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Modeling Dependence in the Inter–Failure Times. An

Analysis in Reliability Models by Markovian Arrival

Processes.

B. Garćıa-Moraa, C. Santamaŕıaa, G. Rubioa

aInstituto de Matemática Multidisciplinar. Universitat Politècnica de València

Abstract

The most common assumptions in reliability studies are that failures
occur independently and with the same distribution. However, these two
assumptions are unrealistic in practice since inter-failure times are usually
correlated and not identically distributed. In this sense the Markov Arrival
Process (MAP) is an active research field for managing these features. We
study two versions of the MAP approach. The first one is a model which we
developed in previous works. The second one is based on a non–stationary
MAP of second order. We compare the results of both models with simulated
data.

Keywords: Non–stationary Markovian Arrival Process, Erlang
distribution, Phase-Type distribution, Reliability, Inter–arrival times

1. Introduction

Multi-state stochastic processes are a convenient framework for modeling
reliability problems in Engineering. In particular, Reliability and mainte-
nance policies of systems considering failures of components have been stud-
ied by [1] and [2] among others. Within this framework Markov processes
have been used but these models imply independence between the inter–
failure times. However, in Engineering this assumption needs to be relaxed
because frequently it is essential to take into account that the consecutive fail-
ures of a system show dependence between them [3]. Then another approach
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is required when the conditional independence assumption for waiting times
does not hold. In this sense the Markovian Arrival Process model (MAP) has
the relevant property of dependence between consecutive inter–arrival times
in a process with multiple events, that constitutes an effective tool for model-
ing the dependence in a multi-state process. In the literature several analysis
with MAPs are found in Reliability such as analysis of an n-system under
shocks and repairs [4] and the study of failures of an electrical N –component
framework [5] among others.

In this context, we study two methods of the MAP approach using simu-
lated data. The first method was developed by the authors in previous works
([6], [7]). The second one is a recent model based on a non–stationary MAP
of second order [5]. Our aim is to test our method comparing its performance
versus some state of the art methodologies.

The paper is organized as follows: in section 2 we describe simulated
data of devices undergoing three failures each one of them. In section 3 we
introduce the Markovian Arrival Process (MAP) to handle the dependence
between the inter–failure times of the system considered in this analysis.
Section 4 deals with the authors’ model. In section 5 we describe the 2–
state non-stationary MAP model. In Section 6 we fit the two models to
our simulated data. Finally, in Section 7 the conclusions of the work are
discussed.

2. The data: inter–failure times

In this study we simulate the operational random times corresponding to
100 devices in an engineering framework. In the interpretation of the data
we assume that after each failure the device is repaired immediately and
the repair time is negligible. The interest lies in the consecutive operational
times of each device. We assume that each one of the 100 devices have
three failures and so three inter–failure times represented by T1, T2 and T3
in the Figure 1. The Figure 2 shows the N=100 simulated sequences of such
operational times, t(1), t(2), . . . , t(100), where

t(1) = (t
(1)
1 , t

(1)
2 , t

(1)
3 )

t(2) = (t
(2)
1 , t

(2)
2 , t

(2)
3 )

...

t(100) = (t
(100)
1 , t

(100)
2 , t

(100)
3 ) (1)
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Figure 1: Device with three failures.

The aim is to estimate the performance of this system where the sequences
of operational times, t(1), t(2), . . . , t(100), are independent among them.

Now let Tk be the random variable representing the operational time be-
tween the (k–1)–th and the k–th failure (Figure 1). Then the three variables,
T1, T2, and T3 represent the three inter–failure times in columns. In this way
according to the Figure 2, the three variables T1, T2 and T3 are

T1 = (t
(1)
1 , t

(2)
1 , . . . t

(100)
1 )

T2 = (t
(1)
2 , t

(2)
2 , . . . t

(100)
2 )

T3 = (t
(1)
3 , t

(2)
3 , . . . t

(100)
3 ) (2)

T1, T2 and T3 are correlated and not identically distributed. We have
considered three inter–failure times because there are enough arrivals to es-
tablish correlations between the inter-failure times. On the other hand there
are studies with more operational inter–failure times as [5] among others.

In Section 6 we show a detailed explanation about the simulation proce-
dures of this study.

