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Abstract 

 

The construction of a building’s external wall is subject to many restrictions such as budget, 

workforce, availability of materials, thickness, maintenance cost, time limit and specially, energy 

efficiency legislation intended at mitigating the negative effects of the energy consumption and 

obtaining a more sustainable and healthier indoor environment. The choice of the appropriate material 

and thickness composing each layer of an external wall can significantly reduce the energy 

consumption of the building without adversely affecting the cost of the wall. 

By using Integer Linear Programming (ILP), the aim of this paper is to obtain this best choice of 

materials and thicknesses to minimize the construction cost of an external wall while complying with 

the abovementioned restrictions. A case study is presented with more than 5.5 million combinations 

of different selected materials and their thicknesses for the different layers of the wall. The ILP 

problem has been solved for 165 scenarios that take into account different maximal allowed thermal 

transmittances and a range of the most usual thicknesses and material options of an external wall. 
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1. Introduction 

 

Linear Programming (LP) [1-3] has proven its efficiency to mathematically model 

many real-world problems aiming at the maximization or minimization of a certain 

function (objective function) that is linearly dependent on a set of variables related to each 

other through a set of linear constraints. It is well-known that a LP problem has 

polynomial complexity when all variables are real and continuous. However, if all 

variables must be integer (ILP) or it is a mixed case (MILP) where there are both 

continuous and integer variables, the optimization problem has exponential complexity. 

In the last two cases, several iterative procedures have been developed to obtain the 

optimal solution, although, of course, they cannot guarantee that the optimal solution will 

be found in all the instances within a reasonable time. Sherali and Driscoll [4] provide an 

interesting discussion of the evolution of the technique and philosophy leading to the 

current state-of-the-art for modeling and solving ILP problems.  

As stated before, many optimization problems in all fields of real life can be modeled 

as LP problems and the number of applications of LP to real-word problems is 
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continuously increasing. We mention four recently published applications as example. 

Ilaya-Ayza et al. [5] use ILP to solve an optimization problem with the aim of improving 

the technical management of intermittent water supply systems. Skrzipek [6] uses LP to 

recover signals from given samples. With an adequate number of samples, the signal will 

be reconstructed. Otherwise, the frequency, amplitude and bandwidth will be 

approximated by the proposed procedure. Omidi et al. [7] use LP in an economic problem 

where the investor wants either to maximize the expected value of the total return subject 

to some chance constraints, or to minimize the investment risk of the total return with 

some chance constraints. Finally, Soler et al. [8] use ILP with binary variables to model 

the problem of minimizing the thermal transmittance of an external wall under certain 

restrictions.  

Particularly interesting are the applications of LP in the field of energy related to 

buildings, in which this work fits. In addition to the above cited paper [8], among others, 

Privitera el at. [9] use LP to minimize the cost of renewable energy technologies to meet 

the reduction of carbon emissions. Ashouri et al. [10] use MILP to obtain the best 

selection of heating and cooling systems, thermal and electrical storages, and renewable 

energy sources. Lindberg et al. [11] investigate solutions for Zero Energy Buildings with 

a financial perspective. MILP is used to optimize both the investments in technology and 

the operation of the energy technologies. Finally, Ogunjuyigbe et al. [12] use MILP to 

allocate electrical power to home appliances in residential building with intermittent 

photovoltaic source, with the aim of maximizing the sub-load points available at each 

period of the day. They use binary variables to model whether an electrical appliance 

must be on or off. 

A key concept is present in the last five cited articles: energy efficiency. According to 

the definition given by the International Energy Agency [13], energy efficiency includes 

the managing and restraining of growth in energy consumption. A building is considered 

more energy efficient if it delivers more services for the same energy input, or if it ensures 

the same services for less energy input. 

Since the approval of the EU Directive 2010/31 [14], European legislation encourages 

energy saving. Buildings are a key factor as they account for 40% of the total EU's energy 

consumption [15]. The EU also foresees three energy targets for 2020: a) 20% reduction 

of the produced greenhouse gases, b) at least 20% coverage of energy consumption by 

renewable energies and c) 20% reduction of the primary energy needs by improving 

energy efficiency [16]. 

In buildings, energy efficiency is strongly related to the building envelope, which is 

the physical separator between the interior and exterior of the building and plays a crucial 

role in controlling the thermal energy transfer and avoiding excessive noise inside the 

enclosures. Externals walls, roofs, floors, doors and windows are the typical components 

of a building envelope. With respect to external walls, historically they were resolved 

previously as load-bearing walls, usually made of stone and then made of bricks. In the 

first half of the 20th century concrete structures became much more usual. The 

conventional façade was freed from its structural function and could therefore become 

lighter and thinner, reaching just a 120 mm thickness [17]. Subsequently, a second interior 

panel was added creating an intermediate air cavity to improve its thermal performance, 

with the option to introduce a thermal insulation in order to mitigate the energy 

consumption of the building [18]. Fig. 1 shows this evolution between 1972 and 1990 

[19]. 
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Fig. 1. Evolution of the external wall between 1972 and 1990 [19]. 

  

The U-value that appears in Fig. 1 is the thermal transmittance, a key magnitude in 

building efficiency that describes the insulation capacity of a building structure. 

Transmittance is a property of materials and depends on temperature. Its units are Watts 

per meter squared Kelvin (Wm-2K-1). If a wall material has a U-value of 1 Wm-2K-1, for 

every degree of temperature difference between the inside and the outside façade, 1 Watt 

of heat energy will flow through each square meter of its surface. Thus, the lower the U-

value, the better the insulation of the building. The thermal transmittance of a wall 

consisting of n layers is given by Eq. (1) as described by McMullan [20]:  

 

𝑈 =
1

1
ℎ𝑖𝑛𝑡

+ ∑
𝑒𝑖

𝜆𝑖
+

1
ℎ𝑒𝑥𝑡

𝑛
𝑖=1

                                      (1) 

 

Where 𝜆𝑖 (Wm-1K-1) and 𝑒𝑖 (m) represent the thermal conductivity and the thickness 

respectively of layer i, and 1/hext and 1/hint (m
2KW-1) represent the standard external and 

internal conductivity respectively for the air layers connected with the envelope.  

