

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/121362

Jordán, J.; Torreño Lerma, A.; De Weerdt, M.; Onaindia De La Rivaherrera, E. (2018). A
Better-response Strategy for Self-interested Planning Agents. Applied Intelligence.
48(4):1020-1040. https://doi.org/10.1007/s10489-017-1046-5

http://doi.org/10.1007/s10489-017-1046-5

Springer-Verlag

Applied Intelligence manuscript No.
(will be inserted by the editor)

A Better-Response Strategy for Self-Interested
Planning Agents

Jaume Jordán · Alejandro Torreño ·
Mathijs de Weerdt · Eva Onaindia

Received: date / Accepted: date

Abstract When self-interested agents plan individually, interactions that prevent
them from executing their actions as planned may arise. In these coordination
problems, game-theoretic planning can be used to enhance the agents’ strategic
behavior considering the interactions as part of the agents’ utility. In this work, we
define a general-sum game in which interactions such as conflicts and congestions
are reflected in the agents’ utility. We propose a better-response planning strategy
that guarantees convergence to an equilibrium joint plan by imposing a tax to
agents involved in conflicts. We apply our approach to a real-world problem in
which agents are Electric Autonomous Vehicles (EAVs). The EAVs intend to find
a joint plan that ensures their individual goals are achievable in a transportation
scenario where congestion and conflicting situations may arise. Although the task is
computationally hard, as we theoretically prove, the experimental results show that
our approach outperforms similar approaches in both performance and solution
quality.

Keywords Planning · game theory · best-response · better-response · Nash
equilibrium

1 Introduction

In some real-life planning problems, agents need to act strategically in order to
achieve their goals. This is the case, for instance, of two agents that plan to si-
multaneously use a one-capacity resource, thus provoking a conflict between their
plans at execution time. Instead, the construction of a coordinated plan would al-
low the agents to anticipate the conflict and build a joint plan with a better-utility

Jaume Jordán, Alejandro Torreño, Eva Onaindia
Universitat Politècnica de València
Departamento de Sistemas Informáticos y Computación
Camino de Vera, s/n, 46022, Valencia, Spain. E-mail: {jjordan, atorreno, onaindia}@dsic.upv.es

Mathijs de Weerdt
Delft University of Technology
EEMCS, Algorithmics
P.O. Box 5031, 2600 GA Delft, The Netherlands. E-mail: m.m.deweerdt@tudelft.nl

2 Jaume Jordán et al.

outcome for both. In Multi-Agent Planning (MAP) with self-interested agents, de-
cisions about what action to execute or when to execute an action are conditioned
by possibly conflicting interests of the agents. We propose to address this prob-
lem with game-theory, the study of mathematical models of negotiation, conflict
and cooperation between rational and self-interested agents [34]. Game-theoretic
techniques are particularly suitable to the problem of designing a strategy (the
agent’s decision making model) that individual agents can use while negotiating –
an agent will aim to use a strategy that maximizes its own individual welfare [17].

When agents that have their own incentives are involved in a MAP problem,
there is a need for a stable solution plan, a plan from which none of the agents is
willing to deviate during execution because otherwise it would only imply a loss
of utility to some of them. In coalitional planning, self-interested agents create
coalitions in order to share resources and cooperate on goal achievement because
joining forces turns out to be more beneficial for reaching their goals [3,8,13].
Hence, in cooperative game-theoretic models such as coalitional planning, self-
interested agents build their plans on the basis of a cooperative behavior and
exploitation of synergies with the other agents. This breaches the principle of
independence if the agents wish to maintain their autonomy. In contrast, when
agents plan autonomously in a strictly-competitive setting, the problem is known
as adversarial planning, and it is commonly modeled as a zero-sum game [34]. In
these problems, agents try to prevent others from reaching their goals since each
agent’s gain of utility is exactly balanced by the losses of the other agents [2,7].

However, some MAP problems do not fit as coalitional or adversarial plan-
ning. Between these two game-theoretic planning settings, there is a large number
of problems in which self-interested agents work independently on their planning
problem (no coalition formation) and the joint execution of their plans is not re-
garded as a strict competition. In non-strictly competitive settings, agents have
conflicting but also complementary interests and they are willing to cooperate
with the aim of finding a solution that benefits all of them. The middle ground
between coalitional and adversarial planning is a largely unstudied problem, which
we will refer to as non-cooperative MAP. This type of problems are modeled as
non-zero-sum or general-sum games, where the winnings and losses of all agents
do not add up to zero and win-win situations can be reached by seeking a common
solution that accommodates the local solutions of all agents. In other words, al-
though agents are self-interested and non-cooperative, they also wish to achieve a
stable (equilibrium) joint plan that ensures their plans are executable (by avoiding
any conflict). Some real-life problems that involve agents sharing resources to ac-
complish their plans or the coordination of traffic flow to avoid collisions embody
non-cooperative MAP scenarios.

Finding stable multi-agent plans can be done with the Best-Response Planning
(BRP) proposed in [19]. This approach solves congestion planning games through
an iterative plan-improvement process that initiates with an executable initial joint
plan. Since the initial joint plan may use synergies between agents’ plans, agents
will be compelled to stick to some actions, which may be against their strategic
behavior and private interests. Additionally, due to this agent dependency, con-
vergence to an equilibrium is not guaranteed. Other techniques as plan merging
would solve the problem of conflict interactions [35], but, likewise, making use of
synergies is not compliant with self-interested agents that plan autonomously in
scenarios with competitive relationships. The theoretical approach in [20] presents

A Better-Response Strategy for Self-Interested Planning Agents 3

a combination of two games that computes all the existing equilibria of a joint plan,
where a conflict between two plans entails −∞ utility for all agents. In [20], the
strategies of the agents are limited to a given subset of plans, congestion situations
are not considered and the complexity of the task renders the calculation of all the
equilibria intractable. All in all, there does not exist computational proposals in
the non-cooperative MAP literature that synthesize a joint plan while strategically
resolving conflicts and congestion interactions among the agents’ plans.

In this work, we present the Better-Response Planning Strategy (BRPS), a
game-theoretic non-cooperative MAP approach that finds a joint plan for a set
of self-interested agents in problems with congestion and conflicting situations. In
BRPS, agents adapt their plans to the other agents’ plans in an iterative cost-
minimization process in which the interactions among the agents imply a cost
rise that is modeled in a single individual agent’s cost function. We consider both
congestion and conflicts as part of the agents’ cost functions. This way, agents are
incentivized to avoid conflicts by applying the so-called taxation schemes [25,37],
in which a third party taxes agents incurring in conflicts to guarantee the feasible
execution of the agents’ plans.

BRPS is a general-purpose non-cooperative MAP approach capable of solving
different planning problems. Particularly, we designed an Electric Autonomous Ve-
hicles (EAV) [24,36] domain to perform a comprehensive experimental evaluation
of our approach. In this domain, agents are electric self-driving taxi companies
in a smart city. Since EAVs are regarded as rational and self-interested entities,
conflicting plans including vehicles attempting to reach a charger at the same time
can be avoided by coordinating the actions of their plans. Thus, agents can opt for
visiting other locations before the charger or waiting until the charger is available,
depending on the impact of each strategy in their utility values. Ultimately, the
objective is to find a solution that accommodates all the local solutions and allows
agents to achieve their goals with the maximum utility possible.

This work is organized as follows. Next section presents the planning problem
in which all elements that affect the agents’ utility are defined. Section 3 formal-
izes the planning problem as a game-theoretic approach, the Interaction Planning
Game (IPG), and we show the complexity of the task as well as under which
conditions the IPG is a potential game. In Section 4, we present BRPS, the better-
response planning strategy to solve the IPG, and we analyze the convergence to
equilibrium solutions. Section 5 introduces the EAVs domain which features both
conflicts and congestion. In Section 6, we show an application example of BRPS
in the EAVs domain and different experimental results, including a comparative
with the BRP approach of [19]. The last section presents the conclusions.

2 Planning Framework

A MAP task consists of a set, AG, of n rational self-interested planning agents
where each agent i synthesizes a plan πi to accomplish its individual planning
task. The utility that πi reports to agent i may be jeopardized at execution time
due to the interactions with the actions of the other plans. Thus, agents are willing
to reach an equilibrium that guarantees their best possible solution jointly with
the others’.

4 Jaume Jordán et al.

For the sake of clarity, we briefly name all of the agents costs that will be used
in this section: the cost of an agent plan is costP ; the cost of solving congestion
or conflicts by delaying the execution of plan actions is defined as costS; costG
represents the cost of being in congestion, and costU is the cost of being in conflict.

A MAP task is modeled as deterministic planning problem in a fully-observable
environment. The world consists of a set of state variables (V) each associated to
a finite domain (Dv, v ∈ V). A variable takes a value of its domain through a
variable assignment (v := d, d ∈ Dv). A state S is a total variable assignment over
V. Each agent has its own view of the world which may be totally or partially
shared with the other agents.

Definition 1 The planning task of an agent i ∈ AG is a tuple T i = 〈Vi, Ii,
Ai, Gi〉, where Vi is the set of state variables known to agent i; Ii is the initial state
over Vi; Ai is a finite set of actions over Vi describing the performable operations
by agent i; and Gi a formula over Vi describing the goals of the agent.

A planning action of Ai is a tuple αi = 〈pre(αi), eff(αi), cost(αi)〉, where
pre(αi) and eff(αi) are partial variable assignments that represent the precondi-
tions (atomic formulae of the form v = d) and effects (atomic effects of the form
v := d) of αi, respectively; and cost(αi) is a numeric value that denotes the cost
of executing αi. An action αi is executable in a state S if pre(αi) ⊆ S. Executing
αi in S leads to a new state S′ as a result of applying eff(αi) over S.

Given two agents i and j, Gi and Gj will not contain antagonist goals since
it would be otherwise an adversarial planning task. On the other hand, Gi and
Gj are generally disjoint sets (Gi ∩ Gj = ∅) because the goal formula (v = d)
are defined over different sets of variables, Vi and Vj , respectively. Even though
agents could share one same variable, this is not typical the case for agents that
solve independent planning tasks. Agents are assumed to solve their assigned goals
individually without any assistance or synergy.

Agents develop solutions for their own tasks in the form of partial-order plans.

Definition 2 A partial-order plan of an agent i ∈ AG is a pair πi = 〈X i,≺〉,
where X i ⊆ Ai is a nonempty subset of the actions of agent i and ≺ is a strict
partial order on X i.

Every strict partial order is a directed acyclic graph. Two unordered actions αij
and αik of a plan πi are executable in any order. Moreover, αij and αik could also be
executed in parallel if the agent has the capability to do so. The set of topological
sorts of πi determines a discrete time step for the actions in πi. Particularly, the
time step of an action αi in πi is set as the earliest time over every topological
sort of πi. Accordingly, the time step assigned to each action in πi is consistent
with the set of orderings ≺ of πi. The finish time of a plan πi is defined as the
last time step t at which any action of πi is scheduled.