3. The Markovian Arrival Process (MAP)

MAPs are a generalization of the phase-type distributions, so we start
with a brief introduction to this kind of functions.

3.1. The Phase-type distributions ( PHD)

PH –distributions generalize the exponential distribution and constitute a
flexible class of probability models. They are a versatile class of distributions
since a tractable point of view and have been used in many areas [4]. They
were introduced by M. Neuts [8]. See [10] for more details about this topic.
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Figure 2: 100 Devices with three failures and their consecutive operational times.

Definition 1. The distribution F (·) on [0,∞[ is a phase–type distribution
(PH-distribution) with representation (α, T ) if it is the distribution of the
time until absorption in a Markov process on the states {1, . . . ,m,m + 1}
with generator (

T T 0

0 0

)
,

and initial probability vector (α, αm+1) where α is a row m-vector. The ma-
trix T is non-singular with negative diagonal entries and non-negative off-
diagonal entries, and satisfies −Te = T 0 ≥ 0 where e denotes a column
vector with all components equal to one.

We need the following theorem [11] to build the first modeling approach
of Section 4.

Theorem 1. If F1(·) and F2(·) are both continuous PH-distributions with
representations (α, T ) and (β, S) of orders m and n respectively, then their
convolution F (·) = (F1∗F2)(·) is a PH-distribution with representation (γ, L),
given by

γ = (α, αm+1β) and L =

[
T T 0β
0 S

]
(3)
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3.2. Markovian Arrival Processes

Before setting up the formal definition, let us consider an approach that
plays a fundamental role in the first model of this paper ([12], p. 186). The
starting point is a PH renewal process (a renewal process with phase-type
distributed renewal intervals). Let PH(α, T ) be the phase-type distribution.
Then the infinitesimal generator of the PH renewal process is given by

G =




T A
T A

. . . . . .




where A := ηα with η := −Te.
Let us write A explicitly:

A =




η1α
...

ηmα


 .

Now we relax the restriction that α be a constant vector, and consider a new
matrix

A′ =




η1α1
...

ηmαm


 (4)

with the requirement that αie = 1, for i = 1, . . . ,m. If we denote D0 := T
and D1 := A′, the previous matrix G will be

Q =




D0 D1

D0 D1

. . . . . .


 .

A Markov process with such a generator is called a m-state Markovian Arrival
Process (MAP).

A MAPm is a matrix generalization of the non–homogeneous Poisson
process with dependence between inter–failure times and non–exponential
inter–failures distribution. They preserve an underlying Markovian structure
with a finite state space S = 1, 2, . . . ,m, and an initial vector π. The
generator matrix Q which can be represented as Q = D0 +D1 where,

• D1 ≥ 0, D1 6= 0. D1 is a non–negative m×m matrix.
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• D0(i, j) ≥ 0 for i 6= j. D0 has negative diagonal elements and non–
negative off–diagonal elements.

• (π,D0) is a PHD with π the initial vector probability.

The representation of a MAPm is (π,D0, D1) and its joint density function
generating k consecutive events with inter-event times xi is given by the
following expression

f(x1, x2, . . . , xk) = πeD0x1D1e
D0x2D1 . . . e

D0xkD1 e (5)

for x1, . . . , xk ≥ 0. eD0xj is the exponential of D0xj, where D0 is a matrix
and xj is a number.

If (π,D0) is a PHD, then

(π,D0, d1π), (6)

where d1 = −D0e, is a MAP with the same behavior [10]. This means that
events are generated with independently and identically distributed inter-
event times and distribution like the PHD (π,D0).

4. The first approach

Our aim is to perform a MAP model with representation (π,D0, D1) for
modeling the process of this study 0 → 1 → 2 → 3 of three inter–failures
times for the 100 independent devices (Figure 1).

Variables T1, T2 and T3 given in (2) represent the three dependent inter–
arrival times between the states of each transition (see Figure 1). It is as-
sumed that the time spent until the second failure (transition 1→ 2) depends
on the spent time in the first transition (0→ 1). That is to say the variable
T2 depends on T1, and in the same way for the variable T3 respect to T2.

