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Abstract 

 

This paper deals with the minimization of a building’s external wall thermal transmittance, with 

the aim of improving the energy efficiency of the building. The wall’s thermal transmittance must abide 

by the current legislation, but also suit the limitations of other construction parameters, mainly budget 

and thickness, but also time limit, workforce, number and thickness of the layers and availability of 

materials depending on the approach. 

The optimization is achieved formulating an Integer Linear Programming (ILP) problem 

involving the parameters mentioned above. Therefore, any available ILP solver can be run to obtain the 

best combination of the different materials and thicknesses for the layers, in order to minimize the 

thermal transmittance. This paper presents a case study of a common but representative external wall 

consisting of 6 layers, with more than 670,000 possible combinations of materials and their thicknesses. 

The study concludes with a comparison of the lowest thermal transmittance obtained for a selection of 

budget and thickness combinations for the mentioned wall. 

 

 

Keywords 

Thermal transmittance; building envelope; external wall; Integer Linear Programming; building 

process; budget. 

 

1. Introduction 

 

Norms about energy efficiency for buildings in the European Union show an important 

evolution and development since the approval of the Directive 2010/31/EU [1]. The 

European Council in March 2010 somehow started the process with a specific action plan 

for energy efficiency [2] followed by another important and decisive European Council in 

February 2011. The fact that buildings account for 40% of the EU's energy consumption 

[3] and the negative effects related with climate changes have increased people’s ecological 

awareness. A growing demand of a more sustainable and healthy indoor environment is 

described by Liu et al. [4]. Furthermore, the EU has an important triple energy target for 

2020: 1) reducing by 20% the produced greenhouse gases, 2) covering at least 20% of 

energy consumption with renewable energies and 3) improving energy efficiency by 

reducing the primary energy needs by 20% [5].  
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According to the definition given by the International Energy Agency [6], energy 

efficiency can be described as the managing and restraining of growth in energy 

consumption. A building is more energy efficient if it delivers more services for the same 

energy input, or the same services for less energy input. There are different strategies for 

the reduction of energy consumption in buildings: envelope refurbishment, building 

systems renovation or a combination of both. 

The building envelope itself can be described as the physical separator between the interior 

and exterior of a building. Components of the envelope are typically: walls, floors, roofs, 

fenestrations and doors. Each component can be categorized as opaque or transparent. The 

building envelope plays a crucial role for thermal energy transfer and noise protection and 

should always respond to the local climate. This paper focuses on external walls, which 

belong to the opaque part of the envelope and help to mitigate the energy consumption of a 

building [7]. 

 

The thermal transmittance U (Wm-2K-1) is a key magnitude in building efficiency. It 

measures the effectiveness of a building fabric (opaque part and windows) as thermal 

insulator. The thermal transmittance is given as described by McMullan [8] by Eq. (1): 

 

𝑈 =
1

1
ℎ𝑖𝑛𝑡

+ ∑
𝑒𝑖

𝜆𝑖
+

1
ℎ𝑒𝑥𝑡

𝑛
𝑖=1

                                      (1) 

 

Where 𝜆𝑖 (Wm-1K-1) and 𝑒𝑖 (m) represent the thermal conductivity and the thickness 

respectively of layer i, and 1/hext and 1/hint (m
2KW-1) represent the standard external and 

internal conductivity respectively for the air layers connected with the envelope, which 

play a crucial role. Note that the thermal transmittance is considered the inverse of the 

thermal resistance R (Wm-2K-1).  

The literature review on energy and buildings shows many articles taking into account 

the thermal transmittance of the external walls to reach different targets related with 

building energy performance. As recent articles, Ascione et al. [9,10] propose a genetic 

algorithm to obtain, among thousands of combinations, a building envelope satisfying the 

multi-objective optimization of energy performance of the building and its indoor thermal 

comfort. Mandilaras et al. [11] studied the thermal performance during one year of an 

external wall, considering alternative materials in its different layers. Guillén et al. [12] 

also study the thermal performance of several differently ventilated external walls, along a 

24h period, with the aim of, among others, reducing the cooling needs of buildings in 

summer without increasing the total mass of the façade. Eicker et al. [13] present an 

energetic and economic comparison between energy efficient refurbishment of the building 

envelope and the integration of renewable solar energy technologies for different climatic 

conditions. Ahern et al. [14] implement a statistical study on the thermal transmittance 

values of the building envelope corresponding to the 32% of the total Irish dwelling stock, 

in order to use this data for different purposes, such as energy performance certification or 

as a key input to national building energy consumption models. Finally, the paper by 

Fokaides and Papadopoulos [15] provides an exhaustive literature review on models to 

improve the energy performance of buildings. 

As far as we know, there is no work in the scientific literature trying to minimize the 

thermal transmittance of an external wall to be built, beyond the standards of the legal 

regulations, from the constructor’s point of view. The goal is to achieve a higher energy 

efficiency in the building, taking into account all restrictions involving the construction of 

that wall: budget, thickness of the wall, number of layers, available materials and 
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thicknesses for the different layers, workforce, time limits, final construction cost, etc. 

Among thousands or millions of combinations of the different materials and thicknesses 

for the different layers that make up the wall, the aim is to choose the best one to minimize 

its thermal transmittance without violating any restriction to be taken into account by the 

construction company.  

The use of U-value calculators with internal databases, even free access ones, would be 

very time consuming. They would have to be applied to each combination of layers with 

external data. Moreover, it would be necessary to check that each combination of layers 

meets the constructor restrictions. 