The utility of πi is measured as the utility that achieving Gi reports to i. Since
two different plans that achieve Gi will bring i the same utility, agents will use the
cost of executing a plan, denoted as costP (πi), to differentiate plans. The term
costP (πi) measures two aspects:

– Cost of the actions in πi. cost(αi),∀αi ∈ πi denotes a monetary cost, a cost in
terms of resources necessary to carry out the action or any other cost measure
that diminishes the benefit of achieving Gi with πi.

A Better-Response Strategy for Self-Interested Planning Agents 5

– Finish time of πi. For some agents, achieving the goals sooner or later will have
a different impact in the agent’s utility. If two plans have the same action cost,
agents will most likely prefer the one that finishes earlier.

The particular evaluation of the action cost and finish time of πi will depend
on the context, infrastructure and individuality of i. costP (πi) weights all the
relevant parameters to agent i, representing how costly is for i to execute πi.

Definition 3 A joint plan is a tuple Π = 〈π1, π2, . . . πn,≺AG〉 where ≺AG is
a set of inter-agent orderings over the actions of the partial-order plans of the n
agents.

We use the notation Π−i = 〈π1, . . . , πi−1, πi+1, . . . , πn〉 to denote the joint
plan of all agents but i. Given πi and Π−i, the aim of agent i is to integrate πi in
Π−i and come up with a joint plan Π.

2.1 Cost of Integrating a Plan in a Joint Plan

Ideally, executing πi along with Π−i would only charge costP (πi) to agent i.
However, integrating πi in Π−i may cause interactions (conflicts or congestions)
between the actions in πi and the actions in Π−i and solving these interactions
make agents incur an additional cost. The purpose of agent i is to examine how
costly it is to integrate πi in Π−i is.

Conflict Interactions. A conflict interaction is a situation between the plans
of two agents in which executing an action of one agent in some specific order may
prevent the other one from executing one of its actions.

In a partial-order plan, a particular type of precedence relation α ≺ β exists
if a supporting effect of α (v := d ∈ eff(α)) is used to satisfy a precondition of β
(v = d ∈ pre(β)). We will denote such a causal relationship as α ≺〈v,d〉 β.

Definition 4 Let πi, πj be two plans of agents i and j, respectively, in a joint
plan Π. A conflict is defined as a tuple c = 〈γi, αj , βj〉 where αj ≺〈v,d〉 βj ∈ πj

and γi ∈ πi such that v := d′ ∈ eff(γi), and it does not hold γi ≺AG αj or
βj ≺AG γi.

Definition 4 states a situation in which agent i jeopardizes the execution of πj

(outgoing conflict for i) and, inversely, πj is affected by agent i (incoming conflict
for j). Under a partial-order planning paradigm, this interaction is interpreted as
the action γi is threatening the causal link αj ≺〈v,d〉 βj ; likewise, it amounts to an
inconsistent effect and an interference mutually exclusive relationships [11]. That
is, in order to avoid this conflict interaction γi cannot be executed after αj and
before βj nor at the same time than αj or βj .

Both agents can adopt the role of conflict solvers. A conflict c = 〈γi, αj , βj〉 is
a solvable conflict by agent i (resp. j) by setting βj ≺AG γi (resp. γi ≺AG αj)
as long as the newly introduced precedence relation is consistent with the sets ≺
and ≺AG of πj (resp. πi). Note that an agent is only allowed to insert orderings
that keep the plan of the other agent unaltered. Agents seek their own benefit but
not at the cost of provoking conflicts to others because this would have a negative
impact in all the involved agents.

6 Jaume Jordán et al.

Integrating πi in Π−i implies that agent i must successively analyze its in-
coming and outgoing conflicts with the rest of agents. When an incoming ordering
≺AG is set to an action γi of πi, the time step of γi and its successors must be now
re-calculated over every topological sort that comprises the sets ≺ and ≺AG of πi.
Consequently, the finish time of πi can be delayed, which will cause an impact in
the integration cost of agent i. The delay cost caused by solving the inter-agent
conflicts is included in costS(πi, Π−i).

Our approach also accounts for unsolvable conflicts and charges the agent ac-
cordingly in order to encourage the agent to deviate from such a conflicting situ-
ation and to select a strategy that guarantees a feasible joint plan, if possible:

– An unsolvable incoming conflict 〈γj , αi, βi〉 of agent i compromises the feasi-
bility of πi and agent i will receive a cost penaltyi.

– An unsolvable outgoing conflict 〈γi, αj , βj〉 of agent i affects the feasibility of
πj . In a general-sum and non-strictly competitive game, an agent is taxed if
its plan provokes an unsolvable conflict. We use a taxation scheme [25,37] that
imposes taxi to agent i for obstructing the execution of the plan of another
agent j.

The cost of a joint plan with unsolvable conflicts must surpass the cost of a
plan with no conflicts or with solvable conflicts because it is the worst outcome for
any agent. Consequently, the value of penaltyi and taxi should be a sufficiently
large value that makes πi be a non-affordable strategy to encourage agent i to
deviate from πi. Both penaltyi and taxi are set to a value cci that exceeds the
cost of the worst possible conflict-free joint plan. In practice, calculating cci is
computationally prohibitive so penaltyi and taxi are assigned a large integer con-
stant CONF COST. Note that cci is not set to ∞ because we need to count the
number of conflicts to assure convergence to an equilibrium with better-response
dynamics, as we will explain in the next sections. Thereby, agent i will be charged
with cci · |U |, where |U | is the number of unsolvable conflicts. We will denote such
a cost by costU(πi, Π−i).

Congestion Interactions. A congestion game is defined by players and re-
sources, and the utility of the player depends on the resources and the number of
players choosing the same resource [29]. In our case, certain items in V are defined
as resources or congestible elements (R) so that a congestion is produced when two
or more actions associated to the same time step define a formulae v = d, v ∈ R
in their preconditions. Moreover, the cost of a congestion may differ across the
agents involved in it since each agent has its individual cost function, which makes
our approach more realistic. Given R = {r1, . . . , rm}, we define Cir : N→ R as the
cost function of resource r for agent i accordingly to the number of times that r
is simultaneously used in a joint plan. N : J ×N×R → N returns the number of
actions that use resource r at time t in a given joint plan Π ∈ J (where J is the
set of all possible joint plans). Therefore, the congestion cost incurred by agent i

is defined as costG(πi, Π−i) =
∑finish(Π)
t=0

∑
r∈R C

i
r(N (Π, t, r)).

Given an action αi scheduled at time t that uses resource r, the congestion
is avoidable by agent i by setting a precedence relation λ ≺AG αi with all the
actions λ in congestion with αi. The possible delay cost caused by this relation in
the finish time of πi is accumulated in costS(πi, Π−i) as well. Therefore, we define
as costG(πi, Π−i) the cost of the non-resolved congestion interactions of πi.

A Better-Response Strategy for Self-Interested Planning Agents 7

Finally, the total cost of integrating πi into Π−i is:

costTotal(πi, Π−i) = costP (πi)+

+ costG(πi, Π−i) + costS(πi, Π−i) + costU(πi, Π−i) (1)

The net utility that a plan πi reports to agent i will be the utility of achieving
Gi minus costTotal(πi, Π−i).

Note that costTotal(πi) computes the cost of realization of πi along with the
plans of the other agents and this is the only factor that drives the agents’ decision-
making since all individuals in a game-theoretic setting are aimed to a strategy
that maximizes their own individual welfare. Social cost factors such as trust and
reputation are used to assess the cost of decisions other than purely economic
impact. Particularly, how trustworthy an agent is when executing a plan could
have an impact in the cost assessment of the agents. However, this is not applicable
in this context because, as we will see in Section 4, the formal game-theoretic
properties guarantee that no agent will deviate from a stable joint solution plan.
Social cost factors are applicable in other type of negotiation frameworks such as
argumentation-based approaches.

Definition 5 A solution joint plan for the planning tasks
⋃
i∈AG T

i of all

agents in AG is a conflict-free joint plan Π∗ where costU(πi, Π−i) = 0,∀i ∈ AG.
If this condition holds then it is guaranteed that Π∗ achieves

⋃
i∈AG G

i.

3 Interaction Planning Game

An Interaction Planning Game (IPG) is a general-sum game to solve the problem
of multiple self-interested agents all wanting to execute their plan in the same
environment. In a general-sum game, agents’ aggregate gains and losses can be
less or greater than zero, meaning that agents do not try to minimize the others’
utilities. In the IPG, agents are self-interested but not strictly competitive so the
aim of an agent is to seek a plan which does not provoke a conflict with the other
agents’ plans. Otherwise, this would negatively affect its utility as well as the
others’ utilities. Specifically, a conflict between two or more plans will render the
plans non-executable, which is the worst possible outcome for the agents because
it prevents them from fulfilling their planning tasks.

An agent i solves its task T i by generating a plan πi with actions from Ai that
achieves its goals in Gi.

Definition 6 An Interaction Planning Game (IPG) is a tuple 〈AG, T , u〉,
where:

– AG = {1, . . . , n} is a set of n rational self-interested planning agents.
– T =

⋃
i∈AG T

i is a multi-agent planning task in which each agent i has to

solve its own task T i.
– u = (u1, . . . , un) where ui : πi, Π → R is a real-valued payoff function for agent
i defined as the utility of a plan πi that solves task T i when it is integrated in
a joint plan Π = 〈π1, . . . , πi−1, πi, πi+1, . . . , πn〉.

8 Jaume Jordán et al.

An IPG solution must be a joint plan such that the individual solution of each
agent within the joint plan cannot be improved; otherwise, agents would keep on
altering the ”solution”, thus leading to instabilities and conflicts during the plan
execution. Our goal by modeling this as a game is to guarantee a stable solution in
which no agent has a reason to change its strategy. Then, the aim of each agent in
the IPG is to select its best-utility strategy according to the strategies selected by
the others; that is, all agents must be in best response in an IPG solution, which by
definition is a Nash Equilibrium (NE) (see [30, Chapter 3] for more information).

Definition 7 An IPG solution is a conflict-free solution joint plan Π∗ (as defined
in Def. 5) which is a NE of the IPG.

The complexity of finding a NE in the IPG is PPAD-hard (Polynomial Parity
Arguments on Directed graphs) [27] since computing a NE, even in a 2-player
game, is PPAD-complete [5] unless P = NP . However, there are some exceptions
in which for some restricted games, such as zero-sum games, a NE can be computed
in polynomial time using linear programming [30, Chapter 4].

Theorem 1 Computing a NE for an IPG is PPAD-hard even for single-action
plans.

Proof. The idea of this proof is to use a reduction from general-sum finite games.
For this class of games, any strategy of a player/agent i can be translated in
polynomial time to a task T i of the IPG. This is done by mapping the strategies
of any general-sum game to single-action plans of the IPG. Now, a NE of the IPG
can be translated in polynomial time to a NE of the equivalent general-sum finite
game, since the strategies and outcomes are the same.

From this we can conclude that even if generating plans for individual agents is
easy (single-action plans), finding a stable solution is PPAD-hard. In the general
case, planning in propositional STRIPS is PSPACE-complete [4] and cost-optimal
planning has proven even more difficult to solve in practice [1].

Theorem 2 IPG is PSPACE-hard even with just one agent.

