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Universitat Politècnica de València,
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Abstract

This paper is devoted to construct approximations of the probability density function of the non-
autonomous first-order homogeneous linear random differential equation, where the initial con-
dition and the diffusion coefficient are assumed to be a random variable and a stochastic process,
respectively. We combine Random Variable Transformation technique and Karhunen-Loève ex-
pansion to construct reliable approximations under general conditions. Several numerical exam-
ples illustrate our theoretical findings.
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1. Introduction and motivation1

It is well-known that the derivative of a function plays a key role to measure instantaneous2

changes of a quantity of interest. This fact justifies the ubiquity of differential equations in the3

realm of Mathematical Modelling. There exist numerous problems in Physics, Chemistry, Epi-4

demiology, Engineering, Economics, etc., that are formulated by differential equations. When5

these equations are put forward in practice, their input data are usually fixed using information6

that is often contaminated of uncertainty because two main reasons. On the one hand, uncer-7

tainty can be attributed due to the inherent complexity that is often involved in many physical8

phenomena. On the other hand, errors and uncertainties are introduced by numerical algorithms9

and experimental data used to approximate and calibrate mathematical models. As a conse-10

quence, these models are often formulated by randomizing classical (deterministic) differential11

equations. In this regard, it is important to stress that this randomization can mainly be made12

using two different approaches [1, Sec. 4.7]. First, Stochastic Differential Equations (SDEs)13

where uncertainty is forced by a stochastic process having irregular sample behaviour. This14

is the case of Itô-type SDEs, where randomness is considered by the so-called White Noise15
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stochastic process. This process results from the derivative (in a generalized sense based upon16

the theory of distributions) of a Gaussian stochastic process termed Wiener process (or Brownian17

Motion) whose trajectories are continuous but nonwhere differentiable. The Wiener process is a18

particular case of diffusion processes, thereby Markovian, whose increments are stationary, inde-19

pendent and Gaussian. The cornerstone tool for handling this class of SDEs is the so-called Itô20

lemma, which can be interpreted as a chain rule for differentiating diffusion stochastic processes.21

The solutions of these SDEs exhibit nondifferentiable sample paths because the irregularity of22

the driving Wiener process. Exhaustive studies related to both ordinary and partial SDEs from23

different perspectives, theoretical, computational, numerical and applications, can be found in24

[2, 3, 4, 5], respectively. Secondly, Random Differential Equations (RDEs) are those in which25

random effects are directly manifested in input parameters (coefficients, source/forcing term and26

initial/boundary conditions). These inputs are often assumed to possess milder behaviour like27

continuity with respect to time and/or space. However, at this point it is interesting to stress28

that even somewhat irregular random functions, as the Wiener process, are still allowed to play29

the role of inputs data under this approach. This issue will be illustrated through some exam-30

ples later. RDEs have another important advantage for modelling purposes, since apart from31

Gaussian patterns, further probabilistic distributions can be assumed for random inputs includ-32

ing Binomial, Poisson, Beta, Gamma, Lognormal, etc., for instance. In this context, the pow-33

erful classical differential equations are randomized to better describe physical problems (in a34

wide sense). This approach is implemented by assuming that constants and/or functions playing35

the role of input data are random variables (RVs) and stochastic processes (SPs), respectively.36

References [1, 6, 7, 8, 9] provide an excellent overview about the foundations on RDEs and their37

main analytical/numerical techniques38

It is important to point out that the rigorous analysis of SDEs and RDEs usually takes place39

in the Hilbert space L2(Ω,L2(T ,H)) of square integrable SPs, that are valued on a Hilbert space40

(H, 〈·, ·〉H), and these SPs are defined over an underlying complete probability space (Ω,F ,P).41

Let us introduce the mathematical ingredients that will be required to develop rigorously our42

working context:43

• A complete probability space (Ω,F ,P) whose elements ω are termed events.44

• The Hilbert space (H, 〈·, ·〉H). For reasons that will be apparent later, elements of (H, 〈·, ·〉H)45

will be denoted by x(t, ω). Then,46

H = {x(t, ω) : ‖x(t, ω)‖H = +
√
〈x(t, ω), x(t, ω)〉H < +∞, (t, ω) ∈ T ×Ω}.

• The Hilbert space (L2(T ,H), 〈·, ·〉L2(T ,H)), T ⊂ R, defined as47

L2(T ,H) =
{
x(·, ω) : T −→ H : ‖x(·, ω)‖L2(T ,H) < +∞

}
,

where48

〈x(·, ω), y(·, ω)〉L2(T ,H) =

∫
T

〈x(t, ω), y(t, ω)〉H dt,

and49

‖x(·, ω)‖L2(T ,H) = +

√
〈x(·, ω), x(·, ω)〉L2(T ,H) =

(∫
T

〈x(t, ω), x(t, ω)〉H dt
)1/2

=

(∫
T

(‖x(t, ω)‖H)2 dt
)1/2

< +∞.
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From these ingredients, one defines the Hilbert space50

L2(Ω,L2(T ,H)) =
{
x : T ×Ω −→ L2(T ,H) : ‖x‖L2(Ω,L2(T ,H)) < +∞

}
,

with the following inner product51

〈x, y〉L2(Ω,L2(T ,H)) =

∫
Ω

〈x(t, ω), y(t, ω)〉L2(T ,H) dP(ω) =

∫
Ω

∫
T

〈x(t, ω), y(t, ω)〉H dt dP(ω)

=

∫
T

∫
Ω

〈x(t, ω), y(t, ω)〉H dP(ω) dt =

∫
T

E
[
〈x(t, ω), y(t, ω)〉H

]
dt,

and norm52

‖x‖L2(Ω,L2(T ,H)) =

(∫
T

E
[
(‖x(t, ω)‖H)2

]
dt

)1/2

< +∞,

where the Fubbini’s theorem has been applied to express both, the inner product and the norm,53

in terms of expectation operator. So far, we have carefully distinguished in notation the elements54

x and x(t, ω), but, for the sake of convenience, henceforth we will write them indistinctly.55

As throughout this paper we will consider real RVs and SPs, we will take H = R endowed56

with the standard inner product 〈x, y〉R = xy, with x, y ∈ R. In this case L2(Ω,L2(T ,R)) is57

usually denoted as L2(Ω,L2(T )). Moreover, we will assume that F = B(R) is the Borel σ-58

algebra on R. Therefore, we will work in the Hilbert space L2(Ω,L2(T )) with the inner product59

〈x, y〉L2(Ω,L2(T )) =
∫
T
E

[
x(t, ω)y(t, ω)

]
dt and whose elements are SPs such that

∫
T
E

[
(x(t, ω))2

]
dt <60

+∞. In practice, an important case, that will be considered throughout our subsequent develop-61

ment, is when T is a bounded and closed interval of the real line, T = [t0,T ] ⊂ R. In that case,62

second-order RVs, that is RVs x(ω) with finite variance (and hence E[(x(ω))2] < +∞), are ob-63

viously elements of the Hilbert space L2(Ω,L2(T )). These RVs are interpreted as constant SPs.64

In dealing with sequences of second-order RVs, the above inner product defines a norm whose65

associate convergence is usually referred to as mean square convergence. Apart from this con-66

vergence, the study of SDEs and RDEs can be developed considering another types of stochastic67

convergences such as almost surely convergence, convergence in probability and convergence in68

distribution, and using the relationship among them as well.69

Throughout this paper we will deal with non-autonomous first-order linear RDEs. As a70

major difference with respect to its deterministic counterpart, solving a RDE means not only71

to compute its exact/approximate solution SP but also calculating its main statistical functions72

such as the expectation and the variance. It is important to highlight that even in the case of73

linear RDEs, the achievement of these goals does not just consist of generalizing its classical74

counterpart. To support this assertion down below we exhibit some illustrative examples in this75

respect that are aimed to motivate our interest in studying non-autonomous first-order linear76

RDEs. Indeed, important results, well-known in the deterministic framework, are satisfied in the77

random scenario only under restrictive assumptions. For instance, if we consider the autonomous78

first-order linear RDE with deterministic initial condition79

x′(t, ω) = a(ω)x(t, ω), t ≥ 0; x(0, ω) = 1, ω ∈ Ω,

where a ≡ a(ω) is a second-order RV, it can be shown that the extension to the random scenario80

of the classical existence and uniqueness Picard’s theorem is satisfied if, and only if, a is bounded81

almost surely [6, p.119], [10]. As a consequence, this important result is not applicable when82

a assumes a Gaussian or a Poisson distribution, for instance. As a second illustrative example83
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involving the computation of the expectation of the solution SP to non-autonomous linear RDEs,84

let us consider the random initial value problem (IVP)85

x′(t, ω) = a(t, ω)x(t, ω) + b(t, ω), x(t0, ω) = x0(ω), ω ∈ Ω,

where a(t, ω) and b(t, ω) are second-order SPs (i.e., E[(a(t, ω))2] and E[(b(t, ω))2] are finite for all86

t) and a0(ω) is a second-order RV. If E[·] denotes the expectation operator, then it can be shown87

that the mean of the solution, µx(t) = E[x(t, ω)], does not satisfy the corresponding averaged88

ordinary differential equation89

d µx(t)
d t

, E[a(t, ω)] µx(t) + E[b(t, ω)], µx(t0) = E[x0(ω)].