Expression (6) suggests the following approach. Let us begin building
a PHD for the whole process as if waiting times of each transition were
independent. Distributions of waiting times in each transition are modelled
by means of a PHD made of a mixture of Erlang distributions [13]. The
procedure is described in [14] and [15]. Then we make up the convolution of
PHDs corresponding to the transitions 0 → 1 and 1 → 2, using Theorem 1.
The obtained PHD is convoluted with the PHD of the third transition (2→
3) using again Theorem 1. The resulting PHD has an initial probability
vector and a matrix D0.
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Now the idea is to take into account dependence constructing matrix
D1 according to expression (4). The objective is to compute vectors αi by
maximum likelihood based on the proper joint density function for three
consecutive events with three inter–failure times T1, T2 and T3 that is

f(t
(i)
1 , t

(i)
2 , t

(i)
3 ) = πeD0t

(i)
1 D1e

D0t
(i)
2 D1e

D0t
(i)
3 D1e, i = 1, 2, . . . , 100. (7)

Further details will be given in the numerical example of Section 6.

5. The 2–state non–stationary Markovian Arrival Process (MAP2)

In order to compare the MAP model developed in the previous section
with the state of the art we choose the most recently model using the MAP
methodology [5]. We apply to our data the 2–state non–stationary Markovian
Arrival Process, in its canonical representation, denoted by MAP2.

The MAP2 is a doubly stochastic process {J(t), N(t)} where

• J(t) represents an irreducible and continuous Markov process with two
states in the state space S = {1, 2}.

• N(t) is the counting process and represents the number of failures in
the interval (0, t].

• The initial state i0 ∈ S is generated according to an initial probability
α = (α, 1− α) where α ∈ (0, 1).

The operation of the MAP2 is as follows: at the end of a sojourn time
in state i with exponential distribution, with arrival rate parameter λi and
mean 1

λi
, two types of transitions can occur (see Figure 3):

• No failure occurs with probability 0 ≤ pij0 ≤ 1, j ∈ S, and J(t) jumps
from state i to state j (different states, i→ j).

• A failure occurs with probability 0 ≤ pij1 ≤ 1, j ∈ S, and J(t) jumps
from state i to state j (the same or different states, i→ i or i→ j).

The non–stationary MAP2 is charaterized by M = {α, λ, P0, P1} where
λ = (λ1, λ2) and

P0 =

(
0 p120
p210 0

)
, P1 =

(
p111 p121
p211 p221

)
(8)
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Figure 3: Transitions in the non–stationary MAP2.

On the other hand, theMAP2 can be also characterized by M = {α, D0, D1}
where D0 and D1 are rate matrices corresponding to the transitions. They
are squared of order 2. In this way D = D0 + D1 is the infinitesimal gen-
erator in the Markov process J(t). As Xk represents the state of the J(t)
at the time of the k–th failure, {Xk}∞k=1 is a Markov chain with the matrix
P ∗ representing the transitions probabilities among states. This matrix is
calculated as P ∗ = (−D0)

−1D1.
The representation of the MAP2 in its canonical representation [16] is

given by

• If γ > 0, whith γ the eigenvalue of the stochastic matrix P ∗ different
from 1, the representation is

α = (α, 1− α), D0 =

(
x y
0 u

)
, D1 =

(
−x− y 0

v −u− v

)
(9)

• If, on the other hand, γ ≤ 0, then the canonical representation is

α = (α, 1− α), D0 =

(
x y
0 u

)
, D1 =

(
0 −x− y

−u− v −v

)
(10)

where u ≤ x < 0, y, v ≥ 0, x+ y ≤ 0 and u+ v ≤ 0. The relation among
the parameters of the equations (8), (9) and (10) is

• x = −λ1, y = λ1p120, w = λ1p111
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• z = λ2p210, u = −λ2, v = λ2p211

Now the main objective is to estimate the five model parameters, α, x, y, u
and v in the MAP2.

5.1. Estimation of the parameters in the MAP2

The time Tk, between the (k-1)-th and k-th failures, has a phase–type
distribution with representation (αk, D0) with αk = α(P ∗)k−1 the probabil-
ities vector defining the state of the Markov chain {Xk}∞k=1 at the time of
the k–th failure. This implies that the inter–failure times have not the same
distribution. In this sense the cumulative distribution function (CDF ) for
each Tk is defined by

FTk(t) = 1−αkeD0te (11)

Then in our study Tk ∼ PH{αk, D0}, with k = 1, 2, 3, represent different
phase–type distributions for the correlated variables T1, T2 and T3.