Proof. The sketch of this proof is to make a reduction from single-agent planning
to an IPG. Let us take any single-agent planning problem which can be represented
as a planning task T i of an agent i. We can construct an instance of an IPG with
task T i and AG = {i}. Then, solving this IPG is only about computing single-agent
plans that solve T i.

Monderer and Shapley [23] found a more general class than congestion games
named potential games. A game is potential if there is a function on the strategies
of players such that each change in a player’s strategy changes the function value
in the same way as the player’s change in utility. For such a potential function,
each local optimum is a Pure strategy Nash Equilibrium (PNE). In contrast to an
exact potential function, an ordinal potential function does not track the exact
change of utility of the players but it tracks the direction of such change.

For the IPG, we define the following ordinal potential function which maps
every strategy profile or joint plan to a real value:

A Better-Response Strategy for Self-Interested Planning Agents 9

Φ(Π) =
∑
i∈AG

costTotal(πi, Π) (2)

Any unsolvable conflict causes a huge cost increase cc to the involved agents
(a penalty to the affected agent, and a tax to the provoking agent). Since this cost
increase is the constant value CONF COST , which is higher than the cost of any
conflict-free plan, it is straightforward to see that agents will always avoid unsolv-
able conflicts if they can do so. No agent can benefit from being in an unsolvable
conflict or provoking it to improve its individual cost, no matter their individual
cost functions. In other words, a conflict increases the cost of the involved agents
as well as the potential function Φ. Therefore, regarding unsolvable conflicts and
how they are taxed in the IPG, the potential game property always holds.

Usually, congestion games have a universal cost function which expresses the
congestion caused by the use of the resources of the game. These games are poten-
tial if congestion affects all agents similarly. When agents have individual payoff
functions, a game is not potential anymore as it is proven in [22]. Since switching
strategies usually means a change in plan costs, it may be profitable for an agent
to change its plan to a much cheaper one that introduces more congestion to oth-
ers. Under these conditions, the potential game property cannot hold because the
potential function is unable to track the improvement of the agent if the losses of
the other agents are not compensated. Agents in the IPG have individual costs that
affect them differently for their plans (costP), for solving congestion or conflicts
(costS), and for congestion (costG).

However, the IPG is a potential game if one of these two sufficient conditions
are accomplished: (a) congestion is costless, or (b) agents plans cost are null and
congestion affects all agents similarly.

Theorem 3 The IPG is a potential game with its associated ordinal potential func-
tion Φ if for all agents in AG:

(a) congestion is costless (costG = 0), or

(b) the cost of executing a plan is null (costP = 0) and congestion affects all
agents similarly.

Proof. The ordinal potential function Φ maps every strategy profile to a real value
and it satisfies the following potential game property: Given a joint plan Π =
〈π1, . . . , πix, . . . , π

n〉, if and only if πiy is an alternate plan/strategy for agent
i, and Π ′ = 〈π1, . . . , πiy, . . . , π

n〉 6= Π, then Φ(Π)− Φ(Π ′) > 0 and ui(πiy, Π
′)−

ui(πix, Π) > 0. In other words, if the current state of the game is Π, and an agent
i switches its strategy from πix to πiy, the improvement of i is tracked by Φ.

Regarding congestion, in the case (a) in which congestion is not considered, it
is straightforward to see that any utility improvement of an agent by switching
its plan will be reflected in the potential function Φ and it would not cause any
cost increase to other agents. In the case (b), congestion affects all agents similarly
and the cost of executing any individual plan is null. Hence, an agent incurring
in a congestion is as much affected as the other involved agents, and similarly, if
an agent avoids a congestion, the other involved agents also increase their utility.
Therefore, the potential game property holds in both cases (a) and (b) regarding
congestion.

10 Jaume Jordán et al.

Unsolvable conflicts imply a cost increase of cc to the involved agents, which
is higher than any conflict-free plan cost. If an agent i improves its utility by
avoiding a conflict, then the potential function Φ will decrease 2cc, once for each
of both agents involved in the avoided conflict. Note that any modification of a
plan (increase in costS by solving a conflict) or switching to another plan to avoid
a conflict always implies a cost decrease for the involved agents which is tracked
by Φ. Hence, the potential game property always holds regarding conflicts in both
case (a) and (b).

For potential games, convergence to PNE by best/better response is guaranteed
[23]. Although the IPG is not always a potential game, it still shares many similar-
ities. We make an analysis of convergence of the IPG in Section 4.3. In Section 6,
we describe experimental results that aim to evaluate convergence properties by
better-response dynamics in a concrete domain that do not meet the conditions
from the above Theorem 3. Note that the IPG is designed to be applicable to a wide
range of real problems and this is the reason why we considered all the elements
in the cost functions of the agents, which makes our model more complete.

4 Better-Response Planning Strategy

In this section, we explain the Better-Response Planning Strategy (BRPS)
applied to the IPG, the search process of BRPS, the convergence of BRPS to a
Pure strategy Nash Equilibrium (PNE), and we present a discussion about the
complexity of the BRPS in the IPG.

4.1 BRPS Process

Better-response dynamics draw upon the properties defined for best-response dy-
namics. Particularly, we know that any finite potential game [23] will converge
with best-response dynamics to a PNE regardless of the cost functions (e.g., they
do not need to be monotonic). Moreover, it is not even necessary that agents best
respond at every step since best-response dynamics will still converge to a PNE in
a finite number of steps as long as agents deviate to a better response [30][Chapter
6]. Additionally, a better-response strategy can be implemented by an agent by
randomly sampling another plan until one is found with less cost than the current
plan’s, and this does not require the agent to know the cost of every plan in its
search space [10]. In our planning context, we use better response instead of best
response since agents do not need to find the best plan at each iteration, which
may be computationally intractable.

Our BRPS is a process in which each agent i iteratively revises its plan πix in the
joint plan Π, and switches to another plan πiy which integrated in Π−i reports i a
utility better than πix. Before starting the process, an empty joint plan Π = ∅ and
an arbitrary order between the agents in AG are established. During the process,
agents must better respond in each iteration. If an agent i is not able to come up
with a better-cost plan, it does not change its plan. When no agent modifies its
plan within a complete iteration because none of them can better respond, BRPS
has reached a convergence point in which the current joint plan is a PNE.

A Better-Response Strategy for Self-Interested Planning Agents 11

Table 1 Two agents with conflicts example. PNE in bold.

π2
1 π2

2 π2
3 π2

4

π1
1 −2cc1−1,−2cc2−1 −cc1−1,−cc2−2 -1, -3 −cc1−1,−cc2−4

π1
2 −cc1−2,−cc2−1 -2, -2 -2, -3 −cc1−2, −cc2−4

π1
3 -3, -1 -3, -2 -3, -3 −cc1−3, −cc2−4

π1
4 −cc1−4, −cc2−1 −cc1−4, −cc2−2 −cc1−4, −cc2−3 -4, -4

Let us take a simple IPG example with two agents (1 and 2) and four plans
per agent (π1

1 to π1
4 ; and π2

1 to π2
4). Table 1 represents an IPG example in its

normal-form in which costP (π1
1) = costP (π2

1) = 1, costP (π1
2) = costP (π2

2) = 2,
costP (π1

3) = costP (π2
3) = 3, and costP (π1

4) = costP (π2
4) = 4. The cells in Table 1

show the utilities of the 16 joints plans that result from combining the four plans
of each agent. The terms cc1 and cc2 denote the cost of the penalty/tax charged
to agent 1 and 2, respectively, for the unsolvable conflicts in the joint plans. Table
1 shows 7 solution joint plans, four of which displayed in bold are PNE. If BRPS
obtains the joint plan 〈π1

4 , π
2
4〉 with utilities (-4,-4) at some point of the process,

we can say BRPS has reached convergence because no agent is able to come up
with a better plan without conflicts given the plan of the others and so the utility
of none of the agents can be improved. The joint plan 〈π1

4 , π
2
4〉 is PNE but it is not

Pareto Optimal (PO) whereas the rest of PNE plans are all PO. Consequently,
better-response dynamics cannot guarantee PO solutions.

From the agents perspective, the BRPS process works as follows:

– An arbitrary order of agents inAG is established. BRPS incrementally builds an
initial joint plan, Π = 〈∅, . . . ,∅〉, Π = 〈π1,∅, . . . ,∅〉, Π = 〈π1, π2,∅, . . . ,∅〉
and so on following the established order. This construction follows a similar
procedure as explained below except that agent i has no previous upper cost
bound.

– In one iteration, agent i performs the following steps:
1. it analyzes the cost of its current plan πix in the joint plan as specified in

Equation 1 and sets upperi = costTotal(πix, Π
−i).

2. it starts a planning search process to obtain a different plan, say πiy, that
achieves Gi. During search, a tree, where nodes represent an incrementally
integration of the actions of πiy within Π−i, is created. Every node is eval-
uated according to Equation 1 and if the cost is greater or equal than
upperi then the node is pruned. Otherwise, when the node already holds
all of the actions of the plan πiy and if costTotal(πiy, Π

−i) < upperi, then
the search stops because a better response has been found. In this case,
Π ′ = 〈π1, . . . , πiy, . . . , π

n〉 is returned.
3. in case the search space is exhausted and no better plan is found (we note

plans are pruned by upperi), agent i does not change its plan πix in Π since
i is in best response.

– When no agent in AG modifies its plan in a complete iteration, better-response
dynamics has reached a convergence point and the current joint plan is a PNE.

12 Jaume Jordán et al.

4.2 Search Procedure

In BRPS, each agent i implements an individual A* search procedure that progres-
sively generates better responses; i.e., individual plans that solve its task T i, and
integrates them into the current joint plan. In one BRPS iteration, agent i calcu-
lates upperi = costTotal(πix, Π

−i) as the cost of its current proposal in the joint
plan, removes πix, and autonomously launches an A* search to find and integrate a
better response, πiy, into the joint plan. The root node of the search tree contains a
joint plan which is defined as the composition of Π−i and an empty partial-order
plan of agent i: πiy0 = 〈X i = ∅,≺〉. We will denote such a combination as Π−i◦πiy0 .

At each level of the search tree, a node incorporates one action over its parent
node and inter-agent conflicts are solved, if possible. Given the root node Π−i◦πiy0 ,
its successor nodes will contain Π−i ◦πiy1 , where πiy1 = 〈X = {αi1},≺〉; a successor
of Π−i ◦ πiy1 will be Π−i ◦ πiy2 , where πiy2 = 〈X = {αi1, αi2},≺〉; and so on until
a node which contains Π−i ◦ πiy is found. In other words, each node of the tree
successively adds and consistently supports a newly added action until a node
that contains a complete plan πiy that achieves Gi is found. Note that the inter-
agent orderings inserted in each node do not introduce any synergies between
agents since, as explained in Section 2, these elements are merely used for conflict
resolution.

The search is aimed at finding a plan for agent i without conflicts with the
other agents’ plans. The procedure finishes once a conflict-free better response is
found. If the agent finds a node that contains an element in conflict, the search
keeps running until a conflict-free plan is found or the search space is exhausted.
During search, the upperi cost bound is used to prune nodes that would not yield
a solution better than the current one.