 

   Nomenclature 

  n        Number of layers of the wall 

  s        Total surface in m2 of the wall 

  m       Number of different materials  

  ℎ𝑖𝑛𝑡   Standard internal conductivity 

  hext     Standard external conductivity 

  𝑤𝑗      Number of different thicknesses for material j 

  𝑒𝑗𝑘      Thickness corresponding to material j with type of thickness k 

  𝑐𝑖𝑗𝑘    Cost of placing in layer i 1m2 of material j with type of thickness k 

  𝑚𝑐𝑖𝑗𝑘 Maintenance cost for a certain period of time for 1 m2 of material j with 

     thickness k and located in the layer i 

  𝑡𝑖𝑗𝑘    Time of placing in layer i 1m2 of material j with type of thickness k 

  𝑥𝑖𝑗𝑘   Decision variable whose value is 1 if layer i is made with material j and  

           thickness k, or 0 otherwise 

  𝑒𝑚𝑖𝑛   Lower bound for the thickness of the wall 

  𝑒𝑚𝑎𝑥  Upper bound for the thickness of the wall 

  mcmax Maximun maintenance cost for 1 m2 of the external wall for a certain  

             period of time  

  𝑠𝑚𝑎𝑥
𝑗𝑘

   Maximum number of m2 available of material j with thickness of type k 

  𝑏𝑚𝑎𝑥
𝑗𝑘

   Maximum budget for the installation of the material j with thickness of type k 

  𝑡𝑚𝑎𝑥   Maximum time required to construct the wall 

  𝑏𝑚𝑎𝑥   Maximum budget to construct the wall 

  U        Thermal transmittance 

  𝑈𝑚𝑎𝑥  Maximum thermal transmittance allowed for the wall 

  𝜆𝑗       Thermal conductivity corresponding to material j 

 

On the other hand, in the field of Operational Research, the Linear Programming (LP) 

[16,17], and particularly the cases with all integer variables (ILP) and with both integer and 

continuous variables (mixed case, MILP), have proved their effectiveness to model many 

real problems in order to optimize an objective function dependent on variables subject to 

certain linear constraints. Especially interesting is the case of profit maximization or cost 

minimization of a company that manufactures, manages or transports certain products, 

taking into account all its frame conditions (workforce, material, machinery, demand, 

budget, deadline, etc.). Salazar's book [17] shows a large number of these real problems.  

LP is increasingly applied in the field of energy and building to solve optimization 

problems. For instance, Bojic and Trifunovic [18,19] describe the heat transfer in the local 

heating system by a system of equations that are then linearized. LP is used to retrofit the 
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local heating system with additional circulation pumps to provide a greater system control 

and, therefore, to improve the thermal comfort. Privitera el at. [20] present a LP algorithm 

that helps to minimize the cost of renewable energy technologies in order to comply with 

carbon emission reductions. Ashouri et al. [21] use MILP to find the optimal selection and 

sizing of a smart building system (thermal and electrical storages, heating and cooling 

systems, and renewable energy sources). More recently, Lindberg et al. [22] investigate 

cost-optimal solutions for Zero Energy Buildings for different energy indicators with a 

financial perspective. They use MILP to optimize both the investments (technology choice 

and size), and the operation of the energy technologies simultaneously. Finally, 

Ogunjuyigbe et al. [23] also use MILP to allocate electrical power to appliances in 

residential building with intermittent photovoltaic source. Their objective is to maximize 

the sub-load points that will be available at each period of the day. With respect to this last 

paper, it is worth noting that an important case of MILP occurs when there are binary 

variables, which only take value 0 or 1 at the solution. Such variables can be used to model 

yes/no decisions, such as turning on or turning off an electrical appliance, as in [23]. 

The aim of this work is to minimize the thermal transmittance of an external wall subject 

to construction restrictions, by using ILP where all variables are binary. In this way, any 

available ILP solver could provide the constructor with the best combination of materials 

and thicknesses for the different layers, in order to obtain the lowest thermal transmittance, 

while satisfying the given restrictions. The thermal transmittance would be internally 

calculated according to the collected data and the legal or constructor constraints.   

The reasons why we have decided to apply the ILP technique are the following:  

- The increasing and successful use of this technique in the field of energy and buildings, 

as described above. 

- The minimization of U can be obtained with a linear function, and all considered 

constructor restrictions (budget, time limit, available material, workforce, etc.) can be 

expressed as linear constraints. This is explained in Section 2. 

-The computational results obtained in the case study show that the CPU times needed 

to solve these problems, are considerably small, taking into account that the ILP solver 

finds the optimal solution or decides that there is no feasible solution. Although ILP 

problems have generally exponential complexity, these short running times discourage the 

testing of heuristic algorithms of polynomial complexity such as genetics (even if they 

consume less time).  They do not guarantee the optimal solution and if they do not find a 

feasible solution, this does not guarantee that the problem is infeasible (except for an 

exhaustive study of the solutions, implying a non-polynomial complexity). 

The rest of this paper is organized as follows: Section 2 describes the problem in its 

general form. Section 3 presents the case study for a representative constructive solution 

consisting of 6 layers, with the results of the ILP application. Finally, Section 4 shows the 

conclusions. Some appendices are given with an exhaustive exposition of the chosen 

materials and its characteristics as well as the optimal transmittance in each scenario.  

 

2. Problem definition and formulation 

 

In this section, the problem of minimizing the thermal transmittance of an external wall 

subject to certain construction restrictions, is modeled as an ILP problem. This metric 

should therefore be the objective function of the ILP problem.    
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Taking into account the nomenclature given in the previous table, the variables of the 

ILP problem are 𝑥𝑖𝑗𝑘, which are decision variables as in [23], and whose value are 1 if layer 

i is made with material j and thickness k, or 0 otherwise, 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {1, … , 𝑚}, 𝑘 ∈
{1, … , 𝑤𝑗}. It is important to stress that k does not indicate the measure of the thickness but 

the type of thickness. Note also that layers will be enumerated from outside to inside. 

The thermal transmittance of the wall is therefore given by Eq. (2):  

 

𝑈 =
1

1
ℎ𝑖𝑛𝑡

+ ∑ ∑ ∑
𝑒𝑗𝑘

𝜆𝑗
𝑥𝑖𝑗𝑘 +

1
ℎ𝑒𝑥𝑡

𝑤𝑗

𝑘=1
𝑚
𝑗=1

𝑛
𝑖=1

            (2) 

 

Nonetheless, it is evident that U is not a linear function of variables 𝑥𝑖𝑗𝑘, so it cannot be 

the objective function of the ILP problem. However, ℎ𝑖𝑛𝑡, ℎ𝑒𝑥𝑡, 𝑒𝑗𝑘 and 𝜆𝑗 are constant for 

all the involved subscripts. It is easy to see that minimizing U is equivalent to maximizing 

the triple summation given in the denominator (the thermal resistance) of U, which is 

certainly a linear function of binary variables 𝑥𝑖𝑗𝑘. Hence, the objective function of the ILP 

problem, that must be maximized, will be: 

 

∑ ∑ ∑
𝑒𝑗𝑘

𝜆𝑗
𝑥𝑖𝑗𝑘

𝑤𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

                                                      (3) 

 

The restriction set of this ILP problem represents the usual limitations to build an 

external wall, but this set can be expanded, reduced or modified, according to the particular 

conditions or interest of each building in construction, refurbishment or life-cycle cost 

approach [24]. Next, we enumerate the chosen conditions: 

- The obtained thermal transmittance meets the legal upper bound 𝑈𝑚𝑎𝑥 according to 

the climate zone. As in the objective function, to ensure a linear constraint, the equivalent 

Eq. (5) is used. Note that this restriction could be omitted, but in this case, one should check 

a posteriori that the given solution, if it exists, complies that 𝑈 ≤ 𝑈𝑚𝑎𝑥.  

