝑖𝑖+1

 (47) 

Due to the full-wave analysis that we have performed, two 
set of indexes are employed (subscripts m and n of equations 
(2)-(7)), one for angular dimension (𝜑𝜑 → 𝑚𝑚) and the other one 
for axial dimension (𝑧𝑧 → 𝑛𝑛). Because the analyzed structure is 
axially symmetric, the number of variations in φ dimension (Mi) 
must be the same in all the regions, whereas the number of 
variations in z dimension (Ni) is directly related with the total 
heights of the regions: 

 �

𝑀𝑀𝑖𝑖
2𝜋𝜋

= 𝑀𝑀𝑖𝑖+1
2𝜋𝜋

→ 𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑖𝑖+1
𝑁𝑁𝑖𝑖
ℎ𝑖𝑖

= 𝑁𝑁𝑖𝑖+1
ℎ𝑖𝑖+1

→ 𝑁𝑁𝑖𝑖+1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �ℎ𝑖𝑖+1
ℎ𝑖𝑖

𝑁𝑁𝑖𝑖�
 (48) 

Then, the number of modes of every region can be obtained 
recursively applying (48). Due to the number of modes must be 
integer, ceiling function (ceil(x)) is used, which rounds to the 
nearest integer greater than or equal to x. 

It is important to remark that relation (47) is only satisfied 
when the number of modes is large enough in both sides of the 
junction. Then, that expression gives the optimal convergence 
relation between the modes of the different regions. For the 
particular analyzed cavity, the minimum number of modes 
considered to guarantee an acceptably close value of the 
convergent solution must be M1=M2=M3=M4=4 and 
N1=N2=10, N3=4, N4=10. 
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With the optimal relation of the number of modes obtained 
above, the problem of the relative convergence is solved. Then, 
from the rigorous point of view, the most accurate solution 
would be provided considering infinite number of modes or 
terms in the summation of the fields expansions. This case 
cannot be treated computationally by the direct way (solving 
(46)). Nevertheless, we can study the behavior of the solutions 
provided by the method depending on the number of modes 
considered, with the purpose of determining the asymptotic 
behavior of the solutions. 

To this aim, we have considered the empty cavity, without 
holder and material, with the purpose of simplifying the 
analysis, since the behavior of the method for the loaded cavity 
is completely analogous. Nominal geometric dimensions of the 
cavity are the following: H=119.7mm, R=60mm, hp=35.65mm, 
rp=24mm, rt=6mm. 

In Fig. 2, the calculated resonant frequencies as a function of 
the modes considered in fields expansion is shown. The number 
of terms of angular variation has been fixed to Mi=4 in all the 
regions. The number of modes shown in the graph are the axial 
number of terms of the region 3 (N3), the number of modes of 
the other regions can be obtained with (48). Only the first 
resonant frequencies of the empty cavity are shown, but the 
following ones have the same tendency. 

 
Fig. 2. Behavior of the computed resonant frequencies as a function of the 

number of modes considered in simulation, and asymptotic fitting curves. 
 
The correct convergence of the method is noticed because the 

more modes in the simulation, the less variance of the solutions.  
Taking the data with proper periodicity, very clear 

convergent curves are obtained, which can be fitted with the 
following nonlinear regression function: 

 𝑦𝑦 = 𝑎𝑎1
𝑥𝑥2

+ 𝑎𝑎2
𝑥𝑥

+ 𝑎𝑎3 (49) 
where 𝑎𝑎1, 𝑎𝑎2 and 𝑎𝑎3 are the fitting coefficients, y is the value of 
the resonant frequency and x is the number of modes considered 
in simulations. Therefore, the asymptotic value of the computed 
resonant frequency considering infinite number of modes (𝑥𝑥 →
∞) is given by the parameter a3 of every curve. 

Periodicity of the data is given by the optimal relation of the 
modes. In this particular case, the optimal relation in region 3 
can be expressed as follow: 

 𝑁𝑁3 = ℎ3
ℎ4
𝑁𝑁4 = 𝐻𝐻−2ℎ𝑝𝑝

𝐻𝐻
𝑁𝑁4 ≅ 0.4𝑁𝑁4 →

𝑁𝑁3
𝑁𝑁4

= 4
10

 (50) 
This expression means that, taking the minimum value in 

region 3 (𝑁𝑁3 = 4), for every 4 modes on region 3, there must be 
10 in region 4. All the following optimal relations that ensure 
the convergence of the method with the same asymptotic 
behavior must be multiples of (50) (i.e. 8/20, 12/30, 16/40…), 
because the same ratio and the same contribution of the cutoff 
high order modes must be accomplished. Then, in this particular 
case, the period of the data is 4, because simulations are 
performed as a function of N3. If the simulation would be 
performed as a function of N4, period would be 10, which means 
that ten different asymptotic curves would appear.  