The heuristic search of BRPS draws upon some particular planning heuristics
[33] that enable agents to accelerate finding a conflict-free outcome. Assuming
that the current plan of agent i in a joint plan is πi and that the best-cost plan of
agent i integrated in Π−i has a total cost of C?, i might need as many iterations
as costTotal(πi, Π−i)−C? to reach the optimal solution, improving one unit cost
at each iteration. However, the combination of heuristic search and the upper cost
bound helps guide the search towards a better-response outcome very effectively.

4.3 Convergence to an Equilibrium

Better-response dynamics in an IPG may converge to a PNE joint plan which might
possibly contain conflicts. In this section, we analyze the type of conflicts that lead
to this situation and we show that in the absence of this type of conflicts, BRPS
converges to an IPG solution. We also analyze convergence in the non-potential
version of the IPG.

Every potential game has at least one outcome that is a PNE, and better-
response (or best-response) dynamics always converges to a PNE in any finite
potential game [30, Chapter 6] [26, Chapter 19].

Corollary 1 Better-response dynamics of an IPG always converges to a PNE if
the potential game property holds.

A Better-Response Strategy for Self-Interested Planning Agents 13

As we explained in Theorem 3, the potential game property with the potential
function Φ only holds under some assumptions. However, even without these as-
sumptions, and considering the cost functions of the agents as defined in Equation
1 (costTotal, where the agents consider their own plans, congestions, unsolved
conflicts, and delays of solvable conflicts and/or congestions), the IPG with better-
response dynamics will converge to a PNE in most cases.

4.3.1 Convergence to Conflict-free Joint Plans

In some problems, a joint plan with conflicts can be a PNE of the IPG and better-
response dynamics could converge to this non-executable PNE joint plan. This
happens in a multi-symmetric unsolvable situation among (at least) two agents
which have a symmetric unsolvable conflict, and none of them has a better response
that improves ui or uj due to the existence of conflicts.

Definition 8 There exists a Multi-Symmetric Unsolvable Situation (MSUS)
between two agents i and j in an IPG if the following two conditions hold:

1. there exists a symmetric unsolvable conflict between a plan πi and every plan
of j that solves T j , and

2. there exists a symmetric unsolvable conflict between a plan πj and every plan
of i that solves T i

In contrast to an unsolvable IPG (that would be the case when every plan of
i contains a symmetric unsolvable conflict with every plan of j and vice versa),
a MSUS states there is (at least) an IPG solution for the game but none of the
agents is able to unilaterally find a better response if they get stuck in symmetric
unsolvable conflicts. We note that, whereas a MSUS is defined between a pair of
agents, it can affect any number of agents. However, the presence of a single MSUS
between two agents is a sufficient condition to endanger the convergence to an IPG
solution if agents get stuck in the specific plans involved in the MSUS.

F
c1

I

c2

c3

l1

l3

l2

l4

Ag1
Ag2

Fig. 1 Multi-symmetric unsolvable situation example.

Figure 1 shows a problem with a MSUS. Two agents, 1 and 2, are placed in
location I and want to get to F . Agent 1 can only traverse solid edges and agent 2
dashed edges (except I− c1 which can be traversed by both agents). Locations c1,
c2 and c3 can only be visited by one agent at a time, being permanently unavailable
afterwards. Each edge has unitary cost. Agent 1 has two plans π1

1 and π1
2 with costs

costP (π1
1) = 3 and costP (π1

2) = 4, corresponding to its inner and outer path,
respectively. Similarly, agent 2 has two plans π2

1 and π2
2 corresponding to its inner

and outer path, respectively, with costs costP (π2
1) = 3 and costP (π2

2) = 4. If both

14 Jaume Jordán et al.

agents use their best plans, π1
1 and π2

1 , they will cause a symmetric unsolvable
conflict at c1. If agent 2 switches to π2

2 , another symmetric unsolvable conflict will
appear at c2. In the same way, if agent 1 switches to π1

2 , the symmetric unsolvable
conflict will occur at c3. The only IPG solution is composed of π1

2 and π2
2 , in

which agents traverse the outer paths of Figure 1. This reveals that a better-
response process can get trapped in a joint plan with conflicts which is PNE.
This happens because a symmetric unsolvable conflict is only solvable through a
bilateral cooperation, and in case of a MSUS like this, any alternative plan of one
of the two agents also provokes a symmetric unsolvable conflict.

The strategies and utilities of this example are represented in Table 2, which
is the normal-form of the IPG and includes all of the joint plans. A cell represents
the utility of each agent in the joint plan formed by the plans of the corresponding
row and column. The existence of a conflict in a joint plan entails a loss of utility
of −cci units. If one of the agents (or both) initiate the better-response process
with their first plan, BRPS will converge to the non-executable joint plan with
utilities (−2cc1−3,−2cc2−3), which is a PNE. This happens because none of the
agents is able to unilaterally improve its utility by switching to another plan. The
utilities of the agents can only be improved if they bilaterally switch to π1

2 and
π2
2 , respectively. However, this can never happen in a sequential better-response

dynamics.

Table 2 Multi-symmetric unsolvable situation. PNE in bold.

π2
1 π2

2

π1
1 −2cc1−3,−2cc2−3 −2cc1−3,−2cc2−4

π1
2 −2cc1−4,−2cc2−3 −4,−4

It should be noted that a MSUS is unlikely to occur in real-world problems as
it features a very restricted scenario with several and fairly particular conflicts. As
shown in the example of Figure 1, the two agents block each other, not only for
a plan but for all possible alternative plans since they only could reach a conflict-
free joint plan through a bilateral plan switch. Hence, once these situations are
identified, where BRPS could end up in a non-executable PNE, we can assure that
in the absence of MSUS, if BRPS converges to a PNE it will be an IPG solution.

Corollary 2 Better-response dynamics in an IPG without any multi-symmetric
unsolvable situation always converges to a PNE if the potential game property
holds, which is an IPG solution (conflict-free joint plan).

As shown in Corollary 1, the IPG is a potential game (under some assumptions)
with an associated ordinal potential function Φ of Equation 2 that guarantees
convergence to a PNE with better-response dynamics. Thus, in the absence of
MSUSs, agents will never get blocked in a symmetric conflict since, if an agent
cannot solve it, the other involved agent will address the conflict. Therefore, agents
will progressively reduce their costs by solving conflicts and improving their utility
until converging to a PNE which is an IPG solution (conflict-free joint plan). In
other words, if a game does not present MSUSs, only conflict-free joint plans can
be PNE. Additionally, in the absence of MSUS, if BRPS converges to a PNE in
the non-potential version of the IPG, then the PNE will be an IPG solution.

A Better-Response Strategy for Self-Interested Planning Agents 15

4.3.2 Convergence in the Non-Potential IPG Version

Better-response (or best-response) dynamics in the IPG may cycle only by the
combination of the individual agents plans cost and congestion cost. For instance, if
an agent i improves its cost by switching its plan to one that provokes a congestion
to other agents, and the cost decrease of i does not compensate the cost increase
of the other agents in congestion (reflected by Φ), the potential game property is
broken. When the IPG is no longer a potential game, situations like the example we
described may provoke cycles and better-response dynamics would never converge.
However, it is not really common to find domains in which such cycles appear
easily, as we will show in the experiments of Section 6.

To analyze what happens in the non-potential IPG version, in which all the cost
elements of costTotal are considered, we turn to the concept of a sink equilibrium
[12]. We define a state graph G = (V,E), where V are the states of the game
(strategy profiles or joint plans Π in the IPG), and E are better or best responses,
that is, an agent i has an arc from one state Π to another state Π ′ if it has a
better/best response from Π to Π ′. The evolution of game-play is modeled by a
random path in the state graph, similarly to extensive-form games with complete
information. Such a random path may converge or may not converge to a PNE,
but it surely converges to a sink equilibrium (which may be or may not be a
PNE). If we contract the strongly connected components of the state graph G to
singletons, then we obtain an acyclic graph. The nodes with out-degree equal to
zero are named sink nodes, that is, nodes with no out-going arcs in G. These nodes
correspond to states of sink equilibria since random best/better-response dynamics
will eventually converge to one of those (and will never leave it) with probability
arbitrarily close to 1 [12]. Therefore, we announce the following proposition:

Proposition 1 Random better(best)-response dynamics in an IPG without any
multi-symmetric unsolvable situation will eventually converge to a sink equilib-
rium, which is a conflict-free joint plan.

Proof. Similarly to Corollary 2, in the absence of MSUSs, agents will progressively
reduce their costs by solving conflicts and improving their utility until converging
to a sink equilibrium because they would never get blocked in a symmetric conflict.
A sink equilibrium is always a conflict-free joint plan since, in an IPG without
MSUSs, all the conflicts of a joint plan can be avoided. Only conflict-free joint
plans can be sink equilibria, so convergence to them is guaranteed. However, a
sink equilibrium is not necessarily an IPG solution so it is not necessarily either a
NE solution.

Despite a sink equilibrium is not as strong as a PNE, we remark that, in
most cases, random better-response dynamics may converge to a sink equilibrium
which may be also a PNE. This is an important result in the IPG because even
without the potential property which guarantees convergence, we can almost assure
convergence. Furthermore, in the absence of MSUSs, the equilibrium achieved will
always be a conflict-free joint plan. All these promising results will be reflected in
the experiments of Section 6.

16 Jaume Jordán et al.

4.4 Complexity of Better Response in an IPG

In this subsection, we discuss the complexity of using better-response dynamics in
an IPG, considering both the planning complexity and the complexity of computing
a NE in a potential game.

The class of Polynomial Local Search problems (PLS) is an abstract class of all
local optimization problems which was defined by [18]. Examples of PLS-complete
problems include traveling salesman problem, or maximum cut and satisfiability.
Finding a NE in a potential game is also PLS-complete if the best response of each
player can be computed in polynomial time [9]. Moreover, the lower bound on the
speed of convergence to NE is exponential in the number of players [14]. This is
a lower complexity than finding a NE in a general-sum game as the IPG which is
PPAD-hard as we showed in Theorem 1.

While these are good news for the IPG in general, we note that computing
a strategy for an agent implies to plan, which is PSPACE-complete in the gen-
eral case [4], as we pointed out in Theorem 2. However, planning complexity can
be lower for some planning domains as it is shown by [15]. Specifically, while
bounded (length) plan existence is always NP-complete, non-optimal plans can
be obtained in polynomial time for a transport domain without fuel restrictions
(i.e., LOGISTICS, GRID, MICONIC-10STRIPS, and MICONIC-10-SIMPLE). In contrast,
optimal planning is always NP-complete. This is one of the reasons why our BRPS
approach uses better-response dynamics instead of best-response dynamics be-
cause in terms of planning complexity it is easier to compute a non-optimal plan
with satisficing planning.

Nevertheless, the inclusion of the IPG in the PLS class is not possible unless we
are able to guarantee a best response in polynomial time. In our BRPS approach,
only a better response (non-optimal plan) can be computed in polynomial time.
Then, we need to guarantee that a sequence of better responses leads the game
to a NE. In this sense, a bounded jump improvement [6] must be guaranteed in
order to ensure PLS-completeness of the IPG with the BRPS approach.