Now we focus on the estimation of the five parameters of the non-stationary
MAP2, {α, x, y, u, v}, for the rate matrices {D0, D1} given in the expres-
sions (9) and (10) from the set of operational times t(1), t(2), . . . , t(100) in (1).

As the non-stationary MAP2 is fully characterized by the set of mo-
ments {µ1,1, µ1,2, µ1,3, µ2,1, µ3,1} [16] where µk,m = µk,m(α, x, y, u, v) are
the moments of the variable Tk, that can be computed as follows

µk,m = E(Tmk ) = m!αk(D0)
−me (12)

Then, the parameters are estimated by means of the moment matching es-
timation approach [17]. This consists of matching the population moments,
µk,m, with the empirical counterparts

µ̄k,m =
1

N

N∑

i=1

(t
(i)
k )m (13)

This leads to the following nonlinear system of equations

µ1,m(α, x, y, u, v) = µ̄1,m, m = 1, 2, 3

µk, 1(α, x, y, u, v) = µ̄k, 1, k = 2, 3 (14)

On the other hand the system of equations (14) have not a feasible solution
and, in order to obtain the estimation, we use the proposal given in [17]
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which consists of solving the following the optimization problem (P) instead
solving the system (14).

min γτ (α, x, y, u, v)

s.t. x, u ≤ 0

y, v ≤ 0

−x− y ≥ 0

−u− v ≥ 0

0 ≤ α ≤ 1 (15)

where γτ is the following objective function

γτ (α, x, y, u, v) = τ
{(

µ1,1 − µ̄1,1

µ̄1,1

)2

+
(
µ1,2 − µ̄1,2

µ̄1,2

)2

+
(
µ1,3 − µ̄1,3

µ̄1,3

)2

+
(
µ2,1 − µ̄2,1

µ̄2,1

)2

+
(
µ3,1 − µ̄3,1

µ̄3,1

)2}
, (16)

with τ > 0 a penalty parameter that needs to be tuned, but setting τ =
1 performs well in practice [17]. Then {α̂, x̂, ŷ, û, v̂} will be the solution
of (14) if and only if it is an optimal solution in (P).

Notice the optimization problem (P) must be solved twice, one per each
canonical representation, (9) and (10), from the sample (1). In a second
step we select the estimated parameters with the highest value of the log–
likelihood function, whose expression for the sample is

logf(t(1), t(2), . . . t(N)|D0, D1) =
N∑

i=1

logf(t(i)|D0, D1) (17)

where

f(t
(i)
1 , t

(i)
2 , t

(i)
3 ) = πeD0t

(i)
1 D1e

D0t
(i)
2 D1e

D0t
(i)
3 D1e, i = 1, 2, . . . , 100 (18)

Finally with the estimated parameters in the matrices D0 and D1 we can
obtain a quantity of interest concerning the counting process N(t), the prob-
ability of n failures in the interval (0, t]. For it, P (n, t) = {Pij(n, t)}n∈N, t≥0
represent the set of 2 × 2 matrices whose (i, j)–th element is the following
expression

Pij(n, t) = P (N(t) = n, J(t) = j |N(0) = 0, J(0) = i) (19)
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for 1 ≤ i, j ≤ 2. Then, as the matrix P (n, t) represents the probability of
n failures in the interval (0, t], so

P (N(t) = n |N(0) = 0) = αP (n, t)e (20)

The computation of the matrices P (n, t) is based on the uniformization
method developed by [18]. In this algorithm the matrices P (n, t) are written
as

P (n, t) =
∞∑

r=0

e−λt
(λt)r

r!
V (n, r), (21)

where λ is a constant, such that λ ≥ maxj{−(D0)jj} and V (n, r) are 2 ×
2 matrices computed as follows

1. Define C0 and C1 matrices as C0 = I + D0

λ
and C1 = I + D1

λ

2. Find the smallest index for which
∑∞
n=N+1 e

−λt (λt)r
r!
≤ ε with ε is a fixed

tolerance parameter.