Thus, due to the periodicity of the data, there are four 
different curves for each resonant frequency, and consequently, 
four different asymptotic values. Then, we have calculated the 
arithmetic mean and the standard deviation of those values to 
determine the final asymptotic value and its uncertainty, 
respectively. The standard deviation of the asymptotic 
approximation is considered an independent source of 
uncertainty in the measurement (u(x)). 

The study of the convergence carried out in this section has 
been analyzed with forward formulation of the resonant 
problem. For the backward formulation, the convergent 
behavior of the solution is analogous. 

IV. CALIBRATION PROCEDURE 
The proposed theoretical method considers ideal conditions 

of the problem, but it does not take into account the 
imperfections of the geometry produced in any manufacture 
process, such as rugosity of the walls, lack of concentricity of 
all the parts of the cavity, imperfect cylinders, dilatation and 
contraction of the metallic walls etc. Besides, the method has 
the assumable error uncertainty of any numerical technique. 
Therefore, the calibration of the measurement system is 
recommended to avoid accumulative errors in high precision 
measurements. 

The calibration procedure consists of estimating all the 
dimensions of the cavity indirectly from the measured resonant 
frequencies of the empty resonator. For this purpose, a system 
of nonlinear equations must be formulated in the following 
form: 

 

⎩
⎪
⎨

⎪
⎧ 𝑦𝑦 = 𝐹𝐹1�𝑓𝑓1, 𝑟𝑟𝑐𝑐 , ℎ𝑐𝑐 , ℎ𝑝𝑝, 𝑟𝑟𝑝𝑝 , 𝑟𝑟𝑡𝑡�

𝑦𝑦 = 𝐹𝐹2�𝑓𝑓2, 𝑟𝑟𝑐𝑐 , ℎ𝑐𝑐 , ℎ𝑝𝑝, 𝑟𝑟𝑝𝑝, 𝑟𝑟𝑡𝑡�…
𝑦𝑦 = 𝐹𝐹𝑁𝑁−1�𝑓𝑓𝑁𝑁−1, 𝑟𝑟𝑐𝑐 , ℎ𝑐𝑐 , ℎ𝑝𝑝, 𝑟𝑟𝑝𝑝, 𝑟𝑟𝑡𝑡�
𝑦𝑦 = 𝐹𝐹𝑁𝑁�𝑓𝑓𝑁𝑁 , 𝑟𝑟𝑐𝑐 , ℎ𝑐𝑐 , ℎ𝑝𝑝, 𝑟𝑟𝑝𝑝 , 𝑟𝑟𝑡𝑡�

 (51) 

where 𝐹𝐹𝑖𝑖�𝑓𝑓𝑖𝑖, 𝑟𝑟𝑐𝑐 , ℎ𝑐𝑐 , ℎ𝑝𝑝, 𝑟𝑟𝑝𝑝, 𝑟𝑟𝑡𝑡� is a function depending on the 
measured resonant frequency (𝑓𝑓𝑖𝑖) and dimensions of the cavity, 
and its value is given by (46). There are N equations, where N 
must be greater or equal to the number of dimensions to 
determine. In this case, we have taken 8 equations, one per 
measured resonant frequency with the empty cavity. 

The optimization function to achieve the dimensions of the 
cavity indirectly from the measured resonant frequencies is 
described as follows: 
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 ∑ 𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0 (52) 

The variables to determine with any optimization procedure 
are the dimensions of the cavity, whose values can be 
understood as the effective dimensions of the cavity, with 
which the measured resonant frequencies of the empty cavity 
are adjusted. 

Comparison of the nominal and effective geometric 
dimensions is shown in table II. Effective dimensions have been 
obtained with a generic simplex search optimization method 
described in [36]. The uncertainty of the nominal values is 
given by the digital caliper, and the uncertainty of the effective 
values is given by the standard deviation of the solutions 
provided in simulations with different number of modes. 
Nominal and effective values are very close as expected. The 
little differences between them (μm) adjust the resonant 
frequency of all the modes of the empty cavity as shown in table 
III and IV. 