Proposition 2 Computing a PNE of an IPG, in its potential game version, using
better-response dynamics is PLS-complete if non-optimal plans can be computed
in polynomial time and a better response minimum improvement is guaranteed.

Proof. Let us take a standard transport domain without fuel restrictions like
LOGISTICS, GRID, MICONIC-10STRIPS, or MICONIC-10-SIMPLE, for which a non-
optimal plan can be computed in polynomial time, as specified in [15]. If we use a
satisficing planner which computes non-optimal solutions, and the planning agents
always have a minimum jump improvement in their better responses, then achiev-
ing a PNE which is an IPG solution is in PLS.

This is a good result since it guarantees that for some specific planning do-
mains, the complexity of solving this planning and game-theoretic problem is PLS-
complete, which is much better than common PSPACE-completeness of planning
and PPAD-completeness of computing a NE for any general-sum game.

A Better-Response Strategy for Self-Interested Planning Agents 17

5 Case Study: Electric Autonomous Taxis in a Smart City

In this section, we present a case study in which various autonomous taxi compa-
nies (agents) seek their own benefit without necessarily jeopardizing the plans of
other taxi companies in the context of a clean, coordinated and harmonic smart
city. We designed an Electric Autonomous Vehicle (EAV) domain with two main
purposes in mind: a) dealing with a challenging problem in the near future and b)
testing a planning domain for self-interested agents which consider both congestion
and conflicts.

The EAV domain resembles the popular game ’Battle of the Sexes’, where a
player receives a reward which depends on how much preferable one activity is to
the player plus an additional reward if the other player also chooses the same ac-
tivity; i.e., if the activities of both players are coordinated. However, coordinating
the interests of autonomous agents (plans of electric self-driving taxi companies) in
a collective environment (the city) brings about situations of congestion and neg-
ative interactions between the actions of the agents (e.g., conflicts for the usage of
a particular resource) which may render the plans unfeasible.

In order to properly motivate our EAV case study, Figure 2 shows the area
covered by a number of taxi companies in a European city. The route of a taxi

is determined by the streets (black edges) it traverses. A street is defined by the
two junctions (gray circular nodes) it connects. Across the city, there are several
chargers (green squares) in which the taxis recharge their batteries.

Fig. 2 Smart city map example.

A taxi company agent must coordinate its fleet of taxis to provide transport
services to passengers that are located in different junctions and want a ride
to specific destinations. A company agent plans the routes of its taxis on the

18 Jaume Jordán et al.

network map of streets in order to deliver the passengers in a cost-optimal way.
Since energy management is a critical aspect of electrical vehicles, the course of
action of a taxi company must include the necessary stops to recharge the batteries
of its taxi fleet in the available chargers across the smart city.

This EAV domain was encoded with an extended version of the MAP language
introduced in [31] that incorporates explicit support of congestion interactions.
Agents or taxi companies individually plan the routes of their taxis by applying
a set of planning actions:

– (drive ?t - taxi ?j1 ?j2 - junction ?l1 ?l2 - level): The taxi drives
from junction ?j1 to junction ?j2 reducing its battery level from ?l1 to
?l2.

– (charge ?t - taxi ?j - junction ?ch - charger ?n - network ?cl ?ml -

level): The taxi ?t enters the charger ?ch in network ?n from junction ?j

and charges its battery from its current level, ?cl, to its maximum capacity,
?ml.

– (leave-charger ?t - taxi ?ch - charger ?j - junction): The taxi ?t

leaves the charger ?ch and goes back to junction ?j.
– (pick-up-passenger ?t - taxi ?p - passenger ?j - junction): The pas-

senger ?p waiting at junction ?j gets into the empty taxi ?t.
– (drop-passenger ?t - taxi ?p - passenger ?j - junction): The passen-

ger ?p leaves the taxi ?t at his/her destination ?j.

A charger is accessible by a single taxi at a time. Since taxis act in the same
environment, a charging station occupancy conflict occurs when a taxi comes
across an occupied charger. In this case, the company agent can either forward
the taxi to a different charger (i.e. modify its plan), or make it wait until the
occupying taxi leaves the charger (i.e. delaying the charge action to avoid the
conflict).

Congested traffic flow directly affects the cost of the taxis’ actions. We identify
two different types of congestion:

– Traffic jam congestion. If several taxis drive simultaneously through a
street between two junctions, traffic in such street will become less fluid, re-
sulting in a traffic congestion. Consequently, the cost associated to the drive

action of each taxi will increase. Agents should then consider traffic congestion
when selecting the routes of their taxis.

– Electricity network congestion. When taxis intend to recharge their batter-
ies simultaneously at different chargers of the same electricity network, prices
will raise due to a peak demand, also leading to an electricity shortage. Thus,
company agents will be penalized if they get involved in an electricity network
congestion.

In this scenario, where concurrent actions of self-interested agents can provoke
congestions and conflicts, the best individual plan of an agent may not be the
course of action that maximizes its utility in a joint plan. Moreover, a conflict
makes the involved plans be non-executable. Therefore, agents are willing to give
up their best individual plan for the sake of a safe joint plan that guarantees a
stable execution of all the involved parties.

A Better-Response Strategy for Self-Interested Planning Agents 19

c2

j2

j4

j3

j1c1

3

2

2
2

2

t3

t2
t1

p3
p1

p2

Company1
Company2
Company3

Fig. 3 Problem example representation.

5.1 BRPS Problem Example

In order to illustrate the behavior of BRPS when solving a planning problem with
self-interested agents, Figure 3 shows a simple example based on the EAV domain.
This example features three taxi companies, Company1, Company2, and Company3,
each of them having a single vehicle (t1, t2 and t3) and one passenger to transport
(p1, p2 and p3). There are four connected junctions j1 to j4 and two chargers c1

and c2 in the same electricity network n1 which are accessible from j1 and j2,
respectively (see Figure 3). Taxis t1 and t3 start at junction j1, and t2 starts at
j2. The batteries of the taxis are initially empty (level l0), and their maximal
capacity is l2.

In this problem, the cost of an individual plan, costP (πi), is obtained as the
sum of the costs of the actions in πi. We assume unitary costs for all actions except
for the drive actions, whose cost depends on the length of the street, as shown in
the edges of Figure 3. The cost of integrating a plan in a joint plan, costS(πi, Π−i),
includes the cost of possible delays to avoid conflicts and congestion. The cost of
a delay is measured as the difference in the number of time steps between the
finish time of πi in isolation and when πi is integrated in Π−i multiplied by a
constant. This constant depends on the impact of a delay on each agent, which in
turn may depend on whether or not a passenger is waiting for the taxi. For the
sake of simplicity, we will assume a constant value of 5 units to all agents. The
cost of a congestion is linear with the number of congested actions returned by the
function N (Π, t, r), for any agent i and resource r; i.e., if two actions use the same
resource simultaneously, the involved agents get a cost rise of 2; if three actions
are involved, then the cost rise is 3, and so on. Additionally, we set cci = 10000 to
obtain the value of costU(πi, Π−i). Despite the above specifications, we note that
the IPG cost functions can be individually customized to each agent accordingly
to its preferences.

Table 3 shows the best individual plan of each company. The goal of Company1
and Company3 is to carry a passenger (p1 and p3, respectively) from j1 to j4, while
the goal of Company2 is to transport p2 from j3 to j4. The costs of these optimal
plans are: costP (π1

1) = costP (π2
1) = costP (π3

1) = 8. We will compare these plans,
which maximize the individual utility (minimize the cost) of each company agent,
with the final plans integrated in the solution joint plan.

20 Jaume Jordán et al.

Table 3 Individual agents’ plans.

t Company1 (π1
1) Company2 (π2

1) Company3 (π3
1)

0 charge t1 j1 c1 n1 l0 l2 charge t2 j2 c2 n1 l0 l2 charge t3 j1 c1 n1 l0 l2

1 leave-charger t1 c1 j1 leave-charger t2 c2 j2 leave-charger t3 c1 j1

2 pick-up-passenger t1 p1 j1 drive t2 j2 j3 l2 l1 pick-up-passenger t3 p3 j1

3 drive t1 j1 j3 l2 l1 pick-up-passenger t2 p2 j3 drive t3 j1 j3 l2 l1

4 drive t1 j3 j4 l1 l0 drive t2 j3 j4 l1 l0 drive t1 j3 j4 l1 l0

5 drop-passenger t1 p1 j4 drop-passenger t2 p2 j4 drop-passenger t3 p3 j4

Costs costP (π1
1) = 8 costP (π2

1) = 8 costP (π3
1) = 8

As explained in Section 4, an order between the agents is established. We will
assume Company1 goes first, followed by Company2 and then Company3. The initial
joint plan is built in the first iteration of BRPS, starting from Π = ∅, and no
upper cost bound for any agent.

– Iteration 1:

– Company1 generates its plan π1
1 with costTotal(π1

1 , Π
−1) = 8 (see Table 3).

The current joint plan is Π = 〈π1
1 ,∅,∅〉.

– Company2 puts forward π2
1 and integrates it in Π, which causes two con-

gestion interactions. An electricity network congestion is present at t = 0
since t1 and t2 are using chargers c1 and c2, which are both connected to
the same electricity network n1. Moreover, a traffic jam congestion arises
at t = 4 since both taxis use the road from j3 to j4. Solving a congestion
entails a delay of one time step in the finishing time of the agent multiplied
by 5. If Company2 solves the congestion at t = 0 with one time-step delay, it
will be also solving the congestion at t = 4 since the whole plan is delayed
one time unit. Then, solving the two congestion interactions is a total cost
of 5. However, remaining in congestion (cost rise of 2 per congestion) is less
costly for Company2 than solving the two congestion interactions. Thus, the
cost of integrating π2

1 in Π−2 is the sum of the individual plan cost plus the
congestion cost; that is, costTotal(π2

1 , Π
−2) = 8+2+2 = 12. The resulting

joint plan is Π = 〈π1
1 , π

2
1 ,∅〉.

– Company3 integrates π3
1 in Π and finds out that t3 causes a conflict to

t1 due to the simultaneous use of c1. Company3 addresses the conflict
through an inter-agent ordering that delays the execution of its plan two
time steps. This outcome is preferable for Company3, because being in a
planning conflict would report it a significantly higher cost. Therefore,
the cost for Company3 is the sum of the cost of π3

1 plus the delay cost,
costTotal(π3

1 , Π
−3) = 8 + 2 ∗ 5 = 18. At this point: Π = 〈π1

1 , π
2
1 , π

3
1〉.