Instead the computation of the expectation µx(t) is more involved (see, [6, Ch.8] and [11, p.66]).90

The earlier examples illustrate the challenges when dealing with both theoretical and practical91

aspects regarding linear RDEs. In this latter regard, it is important to emphasize that besides92

calculating the first statistical moments, the computation of the first probability density function93

(1-PDF), say f1(x, t), of the solution SP is much more desirable since, from it, one can compute94

all one-dimensional statistical moments including, as particular cases, both the mean and the95

variance96

µx(t) = E[x(t, ω)] =

∫ ∞

−∞

x f1(x, t) dx, σ2
x(t) = V[x(t, ω)] =

∫ ∞

−∞

x2 f1(x, t) dx − (µx(t))2 . (1)

Furthermore, the 1-PDF provides a comprehensive probabilistic description of the solution SP97

for each fixed time instant t and it permits to calculate the probability that the solution SP lies on98

a specific set of interest as well99

P[a ≤ x(t, ω) ≤ b] =

∫ b

a
f1(x, t) dx.

The computation of the 1-PDF of the solution SP for the linear RDE has been recently undertaken100

by some of the authors in [12]. In this contribution one develops a comprehensive probabilistic101

study to the general linear RDE in the case that input data (diffusion coefficient, forcing term and102

initial condition) are assumed to be RVs, i.e., the analysis is just carried out for the autonomous103

linear RDE. This study is based on the application of the so-called Random Variable Transfor-104

mation (RVT) technique in order to obtain the 1-PDF of the solution SP. RVT technique is stated105

in Th. 1. In the context of ordinary and partial RDEs and their applications, this technique has106

been applied with the same objective [13, 14, 15, 16, 17].107

Theorem 1 (Random Variable Transformation technique). Let x(ω) = [x1(ω), . . . , xm(ω)]T
108

and y(ω) =
[
y1(ω), . . . , ym(ω)

]T be two m-dimensional absolutely continuous random vectors109

defined on a complete probability space (Ω,F,P). Let r : Rm → Rm be a one-to-one de-110

terministic transformation of x(ω) into y(ω), i.e., y(ω) = r(x(ω)), ω ∈ Ω. Assume that r is111

a continuous mapping and has continuous partial derivatives with respect to each component112

xi, 1 ≤ i ≤ m. Then, if fx(x1, . . . , xm) denotes the joint probability density function of vec-113

tor x(ω), and s = r−1 = (s1(y1, . . . , ym), . . . , sm(y1, . . . , ym)) represents the inverse mapping of114

r = (r1(x1, . . . , xm), . . . , rm(x1, . . . , xm)), the joint probability density function of vector y(ω) is115

given by116

fy(y1, . . . , ym) = fx (s1(y1, . . . , ym), . . . , sm(y1, . . . , ym)) |Jm| ,
4



where |Jm|, which is assumed to be different from zero, denotes the absolute value of the jacobian117

defined by the determinant118

Jm = det


∂s1(y1, . . . , ym)

∂y1
· · ·

∂sm(y1, . . . , ym)
∂y1

...
. . .

...
∂s1(y1, . . . , ym)

∂ym
· · ·

∂sm(y1, . . . , ym)
∂ym


.

In this paper, we go further by attacking the non-autonomous case for the homogeneous linear119

RDE whose initial condition is assumed to be a RV. Specifically, hereinafter we shall consider120

the following random IVP121

x′(t, ω) = a(t, ω)x(t, ω), t ∈ T = [t0,T ] ⊂ R,
x(t0, ω) = x0(ω),

}
(2)

where122

H1 : x0(ω) is a second-order RV and a(t, ω) ∈ L2(Ω,L2(T )),

satisfying certain additional conditions that will be specified later. As we assume that x0(ω) is123

a second-order RV (E[(x0(ω))2] = k0 < +∞) and T = [t0,T ] has finite volume, then x0(ω) ∈124

L2(Ω,L2(T )) (‖x0‖L2(Ω,L2(T )) =
(∫
T
E

[
(‖x0(ω)‖H)2

]
dt

)1/2
=
√

k0(T − t0) < +∞).125

The main goal of this paper is to obtain the 1-PDF, f1(x, t), of the solution SP, x(t, ω), to the126

random IVP (2). To achieve this objective, we will take advantage of combining the application127

of the RVT technique (see Th.1) and the Karhunen-Loève expansion (KLE), that is stated in128

Th. 2. KLE is a type-Fourier series method that allows us to represent the diffusion SP in (2),129

a(t, ω), as a function of a denumerable set of second-order RVs {ξi(ω) : i ≥ 1} such that they130

have zero mean (E[ξi(ω)] = 0), unit variance (V[ξi(ω)] = 1) and are pairwise uncorrelated131

(E[ξi(ω) ξ j(ω)] = 0 if i , j). In other words, {ξi(ω) : i ≥ 1} are such that E[ξi(ω)] = 0 and132

E[ξi(ω) ξ j(ω)] = δi j, where δi j denotes the standard Kronecker delta function.133

Theorem 2 (L2 convergence of Karhunen-Loève). [3, p.202] Consider a mean square inte-134

grable continuous time stochastic process x ≡ {x(t, ω) : t ∈ T , ω ∈ Ω}, i.e., x ∈ L2(Ω,L2(T ))135

being µx(t) and cx(s, t) its mean and covariance functions, respectively. Then,136

x(t, ω) = µx(t) +

∞∑
j=1

√
ν j φ j(t) ξ j(ω), ω ∈ Ω, (3)

converges in L2(Ω,L2(T )), where137

ξ j(ω) :=
1
√
ν j

〈
x(t, ω) − µx(t), φ j(t)

〉
L2(T )

,

and {(ν j, φ j(t)) : j ≥ 1} denote, respectively, the eigenvalues with ν1 ≥ ν2 ≥ · · · ≥ 0 and138

eigenfunctions of the following integral operator C139

(C f )(t) :=
∫
T

cx(s, t) f (s) ds, f ∈ L2(T ),

associated to the covariance function cx(s, t). Random variables ξ j(ω) have zero mean, unit140

variance and are pairwise uncorrelated. Furthermore, if x(t, ω) is Gaussian, then ξ j(ω) ∼ N(0, 1)141

are independent and identically distributed.142
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To keep the computational burden feasible, later when we apply the RVT technique to com-143

pute approximations of the 1-PDF, f1(x, t), we will need consider the N-truncation of infinite144

sum (3)145

xN(t, ω) = µx(t) +

N∑
j=1

√
ν j φ j(t) ξ j(ω), ω ∈ Ω. (4)

Therefore, the N + 1 second-order RVs x0(ω) and {ξi(ω) : 1 ≤ i ≤ N} will be involved. In146

this manner, we will obtain the 1-PDF, f N
1 (x, t), of xN(t, ω) rather than the exact 1-PDF, f1(x, t),147

of x(t, ω). In our subsequent analysis, we will provide conditions in order to guarantee the148

convergence of f N
1 (x, t) to f1(x, t) as N → +∞.149

The paper is organized as follows. The aim of Section 2 is twofold, first to compute the150