- The total thickness of the wall belongs to the required interval [𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎x ] (Eq. (6)). 

- The cost per m2 of the wall will not exceed the budgeted cost  𝑏𝑚𝑎𝑥 (Eq. (7)). 

- Each layer is composed by exactly one material with a specific thickness (Eq. (8)). 

Note that this condition is not obvious to a LP solver. 

- The time to build one m2 of the wall will not exceed the established time limit 𝑡𝑚𝑎𝑥 

(Eq. (9)). 

- The available quantity of each material with its respective thicknesses is limited (Eq. 

(10)).  

- It is also forbidden to spend more money than budgeted for each material and thickness 

(Eq. (11)). 

- It is evident that certain layers cannot admit certain types of material. For instance, it 

does not make sense to put a waterproof extruded face brick in an intermediate layer, or to 

put an air gap as a first layer. But even if some options make sense, the conditions imposed 

on the constructor may forbid these options. The fact that a given material j with a given 

thickness k is forbidden for a given layer i will be denoted by “ijk-incompatibility” (Eq. 

(12)).  

- Likewise, it could be forbidden to place a material j’ with thickness k’ in the next layer 

to the one (layer i) containing the material j with thickness k (this fact will be denoted by 

(ijk-(i+1)j’k’)-incompatibility). Therefore, at most one of the two materials with the given 
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thickness will appear in the corresponding layer (Eq. (13)). For instance, it does not make 

sense to put solid concrete block next to a pressed face brick.  

- Variables 𝑥𝑖𝑗𝑘 are defined as binary (Eq. (14)). Remember that, if necessary, these 

variables can be introduced to the LP solver as nonnegative, integer and upper bounded by 

1.   

The ILP formulation of the studied problem is given by Eqs. 4 to 14: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑
𝑒𝑗𝑘

𝜆𝑗
𝑥𝑖𝑗𝑘

𝑤𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

                                                      (4) 

 s.t.: 

∑ ∑ ∑
𝑒𝑗𝑘

𝜆𝑗
𝑥𝑖𝑗𝑘 ≥

1

𝑈𝑚𝑎𝑥
−

1

ℎ𝑖𝑛𝑡
−

1

ℎ𝑒𝑥𝑡

𝑤𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

                                   (5) 

𝑒𝑚𝑖𝑛 ≤ ∑ ∑ ∑ 𝑒𝑗𝑘𝑥𝑖𝑗𝑘

𝑤𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

≤ 𝑒𝑚𝑎𝑥                                                          (6) 

∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 ≤ 𝑏𝑚𝑎𝑥                                                                  (7)  

𝑤𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1   

𝑤𝑗

𝑘=1

𝑚

𝑗=1

∀𝑖 ∈ {1, … , 𝑛}                                                       (8) 

∑ ∑ ∑ 𝑠𝑡𝑖𝑗𝑘𝑥𝑖𝑗𝑘

𝑤𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

≤ 𝑡𝑚𝑎𝑥                                                               (9) 

 

∑ 𝑠𝑥𝑖𝑗𝑘 ≤ 𝑠𝑚𝑎𝑥
𝑗𝑘

𝑛

𝑖=1

      ∀𝑗 ∈ {1, … , 𝑚}, 𝑘 ∈ {1, … , 𝑤𝑗}                      (10) 

∑ 𝑠𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 ≤ 𝑏𝑚𝑎𝑥
𝑗𝑘

𝑛

𝑖=1

  ∀𝑗 ∈ {1, … , 𝑚}, 𝑘 ∈ {1, … , 𝑤𝑗}                    (11) 

                    𝑥𝑖𝑗𝑘 = 0      ∀ 𝑖𝑗𝑘 − 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒                                                   (12)   

      
𝑥𝑖𝑗𝑘 + 𝑥(𝑖+1)𝑗′𝑘′ ≤ 1    ∀ (𝑖𝑗𝑘 − (𝑖 + 1)𝑗’𝑘’) −  𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒  (13) 

 

𝑥𝑖𝑗𝑘 ∈ {0,1}    ∀ 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {1, … , 𝑚}, 𝑘 ∈ {1, … , 𝑤𝑗}         (14) 

 

Note that as the maximum value for Eq. (3) gives rise to the minimum value for Eq. (2), 

once the optimal solution of the previous ILP is obtained, we immediately substitute in Eq. 

(2) the triple summation by the objective function of the optimal solution. Thus, we obtain 

the U value of the optimal solution, which is necessarily the minimum U value for all 

feasible solutions. This is why from now on we will discuss the minimizing of U (our aim) 

instead of the maximization of the triple summation given by Eq. (3). 

As stated before, the restriction set of this ILP problem is open to other linear restrictions 

or to remove or modify existing ones, in order to fulfill other conditions that could be taken 

into account in specific problems involving the construction of a building envelope. For 

example, Eqs. 9 and 10 may not be necessary if there are no limitations to the quantity of 
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each type of material, or to the time of constructing the external wall. Moreover, if it is 

already decided that the first layer must be made of, for instance, pressed face brick (let j0 

be this type of material), and there are several thicknesses for this material, the following 

constraint would be added: 

 

∑ 𝑥1𝑗0𝑘 = 1                                             (15)

𝑤𝑗0

𝑘=1

 

 

Similarly, if a certain type of thermal insulation (let j1 be this type of material) must 

appear once among all layers, with the obvious exception of the first and the last layer, we 

would add constraint: 

 

 ∑ ∑ 𝑥𝑖𝑗1𝑘 = 1                                        (16) 

𝑤𝑗1

𝑘=1

𝑛−1

𝑖=2

 

 

