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Abstract

As the popularity and the number of Unmanned Aerial Vehicles (UAVs) in-

creases, new protocols are needed to coordinate UAVs when flying autonomously,

and to avoid that these UAVs collide with each other. Directly testing such

novel protocols on real UAVs is a complex procedure that requires investing

much time, money and research effort. Hence, it becomes necessary to have the

possibility to first test different solutions using simulation. Unfortunately, exist-

ing tools present significant limitations: some of them only simulate accurately

the flight behavior of one UAV, while some other simulators can manage several

UAVs simultaneously, but not in real-time, thus loosing accuracy regarding the

mobility pattern of the UAV. In this work we address such problem by intro-

ducing ArduSim, a novel simulator that allows controlling in soft real-time

the flight and communications of multiple UAVs, being the developed protocols

directly portable to real devices. The contributions of this work include: (i)

the ArduSim simulation platform, which allows realistic simulation and control

of multiple UAVs simultaneously, offering functionalities not provided by exist-

ing alternatives; (ii) a model for the WiFi communications link between UAVs,

based on real experiments, and that is integrated into ArduSim itself; and (iii)
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a thorough study of the scalability performance of our simulator.

Keywords: unmanned aerial vehicles, multicopters, real-time simulation,

MAVLink, performance evaluation

1. Introduction

Unmanned Aerial Vehicles (UAVs), colloquially known as drones, are flying

devices able to perform programmed flights or being remotely controlled. During

the past few years they have gained high relevance thanks to their capabilities

in terms of performing a wide range of tasks. For instance, planned missions

can be defined to supervise farmlands, deliver packages to remote locations,

or contributing to create delay-tolerant networks in the scope of Smart Cities

[1]. Moreover, by adopting adequate algorithms, it is possible to develop new

routing protocols [2], control the flight of a group of UAVs acting as a swarm [3],

or dynamically create an aerial network infrastructure in a dynamic, on-demand

fashion [4].

These new applications demand for the establishment of communication pro-

tocols between UAVs to avoid collisions when they are in close proximity, and

to coordinate them when performing complex tasks, such as those undertaken

by UAV swarms.

Experimenting with UAV-based networking in order to develop and validate

new protocols presents several restrictions including: (i) pilots should meet

the regulation requirements of each country, (ii) weather conditions should be

favorable, (iii) battery lifetime is quite limited, and (iv) certain applications

require testing with a high number of UAVs simultaneously. For instance, Lee

et al. [5] analyze a new routing protocol between UAVs and a Ground Control

System (GCS) using up to six UAVs simultaneously, while Y. Chai et al. [6]

test a UAV formation protocol with up to six virtual UAVs.

In general, the approach adopted by most researchers relies on simulation.

However, simulations should be as realistic as possible, that is, they should

account for the physical properties and flight behavior of the aerial vehicle, and
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they should also integrate a model for wireless communications between UAVs

that resembles real-life behavior. In addition, it is important that the simulation

environment is able to manage several UAVs simultaneously, and that the code

developed is compatible with existing flight controllers, thereby simplifying the

process of porting the developed protocols to real UAVs, and completing the

development cycle.

In this paper we detail and validate our proposed ArduSim platform, which

allows us to simultaneously simulate up to 256 multicopters in a realistic manner,

while also allowing to develop and validate communication protocols for inter-

UAV coordination in the scope of Flying ad-hoc networks (FANETs) without

resorting to real UAVs. ArduSim allows saving time and money, and it also

avoids the risks inherent to field tests.

In ArduSim, the communication with virtual UAVs relies on the MAVLink

protocol [7], a de facto standard for communicating with the flight controller

of a real UAV. This way we are able to simplify the process of bringing the

implemented protocols to real devices. In fact, ArduSim has been designed to

directly allow porting the developed protocols to real UAVs merely by modifying

a runtime parameter, as detailed in section 3.4.

ArduSim includes an experimental model of the communications link be-

tween multicopters (drone-to-drone communcation, or D2D), without the inter-

vention of a GCS, which has been obtained based on experimentation using real

multicopters, and it accounts for packet losses occurring during transmission.

The wireless communications technology chosen is WiFi, as it offers plenty of

bandwidth, has an acceptable communications range, and is widely available

and adopted. Specifically, the model proposed for the communications link is

based on the IEEE 802.11a standard (5 GHz band), and it has been derived

from experimental results using actual UAVs based on the strategy defined in

[8]. Regarding this frequency band choice, it is based on the findings of our

previous work [9]. This model has a computational cost that is significantly low

compared to the one used in traditional network simulators by being simplified

to a polynomial equation, thus requiring fewer computational resources than
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the Friis equation, or than models like Okumura and Nakagami [10], without

sacrificing accuracy. Our simulation model also accounts for the medium occu-

pancy (carrier sensing and collision detection) in the communication between

UAVs, as detailed in section 3.3.

ArduSim is based on the Software In The Loop (SITL) simulator [11], which

is able to simulate with great accuracy different types of UAVs. SITL is also

open source, multiplatform, and it offers direct communications with the simu-

lated flight controller using a TCP connection. In addition to the UAVs physical

characteristics, it is also able to simulate the presence of wind. ArduSim was

developed so that each SITL instance runs as an independent process. So, Ar-

duSim created a high-level logic layer where as many SITL instances as required

are launched for each experiment.

The contributions of this work are the following:

• ArduSim, an open platform offering realistic and near real-time simula-

tion of UAVs through a direct MAVLink-based connection. In addition,

a detailed graphical interface and extensive logging features have been

developed.

• A realistic communications model based on experimental data, obtained

with real UAVs using the IEEE 802.11a protocol.

• A thorough study of the scalability performance of our simulator.

The remainder of this paper is organized as follows: in the following sec-

tion we present the most relevant works in the field of UAV swarm simulation.

In section 3 we explain the internal structure of the simulator, we provide im-

plementation details concerning the mechanism used to control virtual UAVs,

we justify the wireless link model used in the simulator, and we explain how

to use the simulator, and how to deploy the developed protocol in real UAVs.