1-PDF, f N
1 (x, t), of the truncated solution SP, xN(t, ω), given in (4) and, secondly, to provide151

sufficient conditions in order to guarantee the convergence of the 1-PDF, f N
1 (x, t), to the exact152

solution SP, x(t, ω), as N → +∞. In Section 3, two numerical examples will be shown to illustrate153

the theoretical results established in Section 2. Our conclusions are drawn in Section 4.154

2. Computing the 1-PDF of the truncated solution stochastic process155

It is known that the exact closed solution SP to the random IVP (2) is156

x(t, ω) = x0(ω)Exp
[∫ t

t0
a(s, ω)ds

]
, ω ∈ Ω. (5)

It is important to note that given a SP, say a(t, ω), in general nothing is known about the proba-157

bilistic distribution of the following SP, â(t, ω) =
∫ t

0 a(s, ω) ds. An exception is when a(t, ω) is a158

Gaussian SP. In that case, it can be proved that â(t, ω) is also Gaussian, see [6, Th. 4.64, p.112].159

As we are interested in the determination of the 1-PDF of the SP (5) in the general case that the160

SP a(t, ω) has an arbitrary probabilistic distribution (hence no Gaussian in general), we will take161

advantage of combining KLE and RVT techniques to give an answer to this interesting question162

under mild conditions.163

Our analysis will be carried out assuming that the initial condition x0(ω) is a RV such as,164

for every t ∈ T = [t0,T ] fixed, x0(ω) and a(t, ω) are independent RVs. Observe that this as-165

sumption is realistic from a practical standpoint when dealing with physical models since ini-166

tial conditions and coefficients involved in the differential equations are not often physically167

related. Anyway, at this point we stress that our subsequent analysis can also be carry out if168

independence between x0(ω) and a(t, ω) is not embraced. As a consequence, if we denote by169

ξN(ω) = (ξ1(ω), . . . , ξN(ω)) the random vector whose components are the RVs arising in the170

KLE of a(t, ω), then we will assume that x0(ω) and ξN(ω), are independent. Additionally, we171

will suppose that x0(ω) is an absolutely continuous RV and ξN(ω) is an absolutely continuous172

random vector whose PDFs will be denoted by f0(x0) and fξN
(ξ1, . . . , ξN), respectively. If we173

denote by ξN+1 = (x0(ω), ξ1(ω), . . . , ξN(ω)), observe that due to independence between x0(ω)174

and ξN(ω), their joint PDF, fξN+1
(x0, ξ1, . . . , ξN), is the product of their marginal PDFs, i.e.,175

fξN+1
(x0, ξ1, . . . , ξN) = f0(x0) fξN

(ξ1, . . . , ξN). (6)
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Summarizing, in the following we will assume that176

H2 :

x0(ω), ξi(ω), 1 ≤ i ≤ N, are absolutely continuous RVs.
x0(ω), ξN(ω) = (ξ1(ω), . . . , ξN(ω)) are independent
with PDFs f0(x0) and fξN

(ξ1, . . . , ξN), respectively.
Moreover, E[ξi(ω)] = 0 and E[ξi(ω) ξ j(ω)] = δi j.

Let us assume that a ≡ a(t, ω) is a continuous time SP such that a ∈ L2(Ω,L2(T )) and let µa(t)177

and ca(s, t) denote its mean and covariance functions, respectively. According to Th. 2, the SP178

a(t, ω) admits a KLE, and let us consider its truncation of order N (see expression (4))179

aN(t, ω) = µa(t) +

N∑
j=1

√
ν j φ j(t) ξ j(ω), ω ∈ Ω.

Therefore substituting this expression in (5), a formal approximate solution SP to the random180

IVP (2) is given by181

xN(t, ω) = x0(ω)Exp
[∫ t

t0
aN(s, ω) ds

]
= x0(ω) Exp

∫ t

t0

µa(s) +

N∑
j=1

√
ν j φ j(s) ξ j(ω)

 ds

 . (7)

Now, we will apply the RVT technique, stated in Th. 1, to obtain the 1-PDF of the approxi-182

mate solution SP (7) in terms of the PDFs f0(x0) and fξN
(ξ1, . . . , ξN), which are assumed known.183

As the RVT method applies to RVs, we first fix t ∈ T = [t0,T ] and then we consider the following184

mapping r : RN+1 → RN+1
185

y1 = r1(x0, ξ1, . . . , ξN) = x0 Exp

∫ t

t0

µa(s) +

N∑
j=1

√
ν j φ j(s) ξ j

 ds

 ,
y2 = r2(x0, ξ1, . . . , ξN) = ξ1,

...
yN+1 = rN+1(x0, ξ1, . . . , ξN) = ξN ,

whose inverse transformation s = r−1 is186

x0 = s1(y1, y2, . . . , yN+1) = y1 Exp

−∫ t

t0

µa(s) +

N∑
j=1

√
ν j φ j(s) y j+1

 ds

 ,
ξ1 = s2(y1, y2, . . . , yN+1) = y2,

...
ξN = sN+1(y1, y2, . . . , yN+1) = yN+1.

The absolute value of the jacobian of this mapping is given by187

|JN+1| = Exp

−∫ t

t0

µa(s) +

N∑
j=1

√
ν j φ j(s) y j+1

 ds

 , 0,

that is non-zero because is defined by an exponential. Then, applying Th. 1 and using indepen-188

dence between random variable x0 and random vector ξN , one obtains the joint PDF of random189

7



vector yN+1(ω) = (y1(ω), y2(ω), . . . , yN+1(ω)) in terms of PDFs f0(x0) and fξN
(ξ1, . . . , ξN) (see190

(6))191

fyN+1 (y1, . . . , yN+1) = fξN+1

y1 Exp

−∫ t

t0

µa(s) +

N∑
j=1

√
ν jφ j(s)y j+1

 ds

 , y2, . . . , yN+1


× Exp

−∫ t

t0

µa(s) +

N∑
j=1

√
ν jφ j(s)y j+1

 ds


= f0

y1 Exp

−∫ t

t0

µa(s) +

N∑
j=1

√
ν jφ j(s)y j+1

 ds


 fξN

(y2, . . . , yN+1)

× Exp

−∫ t

t0

µa(s) +

N∑
j=1

√
ν jφ j(s)y j+1

 ds

 .
(8)

Finally, taking t ∈ T = [t0,T ] arbitrary and marginalizing expression (8) with respect to y2 =192

ξ1, . . . , yN+1 = ξN , we obtain the 1-PDF of the truncated solution SP193

f N
1 (x, t) =

∫
RN

f0

x Exp

−∫ t

t0

µa(s) +

N∑
j=1

√
ν j φ j(s) ξ j

 ds


 fξN

(ξ1, . . . , ξN)

× Exp

−∫ t

t0

µa(s) +

N∑
j=1

√
ν j φ j(s) ξ j

 ds

 dξN · · · dξ1.

(9)

Observe that the domain of the integral must be understood as the corresponding subset of RN
194

where the random vector ξN(ω) = (ξ1(ω), . . . , ξN(ω)) takes values for all ω ∈ Ω. As usual in the195

context of probability density functions, this convention will be adopted from now on.196

Now, we will establish sufficient conditions in order to guarantee the uniform convergence of197

this sequence f N
1 (x, t) to the exact 1-PDF, f1(x, t), i.e.,198

lim
N→+∞

f N
1 (x, t) = f1(x, t), ∀(x, t) ∈ R × [t0,T ].

Since the exact 1-PDF, f1(x, t), is not known, this convergence will be established applying the199

classical Cauchy condition to the sequence f N
1 (x, t) defined by (9). Thus, we will prove that for200

ε > 0 fixed, there exists n0 (independent of (x, t)), such as201 ∣∣∣ f N
1 (x, t) − f M

1 (x, t)
∣∣∣ < ε, ∀(x, t) ∈ R × [t0,T ], ∀N,M ≥ n0.

For the sake of clarity, henceforth we will use the following notation202

KN(t, ξN(ω)) =

∫ t

t0

µa(s) +

N∑
j=1

√
ν j φ j(s) ξ j(ω)

 ds, (10)

thus expression (9) writes203

f N
1 (x, t) =

∫
RN

f0
(
x e−KN (t,ξN )

)
fξN

(ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1. (11)
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Additionally, the following hypotheses will be assumed throughout in the subsequent develop-204

ment.205

H3 : f0(x0) is Lipschitz in R, i.e., ∃ L f0 : | f0(x0,1) − f (x0,2)| ≤ L f0 |x0,1 − x0,2|, ∀x0,1, x0,2 ∈ R,

and206

H4 :
SP a(t, ω) admits a Karhunen-Loève expansion of type (3),

such that there exists a positive constant C > 0 such that
E

[
e−4KN (t,ξN (ω))

]
≤ C, for all positive integer N.