As another example, under availability of the approximate maintenance cost 𝑚𝑐𝑖𝑗𝑘  for 

a certain period of time for 1 m2 of each material j, with thickness k and located in the layer 

i (mainly the external and the internal layer), if the constructor wants to guarantee that the 

maintenance cost of 1 m2 of the external wall will not exceed a certain amount mcmax in 

that period of time, we could add a constrain similar to the next one: 

 

∑ ∑ ∑ 𝑚𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 ≤ 𝑚𝑐𝑚𝑎𝑥                  (17)  

𝑤𝑗

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

 

Finally, we highlight that, although the number of layers has been considered fixed, 

specific conditions for the variables can change this number of layers. For instance, an 

intermediate layer could consist of an air gap, with different thicknesses. If an air gap 

presents zero thickness, we will consider zero cost, zero conductivity and zero construction 

time. If the LP solver selects for the optimal solution a layer consisting of a zero thickness 

air gap, the “mathematical wall” shows n layers but the real wall has (at most) n-1 layers. 

This situation will appear in the case studied in the next section, where the final number of 

layers can vary between 4 and 6. 

 

3. Case study and results 

 

In this section, we present a case study consisting of a façade of 6 layers as shown on 

Fig. 1. This façade is a common, simple but also representative constructive solution as 

described in the building elements catalog of the Instituto Valenciano de la Edificación 

[25]. We made it more global and versatile by using different thicknesses, materials and 

fixing solutions.  

 

3.1.Data 

 

Table A1 in Appendix A shows all options of materials and thicknesses for the 6 layers, 

with their corresponding conductivity, cost per m2 and variable name in the ILP problem. 

Costs are taken from the cost generator website of CYPE Ingenieros [26]. Costs always 
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include materials, staff and site facilities. Ten-year maintenance costs are also available but 

they will not be considered as our approach only includes construction costs. Those costs 

could be adapted for a life-cycle costs comparison and used as input data for another 

optimization problem. 

The external coating (eC) shows eight options with 2 kinds of plaster, different plates 

and also, an absence of this first layer, depending on the configuration of the second one. 

For the second layer, the external panel (eP), five options are included: solid brick, concrete 

block, face brick and pressed face brick in 2 dimensions. Note that the 3 last options can 

only occur together with the option of no presence of external coating, which implies the 

existence of Eq. 13 in the ILP formulation. The air gap (aG) shows 3 different 

configurations and 9 options: light ventilated air gap (from 3 to 10 cm), not ventilated air 

gap (4 options) and absence of air gap. Note that air-gaps play a very important role in 

thermal insulation but also in moisture control [12]. Nevertheless, the absence of air gap or 

ventilation is also a common constructive solution for external walls. Up to 6 insulation 

materials (tI) have been included for layer 4, with different thicknesses (from 0.015 to 0.08 

m) and 3 fixing methods (dots, adhesive mortar or mechanical fixing). Values for thermal 

conductivity ranges from 0.036 to 0.09 Wm-1K-1. Conventional (mineral wool, extruded 

and expanded polystyrene, sandwich panel) and alternative (cork, wood chips) materials, 

as classified by Schiavoni et al. [27], have been chosen. Moreover, the Basic Document for 

Energy Saving of the Spanish Technical Building Act [28] considers thermal insulating 

material with lower thermal conductivity than 0.06 Wm-1K-1 and thermal resistance greater 

than 0.25 m2KW-1. Layer 5 represents the internal panel (iP) with eight options showing 

different dimensions and perforations (air brick, perforated brick, solid block also with 

expanded clay). Finally, the internal coating (layer 6, iC) is made by plaster in 4 different 

options (8 to 14 mm). 

 

 

1: eC, external coating: 2 plaster types, plates, 

absence. 

2: eP, external panel: solid brick, concrete block, 

face brick, 2 pressed face brick. 

3: aG, air gap: light ventilated, not ventilated, 

absence. 

4: tI, thermal insulation: 6 materials, 4 thicknesses, 

3 fixing methods.  

5: iP, internal panel: solid, air, or perforated brick.  

6: iC, internal coating: plaster with 4 thicknesses.  

 

Fig.1. Constructive detail of the case study, with options for each layer. 
 

A total amount of 671,328 combinations for this external wall are possible. Note that 

the number of layers of this wall can vary between 4 and 6 because the external coating is 

optional (depending on the external panel) as well as the air gap.  

Furthermore, the recommended thermal resistance for the air layers close to the external 

and internal surfaces are: 1/hext = 0,04 m2KW-1 and 1/hint = 0,13 m2KW-1 as indicated in the 

Spanish Technical Act (CTE), Basic Document of Energy Saving (DB_HE) [28].  

 

iC 

eC 

eP 

iP 

aG 

tI 
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On the other hand, we have considered that the total thickness of the wall can vary 

between 0.24 and 0.63 m in intervals of 1 cm. We have also considered a budget to 

construct 1 m2 of wall limited to an amount ranging between €85 and €190, with intervals 

of €5. The aim is to find the lowest thermal transmittance wall for each combination of 

wall thickness and budget. As there are 45 intervals of 1 cm and 22 budgets, 990 ILP 

problems must be solved. 

Due to the amount of problems to be solved and the huge amount of possible solutions, 

there was a need to use a tool for comparing options satisfying construction costs while 

internally obtaining the lowest thermal transmittance U as a key measurable magnitude 

directly involved in the building process. The lower the value of thermal transmittance, the 

better insulated is the building. Table 1 shows the maximal reference values for thermal 

transmittance Umax in winter time, according to the Basic Document for Energy Saving of 

the Spanish Technical Building Act [28] and depending on the 5 climate zones (A to E). 

 

Table 1  
Umax values according to the Basic Document for Energy Saving of the Spanish 

Technical Building Act. 
 

Parameter 
WINTER CLIMATE ZONE 

 A B C D E 

Thermal transmittance of walls and elements in contact 

with ground (W/m2·K) 

 1.25 1.00 0.75 0.60 0.55 

Thermal transmittance of roof and horizontal elements 

in contact with air (W/m2·K) 

 0.80 0.65 0.50 0.40 0.35 

Thermal transmittance of transparent part (W/m2·K)  5.70 4.20 3.10 2.70 2.50 

Air permeability of transparent part (m3/h·m2)   50  50  27  27  27 

 

3.2. Results 

 

Mathematica 11.0 [29] was chosen to solve the 990 ILP problems cited above. It is a 

widely used tool to solve engineering, physical and mathematical problems. It was chosen 

for three reasons: It has several functions to solve ILP problems; it has its own 

programming language (useful to solve the 990 ILP problems and to output their results 

with a single execution) and due to its interface, which allows viewing on the screen both 

the formulation of the problem and the solution given by the tool.  