Legislation in Spain [21] divides the territory into five climate zones according to 

winter climate severity, from A (less severe) to E (most severe). This legislation allows a 

maximal thermal transmittance for the different parts of the building envelope depending 

on the zone where the building is located. Specifically, for the external wall, which is the 

object of study in this paper, the maximum allowed thermal transmittances are: 

- Zone A:  1.25 Wm-2K-1. 

- Zone B:  1.00 Wm-2K-1. 

- Zone C:  0.75 Wm-2K-1. 

- Zone D:  0.60 Wm-2K-1. 

- Zone E:  0.55 Wm-2K-1. 

As far as we know, the scientific literature has not developed procedures to minimize 

the construction cost of a building’s external wall, while complying with the inherent 

economic constraints (budget, workforce, dimensions, availability of materials, 

maintenance cost, time limit, etc.), and the current energy efficiency legislation in relation 

to thermal transmittance. An external wall consists of several layers and each layer can 

admit different materials with their own thermal transmittance and different thicknesses. 

Therefore, thousands or even millions of possible combinations of materials and their 

thicknesses must be evaluated to obtain the combination that minimizes the construction 

cost of the wall without violating any restriction imposed to the constructor.  
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The aim of this paper is to use ILP to model and to solve the above described 

optimization problem.  

The rest of the paper is organized as follows. Section 2 introduces all the variables and 

parameters involved in the problem and presents its ILP formulation. Section 3 shows the 

computational results obtained on a case study consisting of a 6-layer external wall with 

more than 5.5 million combinations of the different selected materials and their 

thicknesses for the different layers of the wall, and where the ILP formulation is applied 

for 165 scenarios consisting of combinations of thickness bounds and maximal allowed 

thermal transmittances. Finally, Section 4 presents conclusions and some suggestions for 

future research.  

 

2. Formulation of the ILP problem 

 

The problem of minimizing the construction cost of the external wall of a building 

under the restrictions cited above is formulated in this section as an ILP problem. To this 

aim, we first need to present the used variables and parameters, and to give some notations 

and suppositions for a better understanding of the formulation. 

1. Given the total surface in m2 of the external wall, this surface will be taken into 

account on preliminary simple calculations, such as determining the availability 

of certain materials for the entire wall or if the total value of that material exceeds 

the budget we are willing to pay for that material or its corresponding layer. 

However, the prices and other parameters of the materials are usually given by m2 

in the databases. Therefore, the goal will be to minimize the cost per m2 of the 

external wall. 

2. Let n be the number of layers of the wall, which will be enumerated from inside 

to outside. Each layer 𝑖 ∈ {1, … , 𝑛} is made of one of the 𝑚𝑖 different materials 

available for this layer, and given a layer 𝑖 ∈ {1, … , 𝑛}, the material 𝑗 ∈ {1, … , 𝑚𝑖} 

is available in 𝑟𝑗𝑖
 different thicknesses.  

3. For each 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {1, … , 𝑚𝑖} and 𝑘 ∈ {1, … , 𝑟𝑗𝑖
}, the following 

parameters are defined: 

 𝑒𝑖,𝑗,𝑘 thickness corresponding to material j with type of thickness k 

available for layer i (note that k indicates the type of thickness, not the 

thickness). 

 𝑐𝑖,𝑗,𝑘 cost of placing in layer i 1m2 of material j with type of thickness k 

available for layer i. 

 𝑡𝑖,𝑗,𝑘 time of placing in layer i 1m2 of material j with type of thickness k 

available for layer i. 

 𝑚𝑐𝑖,𝑗,𝑘 maintenance cost for a given period of time for 1 m2 of material j 

with type of thickness k and located in layer i. 

4. Given two consecutive layers, there may exist incompatibilities between some 

materials and thicknesses corresponding to these layers. A detailed example of 

incompatibility between two materials corresponding to two consecutive layers 

will be given in the last paragraph of this section. 

5. The total thickness of the external wall is comprised between bounds 𝑒𝑚𝑖𝑛 and 

𝑒𝑚𝑎𝑥. 
6. Let 𝑈𝑚𝑎𝑥 be the maximum thermal transmittance allowed for the external wall.  

7. Let 𝑡𝑚𝑎𝑥 be the maximum time allowed to construct 1 m2 of the external wall.  

8. Let 𝑚𝑐𝑚𝑎𝑥 be the maximum maintenance cost for 1 m2 of the external wall for a 

given period of time. 
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9. The variables of the ILP problem are the binary variables 𝑥𝑖,𝑗,𝑘  whose value are 

1 if layer i is made with material j and type of thickness k,  and  0 otherwise, 𝑖 ∈
{1, … , 𝑛}, 𝑗 ∈ {1, … , 𝑚𝑖} and 𝑘 ∈ {1, … , 𝑟𝑗𝑖

}. 