TABLE II 
NOMINAL AND EFFECTIVE GEOMETRIC DIMENSIONS OF THE CAVITY 

 
In table III, the computed resonant frequencies of the first 8 

modes considering nominal and effective dimensions are 
shown, as well as the uncertainty provided by the asymptotic 
estimation of the solutions. The uncertainty of the computed 
resonant frequencies is reduced with the effective dimensions, 
as expected. In table IV, the first 8 measured resonant 
frequencies are shown, as well as the absolute error with 
simulations of nominal and effective dimensions. Results show 
that the effective dimensions minimize the error between 
simulation and measurement. 

 
TABLE III 

COMPUTED RESONANT FREQUENCIES WITH NOMINAL AND EFFECTIVE 
DIMENSIONS OF THE EMPTY CAVITY 

Mode fr (GHz) – 
Nominal 

Geometric 
Dimensions 

u(fr) 
(MHz) 

fr (GHz) – 
Effective 

Geometric 
Dimensions. 

u(fr) 
(MHz) 

TM010 1.153863 ±0.5 1.154109 ±0.1 
TM011 1.440280 ±0.3 1.440509 ±0.09 
HE111 1.858386 ±0.3 1.858487 ±0.03 
EH110 2.360553 ±0.6 2.360790 ±0.05 
HE211 2.678205 ±0.4 2.678185 ±0.2 
TM012 2.858571 ±0.5 2.858663 ±0.2 
EH212 3.295091 ±0.4 3.294995 ±0.1 
EH111 3.410385 ±0.5 3.410348 ±0.2 

 
 
 
 

TABLE IV 
ERROR OF THE CALCULATED RESONANT FREQUENCIES IN REFERENCE WITH 

THE MEASUREMENTS 
Mode fr (GHz) –  

Measured 
Δfr (MHz) – 

Nominal 
Geometric 

Dimensions 

Δfr (MHz) – 
Effective 

Geometric 
Dimensions. 

TM010 1.154188 0.326 0.079 
TM011 1.440528 0.248 0.019 
HE111 1.858478 0.092 0.009 
EH110 2.361368 0.815 0.578 
HE211 2.678175 0.031 0.010 
TM012 2.858647 0.075 0.016 
EH212 3.294741 0.350 0.254 
EH111 3.409771 0.614 0.577 

 
The identification of the modes has been carried out by 

plotting the field distribution inside the cavity for each resonant 
frequency. In Fig. 3 to 5, the field distribution of some modes 
inside of the empty cavity is shown. The modes can be 
identified as transversal electric (TEmnp), which lack of axial 
electric contribution (Ez); transversal magnetic (TMmnp), which 
lack of axial magnetic contribution (Hz); and hybrids (HEMmnp), 
which have both axial electric and magnetic contribution. In 
hybrids modes, when Ez predominate over Hz, the modes are call 
EHmnp. Otherwise, when Hz predominate over Ez, the modes are 
call HEmnp. Subscripts m, n and p show, respectively, the 
number of field variations in φ, r and z dimensions [31]. 

In Fig 3.a, at 1.44 GHz, the representation of the components 
of the electric field on a transversal plane shows that there are 
not variations on angular dimension (m=0) and there is one 
variation in radial dimension (n=1). In Fig 3.b, Hφ shows there 
is one variation in axial dimension (p=1). Due to this first mode 
has a negligible axial component of magnetic field, we can 
identify this frequency as a transversal magnetic TM011 mode. 
In Fig 4.a, at 2.678 GHz, the representation of the components 
of the electric field on a transversal plane shows that there are 
two variations on angular dimension (m=2) and there is one 
variation in radial dimension (n=1). In Fig 4.b, the components 
of the magnetic field show that there is one variation in axial 
dimension (p=1). Due to that mode has both axial component 
of electric and magnetic field, we can identify this frequency as 
a hybrid mode, and because Hz has a bigger contribution over 
the other components of magnetic field than Ez over the other 
components of electric field, following notation of [31], we 
have named this mode HE211. In Fig 5.a, at 3.295 GHz, the 
representation of the components of the electric field on a 
transversal plane shows that there are two variations on angular 
dimension (m=2) and there is one variation in radial dimension 
(n=1). In Fig 5.b, the components of the magnetic field show 
that there are two variations in axial dimension (p=2). Due to 
that mode has both axial component of electric and magnetic 
field, we can identify this frequency as a hybrid mode, and 
because Ez has a bigger contribution over the other components 
of electric field than Hz over the other components of magnetic 
field, following notation of [31], we have named this mode 
EH212. 