Then, section 4 includes a thorough validation of the simulator. Lastly, section

5 concludes the paper and refers to future works.
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2. Related Work

Recently, UAV simulation has become a hot topic, especially when aiming

at developing swarm-based solutions. In [12] we can find a list of existing flight

simulators. Several of them mimic with considerable accuracy the characteris-

tics and physical properties of the UAV, although (i) their code is proprietary,

(ii) they are only compatible with a few platforms, and (iii) they only allow

controlling a single UAV at a time, thereby failing to offer inter-UAV commu-

nications support. On the other hand, generic network simulators like ns-2,

ns-3, and OMNeT++ [13, 14] allow simulating with great accuracy the com-

munications link, but they are unable to simulate physical UAV properties, as

well as the mobility between UAVs, in a realistic manner. Ben-Asher et al.

[15] created IFAS, a network simulator aimed to ad-hoc networks, although it is

only oriented to develop routing protocols, failing to provide real-time network

simulation.

Other authors have addressed the simulation of multiple UAVs. An example

is the work of Richard Garcia et al. [16] where they introduce a simulator based

on X-Plane that is able to emulate up to 10 planes or helicopters; however,

differently from ours, their solution is not oriented to multicopters. Moreover,

their solution requires a PC for each simulated UAV, whereas our solution is

able to simulate many more UAVs in a single machine. In [17], J. Holt et al.

develop a symbiotic simulation architecture, although it is exclusively focused

on the development and analysis of collision avoidance protocols.

UAVSim [18] is focused on securing the communications, and runs over

OMNeT++. UAVSim works by extending OMNeT++, introducing a mobility

model based on the properties defined for a specific UAV model which allows

updating each UAV’s route based on the interactions with other neighboring

UAVs.

Simbeeotic [19] is able to simulate with great accuracy a swarm of UAVs

using JBullet, but it relies on its own language to control these virtual UAVs,

which difficults bringing these protocols to real-world devices. UB-ANC [20]
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Figure 1: AEOTURNOS pilot interface, UAV, and communications network simulation tools
coupling architecture.

also simulates a set of UAVs, but it fails to model the communications channel,

and it does not include a graphical interface to allow analyzing UAV mobility,

meaning that all the information analysis depends on interpreting log files and

third-party applications.

We can also find approaches like AETOURNOS [21], based on MATLAB,

that attempt to combine, on the long term, the simulation of a custom mul-

ticopter model in real time, or even real UAVs (see Figure 1), with simulated

communications using OMNeT++. Its initial development is limited to the use

of TCP, and authors fail to evaluate the temporal mismatch between real-time

UAV simulation and simulation-time communications between UAVs.

In this work we present ArduSim, a solution where mobility and the com-

munications between many UAVs are simulated in real time, and protocols are

directly portable to real devices, thereby skipping the problems detected in the

simulators described above.
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3. ArduSim Design and Implementation

ArduSim1 was developed in Java, and it has a modular structure, that is,

the graphical interface, the communication with the virtual UAVs and between

them, and the usability of the simulator itself, are all implemented on indepen-

dent packages. This eases the implementation of new inter-UAV communication

protocols, while avoiding having to learn all the details associated to communi-

cation with virtual UAVs using the MAVLink protocol.

3.1. Simulation Architecture

To simulate a great number of UAVs simultaneously, we have used the SITL

application as a basic development module. SITL contains control code re-

sembling a real UAV, simulating its physical and flying properties with great

accuracy. A SITL instance is executed for each virtual UAV, and it

runs together with its physical engine on a single process. The main

limitation of SITL is that it only simulates a single UAV, being thus inadequate

to develop communication protocols between UAVs.

Figure 2 shows the proposed simulation platform, which relies on a multi-

agent simulation architecture that implements a high-level control logic above

SITL itself. ArduSim allows configuring UAVs and starting experiments di-

rectly from its graphical interface (GUIControl). In addition, it includes the

simulation of packet broadcasting between UAVs (Simulated broadcast), and

the detection of possible collisions (UAV Collision detector). The later has

been solved using a thread that periodically checks if the simulated UAVs are

close enough to assert that a collision has happened, based on the information

provided by the virtual UAVs.

Each virtual UAV is composed of an agent in charge of controlling the UAV

behaviour, and the different threads required for the protocol being tested.

The communication between UAVs requires a minimum of two threads, one for

sending data packets (Listener), and another one for their reception (Talker).

1https://bitbucket.org/frafabco/ardusim
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Figure 2: ArduSim internal architecture.

Moreover, it can have an additional thread (Protocol logic) to command the

UAV taking into account the logic of the protocol under development, and the

messages received by other surrounding UAVs.

An ArduSim agent includes a SITL instance, and a thread (Controller) in

charge of sending commands to the multicopter, and of receiving the information

that it generates. Such communications rely on the MAVLink protocol (see

section 3.2). When running ArduSim on a real UAV it becomes a controller

agent, as explained in detail in section 3.4.

SITL uses an 8-bit identifier for each UAV, meaning that the simulation is

limited to a maximum of 256 UAVs.

3.2. Controlling multicopters

The Controller thread transmits control messages in the MAVLink format

via TCP to a SITL instance. Simultaneously, it receives and processes the

answers to the given instructions, and the information messages provided by

the virtual flight controller. This information (e.g. current position, speed,

etc.) can be used by the protocol being developed in order to achieve the

desired functionality. In real UAVs, such communications rely on a serial port
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Table 1: Control commands as shown in Figure 3.

Simple CMD commands
setParam Modifies an UAV parameter.
getParam Retrieves an UAV parameter value.
setMode Switches to another UAV flight mode.

armEngines Allows arming the engines before takeoff.
doTakeOff Takes off until reaching a specific height (m).
setSpeed Changes the flight speed (m/s).

setCurrentWP Indicates the waypoint where to move to.
moveUAV Moves the UAV to specific GPS coordinates.

clearMission Eliminates the current mission.
Throttle on command
setThrottle Stabilizes the UAV height before stopping it.

Send wp list command
sendWPList Loads the specified mission on the UAV.

Get wp list command
getWPList Retrieves details about the current mission.

connection towards the flight controller (see section 3.4).

3.2.1. ArduSim-to-UAV communications API

To simplify the implementation of UAV coordination protocols, we developed

an API including the set of commands shown in table 1.

The commands are grouped into different categories according to the type of

message that is being transmitted between the simulator and the virtual flight

controller, as detailed in section 3.2.2.