Mathematica was run on a PC Intel® Core™ I7-6700 with 4 processors, 3.46GHz and 

8GB RAM.  752 out of the 900 ILP problems were found feasible, while the remaining 238 

problems were found infeasible.  

It is important to highlight that, with respect to the set of 752 feasible problems, the 

average CPU time to obtain the optimal solution was 0.0234 seconds, with a maximum 

value of 0.0781 seconds and a minimum value of 0 seconds, which according to 

Mathematica’s assumption means that the calculation takes no measurable CPU time. 

Regarding the set of 238 infeasible problems, the average CPU time to determine that a 

problem was infeasible was 10.4120 seconds, with a maximum value of 11.6562 seconds 

and a minimum value of 10.2812 seconds.  

As an ILP problem has exponential complexity from a theoretical point of view, we 

believe that the running times obtained with Mathematica are excellent and very stable for 

feasible problems, and also very reasonable and very stable for the infeasible problems, 

due to the branch-and-bound method used and to the large amount of possible 

combinations. Therefore, these CPU time results justify the choice of the ILP exact 

procedure, and the tool Mathematica, without underestimating other available ILP solvers. 
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Note that for a budget of 85 €/m2, all the 45 ILP problems were infeasible. That is, none 

of the 671,328 combinations costs less than or equal to 85 €/m2. Table B1 in Appendix B 

shows the minimum thermal transmittance achieved for each pair (thickness (row), budget 

(column)), except for the budget of 85 €/m2. We started by 90 €/m2 in order to avoid the 

first blank column, since a blank means that the corresponding problem has no solution. 

Note that to show a table of reasonable size, U values have been rounded to three decimal 

places. A first view of the table may give the impression that there are many repeated U 

values and consequently few different optimal combinations of layers. This is not the case 

since several optimal combinations of materials have a coincident U when rounded to three 

decimal places. 

As expected, given a fixed thickness, the thermal transmittance decreases as the budget 

increases, although the variability of U is usually only a few decimals. As significant data, 

for a thickness of [0.24,0.26], the problem is infeasible with a budget of less than 125 €/m2, 

but from 125 €/m2, the U value is almost the double in the interval [0.24,0.25] than in the 

interval [0.25,0.26], implying that 0.25m is a first important thickness limit in this case. At 

the other end of the table, for large thicknesses, the problem is only feasible for high 

budgets, but given the feasibility of the problem, the optimal U value is very small. For 

instance, for the interval [0.67,0.69], the problem is only feasible for a budget of 190 €/m2, 

with an optimal low U of 0.205 Wm-2K-1.  

Another expected trend is that given a budget, the thermal transmittance also decreases 

as the thickness increases, but once a certain thickness is exceeded, the problem becomes 

infeasible. For example, for a budget of 90 €/m2 the problem starts to be feasible in the 

interval [0.27,0.28] and ends to be feasible in the interval [0.46,0.47], with a minimum U 

value varying from 0.706 Wm-2K-1 to 0.224 Wm-2K-1. At the other end of the table, for a 

budget of 190 €/m2 the problem is feasible for all the considered intervals, with a minimum 

U value varying from 1.332 Wm-2K-1in [0.24,0.25] to 0.205 Wm-2K-1 in [0.68,0.69]. Note 

that 1.332 Wm-2K-1 is not an allowed U for any climate zone (see Table 1). 

Figs. 2 and 3 show the variation of representative optimal U values depending on budget 

and thickness respectively.  
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Fig.2. Minimum, mean and maximum values for optimal U vs budget. 

 

They show the tendencies explained above but with significant lack of information, 

since they cannot compute the cases in which the problem has been infeasible. For example, 

for low budgets (ranging between 90 €/m2 and 115 €/m2) almost half of the 

thickness/budget combinations are impossible, especially for large thicknesses.  

Moreover, given a budget, in the first interval where the problem is feasible, the optimal 

value of U is usually very large compared to the successive intervals. This explains the 

difference between the curve of maximum values for optimal U and the other two curves 

in both figures. 

 
 

Fig. 3. Minimum, mean and maximum values for optimal U vs thickness. 

 

Fig. 4 shows radar diagrams for six of the most representative thickness intervals, 

according to the results given in Table B1. Radar diagrams can be very effective to show 

jointly the behavior of optimal U values depending on thickness and budget for the external 

wall, especially because these diagrams do show the impossibility of a scenario.  Values 

for U range from 0 up to 1.4 Wm-2K-1 (concentric circles) while budget starts with 90 €/m2 

reaching clockwise the maximum value of 190 €/m2.  

In these diagrams, the absence of stroke in a circular sector means that the problem is 

infeasible in that sector (e.g. in thickness [0.25,0.26]). A stroke near the center of the circle 

means lower values of reached U in the corresponding sector (e.g. in thickness [0.46-0.47]), 

and peaks indicates big differences for similar budgets (e.g. in thickness [0.26-0.27]). We 

present next some comments for each representative interval of thickness. 

- For interval [0.24,0.25] there is no feasible solution for a budget less than 125 €/m2, 

and for 125 €/m2 or more, the minimum value for U is always about 1.33 Wm-2K-1. This 

value doesn’t match the requirements for any climate zone A to E. 

- For interval [0.25,0.26] we have a similar behavior as for interval [0.24,0.25] with 

infeasible solution for a budget less than 125 €/m2 but a lower and constant value of 

transmittance of 0.782 Wm-2K-1almost acceptable for climate zone C.  
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- For interval [0.26,0.27] there is no feasible solution for a budget less than 100 €/m2, 

between 100 €/m2 and 110 €/m2 the solutions exist with a minimum value for U 1.30 Wm-

2K-1, but for budgets greater than 110 €/m2, the minimum value for U is almost half, about 

0.70 Wm-2K-1, acceptable for climate zone C.  

- For interval [0.35,0.36] all budgets have feasible and stable solution, with minimum 

value for U, about 0.31 Wm-2K-1except for the minimum budget (90 €/m2) for which the 

minimum U value is 0.358 Wm-2K-1, acceptable for all climate zone A to E.  