10.  Given a material j, with 𝑗 ∈ {1, … , 𝑚𝑖} for some 𝑖 ∈ {1, … , 𝑛}, and let 𝜆𝑗 be its 

thermal conductivity, according to Eq. (1) the constraint to comply with the 

thermal transmittance upper bound is:  

 
1

1
ℎ𝑖𝑛𝑡

+ ∑ ∑ ∑
𝑒𝑖,𝑗,𝑘

𝜆𝑗
𝑥𝑖,𝑗,𝑘 +

1
ℎ𝑒𝑥𝑡

𝑟𝑗𝑖

𝑘=1
𝑚𝑖

𝑗=1
𝑛
𝑖=1

≤ 𝑈𝑚𝑎𝑥                         (2) 

 

Note that Eq. (2) is not a linear constraint of variables 𝑥𝑖𝑗𝑘, but 𝑈𝑚𝑎𝑥, ℎ𝑖𝑛𝑡 and ℎ𝑒𝑥𝑡 

are constant, as well as  𝑒𝑖𝑗𝑘 and 𝜆𝑗 for all the involved subscripts. It is easy to see that 

Eq. (2) is equivalent to Eq. (3), which is a linear constraint in the variables 𝑥𝑖𝑗𝑘:  

 

∑ ∑ ∑
𝑒𝑖,𝑗,𝑘

𝜆𝑗
𝑥𝑖,𝑗,𝑘 ≥

1

𝑈𝑚𝑎𝑥
−

1

ℎ𝑖𝑛𝑡
−

1

ℎ𝑒𝑥𝑡

𝑟𝑗𝑖

𝑘=1

𝑚𝑖

𝑗=1

𝑛

𝑖=1

                                  (3) 

 

Taking into account all the concepts, restrictions and suppositions given above, the 

problem of minimizing the construction cost of an external wall can be formulated 

mathematically as the following ILP problem, defined through Eqs. 4 to 11: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑟𝑗𝑖

𝑘=1

𝑚𝑖

𝑗=1

𝑛

𝑖=1

                                                             (4) 

 s.t.: 

 

∑ ∑ 𝑥𝑖,𝑗,𝑘 = 1   

𝑟𝑗𝑖

𝑘=1

𝑚𝑖

𝑗=1

∀𝑖 ∈ {1, … , 𝑛}                                                           (5) 

 

𝑒𝑚𝑖𝑛 ≤ ∑ ∑ ∑ 𝑒𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑟𝑗𝑖

𝑘=1

𝑚𝑖

𝑗=1

𝑛

𝑖=1

≤ 𝑒𝑚𝑎𝑥                                                             (6) 

 

∑ ∑ ∑
𝑒𝑖,𝑗,𝑘

𝜆𝑗
𝑥𝑖,𝑗,𝑘 ≥

1

𝑈𝑚𝑎𝑥
−

1

ℎ𝑖𝑛𝑡
−

1

ℎ𝑒𝑥𝑡

𝑟𝑗𝑖

𝑘=1

𝑚𝑖

𝑗=1

𝑛

𝑖=1

                                        (7) 

∑ ∑ ∑ 𝑡𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘

𝑟𝑗𝑖

𝑘=1

𝑚𝑖

𝑗=1

𝑛

𝑖=1

≤ 𝑡𝑚𝑎𝑥                                                                      (8) 

   ∑ ∑ ∑ 𝑚𝑐𝑖,𝑗,𝑘𝑥𝑖,𝑗,𝑘 ≤ 𝑚𝑐𝑚𝑎𝑥                                                              (9)  

𝑟𝑗𝑖

𝑘=1

𝑚𝑖

𝑗=1

𝑛

𝑖=1

 

 

𝑥𝑖,𝑗,𝑘 + 𝑥(𝑖+1),𝑗′,𝑘′ ≤ 1    ∀ (𝑖, 𝑗, 𝑘 − (𝑖 + 1), 𝑗’, 𝑘’) −  𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒  (10) 
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𝑥𝑖,𝑗,𝑘 ∈ {0,1}    ∀ 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {1, … , 𝑚𝑖}, 𝑘 ∈ {1, … , 𝑟𝑗𝑖
}              (11) 

 

Where: 

Eq. (4) is the objective function, that is, the construction cost of 1m2 of the wall. 

Eq. (5) guarantees that each layer is made exactly of one material with a specific 

thickness. 

Eq. (6) restricts the total thickness of the external wall within the established bounds. 

Eq. (7) is the key restriction with respect to energy efficiency. It ensures that the wall 

does not exceed the maximal allowed thermal transmittance. 

Eq. (8) guarantees that the established time limit to construct 1 m2 of the wall will not 

be exceeded. Note that deadlines are very important in building construction, because a 

project consists of a set of tasks such that some of them must be finished before others 

can start. In fact, the aim of the well-known Critical Path Method [22] is to find the best 

sequence of tasks with the least amount of slack and to have a tool to control and adapt 

deadlines.  

Eq. (9) ensures that the maintenance cost of 1 m2 of the external wall will not exceed 

a certain amount. Note that the approximate maintenance costs for certain period of time 

of the different materials are usually available on the databases. To ensure a low 

maintenance cost can be considered a good option on a sales policy.  

Eq. (10) forbids to place a material j’ with thickness k’ in the next layer to the one 

(layer i) containing the material j with thickness k (we denote this fact (i,j,k-(i+1),j’,k’)-

incompatibility). At most one of the two materials will appear in the corresponding layer.  

Finally, Eq. (11) defines the variables of the problem as binary ones.  

Note that the above formulation contains the usual constrains given in the construction 

of an external wall, but it could include other types of linear constraints in order to fit as 

much as possible the real restrictions involved in each specific situation. In the same way, 

some constrains given above could be removed or modified conveniently, for instance, if 

maintenance cost is not taken into account. 

Note also that, although for mathematical reasons the number of layers is considered 

fixed, in the real problem some layers of the external wall could be optional. This is not 

a handicap for the presented ILP formulation because, if a layer is optional, an imaginary 

material for that layer with zero construction cost, zero construction time, zero 

maintenance cost, zero thickness and any conductivity different from zero can be 

considered. If the optimal solution to the ILP problem assigns this material to the 

corresponding layer, this means that in the real solution this layer does not exist. This is 

the case, for instance, of an internal air chamber, that in many cases is optional.  

But the idea of an imaginary material can also be useful to address the case of 

incompatibility between materials of adjacent layers. For instance, it is usual for the 

exterior panel of an external wall to be made of solid brick, concrete block or facing brick. 