Regarding the implemented set of commands, several clarifications are due.

First, the flight mode used by the flight controller is implementation-dependant,

meaning that the different flight modes used should be tested when porting any

protocol to a real UAV. Second, if more than 15 seconds pass between the engine

arming and the takeoff processes, the flight controller will disarm the UAV for

security reasons. Third and last, to move an UAV to a specific set of coordinates,

it must previously be in the guided flight mode, as required by the MAVLink

protocol.

The set of commands defined make the communications with the UAV trans-
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Figure 3: MAVLink communications finite state machine.

parent to the developer, and they return a boolean value to indicate whether

execution was successful or not, thereby simplifying the handling of communi-

cation errors at a high level. At low level, they are in charge of complying with

the communication protocols defined in the MAVLink standard.

3.2.2. MAVLink communications implementation

The finite state machine depicted in Figure 3 shows all the communications

taking place between the Controller thread and the virtual flight controller. It

is in fact a simplified version of the actual state machine, which has a total of

36 states, and that takes into account all the commands implemented.

Each time a data packet is received from the flight controller, the simulator

checks its current state, and analyzes whether it should take any action. If the

state is OK, then no command has to be executed. Otherwise, it means that

a command was issued, or that some message sent from the flight controller

requires a reply. In addition to the answers to the different commands, the
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simulator constantly receives a great amount of MAVLink messages with infor-

mation about the actual situation of the UAV. Among others, it receives data

regarding the position, speed, attitude, and flight mode.

Concerning the implemented functions (see table 1), there are four types of

interaction between the simulator and the flight controller of a virtual UAV, as

shown in Figure 3:

• Simple CMD. Adopted by the overwhelming majority of commands. A

command is issued, and the flight controller must return an ACK. When

this ACK is received, the interaction ends.

• Throttle on. Used to take control of the flight altitude during a flight. The

interaction ends just after the command is issued, and no ACK is required.

This command simulates the presence of a remote control when none is

controlling the UAV, i.e., when the protocol under development does not

require the intervention of a pilot. This command must be used when the

UAV leaves the auto flight mode, as the flight controller considers that the

communication with the remote control has been lost, causing the UAV

to perform an emergency landing.

• Send wp list. Required to send a planned mission to the UAV. First we

submit the total number of waypoints associated to the mission, and the

controller reacts by requesting, one by one, the different waypoints; the

thread will then submit them sequentially until the flight controller returns

an ACK to confirm that all waypoints have been successfully received.

• Get wp list. Employed to recover a mission stored in the UAV. It starts by

requesting the mission. The controller returns a message to indicate the

number of waypoints conforming the mission. If the UAV has a mission

stored, that is, if the number of waypoints is not null, the thread will

request them sequentially until all are received; at that time, an ACK is

sent back to the controller.
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3.3. UAV-to-UAV communications

Currently, communications between real UAVs typically relies on broadcast-

ing using UDP. Since a wireless link is created, the simulator should take into

account the signal range in order to determine whether or not a packet arrives

to the neighboring UAVs. This means that a realistic communications model

should be adopted. Some existing simulators rely on a simple model, where

a distance threshold is used to discriminate between received and discarded

packets, while others rely on the Friis equation, or a theoretical model such as

Nakagami or Okumura, all having significant computational costs.

ArduSim includes three different channel models depending on the desired

degree of accuracy:

• Unrestricted. It uses an ideal medium where data packets always arrive

to all possible destinations (basic model).

• Fixed range. Data packets arrive to another UAV only if the distance

between them is lower than the defined threshold (simple model).

• Realistic 802.11a with 5dBi antenna. The probability that a data packet

is received by another UAV depends on the distance between UAVs ac-

cording to a model obtained from real experiments (realistic model).

Notice that the third model was obtained by studying the communications

link properties between two real multicopters during flight (wireless-enabled

UAV, model GRCQuad from Quaternium), and measuring the packet loss rate

produced on a WiFi ad-hoc network link in the 5 GHz band (channel 36, 23

dBm transmission power), based on the strategy defined in [8].

Figure 4 shows the packet loss rate (y) obtained when varying the distance

between UAVs (x). Beyond 1350 meters we consider that packet losses reach

100%, while for lower distances the following polynomial applies:

y = 5.335 · 10−7 · x2 + 3.395 · 10−5 · x (1)
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Figure 4: Packet loss vs. distance (IEEE 802.11a, 5 dBi antenna).

Overall, the simulator determines whether a data packet transmitted by an

UAV is received by each of the neighboring UAVs according to the model used,

and the inter-UAV distance.

IEEE 802.11-based networks rely on the CSMA/CA algorithm for medium

access arbitration. Thus, to make communications more realistic in the scope

of our simulator, we have implemented the carrier sensing functionality. Re-

garding the collision avoidance mechanism used in 802.11, it involves very short

waiting times (DIFS) before transmitting a data packet, which is not possible

to implement in real-time simulation without performing active waiting. This

occurs because the time slice that the system grants to each thread is larger than

this value, and so there are no guarantees that the packet will be transmitted

after that time if a passive wait is made. On the other hand, the solution is not

scalable if active waiting is performed, because each thread tries to use a CPU

core completely, preventing the simulation of more than 2 or 3 simultaneous

UAVs on standard PCs. Such limitations forced us to implement a mechanism

to detect collisions on the wireless channel, while discarding some of the collision

avoidance features of CSMA/CA. We consider that our solution offers an ade-

quate trade-off between channel behaviour accuracy and performance, meeting

real-time constraints despite CPU limitations.

The carrier sensing, the collision detection (physical level), and the reception

buffers, have been simulated together by means of two functions, the first one for
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Figure 5: Simulated broadcast model.

the packet transmission, and the second one for the packet reception process; the

data structures shared between both these functions act as reception buffers.

This way, carrier sensing is simulated when a message is sent, while collision

detection is done when it is received.

Figure 5 shows the model used to simulate packet transmission via broadcast.

The reception buffers (rec buffer) are FIFO, block the thread until a data

packet is received, and have a configurable size (163840 bytes by default). In

addition, each reception buffer is preceded by another buffer (CD buffer) used

to detect collisions on the channel.