– Iteration 2:
– Company1 examines the cost of π1

1 in Π and finds out that it is higher than
expected due to the two congestions with Company2; i.e., costTotal(π1

1 , Π
−1)

= 8 + 2 + 2 = 12. Subsequently, Company1 runs the search procedure with
an upper cost bound upper1 = 12, synthesizing π1

2 , a plan that traverses
the street between j2 and j4. This plan is a better response because
costTotal(π1

2 , Π
−1) = 9 + 2 = 11. Despite the fact that traversing the

street j2-j4 is more costly than j3-j4, π1
2 allows Company1 to avoid the

congestion in j3-j4, which results in a better-cost outcome. We note that

A Better-Response Strategy for Self-Interested Planning Agents 21

t1 does not avoid the electricity network congestion with t2 because it is
unable to do so. Then, the resulting joint plan is Π = 〈π1

2 , π
2
1 , π

3
1〉.

– Company2 examines the cost of its plan π2
1 , costTotal(π2

1 , Π
−2) = 8+2 = 10.

The cost of π2
1 is reduced thanks to the introduction of π1

2 by Company1,
which addresses a congestion that affected Company1 and Company2, thus
benefiting both agents. Company2 executes the search process with upper2 =
10 and it does not find a better response after exhausting the search space.
Therefore, Company2 maintains its initial plan π2

1 and the joint plan remains
unchanged, Π = 〈π1

2 , π
2
1 , π

3
1〉.

– Company3 analyzes its plan, which has the same cost as in the previous
iteration, costTotal(π3

1 , Π
−3) = 8+2∗5 = 18. Company3 is unable to obtain

a better response, and thus, it maintains π3
1 . Hence, Π = 〈π1

2 , π
2
1 , π

3
1〉.

– Iteration 3:
– Company1 checks the cost of its plan, costTotal(π1

2 , Π
−1) = 9 + 2 = 11,

and it does not find a better plan after searching. Since Company1 does not
changes its plan, either will Company2 and Company3. Given that no agent
changed its plan in a complete iteration, BRPS converges to the current
joint plan Π, which is an IPG solution.

Table 4 Resulting IPG solution joint plan Π.

t Company1 (π1
2) Company2 (π2

1) Company3 (π3
1)

0 charge t1 c1 n1 l0 l2 charge t2 c2 n1 l0 l2 -

1 leave-charger t1 c1 j1 leave-charger t2 c2 j2 -

2 pick-up-passenger t1 p1 j1 drive t2 j2 j3 l2 l1 charge t3 c1 n1 l0 l2

3 drive t1 j1 j2 l2 l1 pick-up-passenger t2 p2 j3 leave-charger t3 c1 j1

4 drive t1 j2 j4 l1 l0 drive t2 j3 j4 l1 l0 pick-up-passenger t3 p3 j1

5 drop-passenger t1 p1 j4 drop-passenger t2 p2 j4 drive t3 j1 j3 l2 l1

6 - - drive t1 j3 j4 l1 l0

7 - - drop-passenger t3 p3 j4

Costs costTotal(π1
2 , Π

−1) = 9 + 2 = 11 costTotal(π2
1 , Π

−2) = 8 + 2 = 10 costTotal(π3
1 , Π

−3) = 8 + 2 ∗ 5 = 18

Table 4 shows the final plans of the three agents in the joint plan Π. The
electricity network congestion at t = 0 is shown in italics. In the IPG solution, the
plan of Company1 is 3 units more costly than its initial individual plan due to the
electricity network congestion, and also because it changed its initial route and
switched to a different plan. Company2 also experienced a cost rise of 2 units due
to the congestion with Company1. Finally, the plan of Company3 is 10 units more
costly than its best individual plan because of a delay of two time steps that avoids
a conflict with Company1. This coordinated solution satisfies all agents since they
are in a PNE, and thus, any unilateral deviation will jeopardize the execution of
their plans.

We must note that a different order of the agents, for instance if Company3 was
ordered before Company1, would give rise to a different solution joint plan because
Company3 would be the first to occupy the charger c1.

22 Jaume Jordán et al.

6 Experimental Results

In this section, we test the performance of BRPS through a set of problem in-
stances of the EAV domain presented in Section 5. We provide some details of
the BRPS implementation, including a brief discussion about the underlying MAP
technologies it uses, in Subsection 6.1. Next, Subsection 6.2 analyzes the exper-
imental results, comparing the performance of BRPS against the state-of-the-art
BRP approach [19]. In Subsection 6.3, we analyze the strategic behavior adopted
by the agents with the better-response dynamics of BRPS. Finally, Subsection 6.4
provides a comprehensive analysis of the results obtained by each BRPS agent.

6.1 BRPS Implementation Details

BRPS is implemented on top of a modified version of the MH-FMAP satisficing
planner [33]. BRPS draws upon the features of MH-FMAP, including its multi-agent
data structures, the communication infrastructure and message passing protocols
among agents, the privacy model [32], and the heuristic functions [33]. As it was
mentioned in Section 5, we designed an extension to the PDDL-based1 MAP lan-
guage presented in [31] to include explicit support of congestion interactions.

An agent i of BRPS uses MH-FMAP to individually synthesize the plan (re-
sponse) that will be integrated in the current joint plan Π−i. The search of an
agent is efficiently guided by a) the cost of its previous response, which is used as
a threshold to prune parts of the tree; and b) the heuristics of MH-FMAP, which
have been adapted to deal with the cost functions of the agents. Moreover, the
BRPS search of an agent can return a plan with unsolved conflicts.

6.2 Comparative Evaluation of BRPS and BRP in the EAV Domain

In non-cooperative MAP, particularly in game-theoretic planning, there are hardly
available domain-independent frameworks. One notable exception is the Best-
Response Planning (BRP)2 approach presented in [19]. BRP is a game-theoretic
planning approach with the following characteristics:

1. It is specifically designed to compute equilibria in congestion games.
2. It requires an initial conflict-free joint plan which is computed offline by a coop-

erative MAP solver ; i.e., the plan is calculated regardless the private incentives
of the agents and synergies among the agents’ plans may appear3. The joint
plan comprises one plan per agent that achieves the corresponding goals.

3. It is an iterative plan improvement model wherein agents best respond to the
plans of the other agents while maintaining the conflict-free structure of the
joint plan.

1 PDDL: Planning Domain Description Language [21]
2 We used optimal Fast-Downward [16] as the underlying individual planner for BRP agents,

since it was the best-performing setting in our tests.
3 Due to implementation limitations of BRP, it is not possible to use a cooperative MAP

solver as stated in [19]. Therefore, we used the satisficing LAMA planner [28], which performed
better than Fast-Downward to compute the initial conflict-free joint plan.

A Better-Response Strategy for Self-Interested Planning Agents 23

4. It applies best response instead of better response, which entails a more costly
plan generation for the agents.

5. It is proved to be useful for improving an initial congested conflict-free joint
plan, thus increasing the utility of the agents in scenarios that feature conges-
tion interactions.

These features reveal that BRP and BRPS show a similar behavior and so
they are comparable. We created a synthetic benchmark of the EAV domain that
includes 25 multi-agent problems of growing complexity. Table 5 shows the problem
setup of this benchmark. The columns of Table 5 indicate the number of company
agents, taxis and passengers per company, as well as the number of junctions and
chargers, and the battery capacity of the taxis.

As shown in Table 5, the number of company agents per problem ranges be-
tween 2 and 6: the first 5 problems, p1-2 to p5-2, include two agents; the next 5
problems, from p6-3 to p10-3, feature 3 agents, and so on. In each 5-problem block,
the parameters of the task are adjusted to progressively increase the difficulty of
the problems. For example, p1-2 includes 2 taxis, 2 passengers per agent, and 4
junctions, while p5-2 presents 4 taxis and 5 passengers per agent, as well as a much
larger street map of 12 junctions. Other key parameters of the domain, such as
the number of chargers and maximum battery capacity of the taxis, are scaled up
along with the number of junctions.

Table 5 Problem setup of the benchmark of test for the Electric Autonomous Taxis domain.

Companies Taxis Passengers Junctions Chargers Battery

p1-2 2 2 2 4 1 4

p2-2 2 2 3 6 2 6

p3-2 2 3 3 8 2 8

p4-2 2 3 4 10 3 10

p5-2 2 4 5 12 3 12

p6-3 3 2 2 4 1 4

p7-3 3 2 3 6 2 6

p8-3 3 2 4 6 2 6

p9-3 3 3 3 8 2 8

p10-3 3 3 4 10 3 10

p11-4 4 2 2 4 1 4

p12-4 4 2 3 6 2 6

p13-4 4 2 4 6 2 6

p14-4 4 2 3 8 2 8

p15-4 4 3 3 8 2 8

p16-5 5 2 2 4 1 4

p17-5 5 2 3 6 2 6

p18-5 5 2 4 6 2 6

p19-5 5 2 3 8 2 8

p20-5 5 3 3 8 2 8

p21-6 6 2 2 4 1 4

p22-6 6 2 3 6 2 6

p23-6 6 2 4 6 2 6

p24-6 6 2 3 8 2 8

p25-6 6 3 3 8 2 8

The experimental results for both approaches are summarized in Table 64.
The first three columns of each planner refer to the number of actions, finish
time, and cost of the solution joint plans. The next two columns show the number

4 All the tests were conducted on a single machine with an Intel Core i7-3770 CPU at
3.40GHz and 8 GB RAM. Each test was run within a time limit of 1800 seconds.

24 Jaume Jordán et al.

of iterations and computation time required by each approach to synthesize the
solution joint plans. The dagger symbol (†) indicates that a solution was not
found within the given time limit. The cost values used in the function costTotal
of BRPS are the values shown in the example of Subsection 5.1. Similarly, BRP was
configured to apply the same costs values as BRPS, except for the cost of unsolved
conflicts (costU), which is ignored in BRP as it always works with a conflict-free
joint plan.

Table 6 Experimental results for different problem setups of the EAV domain with random
order between agents.

BRP BRPS

Acts Fh Cost Iters Time Acts Fh Cost Iters Time

p1-2 16 9 22 2 2.84 16 9 22 2 0.66

p2-2 23 13 49 2 38.29 23 10 34 3 35.58

p3-2 † 25 8 36 2 286.99

p4-2 † 37 12 49 2 483.67

p5-2 † 41 8 54 3 954.38

p6-3 26 10 40 2 5.42 27 11 38 3 1.79

p7-3 40 18 93 2 408.68 40 11 58 2 31.87

p8-3 † 48 16 66 3 239.06

p9-3 † 39 6 58 2 223.17

p10-3 † 48 14 67 3 749.68

p11-4 37 12 84 2 14.63 41 10 72 3 5.01

p12-4 † 54 15 78 3 118.83

p13-4 † 57 12 80 3 439.04

p14-4 † 54 12 80 3 658.39

p15-4 † 50 11 74 3 1052.07

p16-5 43 14 78 2 24.32 43 14 78 3 5.38

p17-5 † 74 17 110 2 278.69

p18-5 † 68 16 94 3 251.46

p19-5 † 62 12 94 3 222.00

p20-5 † 64 11 96 2 1167.65

p21-6 † 61 13 100 4 29.93

p22-6 † 71 11 106 3 202.26

p23-6 † 87 14 122 3 1665.96

p24-6 † 80 15 118 3 1761.50

p25-6 † 72 12 108 3 1643.19

The computation time of the problems in Table 6 are mainly determined by
the complexity of the street map, the number of taxis and task goals (passengers
to transport) per agent. This can be observed in each block of tasks, where the res-
olution of a problem is generally more time-consuming than the previous problems
of the block. The computation time grows exponentially in the last problems of
each block as they represent the most complex maps in the number of junctions,
taxis and passengers. For this reason, convergence to an IPG solution requires
significantly larger computation times in these problems.