- Interval [0.46,0.47] is the only interval in which all budgets have feasible solution with 

approximately the same and very low minimum value for U, about 0.242 Wm-2K-1.  

- For interval [0.66,0.67] there is no feasible solution for a budget les than 155 €/m2, but 

for budgets greater than or equal to 155 €/m2, the optimal solution is always the same (U 

value of 0.204 Wm-2K-1). 

 
 

Fig. 4. Reached U value vs budget for different thicknesses. 

 

As stated before, Table B1 in Appendix B shows the minimum thermal transmittance 

achieved for each one of the 945 pairs (thickness (row), budget (column)) for which the 

problem has a feasible solution. Obviously, for each optimal solution, in addition to its 
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thermal transmittance, Mathematica provides the values of the binary variables, so it is 

easy to see which is the chosen material and its thickness for each one of the six layers in 

the solution with minimum thermal transmittance.   

We omit the exhaustive exposure of the material and thickness for each one of the 6 

layers in the hundreds of different optimum solutions, as this would probably give rise to a 

large number of additional pages. Instead, through Table 2 we show all the data 

corresponding to the best solution obtained under 7 different scenarios, which represent the 

extreme cases: minimum budget (90 €/m2); minimum thickness (interval [0.24,0.25]); 

maximum budget (up to 190 €/m2); maximum thickness (interval [0.68,0.69]); given the 

minimum budget, take the minimum possible thickness; given the minimum thickness, take 

the minimum possible budget; and finally, the combination budget/thickness that has 

obtained the optimal solution with lowest thermal transmittance.  
 

Table 2 

Optimal solution for 7 scenarios of interest. 
 Minimum 

budget 

Minimum 

thickness 

Maximum  

budget  

Maximum 

thickness 

Minimum 

budget / 

minimum 

thickness 

Minimum 

thickness / 

minimum 

budget 

Minimum U  

 

Budget 

Thickness 

interval 

Minimum U            

 

90 

[0.46,0.47] 

 

0.243525 

 

130 

[0.24,0.25] 

 

1.33167 

 

190 

[0.66,0.67] 

 

0.203537 

 

190 

[0.68,0.69] 

 

0.204624 

 

90 

[0.27,0.28] 

 

0.706436 

 

125 

[0.24,0.25] 

 

1.345458 

 

190 

[0.66,0.67] 

 

0.203537 

Exact cost 89.71 125.22 166.89 189.18 89.57 123.82 166.89 

Exact 

thickness 

0.463 0.25 0.664 0.682 0.278 0.248 0.664 

Layer 1 Reg. plas. 
0.013 

No extern. 
coating 

Ther. plas. 
0.020 

Limestone 
(Brasil) 

Reg. plas. 
 0.013 

No extern. 
 coating 

Ther. plas. 
0.020 

Layer 2 Concrete 

block 

Waterpr.  

face brick 

Concrete 

block 

Concrete 

block 

Solid brick Waterpr. face 

brick 

Concrete 

block 

Layer 3 Light vent. 

a.g.  0.10 

Without air 

gap   

Light vent. 

a.g.  0.10 

Light vent. 

a.g.  0.10 

Without air 

gap.   

Without air 

gap.   

Light vent.  

a.g.  0.10 

Layer 4 Exp. poly. 
dots 0.08 

Wood chips 
0.015 

Exp. poly. 
dots 0.08 

Exp. poly. 
dots 0.08 

Exp. poly.  
dots 0.03 

Wood chips  
0.015 

Exp. poly.  
dots 0.08 

Layer 5 Air brick 

33·16·11 

Air brick 

33·16·11 

E.c.l. concr. 

block 0.30 

E.c.l. concr. 

block 0.30 

Air brick 

33·16·11 

Air brick 

33·16·11 

E.c.l. concr. 

block 0.30 

Layer 6 Plaster 

0.010 

Plaster 

0.010 

Plaster 

0.014 

Plaster 

0.012 

Plaster 

0.010 

Plaster 

0.008 

Plaster 

0.014 

 

As the most relevant data shown by Table 2, with our selection of materials and 

thicknesses, the lowest possible U value for an external wall is 0.2035 Wm-2K-1, which is 

achieved for a cost of €166.89 per m2 and a thickness of 0.664m. Note that this U value is 

very small and therefore is useful for every climate zone (see Table 1), but if the builder 

has a very limited budget, an U value of 0.2435 Wm-2K-1 (only three hundredths more, but 

also useful for every climate zone), can be achieved with cost €89.71 and a thickness of 

0.466m. This is a very important result of this study: the building company can 

considerably reduce the cost of the external wall with a very low increase of the thermal 

transmittance, just choosing the right materials and thicknesses. On the other hand, a very 

thin wall (in the range [0.24,0.25]) gives rise to high U values (more than 1.33 Wm-2K-1) 

incompatibles with climate zones A to E) and high final construction costs.  
 

 

4. Conclusion 

 

This paper presents an ILP exact procedure to obtain the lowest thermal transmittance 

corresponding to an external wall to be built, taking into account the limitations that the 

builder has to face: current legislation in relation to thermal transmittance, budget, 
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thickness, time limit, workforce, number of layers, available materials, etc. A case study 

consisting of a façade of 6 layers, which is a representative constructive solution, has also 

been presented. In this study, 990 ILP problems corresponding to the combinations of 45 

intervals of thickness and 22 budgets have been solved, to find in each case the minimum 

thermal transmittance combination of materials and thicknesses for the 6 layers among 

671,328 possible combinations. Mathematica has been used as ILP solver in this case study 

with very good and stable CPU times. That confirms the appropriateness of the approach. 

The aim of this work is to provide the builder with a tool that allows him to analyze 

different scenarios for the construction of the wall, in order to contribute to a better energy 

efficiency of the building and adaptability to the climate zone. The study shows that an 

adequate selection of materials, a small variation in the thickness of the wall or a small 

increase in the budget, among other factors, can reduce considerably the thermal 

transmittance of the wall, and therefore improve the energy efficiency of the building 

throughout its life. The selection of the suitable materials and measures for this purpose is 

not an easy task since thousands or even millions of different options may exist for each 

scenario. Our procedure, together with the existence of LP solvers -including free access 

ones- can help to this aim. 