Dimension Nominal 
Value (mm) 

u(x) 
(μm) 

Effective 
Value (mm) 

u(x) 
(μm) 

H 119.7 ±50 119.7324 ±6 
R 60 ±50 60.0206 ±7 
hp 35.65 ±50 35.6542 ±3 
rp 24 ±50 24.0149 ±5 
rt 6 ±50 6.0587 ±3 
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(a) 

 
(b) 

Fig. 3. Field distribution at fr=1.44 GHz, mode TM011. (a) Electric field 
components on z4=1.25hp (b) Magnetic field components on φ=π/7 

 
(a) 

 
(b) 

Fig. 4. Field distribution at fr=2.678 GHz, mode HE211. (a) Electric field 
components on z4= 1.25hp (b) Magnetic field components on φ= π/7 

 
(a) 

 
(b) 

Fig. 5. Field distribution at fr=3.295 GHz, mode EH212. (a) Electric field 
components on z4=1.25hp (b) Magnetic field components on φ= π/7 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
To measure the complex permittivity of a liquid, it is poured 

in a holder, whose external radius coincides with the radius of 
the insertion holes, rt, and the internal radius is rs=4.9±0.05 mm. 
Quartz has been chosen as the material of the holder because its 
low losses improve the quality factor [12].  

The election of the most appropriate modes to measure high 
loss liquids is crucial in dielectrometry application, since the 
whole set of modes are not suitable to measure the complex 
permittivity of those liquids.  

 
(a) 

 
(b) 

Fig. 6. (a) Variation of the resonant frequency as a function of the dielectric 
constant of the sample. (b) Absolute difference of the resonant frequency with 
𝜀𝜀𝑟𝑟′ = 1 and 𝜀𝜀𝑟𝑟′ = 50. 

In Fig. 6, the sensitivity of the resonant frequency of every 
mode is shown as a function of the dielectric constant (𝜀𝜀𝑟𝑟′ ) of 
the liquid. The more variation in the resonant frequency, the 
better results provides the mode on the estimation of the 
dielectric constant, since a little change on 𝜀𝜀𝑟𝑟′  is noticed in the 
resonant frequency, being those modes more sensitive than 
others. Modes TM0np and EHmnp are the most sensitive in this 
sense, while HEmnp modes do not have enough sensitivity to 
measure accurately the dielectric constant of the liquids. 

In addition, the quality factor must be large enough to be 
measured. In Fig. 7, the variation of the quality factor (Qd) 
associated with the dielectric losses (𝜀𝜀𝑟𝑟′′) is shown for some 
fixed values of the dielectric constant: 𝜀𝜀𝑟𝑟′ =[2,20,50]. Modes 
TM0np and EHmnp have generally a steep slope, while HEmnp are 
more constant. For high losses, modes TM010 and TM012 have 
too low Qd to be measured accurately. As Fig. 7.a to 7.c show, 
the behavior of the quality factor of every mode is similar in the 
whole range of 𝜀𝜀𝑟𝑟′ , hence the discussion performed for these 
particular cases (𝜀𝜀𝑟𝑟′ =[2,20,50]) can be extrapolated for other 
values of 𝜀𝜀𝑟𝑟′ . 
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(a) 

 
(b) 

 
(c) 

Fig. 7. Variation of the quality factor associated with the dielectric losses 
(Qd), versus with the loss factor of the sample with: (a) 𝜀𝜀𝑟𝑟′ = 2, (b) 𝜀𝜀𝑟𝑟′ = 20, and 
(c) 𝜀𝜀𝑟𝑟′ = 50. 

On the basis of the previous discussion, TM011 and the EH110 
modes are the selected modes to measure the complex 
permittivity of some reference liquids. The modes HEmnp have 
been discarded due to the poor sensitivity of the resonant 
frequency shown in Fig. 6. On the other hand, modes TM010 and 

TM012 have been discarded due to the low quality factor 
provided with high losses. EH111 is a good mode to measure the 
complex permittivity, but the coupling of the employed probe 
is not strong enough to excite the mode properly when a liquid 
is inserted in the cavity. 

The resonant frequency and quality factor have been 
measured with a vector network analyzer (VNA). The unloaded 
measurements of the resonator (fu and Qu) have been obtained 
applying the procedure described in [37]-[38], where the effect 
of the coupling is removed. The unloaded quality factor (Qu) 
can be expressed as follows: 

 1
𝑄𝑄𝑢𝑢

= 1
𝑄𝑄𝑑𝑑

+ 1
𝑄𝑄𝑐𝑐

 (53) 

where Qd is the quality factor associated with the dielectric 
losses and Qc is the quality factor associated with the wall 
losses. The needed quality factor to extract the complex 
permittivity is Qd. Qu is measured with the liquid sample and Qc 
with the empty cavity. The tube holder influence is negligible 
in the measure of loss factor because quartz has very low losses 
(<10-4), which are completely hidden by the liquid losses. In 
fact, as said above, the quartz tube is used to improve the quality 
factor in the same manner that in [12]. 