Later we will show that this condition can be guaranteed in practice (see Remark 2).207

208

Let ε > 0, J ⊂ R bounded, (x, t) ∈ J × [t0,T ] an arbitrary point and N > M integers. Taking209

into account (11), below we show that { f N
1 (x, t) : N ≥ 1} is a Cauchy sequence by using several210

bounds that will be justified later.211
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∣∣∣ f N
1 (x, t) − f M

1 (x, t)
∣∣∣

=

∣∣∣∣∣∫
RN

f0
(
x e−KN (t,ξN )

)
fξN

(ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1

−

∫
RM

f0
(
x e−KM (t,ξM )

)
fξM

(ξ1, . . . , ξM) e−KM(t,ξM ) dξM · · · dξ1

∣∣∣∣∣
(I)
=

∣∣∣∣∣∫
RN

[
f0

(
x e−KN (t,ξN )

)
e−KN (t,ξN ) − f0

(
x e−KM (t,ξM )

)
e−KM (t,ξM )

]
fξN

(ξ1, . . . , ξN) dξN · · · dξ1

∣∣∣∣∣
≤

∫
RN

∣∣∣∣[ f0
(
x e−KN (t,ξN )

)
e−KN (t,ξN ) − f0

(
x e−KM (t,ξM )

)
e−KM (t,ξM )

]∣∣∣∣ fξN
(ξ1, . . . , ξN) dξN · · · dξ1

=

∫
RN

∣∣∣∣[ f0
(
x e−KN (t,ξN )

)
e−KN (t,ξN ) − f0

(
x e−KN (t,ξN )

)
e−KM (t,ξM )

+ f0
(
x e−KN (t,ξN )

)
e−KM(t,ξM ) − f0

(
x e−KM (t,ξM )

)
e−KM(t,ξM )

]∣∣∣∣ fξN
(ξ1, . . . , ξN) dξN · · · dξ1

≤

∫
RN

[
f0

(
x e−KN (t,ξN )

) ∣∣∣e−KN (t,ξN ) − e−KM (t,ξM )
∣∣∣

+
∣∣∣∣ f0 (

x e−KN (t,ξN )
)
− f0

(
x e−KM (t,ξM )

)∣∣∣∣ e−KM (t,ξM )
]

fξN
(ξ1, . . . , ξN) dξN · · · dξ1

=

∫
RN

f0
(
x e−KN (t,ξN )

)︸            ︷︷            ︸
(1)

∣∣∣e−KN (t,ξN ) − e−KM(t,ξM )
∣∣∣︸                     ︷︷                     ︸

(2)

fξN
(ξ1, . . . , ξN) dξN · · · dξ1

+

∫
RN

∣∣∣∣ f0 (
x e−KN (t,ξN )

)
− f0

(
x e−KM (t,ξM )

)∣∣∣∣︸                                      ︷︷                                      ︸
(3)

e−KM (t,ξM ) fξN
(ξ1, . . . , ξN) dξN · · · dξ1

(II)
< L f0 |x|

∫
RN

(
e−2KN (t,ξN ) + e−KN (t,ξN )−KM (t,ξM )

) ∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣ fξN

(ξ1, . . . , ξN) dξN · · · dξ1

+F0

∫
RN

(
e−KN (t,ξN ) + e−KM(t,ξM )

) ∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣ fξN

(ξ1, . . . , ξN) dξN · · · dξ1

+L f0 |x|
∫
RN

(
e−2KM(t,ξM ) + e−KN (t,ξN )−KM(t,ξM )

) ∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣ fξN

(ξ1, . . . , ξN) dξN · · · dξ1

= L f0 |x|E
[(

e−2KN (t,ξN (ω)) + e−KN (t,ξN (ω))−KM (t,ξM(ω))
) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))

∣∣∣]
+F0E

[(
e−KN (t,ξN (ω)) + e−KM (t,ξM (ω))

) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣]

+L f0 |x|E
[(

e−2KM (t,ξM (ω)) + e−KN (t,ξN (ω))−KM (t,ξM (ω))
) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))

∣∣∣] .
10



Now, we shall justify the steps (I)-(II) given in the earlier development, but for the sake of clarity212

in the presentation, we first summarize the conclusion213 ∣∣∣ f N
1 (x, t) − f M

1 (x, t)
∣∣∣ ≤ L f0 |x|E

[(
e−2KN (t,ξN (ω)) + e−KN (t,ξN (ω))−KM(t,ξM (ω))

) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣]

+ F0E
[(

e−KN (t,ξN (ω)) + e−KM (t,ξM (ω))
) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))

∣∣∣]
+ L f0 |x|E

[(
e−2KM (t,ξM (ω)) + e−KN (t,ξN (ω))−KM (t,ξM (ω))

) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣] .

(12)
214

Step (I): Let N > M, if we marginalize the joint PDF, gxM (x1, . . . , xM), of a random vector, say,215

xN(ω) = (x1(ω), . . . , xM(ω), xM+1(ω), . . . , xN(ω))

with respect to the RVs xM+1(ω), . . . , xN(ω), we obtain the joint PDF of the random vector216

xM(ω) = (x1(ω), . . . , xM(ω)), i.e.,217

gxM (x1, . . . , xM) =

∫
RN−M

gxN (x1, . . . , xM , xM+1, . . . , xN) dxN · · · dxM+1.

Using the notation of our previous development with xi ≡ ξi, 1 ≤ i ≤ N and218

gxM (x1, . . . , xM) = fξM
(ξ1, . . . , ξM) ,

(observe that this gxM (x1, . . . , xM) is a PDF), one gets219

fξM
(ξ1, . . . , ξM) =

∫
RN−M

fξN
(ξ1, . . . , ξN) dξN · · · dξM+1.

Therefore, substituting this expression in the left-hand side of (I) this term can be expressed as220 ∣∣∣∣∣∫
RN

f0
(
x e−KN (t,ξN )

)
fξN

(ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1

−

∫
RM

f0
(
x e−KM (t,ξM )

)
fξM

(ξ1, . . . , ξM) e−KM (t,ξM ) dξM · · · dξ1

∣∣∣∣∣
=

∣∣∣∣∣∫
RN

f0
(
x e−KN (t,ξN )

)
fξN

(ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1

−

∫
RM

f0
(
x e−KM (t,ξM )

) ( ∫
RN−M

fξN
(ξ1, . . . , ξN) dξN · · · dξM+1

)
e−KM (t,ξM) dξM · · · dξ1

∣∣∣∣∣∣
=

∣∣∣∣∣∫
RN

f0
(
x e−KN (t,ξN )

)
fξN

(ξ1, . . . , ξN) e−KN (t,ξN ) dξN · · · dξ1

−

∫
RN

f0
(
x e−KM (t,ξM )

)
fξN

(ξ1, . . . , ξN) e−KM (t,ξM ) dξN · · · dξ1

∣∣∣∣∣
=

∣∣∣∣∣∫
RN

[
f0

(
x e−KN (t,ξN )

)
fξN

(ξ1, . . . , ξN) e−KN (t,ξN ) − f0
(
x e−KM (t,ξM )

)
fξN

(ξ1, . . . , ξN) e−KM (t,ξM )
]

dξN · · · dξ1

∣∣∣∣∣
=

∣∣∣∣∣∫
RN

[
f0

(
x e−KN (t,ξN )

)
e−KN (t,ξN ) − f0

(
x e−KM (t,ξM )

)
e−KM (t,ξM )

]
fξN

(ξ1, . . . , ξN) dξN · · · dξ1

∣∣∣∣∣ ,
11



which is just the right-hand side of (I). This justifies Step (I).221

Step (II): Now we will legitimate bounds used in this step. Without loss of generality, let222

F0 = f0(0) and then we first bound the term (1) using hypothesis H3:223

f0
(
x e−KN (t,ξN (ω))

)
≤

∣∣∣∣ f0 (
x e−KN (t,ξN (ω))

)
− f0(0)

∣∣∣∣ + | f0(0)| ≤ L f0 |x| e
−KN (t,ξN (ω)) +F0. (13)