If the exterior panel is made by solid brick or concrete block, for aesthetic reasons, an 

external layer consisting of some kind of coating is added. But if the external panel is 

made of facing brick, as its name indicates, it makes no sense to add an external coating 

covering the facing bricks and therefore preventing their view. Therefore, there is an 

incompatibility between external coating and facing brick in the external panel, but as the 

number of layers must be fixed, the problem is how our model can guarantee that if the 

external panel is made of facing brick, the external coating will not exist. To face this 

issue, we consider an imaginary material for the external coating layer as described above 

(zero cost, zero thickness, etc.). In this case, Eq. (10) must be used to declare 

incompatibility between facing brick in the penultimate layer and all options of external 
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coating in the last layer except for the imaginary one, and to declare incompatibility 

between the imaginary external coating in the last layer and the solid brick or the concrete 

block in the penultimate layer. Both the optionality of the air chamber and the 

incompatibility between external layers occur in the case study given in the next section. 

 

3. Case study  

 

Our case study consists of a 6-layer façade which includes an internal coating (IC) and 

panel (IP), a layer with thermal insulation (TI), an optional air chamber (AC), an external 

panel (EP) and finally an external coating (EC) (see Fig. 2). This façade is a common and 

representative constructive solution for an external wall and is included in the Catalog of 

Constructive Elements of the Spanish Technical Act [23]. 

 

 
Fig.2. Case study. 

 

In order to make this constructive solution more flexible and global, we have chosen 

different materials for each layer. The internal panel (IP) shows six materials (air brick, 

perforated brick, solid concrete block, light concrete block, terracotta brick and perforated 

concrete brick).  The eight chosen thermal insulation materials (TI) present an increasing 

conductivity from 0.013 up to 0.09 W/mK-1. In order to avoid a poor behavior of the 

thermal insulation its ideal position is inside the chamber and attached to the internal 

panel. Projected polyurethane, extruded and expanded polystyrene, mineral wool, 

sandwich panel can be classified as conventional materials and cork and wood chips as 

green and alternative materials, as described by Schiavoni et al. [24]. We also want to 

highlight the nanoporous aerogel as a quite new and very performing insulation material 

with the lowest conductivity. A ventilated façade aims to improve the behavior of a 

conventional envelope in terms of static stability, thermal performance, weather tightness 

and flexibility. Our air cavity (AC) presents 3 options: light ventilated, not ventilated or 

absence. The external panel (EP) can consist of solid brick, concrete block, perforated 

brick, facing brick or pressed facing brick with similar thicknesses but quite variable 

thermal conductivity. Finally, the external coating (EC) shows options for continuous or 

discontinuous envelope, as described in the introduction. If a facing brick is used as 

IC       IP       TI   AC         EP        EC  

 10-15   110-300    10-100 0-100        110-150         

0-40 
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external panel, obviously external coating is not necessary, which implies that there is an 

incompatibility between both materials. All materials can show furthermore different 

thickness as shown in Table 1, which summarizes all options. 

The cost of the different materials with their corresponding thiknesses have been 

consulted in the cost generator website of CYPE Ingenieros [25] during November 2017. 

Materials, staff and site facilities are included in the cost. Maintenance costs for 10 years 

are also available. Table A1 in Appendix shows all the necessary data correspondig to the 

different materials and thicknesses for the 6 layers: conductivity, cost per m2, 10-year 

maintenance cost per m2 and variable name in the ILP problem. Note that from Table A1 

we obtain a total number of 134 binary variables in the ILP problem. Moreover, the 

Spanish Technical Act (CTE), Basic Document of Energy Saving (DB_HE) [21] 

recommends a specific thermal resistance for the air layers close to the external and 

internal surfaces, which values for vertical air flow are: 1/hext = 0.04 m2KW-1 and 1/hint = 

0.13 m2KW-1. 

 
Table 1 
 Composition of the layers of the case study.  

 

Layer Function Material Thickness [mm] 

Layer 1 Internal coating Plaster 10, 12, 14, 15 

 

Layer 2 

 

Internal panel 

Air brick 

Perforated brick 

Solid concrete block 

Light concrete block 

Terracotta bricks 

Perforated concrete brick 

110, 115 

115 

150, 200 

200, 250, 300 

140, 190, 240 

120 

 

 

 

Layer 3 

 

 

 

Thermal 

insulation 

 

Nanoporous aerogel 

Projected Polyurethane 

Extruded polystyrene 

Mineral wool 

Expanded polystyrene 

Cork 

Sandwich panel 

Wood chips 

10, 20 

20 up to 80 

30 up to 60 

30 up to 100 

30 up to 80 

25 up to 60 

25, 35, 50 

15, 25, 35, 50 

 

Layer 4 

 

Air cavity 

 

Light ventilated 

not ventilated 

absence 

30, 50, 80, 100 

30, 50, 80, 100 

0 

 

Layer 5 

 

External panel 

Solid brick 

Concrete block 

Perforated brick 

Facing brick 

Pressed facing brick 

115 

150 

110 

115 

120 

 

 

Layer 6 

 

 

External coating 

Regular plaster 

Thermal plaster 

Metallic plate 

Stone plate 

Composite plate 

Ceramic plate 

Absence 

10 up to 20 

10 up to 20 

15, 20 

30, 40 

40 

10 

0 

 

In this case study the number of possible combinations of the different selected 

materials and thicknesses for the different layers is 5,598,720. We can check that 

2,169,504 of them do not violate Eq. (10) of the ILP formulation, which corresponds to 

the incompatibilities between different materials in layers 5 and 6. That is, a total amount 
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of 2,169,504 possible constructive solutions remain for this external wall. The builder or 

the designer should evaluate which one of these constructive solutions has the lowest 

construction cost, according to the rest of restrictions that must be met regarding the 

thickness of the wall, the maintenance cost, the maximum allowed thermal transmittance, 

the time limit to build the wall, etc. In order to obtain trends and conclusions, particularly 

on how the maximum allowed thermal transmittance affects the minimum construction 

cost, we have decided to evaluate 165 scenarios among hundreds of different possibilities, 

depending on different values given to the parameters mentioned above and taking into 

account the following circumstances: 

- The most usual thicknesses of an external wall are between 25 and 40 cm. 