3. For n = 0, V (0, 0) = I, P (0, t)← V (0, 0)e−λt

4. For n ≥ 1, V (n, 0)← 0, P (n, t)← 0

5. For 1 ≤ k ≤ N and 0 ≤ i ≤ k,

V (i, k) =
min(i, 1)∑

j=max (0, i−(k−1))
V (i− j, k − 1)Cj (22)

P (i, t)← P (i, t) + V (i, k)e−λt
(λt)r

r!
(23)

6. Application with a simulated data set

In this section we show the estimation of the parameters with both ver-
sions of MAP approach. Data are the operational times of the 100 devices
described in section 2. In order to obtain the correlated transition times,
we have used Copulas functions that provide a correlation structure between
variables [9]. We have simulated dependent multivariate uniform data using
a ”Gaussian” and ”t” copula functions (elliptical copulas) with a specified
rank correlation among variables (Spearman’s). In a second step the corre-
lated interarrival times are obtained with a Weibull distribution by means
of the Inversion method. The Weibull distributions are the marginal distri-
butions obtained for each variable (transition time) and it is very used in
Reliability.
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Variation Coefficient

Transition 0→ 1 Transition 1→ 2 Transition 2→ 3

Copula, k, λ α µ1 µ2 α µ1 µ2 α µ1 µ2

”Gaussian”, 1, 1 0.191 0.424 2.378 0.299 0.779 1.231 0.441 1.603 0.687

”Gaussian”, 2, 1 0.240 0.635 0.150 0.346 0.484 0.136 0.332 0.344 0.715

”t”, 1, 1 0.274 0.898 2.138 0.271 1.340 1.138 0.309 0.900 0.148

”t”, 2, 1 0.341 0.819 0.129 0.264 0.451 0.132 0.331 0.559 0.625

Table 1: Variation coefficient of the estimated parameters of the mixture of the two Erlangs
in each transition of the inter–arrival times. The interarrival-times variables are random
Weibull variables generated by the inverse method. The parameters scale and shape are
k = 1, 2 and λ = 1

We have generated series of simulated data (size n = 100 devices in
each group of simulated data) for the three inter–arrival times as follows: we
calculate the rank correlation coefficient of Spearman’s from a initial specified
correlation between variables. In a second step we use the copula function
(Gaussian or t) to construct a new multivariate distribution for these three
dependent variables. These three variables have a uniform distribution and
finally we transform each of the variables in a Weibull distribution by means
of the Inversion method. In these simulations we have used different scale and
shape parameters for the Weibull distribution and the range of the specified
initial correlation was [0.1, 0.3].

Previously we have generated four different groups of simulated data from
a Gaussian or t copula function and with different parameters of a Weibull
distribution (Table 1). In each group (size n = 10) we have calculated the
variation coefficient of the estimated parameters of the mixture of the two
Erlangs in each transition of the inter–arrival times. The parameters scale
and shape of the Weibull distribution are k = 1, 2 and λ = 1. Since the
Gaussian copula function (k = 2, λ = 1) show small variation coefficients we
generate three correlated inter–arrival time from this copula function.

Then In the modelling we use two simulations of correlated inter–arrival
times: in the first we simulate these data from the 2–state non-stationary
MAP [10] and the second simulation is obtained from three Weibull dis-
tributed variables by the Gaussian copula function described above.

Then with these simulated data the aim of both modeling approaches
is to compute the probability vector π and the matrices D0 and D1. Then
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any quantity of interest can obtained. In order to compare the analyzed
approaches we computed the estimated and empirical distributions in each
model.

As stated above, we consider a system of 100 devices, each one of them
with three failures where the state 0 represents the starting point of the
process (the device is operating). State 1 is the first failure in the system
(the device fails), the state 2 represents the second failure and the state 3
represents the third failure (the device is off).

6.1. Estimation of the first approach

PHDs of each transition are mixtures of two Erlangs (Theorem 9.11, [12]),
one of dimension 1× 1 and another of 2× 2. So the dimension of D0 is 9× 9.
The probability vector π and D1 are computed by maximum likelihood using
the local search MATLAB’s routine fmincon (Optimization toolbox). The
representation of the estimated Cumulative Distribution Functions of the
MAP model versus the empirical interarrival times T1, T2, T3 is shown in
the Figure 4.

(a) (b) (c)

Figure 4: Estimated CDF (smooth line) under the MAP and the empirical distributions
(step function) for the correlated inter–failure Weibull distributed times generated from
the Gaussian copula function: (a) T1 (time until the first failure), (b) T2 (inter–failure time
between the first and second failure) and (c) T3 (inter–failure time between the second
and the third failure).