Secondly, we will obtain a bound for the product of the terms (1) and (2) as follows224

f0
(
x e−KN (t,ξN )

) ∣∣∣e−KN (t,ξN ) − e−KM (t,ξM )
∣∣∣ ≤ (

L f0 |x| e
−KN (t,ξN (ω)) +F0

) ∣∣∣e−KN (t,ξN ) − e−KM (t,ξM )
∣∣∣

= L f0 |x|
∣∣∣e−2KN (t,ξN ) − e−KN (t,ξN )−KM (t,ξM )

∣∣∣
+ F0

∣∣∣e−KN (t,ξN ) − e−KM (t,ξM)
∣∣∣ . (14)

Now, by applying the Mean Value Theorem twice to function e−z, it is guaranteed that225

∃ δ(1)
t,ξN
∈

]
min

{
2KN(t, ξN),KN(t, ξN) + KM(t, ξM)

}
,max

{
2KN(t, ξN),KN(t, ξN) + KM(t, ξM)

}[
such that :

∣∣∣e−2KN (t,ξN ) − e−KN (t,ξM )−KM(t,ξM )
∣∣∣ = e−δ

(1)
t,ξN

∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣ ,

(15)
and226

∃ δ(2)
t,ξN
∈

]
min

{
KN(t, ξN),KM(t, ξM)

}
,max

{
KN(t, ξN),KM(t, ξM)

}[
such that :

∣∣∣e−KN (t,ξN ) − e−KM (t,ξM )
∣∣∣ = e−δ

(2)
t,ξN

∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣ , (16)

respectively. As a consequence of (15) and (16), one gets227

e−max{2KN (t,ξN ),KN (t,ξN )+KM (t,ξM)} < e−δ
(1)
t,ξN < e−min{2KN (t,ξN ),KN (t,ξN )+KM(t,ξM )} (17)

and228

e−max{KN (t,ξN ),KM(t,ξM )} < e−δ
(2)
t,ξN < e−min{KN (t,ξN ),KM (t,ξM)}, (18)

respectively. Therefore,229

e−δ
(1)
t,ξN < e−2KN (t,ξN ) + e−KN (t,ξN )−KM (t,ξM ) (19)

and230

e−δ
(2)
t,ξN < e−KN (t,ξN ) + e−KM (t,ξM ), (20)

respectively. Applying (15)–(16) and (19)–(20) in (14) one deduces231

f0
(
x e−KN (t,ξN )

) ∣∣∣e−KN (t,ξN ) − e−KM (t,ξM )
∣∣∣ ≤ L f0 |x|

∣∣∣e−2KN (t,ξN ) − e−KN (t,ξN )−KM (t,ξM )
∣∣∣

+ F0
∣∣∣e−KN (t,ξN ) − e−KM (t,ξM )

∣∣∣
= L f0 |x| e

−δ(1)
t,ξN

∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣

+ F0 e−δ
(2)
t,ξN

∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣

<
{
L f0 |x|

(
e−2KN (t,ξN ) + e−KN (t,ξN )−KM (t,ξM )

)
+F0

(
e−KN (t,ξN ) + e−KM (t,ξM )

)} ∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣ .
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Now, we construct a bound for term (3) following a similar argument shown above. Indeed, on232

the one hand, by applying hypothesis H3 one gets233 ∣∣∣∣ f0 (
x e−KN (t,ξN )

)
− f0

(
x e−KM(t,ξM )

)∣∣∣∣ ≤ L f0 |x|
∣∣∣e−KN (t,ξN ) − e−KM (t,ξM )

∣∣∣ . (21)

On the other hand, by applying the Mean Value Theorem to function e−z, it is guaranteed that234

∃ δ(3)
t,ξN
∈

]
min

{
2KM(t, ξM),KN(t, ξN) + KM(t, ξM)

}
,max

{
2KM(t, ξM),KN(t, ξN) + KM(t, ξM)

}[
such that :

∣∣∣e−KN (t,ξN )−KM (t,ξM) − e−2KM(t,ξM )
∣∣∣ = e−δ

(3)
t,ξN

∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣ .

(22)
Therefore,235

e−max{2KM (t,ξM ),KN (t,ξN )+KM (t,ξM)} < e−δ
(3)
t,ξN < e−min{2KM(t,ξM ),KN (t,ξN )+KM (t,ξM )} (23)

and hence236

e−δ
(3)
t,ξN < e−2KM (t,ξM ) + e−KN (t,ξN )−KM (t,ξM ) . (24)

Multiplying (21) by e−KM(t,ξM ) and applying (22) and (24), one deduces237 ∣∣∣∣ f0 (
x e−KN (t,ξN )

)
− f0

(
x e−KM (t,ξM )

)∣∣∣∣ e−KM (t,ξM ) ≤ L f0 |x|
∣∣∣e−KN (t,ξN ) − e−KM (t,ξM )

∣∣∣ e−KM(t,ξM )

= L f0 |x|
∣∣∣e−KN (t,ξN )−KM (t,ξM ) − e−2KM (t,ξM )

∣∣∣
= L f0 |x| e

−δ(3)
t,ξN

∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣

< L f0 |x|
(
e−2KM(t,ξM ) + e−KN (t,ξN )−KM(t,ξM )

) ∣∣∣KN(t, ξN) − KM(t, ξM)
∣∣∣ .

(25)

Now, we will obtain bound for every expectation appearing in (12). To this end, we apply238
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Cauchy-Schwarz inequality for expectations239

E
[(

e−2KN (t,ξN (ω)) + e−KN (t,ξN (ω))−KM (t,ξM(ω))
) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))

∣∣∣]
= E

[
e−2KN (t,ξN (ω))

∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣]

+ E
[
e−KN (t,ξN (ω))−KM (t,ξM(ω))

∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣]

≤
(
E

[
e−4KN (t,ξN (ω))

])1/2
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

+
(
E

[
e−2KN (t,ξN (ω)) e−2KM(t,ξM (ω))

])1/2
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

≤
(
E

[
e−4KN (t,ξN (ω))

])1/2
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

+
(
E

[
e−4KN (t,ξN (ω))

])1/4 (
E

[
e−4KM (t,ξM(ω))

])1/4
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

=

{(
E

[
e−4KN (t,ξN (ω))

])1/2
+

(
E

[
e−4KN (t,ξN (ω))

])1/4 (
E

[
e−4KM (t,ξM(ω))

])1/4
}

×

(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

,

(26)
240
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241

E
[(

e−KN (t,ξN (ω)) + e−KM (t,ξM (ω))
) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))

∣∣∣]
= E

[
e−KN (t,ξN (ω))

∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣]

+ E
[
e−KM (t,ξM (ω))

∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣]

≤
(
E

[
e−2KN (t,ξN (ω))

])1/2
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

+
(
E

[
e−2KM (t,ξM(ω))

])1/2
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

≤
(
E

[
e−4KN (t,ξN (ω))

])1/4
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

+
(
E

[
e−4KM (t,ξM(ω))

])1/4
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

=

{(
E

[
e−4KN (t,ξN (ω))

])1/4
+

(
E

[
e−4KM (t,ξM(ω))

])1/4
}

×

(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

,

(27)
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and242

E
[(

e−2KM(t,ξM (ω)) + e−KN (t,ξN (ω))−KM(t,ξM (ω))
) ∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))

∣∣∣]
= E

[
e−2KM (t,ξM(ω))

∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣]

+ E
[
e−KN (t,ξN (ω))−KM (t,ξM (ω))

∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣]

≤
(
E

[
e−4KM(t,ξM (ω))

])1/2
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

+
(
E

[
e−2KN (t,ξN (ω)) e−2KM (t,ξM )(ω)

])1/2
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

≤
(
E

[
e−4KM(t,ξM (ω))

])1/2
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

+
(
E

[
e−4KN (t,ξN (ω))

])1/4 (
E

[
e−4KM (t,ξM (ω))

])1/4
(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

≤

{(
E

[
e−4KM (t,ξM(ω))

])1/2
+

(
E

[
e−4KN (t,ξN (ω))

])1/4 (
E

[
e−4KM(t,ξM (ω))

])1/4
}

×

(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

.