Therefore, we have considered 15 different intervals of thickness, each one with 

a width of one cm: [25+i,25+i+1[ for each 𝑖 ∈ {0,1, … ,14}.  

- The maximum allowed U-Value for the most severe winter climate zone in Spain 

is 0.55 Wm-2K-1. But as stated in Section 1, the lower the U-value, the better the 

insulation of the structure. Furthermore, the Perfil de Calidad (Quality Profile) of 

the Instituto Valenciano de la Edificación [26] is a special label with point system, 

that considers improvements in energy savings, environmental protection, 

acoustic comfort, accessibility or spatial quality. Extra points are given if the 

thermal transmittance U is reduced by 40% or 60%. Therefore, we have decided 

to consider 11 maximum allowed U-values {0.25 + 0.05𝑖}𝑖=0
10 , which allows 

studying the 3 most critical climatic zones (E,D,C) and go further. Note that with 

these U-values, Spanish legislation about thermal transmittance will always be 

fulfilled for climate zones A and B.  

- We do not consider any time limit to build the wall, i.e. Eq. (8) is not considered. 

- As 10-year maintenance costs are known for all the involved materials, and in 

order to make use of Eq. (9) with a logical argument, for each one of the 165 

combinations of thickness and maximum U-value, we have solved and ILP 

problem to obtain the minimum 10-year maintenance cost for 1m2 of the wall. To 

do this, in the ILP formulation given in Section 2 we have replaced the triple 

summation of Eq. (4) by the triple summation of Eq. (9) and deleted Eq. (9). 

Among all the obtained minimum maintenance costs, we have used the maximum 

of these values, which is 12.82€, as an upper bound in Eq. (9) for all 165 ILP 

problems to obtain the minimum construction cost. In this way, we guarantee that 

the wall will have a low maintenance cost (which makes the property more 

attractive to hypothetical buyers), but at the same time, by selecting the maximum 

of those minimums, we try to guarantee the existence of a feasible solution in as 

many scenarios as possible. 

To solve both the 165 ILP problems to obtain minimum 10-year maintenance costs 

and the 165 ILP problems to obtain minimum construction costs, we have run 

Mathematica 11.0 [27] on a PC Intel® Core™ I7-6700 with 4 processors, 3.46GHz and 

8GB RAM. Note that Mathematica is a widely used tool to solve mathematical, physical 

and engineering problems. It contains several functions to solve ILP problems and its own 

programming language that allows solving the 165 ILP problems with a single execution. 

Table 2 shows the minimum construction costs obtained for the 165 scenarios.  

Note that in 25 of these scenarios, which correspond to the lowest maximum U-values 

and the smallest wall thicknesses, the ILP problem was unfeasible. This can be concluded 

since Mathematica guarantees that it obtains the optimal solution if the ILP problem has 

a feasible solution, but in these 25 scenarios, Mathematica concluded that it was not able 

to find any feasible solution.  
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Table 2 
Minimum construction cost in euros of 1m2 of the external wall given an interval of thickness (row) 

and a maximal allowed thermal transmittance (column). A blank means a lack of solution. 

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 

[0.25,0.26[      232.7 232.7 232.7 138.3 134.09 134.09 

[0.26,0.27[     195.8 195.8 195.8 96.84 81.37 80.4 80.4 

[0.27,0.28[     199.93 83.68 82.35 82.35 80.44 80.44 80.44 

[0.28,0.29[    234.84 85.57 84.55 80.82 80.82 80.82 80.82 80.82 

[0.29,0.30[    86.64 83.48 81.37 80.4 80.4 80.4 80.4 80.4 

[0.30,0.31[   88.28 84.53 82.11 81.4 80.44 80.44 80.44 80.44 80.44 

[0.31,0.32[  90.13 89.88 82.75 80.82 80.4 80.4 80.4 80.4 80.4 80.4 

[0.32,0.33[  91.53 83.41 81.47 81.47 80.44 80.44 80.44 80.44 80.44 80.44 

[0.33,0.34[  88.52 84.53 82.11 80.82 80.82 80.82 80.82 80.82 80.82 80.82 

[0.34,0.35[  89.88 82.75 81.37 80.4 80.4 80.4 80.4 80.4 80.4 80.4 

[0.35,0.36[ 94.91 83.41 82.11 81.4 80.44 80.44 80.44 80.44 80.44 80.44 80.44 

[0.36,0.37[ 94.41 87.54 82.75 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.4 

[0.37,0.38[ 91.53 83.41 81.47 80.44 80.44 80.44 80.44 80.44 80.44 80.44 80.44 

[0.38,0.39[ 95.21 84.53 80.82 80.82 80.82 80.82 80.82 80.82 80.82 80.82 80.82 

[0.39,0.40[ 89.88 82.75 81.47 81.47 81.47 81.47 81.47 81.47 81.47 81.47 81.47 

 

Also notice, as a logical trend, that given a thickness interval, the lower the maximum 

U-value, the higher the minimum construction cost (we need more expensive materials to 

reduce the thermal transmittance). Finally, as a general rule, given a maximum U-value, 

the lower the thickness of the wall, the greater the minimum cost. However, the existence 

of different thicknesses for the air layer, all with zero cost (but with different thermal 

transmittance), causes that some minimum construction costs are the same when 

increasing the thickness in some cm, because the thickest wall has the same composition 

except for the air layer, which has a greater thickness. In fact, among the 140 minimum 

costs obtained, the lowest one (80.40€), which from now on will be called the global 

minimum cost, appears in several scenarios corresponding to different thicknesses and 

different maximum U-values due to the use of different thicknesses for the air layer.  