As a future work, this ILP modelization can be extended in several aspects. For example, 

the behavior of the roof or the complete envelope could also be studied. Nonlinear 

constraints could also be included, since some software containing LP solvers also 

incorporate the resolution of nonlinear programming problems. Furthermore, a system 

could be developed in which the ILP is able to determine by itself the adequate number of 

layers. 

 Finally, a variation of the procedure presented here could be useful for the optimal 

selection of both internal and external layers in the refurbishment of houses, optimizing 

thermal comfort without neglecting the economic criteria. 
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Appendix A. Data of the chosen materials  

Table A1   

Layers and chosen materials with their characteristics. 
Layer Material Thickness[m] Conductivity λ 

[W/mK-1] 

Cost [€/m2] Variable 

name 

1a. External coating 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1b.  Without External 

coating if 2b 

Regular plaster 

 

 

 

 

Thermal plaster 

 

 

 

 

Metallic plate corten 

S355J0WP 

 

Metallic plate corten 

S355J2WP 

 

Limestone plate (Spain) 

(Brasil) 

 

Marble plate (Spain) 

(Italy) 

 

Composite plate 

0.013 

0.015 

0.018 

0.020 

 

0.013 

0.015 

0.018 

0.020 

 

0.02 

0.015 

 

0.02 

0.015 

 

0.04  

0.04  

 

0.03  

0.03  

 

0.04 

 

 

0 

0.93 

0.93 

0.93 

0.93 

 

0.67 

0.67 

0.67 

0.67 

 

0.58 

0.58 

 

0.58 

0.58 

 

3.5 

3.5 

 

2.09 

2.09 

 

3.38 

 

 

0 

18.44 

19.44 

20.44 

21.44 

 

25.81 

27.22 

28.62 

30.02 

 

123.50 

114.99 

 

123.84 

115.24 

 

93.07 

53.71 

 

55.51€ 

102.33 

 

214.02 

 

 

0 

x111 

x112 

x113 

x114 

 

x121 

x122 

x123 

x124 

 

x131 

x132 

 

x141 

x142 

 

x151 

x161 

 

x171 

x181 

 

x191 

 

 

x1101 

 

2a. External panel 

 

 

 

 

2b. External panel 

Solid brick  

 

Concrete block 

 

 

Waterproof extruded 

face brick  

 

Pressed face brick 

24x12x4 

 

Pressed face brick 

24x12x5 

0.115 

 

0.15 

 

 

0.115 

 

 

0.12 

 

 

0.12 

 

0.85 

 

0.46 

 

 

0.76 

 

 

0.76 

 

 

0.76 

 

25.46 

 

22.63 

 

 

70.65 

 

 

109.95 

 

 

103.81 

x2111 

 

x2121 

 

 

x2131 

 

 

x2141 

 

 

x2151 

3a. light ventilated air 

gap 

 

 

 

3c not ventilated air 

gap 

 

 

 

3c. without air gap 

Air  

 

 

 

 

Air 

0.03 

0.05 

0.08 

0.10 

 

0.03 

0.05 

0.08 

0.10 

 

0 

0.08 

0.09 

0.09 

0.09 

 

0.17 

0.18 

0.18 

0.18 

 

0 

0 

0 

0 

0 

 

0 

0 

0 

0 

 

0  

x3161 

x3162 

x3163 

x3164 

 

x3171 

x3172 

x3173 

x3174 

 

x3181 
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4. Thermal insulation Extruded polystyrene 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

 

Mineral wool 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

 

Expanded polystyrene 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

 

Wood chips 

Mechanical fixing 

Mechanical fixing 

Mechanical fixing 

Mechanical fixing 

 

Agglomerate of 

expanded cork 

Dots 

Mechanical fixing 

 

0.03  

0.03  

0.03  

0.04  

0.04  

0.04  

0.05  

0.05  

0.05  

0.06  

0.06  

0.06  

 

 

0.03  

0.03  

0.03  

0.04  

0.04  

0.04  

0.05  

0.05  

0.05  

0.06  

0.06  

0.06  

 

 

0.03  

0.03  

0.03  

0.04  

0.04  

0.04  

0.05  

0.05  

0.05  

0.06  

0.06  

0.06  

0.07  

0.07  

0.07  

0.08  

0.08  

0.08  

 

 

0.015  

0.025  

0.035  

0.05  

 

 

 

0.025  

0.025  

 

0.037 

0.037 

0.037 

0.037 

0.037 

0.037 

0.037 

0.037 

0.037 

0.037 

0.037 

0.037 

 

 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

 

 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

 

 

0.09 

0.09 

0.09 

0.09 

 

 

 

0.036 

0.036 

 

6.49 

8.47 

7.99 

7.35 

9.33 

8.85 

8.23 

10.21 

9.73 

9.12 

11.10 

10.62 

 

 

7.68 

10.35 

8.47 

8.48 

11.15 

9.26 

9.51 

12.18 

10.29 

11.45 

14.13 

12.24 

 

 

6.06 

8.04 

7.43 

6.44 

8.42 

7.80 

7.09 

9.07 

8.46 

7.73 

9.71 

9.10 

8.37 

10.35 

9.74 

9.03 

11.01 

10.39 

 

 

14.96 

16.83 

18.26 

21.00 

 

 

 

12.99 

13.72 

 

x4191 

x4201 

x4211 

x4192 

x4202 

x4212 

x4193 

x4203 

x4213 

x4194 

x4204 

x4214 

 

 

x4221 

x4231 

x4241 

x4222 

x4232 

x4242 

x4223 

x4233 

x4243 

x4224 

x4234 

x4244 

 

 

x4251 

x4261 

x4271 

x4252 

x4262 

x4272 

x4253 

x4263 

x4273 

x4254 

x4264 

x4274 

x4255 

x4265 

x4275 

x4256 

x4266 

x4276 

 

 

x4281 

x4282 

x4283 

x4284 

 

 

 

x4291 

x4301 
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Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

 

Sandwich panel 

Mechanical fixing 

Mechanical fixing 

Mechanical fixing 

0.03  

0.03  

0.04  

0.04  

0.05  

0.05  

0.06  

0.06  

0.07  

0.07  

0.08  

0.08  

 

 

0.025  

0.035  

0.05  

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

 