Despite the complexity of some of the problems, our BRPS approach solves the
complete benchmark, generating solution plans of up to 87 actions. BRP, however,
is only able to solve 6 problems within the time limit, being unable to attain any
problem of the fifth block. In summary, BRPS reaches 100% coverage, while BRP

A Better-Response Strategy for Self-Interested Planning Agents 25

only solves 24% of the benchmark problems, which proves that our approach scales
up significantly better than BRP.

Regarding computation time, BRPS is in general one order of magnitude faster
than BRP, with the only exception of problem p6-3. We must further note that
the results of BRP in Table 6 do not reflect the time needed for the calculation of
the initial conflict-free joint plan, a time-consuming task that is not required in
BRPS. All in all, we can conclude that BRPS clearly outperforms BRP in terms of
computation time.

BRP only needs 2 iterations to converge to a solution in 6 of the problems,
while BRPS takes one more iteration in some of these problems. This is explained
because starting the search process from a conflict-free plan facilitates reaching
a solution, while BRPS needs to run as many iterations as number of agents to
build the first joint plan. Additionally, better-response dynamics may take more
iterations to converge since agents do not necessarily propose the best possible
response at each iteration. Despite the downside to a slow convergence, BRPS
exhibits a significantly shorter computation time per iteration than BRP, which
results in a superior performance and scalability. BRPS was able to converge to
a solution in all the problems of the benchmark since better-response dynamics
rarely get into a cycle, as pointed out in Section 4.3.

BRPS proves to be particularly efficient at optimizing the finish time of the so-
lution joint plans. Even though many of the solution plans contain a large number
of actions, the finish time of such plans never exceeds 17 time units, which proves
that our approach excels at enforcing parallelism among the company agents’ ac-
tions. In other words, the company agents in BRPS use their available taxis in a
concurrent and efficient manner, effectively minimizing finish time and cost. This
is also supported by the partial-order reasoning mechanism of the planner MH-
FMAP [33]. In contrast, the BRP plans finish later because the planner used by
a company agent to calculate a plan does not parallelize the actions of its taxis.
This has also a direct impact in the cost of the joint plans of BRP, making the
execution of such plans require more time steps.

In general, almost all BRP plans have a significantly higher cost than the
solutions of BRPS. For example, in problem p2-2, BRP obtains a solution joint
plan of 49 cost units, while BRPS yields an IPG solution of 34 cost units. Similarly,
the cost of BRP for the problem p7-3 is 93 compared to the 58 cost units of BRPS.
Again, these differences are mainly due to the fact that the type of planner used
by the agents in BRP does not enable parallelizing the plan actions; this results in
a later finish time, which in turn penalizes the cost of the solution plans.

We can also observe in Table 6 that the cost values and number of actions do
not generally scale up and this is specially notable in problems that feature similar
cost values but a significantly different number of actions; e.g., the solution plan
to problem p21-6 has 61 actions and 100-unit cost whereas the solution to p25-6
has 72 actions and 108-unit cost. Aside from the fact that the cost of the drive

actions range between 2 and 3 units, unlike the rest of actions that have unitary
costs, problems like p21-6 occur in smaller size cities (fewer junctions and chargers)
and so it is more likely to have congestion and conflict interactions. Consequently,
problems that happen is smaller cities tend to have a relatively higher cost due
to the more frequent appearance of congestions and the introduction of delays to
avoid congestions or battery charging conflicts.

26 Jaume Jordán et al.

In summary, despite the notable complexity of the EAV benchmark, which
results in solution plans of more than 40 actions in most cases, our BRPS approach
exhibits an excellent behavior, outperforming BRP in all the evaluated metrics:

1. Coverage: BRPS solves the complete benchmark within the given time limit,
while BRP only solves 6 of the simplest problems of the benchmark (24%
coverage).

2. Execution time: Despite better-response converge more slowly than best-
response, BRPS is one order of magnitude faster than BRP in almost all cases.

3. Finish time: The underlying MAP machinery of BRPS efficiently enforces
parallelism among the agents’ actions, keeping the finish time of the solution
plans below 18 time units in all cases.

4. Cost: The cost of the solutions plans is significantly lower in BRPS than in
BRP. The lack of parallelism in the BRP penalizes the plan cost notably, while
our approach ensures the generation of robust parallel plans where the taxis
of a company agent act in parallel whenever possible.

All in all, the experimental results prove that BRPS significantly outperforms
the state-of-the-art BRP approach in both sheer performance and plan quality,
thus emerging as the current top-contending technique in non-cooperative MAP.

6.3 Analyzing the Strategic Behavior of the BRPS Agents

This section analyzes the strategic behavior adopted by the BRPS agents accord-
ingly to the configuration of their cost functions. We do not present a comparative
evaluation with the strategic behavior of agents in BRP because the cooperative
nature of the initial joint plan of BRP would render the comparison not meaning-
ful. More specifically, the behavior of agents in BRP, which must best respond to
a cooperative solution by maintaining the conflict-free structure of the plan, limit
the choice of action of the agents as to satisfying their own private interests.

For this analysis, we used the problem example presented in Section 5.1 and
depicted in Figure 3 except that the battery level of the taxis is 1 (level l1).
The default ordering of the agents during the better-response dynamics of BRPS
is Company1-Company2-Company3. We tested this problem in six different settings
that modify the agents’ cost functions. The columns of Table 7 show the number of
actions, finish time, and cost of the plans of each company agent in the six different
settings.

Table 7 Strategic behavior analysis for different cost functions

Company1 Company2 Company3

Setting Act Fh Cost Act Fh Cost Act Fh Cost

1 6 6 11 6 6 10 6 8 18

2 6 6 11 6 6 10 6 8 10

3 6 6 11 6 6 10 6 8 68

4 6 6 11 6 6 18 6 8 19

5 6 6 8 7 8 15 6 10 28

6 6 10 28 7 8 15 6 6 8

A Better-Response Strategy for Self-Interested Planning Agents 27

In the following, we analyze the six configurations used in this experiment and
the results summarized in Table 7:

– Setting 1: This is the original setting of the problem as presented in Sec-
tion 5.1, where the cost of a delay of one time step is 5. The solution
plan for this setting is shown in Table 4. As explained in Section 5.1, there
is an electricity network congestion between Company1 and Company2 because
they are using two chargers connected to the same electricity network at t=0.
Company3 is delayed two time steps because it must wait for the charger c1 to
be released released by Company1.

– Setting 2: In this setting, the cost of a delay of one time step is 1. The
rest of the costs are as in setting 1. The solution joint plan for this setting is
the same as in setting 1. However, the plan of Company3 has a lower cost (10
cost units) because it benefits from the unitary delay cost.

– Setting 3: In this case, the cost of a delay of one time step is 30 for
the three agents, while the rest of costs remain as in setting 1. Again, the only
affected agent is Company3, which does not change its plan, but reports a total
cost of 68 units because of the higher cost of a delay.

– Setting 4: In this configuration, we defined a 10-unit cost for driving
through street j3-j4, keeping the rest of costs unaltered with respect to
setting 1. The plan of Company2 still uses street j3-j4 to take the passenger to
the goal destination. The best solution for Company2 would be to take a longer
path through streets j3-j2 and j2-j4 because this would report a lower cost
than using street j3-j4. However, since it is not possible to charge the battery
with a passenger on the taxi, and the maximum capacity of the battery is
limited to 2 units, Company2 cannot take this alternative route. Regarding
Company3, its taxi waits for 2 time steps until taxi1 finishes charging the
battery at c1, and then, it takes the paths j1-j2 and j2-j4 to avoid the more
costly street j3-j4.

– Setting 5: This setting increases the congestion cost as follows: a 2-agent
congestion reports the involved agents a 12-unit cost; a 3-agent congestion
entails a 13-unit cost, and so on. The rest of costs remain as in setting 1. The
IPG solution obtained with this setting is shown in Table 8. This joint plan
presents several differences with respect to the solution of setting 1 that concern
Company2 and Company3. In this solution, taxi2 of Company2 drives from j2 to
j1 to charge its battery at t=2, once taxi1 leaves charger c1. This explains
the 15-unit cost reported by Company2, which is slightly higher than Company1’s
cost. Company2 makes this decision to prevent taxi1 and taxi2 from charging
their batteries simultaneously at chargers c1 and c2, which would cause a
network congestion. Then, taxi2 drives to j3 to pick up its endowed passenger
and transports him to j4. Therefore, the finish time and cost increase reported
by Company2 in this setting is explained by the additional action that drives
taxi2 to charger c1, and the subsequent 1-time-step delay. Finally, Company3
reports a higher cost than the rest of agents (28 units), because it waits for 4
time steps until the charger c1 becomes available.
The high cost of congestions in this setting forces the agents to introduce delays
to charge the batteries of their taxis in a sequential order. Consequently, the
agent that revises first its plan in the first iteration (Company1) is favored since

28 Jaume Jordán et al.

the best option for the subsequent agents is to delay their activities until the
first agent releases a key resource (in this case, the charger c1).

Table 8 Resulting IPG solution joint plan Π for setting 5.

t Company1 (π1
2) Company2 (π2

1) Company3 (π3
1)

0 charge t1 c1 n1 l1 l2 drive t2 j2 j1 l1 l0 -

1 leave-charger t1 c1 j1 - -

2 pick-up-passenger t1 p1 j1 charge t2 c1 n1 l0 l2 -

3 drive t1 j1 j3 l2 l1 leave-charger t2 c1 j1 -

4 drive t1 j3 j4 l1 l0 drive t2 j1 j3 l2 l1 charge t3 c1 n1 l1 l2

5 drop-passenger t1 p1 j4 pick-up-passenger t2 p2 j3 leave-charger t3 c1 j1

6 - drive t2 j3 j4 l1 l0 pick-up-passenger t3 p3 j1

7 - drop-passenger t2 p2 j4 drive t3 j1 j3 l2 l1

8 - - drive t1 j3 j4 l1 l0

9 - - drop-passenger t3 p3 j4

Costs costTotal(π1
1 , Π

−1) = 8 costTotal(π2
3 , Π

−2) = 10 + 1 ∗ 5 = 15 costTotal(π3
1 , Π

−3) = 8 + 4 ∗ 5 = 28

– Setting 6: This setting maintains the costs of setting 5, but the ordering
of the agents in BRPS is reversed; that is, Company3 goes first, followed
by Company2 and Company1. As expected, the results are also reversed with
respect to setting 5: in this case, Company3 presents no delay in its execution
while Company1 does. Company2 keeps the same solution plan and cost as in
setting 5.

In these experiments, we can observe that agents design their strategies (plans)
to optimize cost according to the specification of their cost functions. Agents try
to find the lowest-cost plan taking into account their own cost functions and the
plans of the other agents. Moreover, agents avoid the most costly situations if
they are able to do so. For instance, if remaining in a congestion entails a cost
higher than escaping from it by delaying actions, agents will opt for delaying the
execution of their actions. All in all, we can conclude that, as expectedly, agents
in BRPS follow a strategic behavior regarding their cost functions.