Figure 3 shows a radar diagram of costs vs transmittance for six of the most 

representative thickness intervals according to the results given in Table 2. Radar 

diagrams can be very effective to display jointly three or more quantitative variables in a 

two-dimensional chart. In our case we have considered as variables the cost associated to 

a specific U-value depending on thickness. The concentric circles represent increasing 

values for costs from 0 €/m2 (in the center) up to 250 €/m2 (in the external circle). Values 

for thermal transmittance U are displayed in the external part of the chart and start with 

0.25 Wm-2K-1 reaching clockwise the maximum value of 0.75 Wm-2K-1. We have 

considered six thicknesses (normal and dotted lines) of the 15 intervals. In these diagrams, 

the form of the obtained polygon for a specific thickness (complete, incomplete, regular, 

irregular) show the variation of the given thicknesses. 

For example, we can recognize how there is a little difference between the intervals of 

thickness [0.35,0.36[ and [0.39,0.40[ for the highest thermal transmission. All related 

polygons are quite near the center of the circle meaning lower reached final construction 

cost. The absence of part of the polygon means presence of unfeasible problem for that U 

in that sector, e.g. in intervals [0.25,0.26[, [0.26,0.27[, [0.28,0.29[ and [0.31,0.32[. The 

first thickness interval reaches the maximum construction cost of 232.70€ for U between 
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0.5 Wm-2K-1 and 0.6 Wm-2K-1 while for interval [0.28,0.29[ a similar maximum cost of 

234.84€ corresponds to a U value of 0.4 Wm-2K-1. 

 

 
 

Fig.3. Radar diagram of cost (values in upper vertical radius, in €/m2) vs transmittance (values in the 

direction of clockwise, in Wm-2K-1) for six representative thickness intervals.  

  

For interval [0.26,0.27[ the maximum cost drops up to 195.80€ for U between 0.45 

Wm-2K-1 and 0.55 Wm-2K-1. 

Table 3 shows the CPU time in seconds to obtain each one of the optimal solutions 

whose costs are given in Table 2. To obtain each optimal solution Mathematica took only 

a few hundredths of a second. These times are insignificant, so we do not consider 

necessary to add additional information about them, as average or maximum or minimum 

values. Note that in some cases Mathematica reported 0 CPU time. According to 

Mathematica’s assumption, this means that the calculation took no measurable CPU time. 

Note also that, regarding the set of 25 ILP problems without feasible solution, 

Mathematica took between 18 and 22 seconds to determine that each problem was 

unfeasible. We consider this time reasonable due to the fact that the algorithm has to 

check up to 5,598,720 combinations of layers, all of them unfeasible for the given 

conditions. 
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Table 3 
CPU time in seconds to obtain the minimal construction cost solution for each interval of thickness 

(row) and maximal allowed thermal transmittance (column).  

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 

[0.25,0.26[ 18.719     18.813     18.984     18.672     18.781       0.016              0          0.016       0.047       0.016      0.016 

[0.26,0.27[  8.813     18.641     18.813     18.688       0.016       0.047       0.078       0.078       0.016            0          0.016    

[0.27,0.28[ 18.750     18.609     18.703     18.609       0.063       0.031       0.016       0.094       0.016       0.016       0.016    

[0.28,0.29[ 18.672     18.875     18.563       0.016       0.063       0.047       0.016       0.016       0.016       0.016             0       

[0.29,0.30[ 18.734     18.625     18.813       0.031       0.063       0.047       0.016       0.016             0          0.016       0.016    

[0.30,0.31[ 18.625     18.531       0.031       0.031       0.047       0.031       0.016       0.016       0.031             0          0.016    

[0.31,0.32[ 18.594             0         0.063       0.031       0.016       0.016       0.016       0.016       0.016             0          0.016    

[0.32,0.33[ 18.922       0.078       0.016       0.047       0.047       0.016       0.016       0.016             0          0.016       0.016    

[0.33,0.34[ 18.641       0.063       0.063       0.031       0.016       0.016       0.016       0.031       0.016       0.016       0.016    

[0.34,0.35[ 22.047     0.047             0          0.016             0         0.031             0          0.016             0          0.016             0       

[0.35,0.36[  0.031      0.016       0.047       0.031       0.016       0.016       0.016       0.016             0          0.016       0.016    

[0.36,0.37[   0.016       0.063       0.016       0.016       0.016             0                0          0.016             0          0.016             0       

[0.37,0.38[   0.094     0.047       0.031             0          0.016       0.016             0          0.016       0.016             0          0.016    

[0.38,0.39[   0.125       0.094       0.016       0.016       0.016       0.016             0          0.016             0          0.016              0       

[0.39,0.40[   0.047       0.031       0.031       0.016       0.016       0.016       0.016       0.016             0          0.016       0.016    

 

Note that for each one of the minimum construction cost solutions, in addition to this 

cost, Mathematica provides the values of the variables. Therefore, it is easy to know 

which are the chosen materials and their thicknesses for each one of the six layers in the 

optimal solution.  For obvious space reasons, we omit the selected materials for each one 

of the optimal solutions obtained. Instead, Table 4 shows all the data corresponding to the 

obtained solution for six representative scenarios, most of them extreme:  

- Solution with global minimum cost and minimum U-value. 

- Solution with global minimum cost and minimum thickness. 

- Least cost solution for the minimum Umax (0.25 Wm-2K-1).  

- Least cost solution using nanoporous aerogel, which is a quite new insulation 

material with the lowest conductivity and the lowest thickness of those available 

for this wall. 

- Least cost solution using projected polyurethane, which is one of the most used 

insulating materials. 

- Least cost solution using a facing brick for layer 5, which means absence of layer 

6 (external coating). 

From Table 4 we observe that only in the scenario with minimum Umax the thickness 

of the plaster in layer one is different, while layer 2 is the same for the six scenarios 

studied (air brick 33x16x11).   