The fits of the estimated distributions and the consecutive inter–failure
times have been validated with the one–sample Kolmogorov-Smirnov test
using the MATLAB function kstest.

6.2. Estimation of the non–stationary MAP2

We fit the non–stationary MAP2 to the same sample of operational times
(1) of the 100 devices. As we have to solve the optimization problem (P) we
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use also the MATLAB’s routine fmincon. A multistart approach (200 differ-
ent starting points randomly selected of the simulated data) is performed and
we keep the solution with the minimum objective function γτ (α̂, x̂, ŷ, û, v̂)
in (P).

We solve (P) for two canonical representations of the MAP2. The pa-
rameter estimations under the two canonical representations of the model
are

• First canonical estimated representation:

α̂1 = (0.8425, 0.1575), D̂1
0 =

(
−1.5605 1.1308

0 −1.5606

)
, D̂1

1 =

(
0.4297 0
1.1308 0.4297

)

• Second canonical estimated representation:

α̂2 = (0.5989, 0.4011), D̂2
0 =

(
−1.5543 1.5543

0 −1.5543

)
, D̂2

1 =

(
0 0.0000

0.8863 0.6680

)

Finally we compute the log–likelihoods for the two canonical estimated
representation:

• logf(t(1), t(2), . . . t(100)|D̃1
0, D̃

1
1) = 0.0201

• logf(t(1), t(2), . . . t(100)|D̃2
0, D̃

2
1) = 0.0204

which provides evidence in favor of the estimation given by the second canon-
ical estimated representation.

The representation of the estimated Cumulative Distribution Functions of
the non–stationary MAP2 versus the empirical interarrival times T1, T2, T3
is shown in the Figure 5.

The fits of the estimated distributions and empirical inter–failure times
have been validated with the one–sample Kolmogorov-Smirnov test using the
MATLAB function kstest.

Now we can obtain quantities of interest concerning the counting pro-
cess N(t). In this sense, Figure 6 shows the probabilities of 1, 2 and 3 failures
over time. Probability of having 0 failures is high at the beginning but it
decreases slowly over time. On the other hand, the probability of having 1,
2 and 3 failures increases very slowly over time. In this analysis we have
considered 20 units of time.
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(a) (b) (c)

Figure 5: Estimated CDF (smooth line) under the MAP2 and the empirical distributions
(step function) for the correlated inter–failure Weibull distributed times generated from
the Gaussian copula function: (a) T1 (time until the first failure), (b) T2 (inter–failure time
between the first and second failure) and (c) T3 (inter–failure time between the second
and the third failure).

Figure 6: Probabilities P (n, t) for n = 1, 2, 3 and t > 0

15



7. Discussion

The hypotheses of considering i.i.d. inter–failure times are not realistic
in many situations. It is essential to take into consideration that failures
of a system generate dependence among them. For this purpose we have
introduced the Markovian Arrival Processes to incorporate this underlying
dependency. Two models have been compared, in which maximum likelihood
methodology is used differently.

Both models fit well to our simulated data. The question we raise is
whether both approaches will be adequate to deal with covariates and cen-
sored data, two usual features in Reliability. The first model is a general-
ization of [6] and [19], and their covariates and censored data handling is
also applicable to the MAP case. However, the dimension of the problem
increases with the number of events [6]. In fact, the work with a lot of events
can be complicated because of the dimension of the matrix Q increase, al-
though we can introduce lumpable MAP to reduce the dimension [10]. On
the other hand MAP2 model works perfectly [5] with many events, but until
the date there is any work with covariates or censored data. In fact, to the
best of our knowledge the inclusion of censored data and covariates in the
context of Reliability models with MAPS is still a pending task.

We have illustrated our approach in the context of Engineering. We
may apply this methodology in other situations with recurrent events, such
as chronic diseases in medicine where multiple recurrences are registered.
In this context successive recurrences of the same patient are not actually
independent events and data are usually censored.
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[5] J. Rodŕıguez, R. E. Lillo, P. Ramı́rez-Cobo, Failure modeling of an elec-
trical N –component framework by the non–stationary markovian arrival
process, Reliability Engineering and System Safety 134 (2015) 126–133.
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