When simulating n UAVs, each of them can simultaneously receive mes-

sages from a maximum of n − 1 UAVs (thread Talker, see Figure 2, using the

sendBroadcastMessage function), which are then inserted in the CDbuffer

and ordered according to the instant when transmission starts. If carrier sensing

is activated, the transmission does not start until the medium is available.

When a protocol being developed requests a message (thread Listener, us-

ing the receiveMessage function), it first checks if there is any message in

the reception buffer. Otherwise, collision detection is applied to the messages

available in the CD buffer, eliminating those messages that have collided, and

moving the rest to the reception buffer for its own use. This solution allows us

to detect collisions only when there is no data in the reception buffer, and not

whenever a new message is requested, thereby reducing the computational cost

considerably.

The intermediate buffer, in charge of simulating the wireless medium, allows

us to detect collisions, and it could grow indefinitely if the receiver does not re-

quest any message. Although this approach would be the ideal solution from the

collision detection mechanism perspective, it is not viable since RAM memory is

a limited resource. For this reason, the size of the CD buffer is limited to twice
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the size of the reception buffer (rec buffer). It is worth mentioning that, if col-

lision detection is not required, the intermediate buffer is deemed unnecessary.

In this case, the threads insert the messages directly into the rec buffer.

In order to determine if the medium is busy (carrier sensing), and whether

two received messages have collided (collision detection), it is necessary to de-

termine the start and end times of a message transmission taking into account

the transmission speed and the length of the frame. Regarding the transmission

speed, the communications model uses the 5 GHz band, and the transmission

is made via broadcasting, meaning that the transmission rate is 6 Mbps. The

end of the transmission is determined by also taking into account the size of

the frame, including the preamble, according to the specifications of the 802.11

protocol. In addition to the start and end times for message transmission, it is

also necessary to store the value of two variables (isChecked, isOverlapped) for

each message in order to detect collisions, as explained below.

Algorithm 1 details the message transmission process. If the communications

protocol has been deployed in real UAVs, the transmission is done directly over

UDP; otherwise, broadcast transmission is simulated. Once the transmission of

the last message has been completed, it checks if no other UAV within range

of the transmitting UAV has began a new transmission (carrier sensing). We

determine whether an UAV is within the range of the transmitter (function

isInRange) by relying on any of the communication models described at the

beginning of this section, which can be selected by the user. The transmission

consists of storing a copy of the message on the CD buffer of each UAV within

range. If the collision detection is not activated, the message is directly stored in

the reception buffer (rec buffer). If any of the two buffers is full, the message

is discarded, meaning that it is not received at that particular destination.

Every time an UAV sends a message, it stores a copy (prevSentMessage).

The instant of completion of a transmission is saved along with the message

(prevSentMessage.end), thus allowing to determine if the transmission has

finished, and if the medium is available (carrier sensing).

Algorithm 2 details the process of receiving a message. If there are no
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Algorithm 1 sendBroadcastMessage(n, message)

Require: n ∈ [0, number of UAV s] ∧message 6= ∅
if is a real UAV then
send message through UDP broadcast

else
if n.prevSentMessage 6= ∅ then
while n.prevSentMessage.end > now do

sleep 1ms
end while

end if
if carrier sensing is enabled then
while ∃i 6= n ∧ i.prevSentMessage 6= ∅ ∧ i.prevSentMessage.end >
now ∧ i.isInRange do
sleep 1ms

end while
end if
i = 0
while i < number of UAV s do
if i 6= n ∧ i.isInRange ∧ (i.prevSentMessage = ∅ ∨
i.prevSentMessage.end < now) then

if collision detection is enabled then
if ¬i.virtualQueue.isFull then
add message to i.virtualQueue

end if
else
if ¬i.queue.isFull then
add message to i.queue

end if
end if

end if
i + +

end while
n.prevSentMessage← message

end if
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messages in the reception buffer, algorithm 3 is executed to discard the messages

that have collided, moving to the rec buffer the remaining messages.

Algorithm 2 receiveMessage(n)

Require: n ∈ [0, number of UAV s]
Ensure: message 6= ∅
if is a real UAV then
message← receive through UDP

else
if collision detection is enabled then
while message = ∅ do
if n.queue.isEmpty then
if n.virtualQueue.isEmpty then
sleep 1ms

else
process algorithm 3

end if
else
message← n.queue.poll()
while m.end > now do
sleep 1ms

end while
end if

end while
else
while n.queue.isEmpty do

sleep 1ms
end while
message← n.queue.poll

end if
end if
return message

If the protocol has been deployed in real UAVs, message reception is done

via UDP; otherwise, the transmission medium is simulated.

If collision detection is not enabled, it waits until there is some message

available in the reception buffer whose transmission has been completed, and

it is delivered. Otherwise, if there are no messages available, the buffer that

simulates the medium is analyzed. If this buffer does not contain messages

either, it is necessary to wait for a message to arrive; otherwise, if it contains

some message(s), the collision detection algorithm is executed.
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Algorithm 3 packetCollisionDetection(n)

Require: n ∈ [0, number of UAV s]
iterator ← n.virtualQueue
previous← iterator.next
previous.isChecked← true
while previous.end > now do
sleep 1ms

end while
if previous.end > endMax then
endMax← previous.end

end if
while iterator.hasNext do

following ← iterator.next
following.isChecked← true
if following.start < endMax then
previous.isOverlapped
following.isOverlapped

end if
if following.end > now then
following.isChecked← false
if following.isOverlapped then

previous.isChecked← false
end if
break

else
if following.end > endMax then
endMax← following.end

end if
previous← following

end if
end while
iterator ← n.virtualQueue
while iterator.hasNext do
message← iterator.next
if ¬message.isChecked then
break

else
iterator.remove message
if ¬message.isOverlapped ∧ ¬n.queue.isFull then
add message to n.queue

end if
end if

end while
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The collision detection process has a computational cost O(2n) on the num-

ber of received messages, O(2n2) on the number of UAVs, and it consists of two

steps. In the first one, the messages, already sorted according to the transmis-

sion start time (start), are marked as analyzed (isChecked), and among them,

those that have collided with other messages are also identified (isOverlapped).

A second step is used to eliminate overlapping messages, and to transfer the

remaining marked ones to the reception buffer, discarding the message in case

this buffer is already full.