The insulation layer 3 presents 2 insulation materials, projected polyurethane and 

nanoporous aerogel, with 2 different fixation options: dots and mechanical fixing. It is 

very interesting to highlight that, although its price is high, the use of nanoporous aerogel 

allows obtaining a feasible solution for the minimum considered thickness of the wall 

(0.25m). In fact, the combination of nanoporous aerogel and facing brick allows obtaining 

an external wall with just four layers, with a thickness of only 0.255m, and a thermal 

transmittance (0.47 Wm-2K-1) compatible with all 5 climate zones in Spain. Nevertheless, 

the price of this constructive solution is very high (232.7€) with respect to the global 

minimum cost (80.4€).   
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For layer 4 two options appear: light ventilated air gap (with two thicknesses) and no 

air gap.  Note that the composition of the wall for both scenarios with global minimum 

cost is the same, except for layer 4 that, as expected, it has no air gap for minimum 

thickness and it has the maximum allowed thickness of light ventilated air gap for 

minimum thermal transmittance. This fact was commented above, regarding that the air 

gap has zero cost independently of its thickness, but the greater its thickness, the lower 

its thermal transmittance. 

For layer 5 and layer 6 we have five equal solutions with perforated brick 33x30x11 

and regular plaster with thickness 0.01m. The only different scenario is the one with the 

facing brick commented above.  

Finally, we observe that in this case study, the cost of the least cost solution using 

projected polyurethane is the global minimum cost. This fact endorses that projected 

polyurethane is one of the most used insulating materials, but the demand of final clients 

with increasing environmental or esthetical awareness could also bring to different and 

maybe more expensive constructive solutions which includes the use of green insulating 

materials or even the use of lime stone plates for the external coating. This is just a 

business issue from the constructor point of view and not part of our paper, but our method 

is flexible enough in order to attend any input or constraints in this sense. 

 
Table 4 
Best solution for six scenarios of interest. 

 Global 

minimum cost 

with minimum 

Umax 

Global 

minimum cost 

with minimum 

thickness 

Minimum 

Umax 

Use of 

nanoporous 

aerogel 

Use of 
projected 

polyurethane     

Use of 

facing brick  

Cost 

Thickness 

interval      

80.4 

[0.36,0.37[ 

 

80.4 

[0.26,0.27[ 

 

94.41 

[0.36,0.37[ 

 

134.09 

[0.25,0.26[ 

 

80.4 

[0.26,0.27[ 

 

232.7 

[0.25,0.26[ 

 

Exact 

thickness 

0.36 0.26 0.369 0.25 0.26 0.255 

Umax 0.4 0.7 0.25 0.7 0.7 0.5 

Exact U 0.3871 0.6792 0.2495 0.6548 0.6792 0.4711 

Layer 1 Plaster  

0.01 

Plaster  

0.01 

Plaster  

0.014 

Plaster  

0.01 

Plaster  

0.01 

Plaster  

0.01 

Layer 2 Air brick 

33x16x11 

Air brick 

33x16x11 

Air brick 

33x16x11 

Air brick 

33x16x11 

Air brick 

33x16x11 

Air brick 

33x16x11 

Layer 3 Project. polyu. 

dots 0.02 

Project. polyu. 

dots 0.02 

Project. polyu. 

dots 0.075 

Npour aerogel 

mec. fix. 0.01 

Project. polyu. 

dots 0.02 

Npour aerogel 

mec. fix. 0.02 

Layer 4 Light vent. air 

gap 0.1 

No air gap Light vent. air 

gap 0.05 

No air gap No air gap No air gap  

Layer 5 Perforat. brick 

33x30x11 

Perforat. brick 

33x30x11 

Perforat. brick 

33x30x11 

Perforat. brick 

33x30x11 

Perforat. brick 

33x30x11 

Facing brick 

24x11.5x5 

waterproof 

Layer 6 Regular plaster 

0.01 

Regular 

plaster 0.01 

Regular 

plaster 0.01 

Regular 

plaster 0.01 

Regular 

plaster 0.01 

Absence of 

plaster  

 

 

4. Conclusion 

 

ILP has proven its effectiveness to solve many real-world optimizations problems, 

particularly in the field of energy efficiency related to building. This paper presents a new 

application of ILP in this field. The tackled problem consists on minimizing the 

construction cost of a building’s external wall, fulfilling on the one hand with the 

economic constraints inherent in any constructive process, and on the other, with the 

current thermal transmittance legislation, to guarantee the building's energy efficiency. 

Among thousands or even millions of possible combinations of materials and their 
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thicknesses for the different layers of the wall, our ILP procedure selects the minimum 

construction cost combination complying with all restrictions imposed to the 

builder/designer.  

A case study consisting of a 6-layer external wall has been presented, with more than 

5.5 million combinations of the different selected materials and their thicknesses for the 

different layers of the wall. The ILP problem has been solved for 165 scenarios 

corresponding to different thicknesses of the wall and maximum allowed thermal 

transmittances. Mathematica 11.0 has been used as ILP solver and it has been able to 

obtain each optimal solution in just a few hundredths of a second. 

We are convinced that this tool can allow the builder to decide the best option for the 

construction of an external wall by analyzing different scenarios. An adequate selection 

of the materials and a small variation of the wall’s thickness can considerable reduce its 

construction cost without decreasing the energy efficiency of the building. 

In future works, we plan to apply a similar ILP modelization to other components of the 

building envelope or even to the whole building envelope, including the opaque and 

transparent part and the roof. All envelope elements (walls, floors, roofs, fenestrations 

and doors) show a “similar” structure to that of the external wall: several layers with 

different options for each layer, with different prices, thicknesses, U-values and other 

technical or aesthetic characteristics. Therefore, both a similar objective function and a 

restriction set can be stated for each part of the building envelope, depending on the 

budget for that part, the technical conditions imposed, the preferences of potential buyers, 

etc.  