6.4 Influence of the Order of BRPS Agents

In this section, we analyze whether the order of agents in BRPS affect the cost of an
agent’s plan with respect to its best individual plan as a stand-alone agent. Figure
4 shows the results when an agent is the first one (agent-first) in the arbitrary
order of the BRPS process, when it is the last one (agent-last) or when its position
is randomly chosen (agent-random). We show the average increment in the number
of actions, finish time and cost of a specific agent for all problems of Table 6 with
respect to the best individual plan of the agent, which is computed exhausting the
search space of the agent.

According to Figure 4, we can observe that the order of the agent has a sig-
nificant impact in the results. The best results are for agent-first since this is the
agent that reaches first the charger, compelling the other agents to use alterna-
tive plans or introduce a delay. This is also reflected in the number of actions of
agent-first, which only increases 1.33% w.r.t. the number of actions of its best in-
dividual plan. On the other hand, the finish time increases slightly and the cost is

A Better-Response Strategy for Self-Interested Planning Agents 29

0

5

10

15

20

25

Act Fh Cost Act Fh Cost Act Fh Cost

agent-first agent-last agent-random

P
e
rc

e
n
ta

g
e

Fig. 4 Average increment in percentage of actions, finish time and cost of one agent in the
IPG solution with respect to its best individual plan, when it goes first, last, or random in the
BRPS order.

7.65% higher because of the unavoidable congestions. In the case of agent-last or
agent-random, the number of actions only increases 3.3% while the finish time and
cost rise notably (21% increase in the cost of agent-last). The difference between
agent-first and agent-last lies in the number of conflicts the agent needs to solve
delaying its execution.

We can conclude that the arbitrary order of the agents clearly impacts the
results of BRPS. The first agent is clearly favored over the others, while a random
order seems a fairer option. Another interpretation within an arbitrary order in a
blackboard system is that the agent that communicates first its plan is in a more
advantageous position. Nonetheless, BRPS is designed to solve problem sets rather
than a single problem. Thereby, selecting a random order in each problem would
balance the agents’ costs across the whole problem set.

7 Conclusions and Future Work

Non-cooperative MAP can be seen as a problem that lies in between coalitional
and adversarial planning, a field that has been hardly explored. The approach
presented in this paper addresses this type of problems in which agents wish to
make their interests prevail but also need to coordinate their strategic behavior
with the others.

We defined a general-sum game in which self-interested planning agents con-
sider interactions (conflicts and congestions) as part of their cost, as well as the
cost of their own plans. Since taxation schemes are applied to conflicts, agents are
incentivized to avoid them. The inclusion of individual cost functions for the agents
induces a strategic behavior and a more realistic representation of self-interested
planning agents for real-world problems.

Regarding the potential version of the IPG, we showed that convergence to a
PNE is always guaranteed with better/best-response dynamics. When congestion
interactions and the individual cost of a plan are considered, the IPG is a non-
potential game. However, better/best-response dynamics will converge to a PNE
in most cases, or otherwise they can still converge to a sink equilibrium. We also

30 Jaume Jordán et al.

proved that any equilibrium is an IPG solution (conflict-free joint plan) in the
absence of multi-symmetric unsolvable situations.

We analyzed the complexity of using better-response dynamics in an IPG and
concluded that, non-optimal plans can be computed under some conditions. This is
much less costly than computing the best response or optimal plan because agents
do not need to explore all their strategies. Additionally, computing a NE is also a
hard task, but using better-response dynamics may reduce the complexity of such
task. For these reasons, we showed promising results towards PLS-completeness
under some assumptions.

We experimentally compared our BRPS against BRP, one of the few available
frameworks that present the same kind of strategic and cooperative behavior. The
results show that BRPS clearly outperforms BRP in terms of computation time
and quality of the PNE joint plans. The main advantages of BRPS with respect
to BRP that we have shown through this work can be summarized as follows:

– As opposite to BRP, which follows a best-response scheme, BRPS is based
on better-response dynamics. Better response (non-optimal plan) can be
computed in polynomial time in many domains (i.e., transport domains without
fuel restrictions), while synthesizing best responses (optimal plans) is always
NP-complete [15].

– Unlike the centralized approach of BRP, BRPS relies on fully-distributed
multi-agent technologies, which brings several advantages:

– preservation of the agents’ privacy: BRPS does not depend on a cen-
tralized planning entity with access to all the problem information. Guar-
anteeing the agents’ privacy is critical in a context where agents are self-
interested. Hence, BRPS is a more realistic non-cooperative MAP approach
than BRP.

– self-sufficiency: BRPS does not require an external input of a conflict-
free joint plan. BRP, in contrast, must be initially fed with a conflict-free
plan to run the best-response dynamics. Moreover, given the cooperative
nature of this plan, the strategic behavior of the agents is not adequately
reflected and agents are restricted to improve their plans on the basis of
this conflict-free plan. However, in BRPS, agents compute a solution from
scratch, calculating progressively an equilibrium solution that meets their
interests.

– non-cooperative behavior: in BRPS synergies among the agents’ plans
are not allowed. This ensures a non-cooperative behavior because agents
cannot use the effects of the others’ plans to achieve their own goals. Al-
lowing synergies, as in BRP, yields a dependency between the agents’ plans
which must be maintained throughout in order to avoid conflicts. This ex-
ceedingly limits the strategic behavior of the agents as it is against the
self-interested nature of the agents.

– Despite the use of complex multi-agent machinery, the better-response dynam-
ics of our approach have been heavily optimized. As a result, BRPS scales up
notably better than BRP, yielding significantly lower computation times.

Despite its superior performance against BRP, the results prove that BRPS
is a costly procedure, which limits its applicability to tasks with a relatively low
number of agents. Therefore, as future work, we intend to work on the optimization
of the algorithms in order to improve the scalability of BRPS.

A Better-Response Strategy for Self-Interested Planning Agents 31

References

1. Aghighi, M., Bckstrm, C.: A multi-parameter complexity analysis of cost-optimal and
net-benefit planning (2016)

2. Bercher, P., Mattmüller, R.: A planning graph heuristic for forward-chaining adversarial
planning. In: ECAI, vol. 8, pp. 921–922 (2008)

3. Brafman, R.I., Domshlak, C., Engel, Y., Tennenholtz, M.: Planning games. In: IJCAI
2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp.
73–78 (2009)

4. Bylander, T.: The computational complexity of propositional strips planning. Artificial
Intelligence 69(1), 165–204 (1994)

5. Chen, X., Deng, X.: Settling the complexity of two-player nash equilibrium. In: Foun-
dations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pp.
261–272. IEEE (2006)

6. Chien, S., Sinclair, A.: Convergence to approximate nash equilibria in congestion games.
Games and Economic Behavior 71(2), 315–327 (2011)

7. de Cote, E.M., Chapman, A., Sykulski, A.M., Jennings, N.: Automated planning in re-
peated adversarial games. In: 26th Conference on Uncertainty in Artificial Intelligence
(UAI 2010), pp. 376–383 (2010)

8. Dunne, P.E., Kraus, S., Manisterski, E., Wooldridge, M.: Solving coalitional resource
games. Artificial Intelligence 174(1), 20–50 (2010)

9. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In:
Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC
’04, pp. 604–612 (2004)

10. Friedman, J.W., Mezzetti, C.: Learning in games by random sampling. Journal of Eco-
nomic Theory 98(1), 55–84 (2001)

11. Ghallab, M., Nau, D., Traverso, P.: Automated planning: theory & practice. Elsevier
(2004)

12. Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: Proceedings of
the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pp.
142–154 (2005)

13. Hadad, M., Kraus, S., Hartman, I.B.A., Rosenfeld, A.: Group planning with time con-
straints. Annals of Mathematics and Artificial Intelligence 69(3), 243–291 (2013)

14. Hart, S., Mansour, Y.: How long to equilibrium? the communication complexity of uncou-
pled equilibrium procedures. Games and Economic Behavior 69(1), 107–126 (2010)

15. Helmert, M.: Complexity results for standard benchmark domains in planning. Artificial
Intelligence 143(2), 219–262 (2003)

16. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence Re-
search 26(1), 191–246 (2006)

17. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldrige, M., Sierra, C.: Automated
negotiation : prospects, methods and challenges. Group Decision and Negotiation 10(2),
199–215 (2001)

18. Johnson, D.S., Papadimtriou, C.H., Yannakakis, M.: How easy is local search? Journal of
Computer and System Sciences 37(1), 79–100 (1988)

19. Jonsson, A., Rovatsos, M.: Scaling up multiagent planning: A best-response approach. In:
Proceedings of the 21st International Conference on Automated Planning and Scheduling,
ICAPS (2011)

20. Jordán, J., Onaind́ıa, E.: Game-theoretic Approach for Non-Cooperative Planning. In:
29th AAAI Conference on Artificial Intelligence (AAAI-15), pp. 1357–1363 (2015)

21. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL: The planning domain definition language (1998)

22. Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Eco-
nomic Behavior 13(1), 111–124 (1996)

23. Monderer, D., Shapley, L.S.: Potential games. Games and economic behavior 14(1), 124–
143 (1996)

24. Nigro, N., Welch, D., Peace, J.: Strategic planning to implement publicly available ev
charching stations: a guide for business and policy makers. Tech. rep., Center for Climate
and Energy Solutions (2015)

25. Nisan, N., Ronen, A.: Computationally feasible vcg mechanisms. Journal of Artificial
Intelligence Research 29(1), 19–47 (2007)

32 Jaume Jordán et al.

26. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cam-
bridge University Press, New York, NY, USA (2007)

27. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and system Sciences 48(3), 498–532 (1994)

28. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research 39(1), 127–177 (2010)

29. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International
Journal of Game Theory 2(1), 65–67 (1973)

30. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press (2009)

31. Torreño, A., Onaindia, E., Sapena, Ó.: A flexible coupling approach to multi-agent plan-
ning under incomplete information. Knowledge and Information Systems 38(1), 141–178
(2014)

32. Torreño, A., Onaindia, E., Sapena, Ó.: FMAP: Distributed cooperative multi-agent plan-
ning. Applied Intelligence 41(2), 606–626 (2014)

33. Torreño, A., Sapena, Ó., Onaindia, E.: Global heuristics for distributed cooperative multi-
agent planning. In: ICAPS 2015. 25th International Conference on Automated Planning
and Scheduling, pp. 225–233. AAAI Press (2015)

34. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton
University Press (2007)

35. de Weerdt, M., Bos, A., Tonino, H., Witteveen, C.: A resource logic for multi-agent plan
merging. Annals of Mathematics and Artificial Intelligence 37(1), 93–130 (2003)

36. Wishart, J.: Utility demand charges and electric vehicle supply equipment (2013)
37. Wooldridge, M., Endriss, U., Kraus, S., Lang, J.: Incentive engineering for boolean games.

Artificial Intelligence 195, 418–439 (2013)