(28)
By substituting the three bounds given in (26)–(28) into expression (12), we obtain243 ∣∣∣ f N

1 (x, t) − f M
1 (x, t)

∣∣∣ ≤ [
L f0 |x|

{(
E

[
e−4KN (t,ξN (ω))

])1/2
+

(
E

[
e−4KN (t,ξN (ω))

])1/4 (
E

[
e−4KM(t,ξM (ω))

])1/4
}

+ F0

{(
E

[
e−4KN (t,ξN (ω))

])1/4
+

(
E

[
e−4KM(t,ξM (ω))

])1/4
}

+L f0 |x|
{(
E

[
e−4KM (t,ξM (ω))

])1/2
+

(
E

[
e−4KN (t,ξN (ω))

])1/4 (
E

[
e−4KM (t,ξM (ω))

])1/4
}]

×

(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

.

(29)

Now, using hypothesis H4 one gets244 ∣∣∣ f N
1 (x, t) − f M

1 (x, t)
∣∣∣ ≤ [

L f0 |x|
{
C1/2 + C1/4 ×C1/4

}
+ F0

{
C1/4 + C1/4

}
+ L f0 |x|

{
C1/2 + C1/4 ×C1/4

}]
×

(
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

=
[
α|x| + β

] (
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

,

(30)

where245

α = 4C1/2L f0 , β = 2C1/4F0.
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Let us observe that,246

E
[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))

∣∣∣2] = E


∫ t

t0

N∑
j=M+1

√
ν jφ j(s)ξ j(ω) ds


2

≤ E


(∫ t

t0
12 ds

) ∫ t

t0

 N∑
j=M+1

√
ν jφ j(s)ξ j(ω)


2

ds




= (t − t0)E

∫ t

t0

 N∑
j=M+1

√
ν jφ j(s)ξ j(ω)


2

ds


≤ (T − t0)E

∫ T

t0

 N∑
j=M+1

√
ν jφ j(s)ξ j(ω)


2

ds


= (T − t0)E

[∫ T

t0
(aN(t, ω) − aM(t, ω))2 ds

]
= (T − t0)

∫ T

t0
E

[
(aN(t, ω) − aM(t, ω))2

]
ds

= (T − t0)
(
‖aN − aM‖L2(Ω,L2([t0,T ]))

)2
,

(31)

where the first inequality has been obtained by applying the Cauchy-Schwarz inequality for in-247

tegrals and the monotonicity of the expectation operator E[·], and in the last step, we have used248

the definition of the norm ‖·‖L2(Ω,L2(T )) for T = [t0,T ]. Substituting this latter conclusion in (30)249

and applying the Cauchy convergence condition for the KLE of diffusion coefficient a(t, ω) in250

the norm ‖·‖L2(Ω,L2([t0,T ])) (see Theorem 2), one deduces251

∣∣∣ f N
1 (x, t) − f M

1 (x, t)
∣∣∣ ≤ [

α|x| + β
] (
E

[∣∣∣KN(t, ξN(ω)) − KM(t, ξM(ω))
∣∣∣2])1/2

≤
[
α|x| + β

] √
T − t0 ‖aN − aM‖L2(Ω,L2([t0,T ])) −−−−−−−→

N,M→+∞
0.

(32)

This proves that { f N
1 ≡ f N

1 (x, t) : N ≥ 1} is a uniformly Cauchy sequence in J × [t0,T ] for all252

J ⊂ R bounded.253

Summarizing, the following result has been established254

Proposition 1. Under hypotheses H1–H4, the sequence { f N
1 (x, t) : N ≥ 1} of 1-PDFs, defined255

by (9), converges uniformly in (x, t) ∈ J ×T for allJ ⊂ R bounded, to the exact 1-PDF, f1(x, t),256

of the solution SP of random IVP (2).257

Remark 1. Here, we will show that hypothesis H3 is fulfilled by the PDF of a wide variety of258

RVs. In fact, as a consequence of the Mean Value Theorem it is well know that if a function,259

say f0, has bounded first derivative in R, then f0 is Lipschitz over the whole real line. It is260

straightforwardly to check that the PDF of important RVs such as Uniform, Beta, Gaussian,261

Gamma, etc. have bounded first derivative over the whole real line. For example, if f0 is the PDF262

of an Exponential RV of parameter λ > 0, then f0(x0) = λ e−λx0 , x0, λ > 0. As d f0
dx0

= −λ2 e−λx0 is263

continuous in [0,+∞[ and limx0→+∞
d f0
dx0

= 0, therefore f0(x0) is Lipschitz in [0,+∞[.264
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Remark 2. We will show that hypothesis H4 is not restrictive in practice. In fact, it is important265

to observe that given the coefficient a(t, ω) ∈ L2(Ω,L2(T )) of the random IVP (2), then according266

to KLE, the involved RVs ξ j(ω) can be chosen in many ways so that E[ξ j(ω)] = 0, V[ξ j(ω)] = 1267

and they are uncorrelated (E[ξi(ω) ξ j(ω)] = 0 for i , j ). As in our case they must be absolutely268

continuous RVs, we can choose them so that they are uncorrelated Gaussian RVs with zero mean269

and unit variance, ξ j(ω) ∼ N(0; 1). Next, we prove that making this choice, then hypothesis H4270

holds. First, observe that taking into account (10), the expectation involved in H4 can be written271

as272

E
[
edKM(t,ξM (ω))

]
= ed

∫ t
t0
µa(s) ds E

 M∏
j=1

edξ j(ω)√ν j
∫ t

t0
φ j(s) ds

 = ed
∫ t

t0
µa(s) ds

M∏
j=1

E
[
edξ j(ω)√ν j

∫ t
t0
φ j(s) ds

]
,

where in the last step we have used that ξ j(ω) are independent RVs (since they are uncorrelated273

and Gaussian), hence the expectation of the product is the product of expectations. Now, we use274

the following property275

E
[
eλZ(ω)

]
= e

λ2
2 , λ ∈ R, Z(ω) ∼ N(0; 1),

to compute every factor of the last product. This leads to276

E
[
edKM (t,ξM (ω))

]
= ed

∫ t
t0
µa(s) ds

M∏
j=1

e
d2
2 ν j

(∫ t
t0
φ j(s) ds

)2

= ed
∫ t

t0
µa(s) ds e

d2
2

∑M
j=1 ν j

(∫ t
t0
φ j(s) ds

)2

. (33)

Applying the Cauchy-Schwarz inequality for integrals one gets277 (∫ t

t0
φ j(s) ds

)2

≤ (t − t0)
(∫ t

t0
(φ j(s))2 ds

)
≤ (T − t0)

(∫ T

t0
(φ j(s))2 ds

)
, t0 ≤ t ≤ T.

Therefore, expression (33) can be bounded as follows278

E
[
edKM (t,ξM (ω))

]
≤ ed

∫ t
t0
µa(s) ds e

d2
2 (T−t0)

∑M
j=1 ν j

∫ T
t0

(φ j(s))2 ds
≤ ed

∫ t
t0
µa(s) ds e

d2
2 (T−t0)

∫ T
t0

(∑∞
j=1 ν j(φ j(s))2) ds

.
(34)

Now, let us bound every integral term in the right-hand side of this expression, thus proving the279

finiteness of E
[
edKM (t,ξM (ω))

]
< +∞. As a consequence, taking d = −4 we will have shown an im-280

portant scenario where hypothesis H4 holds. On the one hand, by Cauchy-Schwarz inequality for281

integrals, using that (µa(s))2 = (E[(a(s)])2 ≤ E[(a(s))2] and the fact that a ∈ L2(Ω,L2([t0,T ])),282

one gets283 ∫ t

t0
|µa(s)| ds ≤

∫ T

t0
|µa(s)| ds

≤
√

T − t0

(∫ t

t0
(µa(s))2 ds

)1/2

≤
√

T − t0

(∫ T

t0
E[(a(s))2] ds

)1/2

=
√

T − t0 ‖a‖L2(Ω,L2([t0,T ])) < +∞.
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Since
∣∣∣∣∫ t

t0
µa(s) ds

∣∣∣∣ ≤ ∫ t
t0
|µa(s)| ds, this justifies eb

∫ t
t0
µa(s) ds

< +∞, which is the first factor of the284

right-hand side in (34). On the other hand, let us observe285

E[(a(s))2] = (µa(s))2 +

∞∑
j=1

ν j(φ j(s))2, a(s) = µa(s) +

+∞∑
j=1

√
ν jφ j(s)ξ j(ω) in L2(Ω,L2([t0,T ])),

hence286
∞∑
j=1

ν j(φ j(s))2 ≤ E[(a(s))2]

and287 ∫ T

t0

∞∑
j=1

ν j(φ j(s))2 ds ≤
∫ T

t0
E[(a(s))2] ds =

(
‖a‖L2(Ω,L2([t0,T ]))

)2
< +∞.