The first step of the analysis process is stopped when the last message is

analyzed, or when a message is found whose transmission has not yet been

completed. The second run stops after the last message, or when an unchecked

message is found (isChecked = false), that is, a message not found during the

first run. This solution takes into account the possibility of inserting a message

among existing ones that have already been analyzed during the first run, since

insertions are made concurrently. If the last message analyzed has collided with

the second-last one, both are preserved for the next analysis to account for those

cases when a message that collides with one of them arrives later on.

3.4. Protocol Deployment on Real UAVs

The ArduSim simulator has been designed to facilitate the deployment of the

protocols implemented in real UAVs. The application was developed using Java,

and it communicates with virtual UAVs via TCP, simulating the communication

among UAVs through buffers that are shared by different threads (Figure 2).

However, when the application is executed in a real UAV (Figure 6), the graph-

ical interface is not shown, the communication with the virtual UAV is replaced

by a serial port connection, and the wireless communication between UAVs relies

on the broadcasting of UDP datagrams. All the simulation-dependent software

elements are disabled merely by changing an execution parameter, which makes

the deployment of a newly developed protocol somewhat trivial.

To be able to deploy new protocols, it becomes necessary to port the Java ap-

plication to a Linux or Windows R©-based device, with Java 7 pre-installed, along
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Figure 6: ArduSim architecture on real UAVs.

with the RXTX native library [22] for accessing the serial port, and a physical

serial port connection with one of the telemetry ports of the flight controller,

in addition to following the instructions provided with ArduSim. Preliminary

tests have been performed with a Raspberry Pi 3 having its ttyAMA0 serial

port connected to the Telem2 telemetry port of the Pixhawk controller embed-

ded in our GRCQuad multicopter, allowing us to check the proper deployment

of a test flight coordination protocol.

3.5. ArduSim Graphical User Interface

ArduSim is oriented to the development of protocols applicable to UAVs per-

forming planned missions, or conforming an UAV swarm. As an example, Fig-

ure 7 shows ten UAVs performing a mission, represented as letters ’GRCTFM-

NPSU’.

On the upper left corner of the window (1) we can find the application log. It

details the functioning of the simulator, as well as the results of the commands

sent to the UAVs.

On the right (2) we have the controls that allow the user to manage the

application, to start the test, or to close ArduSim. While running a swarm

experiment, it also shows an additional button to perform the setup step. In
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Figure 7: ArduSim main window: experiment in progress.

addition, it provides general information about the simulator itself.

Most of the window space (3) is used to visualize UAV flights during tests.

On the upper right corner we show the wind direction (if defined for the test).

The discontinuous lines represent the mission assigned to each UAV. On each

UAV, we indicate its identifier and its altitude. Before starting, each UAV loads

the mission to be completed, and simulated wind is also applied. A thick stroke

represents the real path followed by each UAV. If the UAVs collision detection

feature is enabled, a red circle centered on each UAV is drawn. When an UAV

invades that circle, we consider that a collision between UAVs has occurred.

In addition to the main window, an additional dialog window is also opened

to show the position, the speed, and the flight mode according to the MAVLink

protocol, as well as state information relative to the collision-avoidance protocol

during the experiment, if needed.

The dialog box of Figure 8 is shown when ArduSim is started. It allows
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Figure 8: Initial configuration dialog.

the user to specify several simulation parameters, including the mission to be

followed by the UAV, the flight speed, some performance parameters, the syn-

chronization protocol to be tested, the wireless model to be used and some of

its properties, whether or not to detect when collisions happen, in addition to

simulated wind speed and orientation.

When an experiment ends, the user decides whether to save the results ob-

tained or not. A dialog is shown (see Figure 9) with the configuration and

general results of the experiment, which includes detailed statistics of the com-

munications among the virtual UAVs, such as the total number of data packets

sent, how many had to wait for the media to become available (carrier sensing),

or were discarded due to collisions, among others. Several independent files per

UAV are also saved with additional information, such as the actual path followed

by each UAV during the experiment.
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Figure 9: Results dialog.

Table 2: Hardware used for experiments.

i7PC i5PC
Processor Intel Core i7-7700 Intel Core i5-2500K

Speed (GHz) 3.6 (max 4.2) 3.3 (max 3.7)
Cores 4 4

Hyper-Threading yes no
Cache L1-2-3 4x64KB-256KB-8MB 4x64KB-256KB-6MB

RAM 32GB DDR4 2133MHz 8GB DDR3 1333 MHz
HHDD 480GB SSD 2TB 7200 rpm
GPU NVIDIA GeForce 8400 HD Intel 3000

Monitor 1920x1080 & 1280x1024 1280x1024
OS Ubuntu 16.10 Ubuntu 16.10

Java RE SE 8 SE 8

4. ArduSim Validation

Once the ArduSim platform has been introduced, we now proceed to val-

idate its correctness and scalability. To this end, we performed a wide set of

experiments by having a variable number of UAVs (i.e., from 1 to 256 UAVs)

following a straight path from origin to destination during 5 minutes, being

that all UAVs are overlapped, and collision detection is disabled. The flight

altitude was set to 5 meters, the speed was of 10 m/s, and the default values of

the simulator parameters were used. Experiments were made on two different

computers (see table 2) to evaluate the influence of the hardware used on the

ArduSim performance.

The target metrics were RAM, hard disk, and CPU usage, as well as the
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time lag between the UAVs of each experiment with respect to a reference UAV

in a single-UAV experiment. This last measurement allows us to evaluate how

an increase in the resource consumption levels affects the real-time performance

of our tests, and therefore the scalability level supported. Notice that, when

resource consumption is very high, execution is delayed with respect to the

situation when there are sufficient resources, and threads do not have to wait

for the scheduler to let them access CPU resources.

Regarding functionality, the application has shown to be fully stable after

1500 executions. The only problems detected occurred when more than 150

simultaneous UAVs where tested in the i5PC, which is an issue related to the

excessive resource usage, as detailed below.

Hard disk I/O operations slightly affect CPU usage when simulating a high

number of UAVs (more than 100); this is due to log maintenance tasks performed

by the simulation environment managed by SITL. ArduSim has been designed

with this issue in mind, and thus provides two non-exclusive options. First, you

can deactivate the SITL log, so disk usage loses relevance, or it can be kept

active while running the simulator in root/administrator mode. In the latter

case, I/O operations are performed on a virtual disk instead, which is faster than

in the i7PC’s SSD hard drive, and certainly much faster than in the i5PC’s

mechanical hard drive. In order to compare the results obtained with both PCs,

all experiments were performed with the log turned off, and in root mode.