It is important to remark that the theoretical modeling 
described in section II considers perfect electric walls (PEC). 
However, the real cavity has finite conductivity, which affects 
the measurement of the resonant frequency. For a given 
resonant mode, the resonant frequency shift due to the finite 
conductive of the cavity walls can be estimated by the 
perturbational expression given in [39]: 

 
𝑓𝑓𝑟𝑟−𝑓𝑓𝑟𝑟,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑓𝑓𝑟𝑟,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

≅ −1
2𝑄𝑄𝑐𝑐

 (54) 

where 𝑓𝑓𝑟𝑟 and 𝑓𝑓𝑟𝑟,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 stand for the resonant frequencies of the 
real (lossy) and ideal (lossless) cavities, respectively, while 𝑄𝑄𝑐𝑐 
is the Q-factor of the real cavity related to losses in the metallic 
walls because of their finite conductivity. 

The uncertainty of the measurements has been calculated 
following the procedure described in [40]-[41]. It is based on 
the calculation of the derivative of the permittivity depending 
on the variable that affects the accuracy and then, the 
propagation of errors theory is applied to determine the 
uncertainty of the complex permittivity as follows: 

 𝑢𝑢(𝜀𝜀𝑟𝑟) = �∑ �𝜕𝜕𝜀𝜀𝑟𝑟
𝜕𝜕𝑥𝑥𝑖𝑖

𝑢𝑢(𝑥𝑥𝑖𝑖)�∀𝑖𝑖

2

 (55) 

where 𝑥𝑥𝑖𝑖 are the different parameters involved in the problem, 
such as geometric dimensions, whose uncertainty 𝑢𝑢(𝑥𝑥𝑖𝑖) is given 
in table II; and fu and Qu, whose uncertainty is given by the 
resolution considered in the VNA measurement, and it is 
around 0.5%. 
 The complex permittivity of quartz has been obtained with 
experimental measurements to use an exact value at every 
frequency of the selected modes. In Fig. 8, the measured values 
of 𝜀𝜀𝑟𝑟′  and 𝜀𝜀𝑟𝑟′′ for TM011 and EH110 modes are shown. The 
obtained values agree with those provided in the literature such 
as in [15] or [42]. 
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Mode fu (GHz) Qu 
TM011 1.438473 6601.4 
EH110 2.360373 11044 

Fig. 8. Measured dielectric properties of quartz holder. Qc-TM011=6617.37, Qc-

EH110=10978.9. 
 

In table V, measurements of the complex permittivity of 
reference liquids are calculated at some different frequencies 
corresponding with the TM011 and EH110 modes. The unloaded 
resonant frequency and quality factor are provided, as well as 
Qc. An example of a lower loss liquid (acetone) is also included 
to demonstrate that the method can be successfully applied also 
in these cases, confirming the wide range of applicability. The 
obtained results are compared with reference values tabulated 
in [43], and the good agreement between them shows the 
correct behavior of the method. 

VI. CONCLUSION 
In this paper, a novel dielectrometer cell has been presented 

and analyzed with a full-wave modal method, which takes into 
account all the possible set of modes. The used holder, unlike 
those of the literature, has quite large diameter to facilitate the 
pouring of the liquid. 

The convergence of the method has been studied deeply and 
a fitting procedure has been presented in order to provide an 
asymptotic solution of the problem taking into account infinite 
number of terms in the modal expansions of the problem’s 

formulation. 
The method has been calibrated calculating the effective 

dimensions of the cavity through the measurements of the 
resonant frequency with the empty cavity. With this calibration, 
the error between simulations and measurements is minimized. 

Some considerations have been discussed for choosing the 
most appropriate resonant modes to measure the complex 
permittivity of high loss liquids. Comparisons between the 
obtained permittivity of some liquids and the reference values 
of the literature validate the method experimentally. 

The proposed cavity has been designed with fixed 
dimensions and the resonant frequencies cannot be tuned. 
However, in future works, the system could be implemented for 
measuring complex permittivity at some desirable frequencies, 
since it would improve the range of applicability of the 
proposed cell. This could be implemented designing a tunable 
cavity, where the metallic post would be movable and 
consequently, the resonant frequency for measuring 
permittivity could be tuned by the user. 
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