Therefore, the second factor of the right-hand side in (34) is finite, i.e. e
b2
2 (T−t0)

∫ T
t0

(∑∞
j=1 ν j(φ j(s))2) ds

<288

+∞. Summarizing, if we choose ξ j(ω) in the KLE as uncorrelated standard Gaussian RVs, then289

hypothesis H4 is guaranteed.290

3. Examples291

In this section, we will show two examples. In the first example, we will consider that292

the SP a(t, ω), playing the role of diffusion coefficient in the random IVP (2), is the so-called293

Brownian motion or standard Wiener process. As the exact distribution of the Brownian motion294

is known, then the exact 1-PDF f1(x, t) of the solution SP x(t, ω) to (2) can be derived. Hence,295

this first example will be used as a test to compare the approximations, f N
1 (x, t) given by (9),296

for different values of the truncation order N against the exact values. In the second example a297

covariance function is considered. Then, from the knowledge of its eigenpairs {(ν j, φ j(t)) : j ≥298

1}, approximations of the 1-PDF are given. In both examples, approximations of the mean and299

standard deviation of x(t, ω) are given from f N
1 (x, t). Finally, in both examples we provide error300

measures in order to quantify the accuracy of approximations of the 1-PDF, the mean and the301

standard deviation.302

3.1. Example 1: Brownian motion303

In this example we consider that SP a(t, ω) ≡ B(t, ω) is the Brownian motion or standard304

Wiener and t0 = 0. Then, it is known that µa(t) = 0 and V[a(t, ω)] = 1, ∀t ∈ T = [0,T ], T > 0.305

In addition, the covariance function is given by306

ca(s, t) = min (s, t), (s, t) ∈ T × T ,

which has the following eigenvalues and normalized eigenfunctions (see [9, Chapter 2])307

ν j =
4T 2

π2(2 j − 1)2 , φ j(t) =

√
2
T

sin
(

(2 j − 1)πt
2T

)
, j = 1, 2, . . . (35)

Then, the 1-PDF of the truncated solution SP xN(t, ω) is obtained substituting (35) in (9)308

f N
1 (x, t) =

∫
RN

f0

x
N∏

j=1

e−h j(t)ξ j

 fξN
(ξ1, . . . , ξN)

N∏
j=1

e−h j(t)ξ j dξN · · · dξ1, (36)
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where309

h j(t) =

(
2T

(2 j − 1)π)

)2 √
2
T

(
1 − cos

(
(2 j − 1)πt

2T

))
. (37)

In this example the 1-PDF of the exact solution SP, x(t, ω), can be computed taking into310

account that B̂(t) =
∫ t

0 B(s)ds ∼ N
(
0;

√
t3

3

)
. Hence B̂(t) d

=

√
t3

3 Z, Z ∼ N(0; 1), that is, the SP311

B̂(t) has the same distribution as RV,
√

t3

3 Z, being Z a standard Gaussian RV. Using the RVT312

method, it is straightforwardly to check that the 1-PDF of x(t, ω) is given by313

f1(x, t) =

∫ ∞

−∞

f0

(
x e−

√
t3
3 z

)
fZ(z) e−

√
t3
3 z dz, (38)

where f0(x0) and fZ(z) denote the PDFs of RVs X0 and Z, respectively.314

In Fig. 1, we show 3D-plots of the exact 1-PDF (left) and two approximations f N
1 (x, t)315

using (36)–(37) with N = 1 (center) and N = 2 (right), respectively, over the time interval316

[0,T ] = [0, 2]. We have taken ξ j(ω), j = 1, 2 uncorrelated standard Gaussian RVs and x0(ω)317

a uniform RV on the interval [0, 1], i.e., x0(ω) ∼ Un([0, 1]). As it has been assumed in the318

theoretical development, x0(ω) is assumed to be independent of ξ1(ω) and ξ2(ω). Notice that this319

assumption has been already used in (38). In the context of this example, clearly all hypotheses320

H1–H4 hold (see Remarks 1 and 2 to check H3 and H4, respectively). From Fig. 1, we can see321

that the first and second order truncations (plots in the center and in the right, respectively) are322

close to the 1-PDF of the exact solution (plot in the left). This feature can be observed in detail323

in Fig. 2 where the exact PDF, f1(x, t), and the two previous approximations, f 1
1 (x, t) and f 2

1 (x, t)324

have been plotted in different time instants (t = 0.1, 1, 2). For sake of clarity, in Table 1 we have325

collected the total error, defined by the following expression (39), between the exact 1-PDF and326

the approximation with order of truncation N at different times instants327

ePDF
N (t) =

∫ ∞

−∞

∣∣∣ f1(x, t) − f N
1 (x, t)

∣∣∣ dx. (39)

ePDF
N (t) N = 1 N = 2

t = 0.1 0.010021 0.008682
t = 1 0.077919 0.008663
t = 2 0.005310 0.000832

Table 1: Error measure ePDF
N (t) defined by (39) for different time instants, t ∈ {0.1, 1, 2}, and truncation orders N = 1, 2,

in the context of Example 1.

Finally, in Fig. 3 we compare the exact mean and the exact standard deviation with the328

approximations obtained by (1) using, for computing the approximations, f N
1 (x, t) with N = 1, 2329

instead of f1(x, t). From these plots we can see that approximations are good, being slower the330

convergence of standard deviation. The errors of these approximations are shown in Table 2.331

These figures have been calculated using in (1) the following expressions with t0 = 0 and T = 2332

eµN =

∫ T

t0

∣∣∣µx(t) − µN
x (t)

∣∣∣ dt, eσN =

∫ T

t0

∣∣∣σx(t) − σN
x (t)

∣∣∣ dt. (40)
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Figure 1: Left: 1-PDF of the exact solution SP given by (38). Center: 1-PDF of the first truncation given by (36)–(37)
with N = 1. Right: 1-PDF of the second truncation given by (36)–(37) with N = 2.
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Figure 2: 1-PDF f1(x, t) of the exact solution SP and the two first truncations f N
1 (x, t), N = 1, 2, for different values of t

in the context of Example 1. Left: t = 0.1. Center: t = 1. Right: t = 2.

Error N = 1 N = 2 N = 3 N = 4
Mean eµN 0.055567 0.005541 0.002425 0.000871

Standard deviation eσN 0.383975 0.169942 0.159339 0.151808

Table 2: Values of errors eµN and eσN for the mean and standard deviation, given by (40) using different orders of truncation
N, in the context of Example 1.
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Figure 3: In the context of Example 1. Left: Exact mean (µx) of the solution and its approximations using truncations
of order N = 1, 2 (µ1

x and µ2
x, respectively). Right: Exact standard deviation (σx) of the solution and its approximations

using truncations of order N = 1, 2, 3, 4 (σi
x, i = 1, 2, 3, 4).

3.2. Example 2: Exponential covariance333

As the KLE relies upon the covariance function ca(s, t) of the SP, in this example we will as-334

sume known the covariance function of SP a(t, ω) instead of giving the SP itself. Let us consider335

the following covariance function, usually referred to as exponential covariance,336

ca(s, t) = e
−
|s − t|

b , (s, t) ∈ T × T , T = [−a, a], a > 0, (41)

where b > 0 is often termed the correlation length, since it reflects the rate at which the corre-337

lation decays between two times of the process. The eigenvalues and normalized eigenfunctions338

of the covariance function are given by [3, p.294–295]339

φ j(t) =
cos(z jx)√

a +
sin(2z ja)

2z j

, ν j =
2c

z2
j + c2

, j odd,

φ∗j(t) =
sin(z∗j x)√

a −
sin(2z∗ja)

2z∗j

, ν∗j =
2c

(z∗j)
2 + c2 , j even,

(42)

being c = 1/b and z j, z∗j the solutions of the following transcendental equations340

c − z j tan(ω ja) = 0, j odd,
z∗j + c tan(z∗ja) = 0, j even.