The SITL executable requires a very small amount of RAM, since it is a

compilation of a controller firmware, and so it is designed to be executed with

very few resources. For this reason, the RAM usage of the simulator is very

small, even when simulating 256 UAVs simultaneously. The only circumstance

where the simulator consumes a significant amount of RAM is when it is run as

root, and a RAM drive is used to store the SITL logs. In this case, a maximum

of 50 MiB per UAV is used in the RAM drive, which represents a global memory

usage of 12800 MiB, and a minimum amount of recommended system memory

of 16 GiB to simulate up to 256 UAVs simultaneously. However, with the SITL

log disabled, and even when using the RAM drive, its size is reduced to 1280
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MiB, and so the recommended amount of memory to run ArduSim is reduced

to only 6 GiB. If the execution is not performed as root, and therefore a RAM

drive is not used, the memory consumption is further reduced to 1400 MiB both

for the SITL instances and the simulator itself, and so a minimum of 4 GiB of

RAM suffices.

4.1. CPU utilization

The CPU load is a critical factor affecting the simulator’s scalability since the

execution of each virtual UAV will be slowed down if the CPU cannot manage,

in real time, all the necessary calculations. We have carried out experiments

for different numbers of UAVs while varying the CPU usage associated to the

graphical environment and the computer used, and introducing as a synthetic

load the transmission of coordination information between the UAVs. Each

experiment, lasting 5 minutes, was repeated three times measuring CPU usage

once a second, and we then took the average value.

4.1.1. Rendering quality overhead

Figure 10 shows the CPU usage with different numbers of UAVs, and when

using four different rendering qualities in the i7PC used for testing:

• RQ 1. Lowest level with maximum performance.

• RQ 2. Fonts smoothed. Font antialiasing enabled.

• RQ 3. Lines smoothed. Font antialiasing enabled, and lines with sub-pixel

accuracy rendering.

• RQ 4. Same as RQ3, and alpha blending optimized for quality.

We can see that only the use of line rendering with sub-pixel accuracy (i.e.,

RQ3 and RQ4) is significant in terms of performance. In addition, in the RQ1

and RQ2 levels, we find that the processor’s energy saving features apparently

increase the CPU usage when the load is low, that is, with less than 200 UAVs,

moving away from the theoretical line that would connect CPU usage with a
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Figure 10: Rendering quality overhead (i7PC).

single UAV and with 256 UAVs. This effect takes place since the processor goes

into inactivity for short periods of time, and the execution of different threads

overlaps in time. This effect is also observed in Figure 13, when additional CPU

load is added by enabling inter-UAV communications. The maximum load with

256 UAVs is approximately 500%, when the maximum possible value is 800%

(4 cores with Hyper-Threading can run 8 threads simultaneously).

Figure 11 shows the evolution of CPU usage during the experiment with 25

and 200 UAVs. In Figure 11a, the values oscillate significantly and randomly,

since the processor is far from saturated, and there are even time intervals during

which the CPU is inactive. However, in Figure 11b, it is observed that, when

line drawing with sub-pixel accuracy is activated, the CPU load increases and

causes threads to start having to wait for execution, a situation that causes

CPU usage to become more uniform.

Figure 12 shows the CPU usage with the 4 rendering quality levels, in this

case for the i5PC. It confirms that only two sets of rendering quality combi-

nations are significant, differentiated by the use of line drawing with subpixel

accuracy (RQ1/RQ2 and RQ3/RQ4), although the difference between both lev-

els is very small. In this case, the system is not capable of simulating more
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(a) Results running 25 UAVs.
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(b) Results running 200 UAVs.

Figure 11: CPU utilization when varying the rendering quality overhead (i7PC).
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Figure 12: Rendering quality overhead (i5PC).

than 175 UAVs without destabilizing, since the CPU usage reaches 400 %, the

maximum possible one supported (4 cores can run 4 threads simultaneously). In

addition, the time lag introduced when simulating 175 UAVs is excessive, which

is why later on, in Figure 17, only its magnitude is analyzed with up to 150

UAVs. Notice that, since the CPU is less powerful, it shows a linear resource

consumption increase with the number of UAVs, and it does not show the same

effects detected in the i7 platform, associated to energy saving mechanisms.

4.1.2. Communications overhead

ArduSim has been designed to develop and validate communication protocols

between UAVs. Thus, the CPU usage analysis must also take into account the

load that communications between UAVs introduces. For this purpose, two

experiments have been designed on the i7PC by varying the network load. In

both cases, all the simulated UAVs transmit data packets at a constant rate, and

follow an overlapping trajectory, meaning that nearly all the packets reach all the

UAVs, a situation that we consider the most unfavorable for our analysis, since it

supposes a higher CPU load. The first experiment was done with a sending rate

of 5 packets per second, while the second one was done with a rate of 10 packets

28



50 100 150 200 250

Number of UAVs

0

100

200

300

400

500

600

700

800

C
P

U
 u

s
a
g
e
 e

q
u
iv

a
le

n
t 
to

 o
n
e
 c

o
re

 (
%

)

network off

5 packets per second

10 packets per second

Figure 13: UAV-to-UAV communications overhead (i7PC).

per second. In both cases, the transmitted packet size is 705 bytes. Figure 13

shows that CPU usage grows faster with up to 40 UAVs. With more UAVs, the

load causes the energy saving mechanisms of the i7 PC to lose significance, and

the curves adjust better to the theoretical line connecting the results for 1 and

256 UAVs. However, the load introduced by the communications prevents the

graph from being straight, which is consistent with the computational cost of

sending and receiving data packets for the synthetic load used (O(2n2), being

n the number of UAVs).

4.2. Real-time constraints evaluation

Merely checking that the simulator is stable, and that the processor does

not become saturated, is not enough to state that ArduSim correctly emulates

the UAV flight in real time. In fact, a very high or irregular CPU usage could

introduce a global delay in the execution of the emulated UAVs, or even a dif-

ferential delay between them, thereby affecting the scalability of the simulator.