 

0.056 

0.056 

0.056 

15.46 

16.19 

17.92 

18.65 

21.41 

22.13 

25.29 

26.01 

25.69 

26.42 

26.09 

26.82 

 

 

17.25 

18.76 

22.27 

x4292 

x4302 

x4293 

x4303 

x4294 

x4304 

x4295 

x4305 

x4296 

x4306 

x4297 

x4307 

 

 

x4311 

x4312 

x4313 

5. Internal panel Air brick 24x11,5x11,5 

 

Air brick 33x16x11 

 

Perforated brick 

24x11,5x9 

 

Solid Concrete block 

40x20x(15 or 20) 

 

Expanded clay light 

concrete block 

0.115 

 

0.11 

 

0.115 

 

 

0.15 

0.20 

 

0.20 

0.25 

0.30 

0.49 

 

0.49 

 

0.76 

 

 

0.46 

0.46 

 

0.3 

0.3 

0.3 

23.93 

 

17.74 

 

23.29 

 

 

31.43 

37.92 

 

42.21 

53.94 

80.54 

x5321 

 

x5331 

 

x5341 

 

 

x5351 

x5352 

 

x5361 

x5362 

x5363 

6. Internal coating Plaster 

 

 

 

0.008 

0.010 

0.012 

0.014 

0.26 

0.26 

0.26 

0.26 

20.47 

21.87 

23.27 

24.67 

x6371 

x6372 

x6373 

x6374 
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Appendix B. Result of the ILP problem for each scenario 

Table B1 

Minimum transmittance given an interval of thickness (row) for the external wall and a maximum budget (column).  
 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 

[0.24 , 0.25]        1.345 1.332 1.332 1.332 1.332 1.332 1.332 1.332 1.332 1.332 1.332 1.332 1.332 1.332 

[0.25 , 0.26]        0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 

[0.26 , 0.27]   1.322 1.305 1.299 0.709 0.698 0.698 0.698 0.698 0.698 0.698 0.698 0.698 0.698 0.698 0.698 0.698 0.698 0.698 0.698 

[0.27 , 0.28] 0.706 0.703 0.700 0.700 0.700 0.700 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.585 

[0.28 , 0.29] 0.591 0.588 0.586 0.586 0.586 0.586 0.505 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 

[0.29 , 0.30] 0.509 0.505 0.504 0.504 0.504 0.504 0.443 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 0.441 

[0.30 , 0.31] 0.446 0.443 0.443 0.442 0.442 0.442 0.395 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 0.393 

[0.31 , 0.32] 0.483 0.395 0.395 0.394 0.394 0.394 0.356 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 

[0.32 , 0.33] 0.428 0.356 0.356 0.355 0.355 0.355 0.355 0.355 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.352 0.352 0.352 0.352 0.352 0.352 

[0.33 , 0.34] 0.382 0.355 0.354 0.353 0.353 0.352 0.344 0.343 0.343 0.343 0.343 0.343 0.343 0.343 0.343 0.343 0.343 0.343 0.343 0.343 0.343 

[0.34 , 0.35] 0.397 0.344 0.344 0.343 0.343 0.343 0.314 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 

[0.35 , 0.36] 0.358 0.314 0.314 0.313 0.313 0.313 0.313 0.313 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.311 0.311 0.311 0.311 0.311 0.311 

[0.36 , 0.37] 0.334 0.314 0.312 0.312 0.311 0.311 0.297 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296 

[0.37 , 0.38] 0.351 0.297 0.297 0.296 0.296 0.296 0.296 0.296 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 

[0.38 , 0.39] 0.319 0.297 0.296 0.295 0.295 0.295 0.293 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 

[0.39 , 0.40] 0.297 0.292 0.292 0.292 0.292 0.292 0.271 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269 

[0.40 , 0.41] 0.298 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.268 0.268 0.268 0.268 0.268 0.268 

[0.41 , 0.42] 0.282 0.270 0.269 0.269 0.268 0.268 0.255 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.254 

[0.42 , 0.43] 0.300 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.254 0.254 0.254 0.254 0.254 0.254 0.254 0.253 0.253 0.253 0.253 0.253 0.253 

[0.43 , 0.44] 0.277 0.255 0.254 0.254 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 

[0.44 , 0.45] 0.257 0.256 0.256 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 
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[0.45 , 0.46] 0.261 0.256 0.256 0.255 0.255 0.255 0.255 0.255 0.255 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 

[0.46 , 0.47] 0.244 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 

[0.47 , 0.48]  0.242 0.242 0.242 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 

[0.48 , 0.49]    0.250 0.250 0.249 0.249 0.244 0.243 0.242 0.242 0.242 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 

[0.49 , 0.50]    0.254 0.249 0.249 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.240 0.240 0.240 

[0.50 , 0.51]    0.237 0.237 0.236 0.236 0.236 0.236 0.236 0.236 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 

[0.51 , 0.52]     0.236 0.236 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.228 0.228 0.228 

[0.52 , 0.53]     0.262 0.242 0.229 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 

[0.53 , 0.54]     0.244 0.231 0.230 0.230 0.230 0.230 0.230 0.230 0.230 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 

[0.54 , 0.55]     0.248 0.234 0.230 0.230 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 

[0.55 , 0.56]     0.232 0.220 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 

[0.56 , 0.57]      0.231 0.219 0.219 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218 0.218 

[0.57 , 0.58]        0.238 0.221 0.220 0.220 0.220 0.220 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 

[0.58 , 0.59]        0.223 0.222 0.222 0.221 0.221 0.220 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.219 

[0.59 , 0.60]        0.226 0.222 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.220 0.220 0.220 0.220 0.220 

[0.60 , 0.61]        0.212 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 

[0.61 , 0.62]         0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 

[0.62 , 0.63]             0.247 0.227 0.212 0.212 0.211 0.211 0.211 0.211 0.211 

[0.63 , 0.64]             0.232 0.214 0.214 0.212 0.212 0.212 0.212 0.212 0.212 

[0.64 , 0.65]              0.216 0.214 0.214 0.213 0.213 0.213 0.213 0.213 

[0.65 , 0.66]              0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 

[0.66 , 0.67]               0.204 0.204 0.204 0.204 0.204 0.204 0.204 

[0.67 , 0.68]                     0.205 

[0.68 , 0.69]                     0.205 
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