Then, considering the mean of the SP a(t, ω) is zero, the KLE of a(t, ω) is given by341

a(t, ω) =

∞∑
j=1

(
√
ν2 j−1φ2 j−1(t) ξ2 j−1(ω) +

√
ν∗2 jφ

∗
2 j(t) ξ

∗
2 j(ω)

)
. (43)
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Next, we will show graphically the approximations, f N
1 (x, t), of the 1-PDF, f1(x, t), of the solution342

SP, x(t, ω), to random IVP (2), being a(t, ω) represented by the KLE (43). These approximations343

will be constructed using expression (9) with different orders of truncation N.344

In Fig. 4, we have plotted f N
1 (x, t) with N = 1 and N = 2 for two different correlation lengths,345

b = 0.1 and b = 1, over the time domain T = [−0.5, 0.5] corresponding to a = 0.5. Therefore,346

the initial time instant is t0 = −0.5. We have chosen ξ j(ω), j = 1, 2, uncorrelated standard347

Gaussian RVs to represent the SP a(t, ω) by KLE (43). The initial condition x0(ω) is assumed348

to be an exponential RV with mean 1/4, i.e., x0(ω) ∼ Exp(4). Hence, by Remark 1, hypothesis349

H3 holds. We assume that x0(ω), ξ1(ω) and ξ2(ω) are independent RVs. From Fig. 4, we can350

observe that both f 1
1 (x, t) and f 2

1 (x, t) are very similar, then indicating quick convergence with351

respect to the truncation order N. This happens for both values of parameter b over the whole352

space-time domain. For the sake of clarity, in Fig. 5 we show both approximations in the middle353

point t = 0 of the domain T for b = 0.1 and b = 1. As an indicator of convergence, in Table 3354

we have computed the following error355

êPDF
N (t) =

∫ ∞

−∞

∣∣∣ f N
1 (x, t) − f N−1

1 (x, t)
∣∣∣ dx, (44)

between consecutive approximations over the whole spacial domain at t = 0 (middle time instant)356

for both values of parameter b.357

êPDF
N (0) N = 2 N = 3
b = 1 0.0106515 0.0000164

b = 0.1 0.0147553 0.0008538

Table 3: Error measure êN (t) defined by (44) for time instant t = 0, and truncation orders, N = 2, 3 for b = 1 and b = 0.1,
in the context of Example 2.

In Fig. 6 we show the mean and the standard deviation with b = 0.1 and b = 1 for different358

orders of truncation.359

To account for the error, in Table 4 and Table 5 we show the following errors for b = 0.1 and360

b = 1 respectively, with t0 = −0.5 and T = 0.5361

êµN =

∫ T

t0

∣∣∣µN
x (t) − µN−1

x (t)
∣∣∣ dt, êσN =

∫ T

t0

∣∣∣σN
x (t) − σN−1

x (t)
∣∣∣ dt, (45)

where µn
x(t) and σn

x(t), n = N − 1,N, are approximations to the mean and the standard deviation362

using f N−1
1 (x, t) and f N

1 (x, t), respectively, instead of f1(x, t) in expression (1).363

error (b = 0.1) N = 2 N = 3 N = 4 N = 5
êµN 0.0018717 0.0004470 0.0001983 0.0000631
êσN 0.0057412 0.0013707 0.0006206 0.0003282

Table 4: Errors êµN and êσN for the mean and the standard deviation, defined by (45) respectively, using different orders of
truncations (N = 2, 3, 4, 5) and correlation length b = 0.1, in the context of Example 2.

From Table 3, we observe that the error êPDF
N (0) is smaller for b = 1 than b = 0.1. This same364

behaviour happens regarding the approximations of the mean and the standard deviation, namely,365
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Figure 4: In the context of Example 2. Top: 1-PDF of the truncations N = 1 and N = 2, with b = 1 Bottom: 1-PDF of
the truncations N = 1 and N = 2, with b = 0.1.
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Figure 5: 1-PDF of the truncations N = 1, 2, for t = 0, in the context of Example 2. Left: b = 1. Right: b = 0.1.
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Figure 6: In the context of Example 2. Top: Approximations of the mean and standard deviation using different orders
of truncation N = 1, 2, 3 with correlation length parameter b = 1. Bottom: Approximations of the mean and standard
deviation using different orders of truncation N = 1, 2, 3, 4, 5 deviation using different orders of truncation N = 1, 2, 3
b = 0.1.

error (b = 1) N = 2 N = 3
êµN 0.0019514 0.0001370
êσN 0.0064182 0.0004473

Table 5: Errors êµN and êσN for the mean and the standard deviation, defined by (45) respectively, using different orders of
truncations (N = 2, 3) and correlation length b = 1, in the context of Example 2.
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they are better for b = 1 than for b = 0.1, except for N = 2 (see Table 4 and Table 5). This result366

can be expected from the decay of eigenvalues v j. In fact, it is well-known that [3, 204]367

‖a(t, ω) − aN(t, ω)‖L2(Ω,L2(T )) =

∫
T

V[a(t, ω)] dt −
N∑

j=1

ν j.

Then, the first N eigenvalues ν j can be added to determine the truncation parameter N for a given368

error tolerance, say ε > 0, when approximating the diffusion coefficient a(t, ω) using the KLE.369

Obviously, the greater the values of v j, the smaller the value of N. In our context the decay of370

eigenvalues ν j depends on the choice of the parameter b. The bigger b the faster decay of ν j371

and, as a consequence, a smaller value of the truncation parameter N will be required to achieve372

the accuracy ε in order to approximate a(t, ω). In Table 6, the first eigenvalues of the covariance373

function (41) are shown for b = 0.1 and b = 1 over the time interval T = [−0.5, 0.5]. These374

eigenvalues have been represented in Fig. 7. As it can be observed in this plot, the eigenvalues375

corresponding to b = 1 decay faster than those ones corresponding to b = 0.1. This fact is in376

agreement with figures collected in Table 3 (corresponding to approximation of 1-PDF) and in377

Tables 4 and 5 (corresponding to approximations of mean and standard deviation), where error378

associated to b = 1 is smaller than to b = 0.1, for a fixed truncation order N.379

ν1 ν2 ν3 ν4 ν5

b = 0.1 0.187083 0.156046 0.121154 0.091324 0.068736
b = 1 0.738813 0.138000 0.045089 0.021329 0.012279

ν6 ν7 ν8 ν9 ν10

b = 0.1 0.052403 0.040695 0.032225 0.025998 0.021333
b = 1 0.007945 0.005551 0.004093 0.003142 0.002486

Table 6: First eigenvalues, ν j, of the covariance function (41) for j = 1, 2, . . . , 10 for b = 0.1, 1 over the time interval
T = [−0.5, 0.5], in the context of Example 2.
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Figure 7: First eigenvalues, ν j, of the covariance function (41), in the context of Example 2.

In the context of this example, where neither the exact 1-PDF nor the exact mean and standard380

deviation are not available, it is very interesting to establish some criterion (stopping criterion) in381
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order to determine the order of truncation N for a given error tolerance ε > 0. Just as an example382

to illustrate the way our findings can be used in this regard, if ε = 10−3 then, according to Table383

4 and Table 5, it is enough to take N = 3 as the order of truncation for both values of parameter384

b, while N = 3 and N = 4 are required to guarantee the same accuracy for the standard deviation385

when b = 1 and b = 0.1, respectively.386

4. Conclusions387

In this paper we have constructed approximations of the first probability density function388

to the linear homogeneous first-order random differential equation. We have proved rigorously389

that these approximations are convergent under mild conditions upon the initial condition and390

the diffusion coefficient which are assumed to be a random variable and a stochastic process,391

respectively. The key idea to construct these approximations has been to combine the Random392

Variable Transformation technique and the Karhunen-Loève expansion. We have considered two393

illustrative examples showing that approximations converge rapidly. Indeed, just a few terms are394

need to approximate the first probability density function (1-PDF) in both examples. We have395

taken advantage of computing the 1-PDF to approximate both the mean and the variance in both396

examples. All numerical results are also satisfactory. Finally, as it has been underlined in the397

motivation of the paper, although the formulation of the target problem appears to be simple, the398

analysis does not. This is a genuine feature usually met when deterministic results are extended399

to the random scenario.400
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