Therefore, the maximum number of UAVs that can run simultaneously on a

given computer will depend on these factors.

To analyze the scalability of ArduSim, experiments were carried out on both
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computers, i7PC and i5PC, with the rendering quality set to RQ1, with a

different number of UAVs, and measuring the time lag for each of the simulated

UAVs regarding the simulation of a single UAV used as reference. In other

words, considering the real-time performance of a single-UAV simulation, we

analyze if the UAVs suffer any kind of lag among them and in regard to that

single-UAV simulation. Each experiment was repeated 7 times, measuring the

lag error every 5 meters throughout the followed path, and we assessed the

individual results of each repetition, or the overall set of results as a single group,

depending on the analysis carried out. All the experiments were performed

with the UAVs following a straight path trajectory from origin to destination

for 5 minutes. All trajectories are overlapped, and UAV collision detection is

deactivated. The flight altitude was set to 5 meters, and their speed was of 10

m/s; the default values of the simulator were used for the remaining parameters.

Regarding the single-UAV experiment used as reference, it was selected

among the 7 repetitions as the one located nearest to the median value.

4.2.1. Scalability analysis under the i7PC

Figure 14 shows a box-whisker plot with the lag time obtained when varying

the number of UAVs. In addition to the median lag and the distribution of the

lag values for all the simulated UAVs obtained along 7 experiments, it includes

the mean lag value. Simulating 100 or less UAVs, the measurements shown

are really close to the mean value; however, with a higher number of UAVs,

data is more scattered, and the time lag increases. Similarly to previous results

(see Figure 10), the processor’s energy-saving mechanisms introduce a significant

time lag for a number of UAVs between 150 and 225. The worst case is detected

with 200 UAVs, with an average lag value of 0.45 seconds, and a maximum lag

of 1.4 seconds. On the other hand, the dispersion of values with up to 100 UAVs

is significantly lower than the one obtained with a higher number of UAVs.

Figure 15 shows the evolution of the mean value for the time lag correspond-

ing to the 7 experiments performed with each number of UAVs. The time lag

remains significantly constant along time for up to 100 UAVs (a mere increase
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Figure 14: Time lag values of all the experiments (i7PC).

of 0.5 seconds per simulated hour), and it increases linearly with more UAVs.

As shown in Figure 14, the processor’s energy-saving mechanisms introduce a

significant time lag for a number of UAVs between 150 and 225, which makes

the slope for 200 UAVs to be actually higher than the slope for 256 UAVs. We

can conclude that the computer i7PC allows us to simulate up to 100 UAVs

while meeting soft real-time constraints.

Now, a detailed analysis of the experiment that produces the bigger time lag

in regard to the reference UAV (i.e., with 200 UAVs) is presented. Figure 16a

shows the set of time lag values obtained in the 7 experiments performed. From

that figure we find that the worst case is test number 3, with a maximum time

lag of 1.4 seconds, and a mean lag value of 0.62. Second, Figure 16b shows the

evolution of the time lag of each UAV in that test. We can see that, after an

initial warm-up period (first 700 meters), the time lag between UAVs stabilizes.

In addition, this lag is always greater than zero and it increases throughout

time, evidencing that UAVs suffer a delay with respect to the reference UAV.

Figure 16c shows the average, minimum, and maximum lag for each UAV in

that same test. Notice that UAV number 103 is the one with the highest time

lag. In addition, the average lag for each UAV varies in a very small range of 0.6
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Figure 15: Time lag over experiment progress (i7PC).

seconds. Thus, we can state that, although the simulation does not meet strict

real-time constraints, it can be considered to be correct as long as the absolute

simulation time is not relevant for the protocol under development since the

simulation delay offset associated to the different UAVs remains similar.

4.2.2. Scalability analysis under the i5PC

The previous tests have been performed on a high-end desktop computer

with very high performance. Thus, we consider adequate to complement our

analysis by also checking the time lag associated to PCs with a lower perfor-

mance. In particular, this section details the results obtained with the i5PC

used for testing.

The results in Figure 17 are limited to 150 UAVs, since with more than 175

UAVs the simulation becomes unstable, and with 175 the time lag (14 seconds)

is too high, something consistent with the results in Figure 12, where the CPU

became saturated with 175 UAVs.

In the i5PC computer the time lag remains stable over time for up to 100

UAVs (see Figure 18). There is also a temporary reduction in CPU usage

towards the end of the experiment, when the UAVs approach the last waypoint
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(b) Experiment 3 (worst case). Time lag of all the UAVs.
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Figure 16: Worst case analysis with 200 UAVs (i7PC).
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Figure 17: Time lag values of all the experiments (i5PC).

of the mission, just before landing. The initial lag has a bias deviation between

0 and 0.2 seconds because the UAVs start their flight at different instants on

each experiment. Notice that this issue does not affect the real-time execution,

and is due to control loops included in the implementation.

Similarly to the experiments made with the i7PC, we include a study of the

maximum temporal lag achieved (see Figure 19). First, in Figure 17, we can

observe that the maximum time lag is of 0.85 seconds, and it corresponds to

experiments with 150 UAVs. More specifically, it corresponds to the maximum

lag of the second experiment (see Figure 19a). Figure 19b shows that the time

lag between UAVs remains uniform throughout the test, similarly to Figure 16b.

Finally, in this case, the maximum time lag detected is associated to UAV 36

in the experiment (see Figure 19c). There is greater variability in the average

lag of each UAV due to a greater dispersion in the time lag of each UAV. This

occurs because the processor is closer to saturation compared to the situation

where the i7PC is used.
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Figure 18: Time lag over experiment progress (i5PC).

4.2.3. Communications overhead analysis

This set of experiments was carried out with a load of 5 packets per second

per UAV. This means that, with 200 UAVs, 1000 packets per second are sent,

meaning that potentially 199,000 messages reception events per second can take

place when broadcasting these packets. In such case, the associated CPU usage

becomes high, as shown in Figure 13, which can negatively affect the scalability

of the simulator, as the temporal offset of each UAV with respect to the reference

may increase.

Figure 20 shows that the measured time lag with a number of UAVs between

150 and 225 is lower than the one depicted in Figure 14. This occurs because

the processor is working at full capacity, without activating the energy saving

features referred to earlier. However, with 256 UAVs, the lag is greater; in this

case CPUs operate close to their saturation point (see Figure 13).

Similarly to previous cases, the evolution of the time lag throughout the

experiments has been studied. Figure 21 shows a peak of CPU usage towards

the end of the test, when the UAVs reach the last waypoint and reduce their

speed. It is also observed that the time lag remains stable over time with up

to 175 UAVs, increasing linearly for higher number of UAVs. These results are
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(a) Time lag values of each experiment.

(b) Experiment 2 (worst case). Time lag of all the UAVs.
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Figure 19: Worst case analysis with 150 UAVs (i5PC).
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Figure 20: Time lag values of all the experiments at a sending ratio of 5 pps (i7PC).

better than those obtained before activating communications between UAVs,

and occur because the CPUs are already working at their full capacity when

reaching 90 UAVs (see Figure 13).

Another issue to be discussed is the accuracy with which the simulation

of communications is able to detect the usage of the wireless medium (carrier

sense), as well as the collision between data packets. Table 3 shows the results

obtained when varying the number of UAVs while setting the transmission load

to the value defined above (5 packets per second per UAV). It is observed that

the results are somehow optimistic since, with 200 UAVs, 1000 packets sized

705 bytes are being transmitted at a speed of 6 Mbps (transmission time of ≈

1 ms), which should saturate the medium. Although nearly all packets have to

wait for the medium to become available, the collision rate remains lower than

expected. To explain this phenomenon, we must take into account that the CPU

of the i7PC can only run 8 threads at a time, while with 200 UAVs there are

800 threads / processes (one SITL process and three threads, Listener, Talker,

and Controller, per UAV) that are competing for CPU time, which implies that

there are 100 threads/processes that compete for being executed on a same core.

On the other hand, the time slices provided to each thread by the Linux/Ubuntu
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Figure 21: Time lag over experiment progress (i7PC, 5 pps).

Table 3: Percentage of packets that waited (carrier sense) and collided (collision detection).

25 50 75 100 125 150 175 200 225 256

CS 0.84 3.40 4.02 4.25 21.30 60.01 79.29 92.07 94.92 94.82
CD 0.08 0.06 0.10 0.13 0.56 3.20 8.69 15.09 17.52 20.29

operating system varies between 0.75 ms (sysctl sched min granularity) and 6

ms (sysctl sched latency), meaning that each thread can run about 13.3 times

per second during 0.75 ms, or, what is the same, each Talker thread can send

a packet once every 75 ms. Considering that, in the experiment performed,

the transmission time of each packet is approximately 1 ms, we find that, in

a worst-case scenario, it can only collide with packets sent by other Talker

threads that are running when these have just left the processor, or will run in

the next round. This behavior avoids that data packets collide with each other

as often as expected, producing a packet collision rate lower than what would

actually occur. Thus, this problem is inherent to the system itself, and can only

be improved by using dedicated servers with a very high number of cores.
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5. Conclusions and Future Work

The widespread adoption of UAVs is making developers face novel chal-

lenges, among which the communication between UAVs emerges as a striking

requirement when attempting to avoid collisions, or when flying UAV swarms,

among others.

In this paper we introduced ArduSim, a realistic simulator that allows op-

erating with multiple UAVs simultaneously, when performing planned missions

or when flying as a swarm. To date, no similar solution has been developed

that offers similar characteristics, including the possibility to model inter-UAV

communications using different channel models, as well as the way UAVs use the

exchanged information to interact between them, paving the way for introducing

a wide range of novel protocols. Through simulation, it becomes possible to an-

alyze packet dissemination in Delay-Tolerant Networks (DTN), to develop new

routing algorithms, or to propose new flight coordination mechanisms. Among

the many benefits, our simulator allows validating the proposed solution before-

hand, while porting that solution to real devices becomes straightforward, as

the set of commands used is the same.

In addition to the simulator itself, we also modeled the WiFi communications

link between UAVs based on real experiments performed in the 5 GHz frequency

band. In particular, we focused on the relationship between packet losses and

distance when broadcasting data. The model derived was then integrated into

the simulator as one of the wireless channel models available. To further improve

the degree of realism of our experiments, we also modelled the wireless channel

occupancy through a carrier sensing mechanism, and included the possibility of

detecting collisions of data packets.

The stability of ArduSim has been correctly validated, with 1500 different

successful executions, having the maximum allowed number of UAVs (256) in

the i7PC, and up to 175 UAVs in the i5PC. We found that any mid-range

or high-end computer is capable of simultaneously simulating a high number

of UAVs (approximately 100) in near real-time, even when considering the
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overload introduced by the communications between UAVs.

Regarding scalability, we have verified that the simulation can be per-

formed with up to 100 UAVs while meeting soft real-time constraints,

and that the delay offset between them is uniform. In addition, ArduSim is able

to run at least 150 UAVs when hard real-time is not required in a computer sim-

ilar to the i5PC, or even 225 with a high-end desktop computer (i7PC). We

have also analyzed the influence of the rendering quality on the system load.

We found that only the tracing of lines with sub-pixel quality has a significant

effect on performance. Communications have a quadratic computational cost,

so they also affect the system performance significantly. When configuring each

UAV to transmit at a rate of 5 packets per second, the load affects real-time

performance when having more than 225 UAVs in the i7PC. Also notice that,

depending on the complexity of the UAV coordination protocol being developed,

its impact on performance can also become non-negligible.

As future work we plan to extend ArduSim by integrating new communi-

cation models based on different types of antennas and wireless technologies.

We will also enable flight traces obtained with ArduSim to be exported to OM-

NeT++ to analyze in more detail the performance of wireless communications

in these environments, and thus develop a more realistic communications model.

Finally, we will perform tests on real UAVs, comparing the results with the one

obtained through simulation to assess in greater depth the degree of accuracy

achieved by ArduSim.

Acknowledgment

This work was supported by the Ministerio de Economı́a y Competitividad

for the ”Programa Estatal de Investigación, Desarrollo e Innovación Orientada

a Retos de la Sociedad, Proyecto I+D+I SMART@CARPHONE: Integración

del smartphone y el veh́ıculo para conectar conductores, sensores y entorno a

través de una arquitectura de servicios funcionales” [grant number TEC2014-

52690-R], and the Universitat Politècnica de València (UPV) under program
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