Moreover, an ILP problem can also take into account restrictions involving different 

parts of the building envelope. For instance, the ILP problem could decide the ratio 

between opaque and transparent part for a specific façade, within stipulated limits. In this 

case, the ILP formulation will be more complex because the variables will not be binary, 

the number of them will increase because they must be different for the different façades 

of the building, and the objective function would not be the cost per m2, but the total cost 

of the studied parts of the building envelope. If possible, a final ILP model will minimize 

the construction cost of the whole building envelope taking into account its energy 

efficiency.  

Likewise, we think that the ideas presented in this paper could be applied to thermal 

refurbishment of building envelopes. 
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Appendix 

 
Table A.1 

Layers and chosen materials with their characteristics. 

Layer   Material Thickness 

      [m] 

Conductivity 

 [W/mK-1] 

Cost  

[€/m2] 

10 years 

maint Cost 

[€/m2] 

Variable 

name 

1. Internal coating 

   Plaster 

 

 

 

  0.010 

  0.012 

  0.014 

  0.015 

0.26 

0.26 

0.26 

0.26 

22.89 

25.03 

27.17 

28.25 

  3.20 

  3.50 

  3.80 

  3.96 

 x1,1,1 

 x1,1,2 

 x1,1,3 

 x1,1,4 

2. Internal panel 

 Air brick 24x11.5x11.5 

Air brick 33x16x11 

Perforated brick 
24x11.5x9 

Solid Concrete block 
40x20x15 

40x20x20 

Expanded clay light 

concrete block 

 

Terracotta brick 

without additive 

 

Perforated concrete brick 
25x12x9.5 

  0.115 

  0.11 

 

  0.115 

 

  0.15 

  0.20 

  0.20 

  0.25 

  0.30 

  0.14 

  0.19 

  0.24 

 

  0.12 

     0.49 

     0.49 

 

     0.76 

 

        0.46 

       0.46 

     0.3 

     0.3 

     0.3 

      0.28 

      0.28 

      0.24 

 

       0.543 

 23.93 

 17.74 

 

      23.29 

 

      22.46 

      25.73 

      42.21 

      53.94 

      63.23 

      21.42 

      25.36 

      29.10 

 

      26.06 

   0.72 

   0.53 

 

   0.70 

 

   0.67 

   0.77 

   1.27 

   1.62 

   1.90 

   0.64 

   0.76 

   0.87 

 

   0.78 

    x2,1,1 

    x2,2,1 

 

    x2,3,1 

 

    x2,4,1 

    x2,4,2 

    x2,5,1 

    x2,5,2 

    x2,5,3 

    x2,6,1 

    x2,6,2 

    x2,6,3 

 

    x2,7,1 
 

3. Thermal insulation 

 Nanoporous aerogel 

 

Projected Polyurethane 

density 40kg/m3 

 

 

 

 

 

 

 

 

 

 

 

 

Extruded polystyrene 

Dots 

Adhesive mortar 

Mechanical fixing 

     0.01 

     0.02 

 

0.02 

0.025 

0.03 

0.035 

0.04 

0.045 

0.050 

0.055 

0.06 

0.065 

0.07 

0.075 

0.08 

 

0.03 

0.03 

0.03 

       0.013 

0.013 

 

0.028 

0.028 

0.028 

0.028 

0.028 

0.028 

0.028 

0.028 

0.028 

0.028 

0.028 

0.028 

0.028 

 

0.034 

0.034 

0.034 

  59.71 

121.42 

 

   6.02 

   6.99 

7.97 

9.30 

10.17 

11.19 

12.26 

12.51 

13.90 

14.14 

15.50 

15.75 

17.15 

 

7.02 

9.00 

8.52 

1.19 

2.43 

 

0.12 

0.14 

0.16 

0.19 

0.20 

0.22 

0.25 

0.25 

0.28 

0.28 

0.31 

0,32 

0.34 

 

0.14 

0.18 

0.17 

        x3,1,1 

x3,1,2 

 

x3,2,1 

x3,2,2 

x3,2,3 

x3,2,4 

x3,2,5 

x3,2,6 

x3,2,7 

x3,2,8 

x3,2,9 

x3,2,10 

x3,2,11 

x3,2,12 

x3,2,13 

 

x3,3,1 

x3,4,1 

x3,5,1 
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Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Mineral wool 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Expanded polystyrene 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Dots 

Adhesive mortar 

Mechanical fixing 

Agglomerate of 

expanded cork 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Dots 

Mechanical fixing 

Sandwich panel 

Mechanical fixing 

Mechanical fixing 

Mechanical fixing 

Wood chips 

Mechanical fixing 

Mechanical fixing 

0.04 

0.04 

0.04 

0.05 

0.05 

0.05 

0.06 

0.06 

0.06 

 

0.03 

0.03 

0.03 

0.04 

0.04 

0.04 

0.05 

0.05 

0.05 

0.075 

0.075 

0.075 

0.10 

0.10 

0.10 

 

0.03 

0.03 

0.03 

0.04 

0.04 

0.04 

0.05 

0.05 

0.05 

0.06 

0.06 

0.06 

0.07 

0.07 

0.07 

0.08 

0.08 

0.08 

 

 

0.025 

0.025 

0.03 

0.03 

0.04 

0.04 

0.05 

0.05 

0.06 

0.06 

0.07 

0.07 

0.08 

0.08 

 

0.025 

0.035 

0.05 

 

0.015 

0.025 

0.034 

0.034 

0.034 

0.034 

0.034 

0.034 

0.034 

0.034 

0.034 

 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

0.035 

 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

 

 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

0.036 

 

0.056 

0.056 

0.056 

 

0.09 

0.09 

8.07 

10.05 

9.57 

9.10 

11.08 

10.60 

10.15 

12.15 

11.65 

 

8.73 

10.40 

9.52 

10.35 

13.03 

11.14 

11.91 

14.50 

12.70 

16.64 

19.31 

17.42 

19.86 

22.53 

20.64 

 

6.06 

8.04 

7.43 

6.44 

8.42 

7.80 

7.09 

9.07 

8.46 

7.73 

9.71 

9.10 

8.37 

10.35 

9.74 

9.03 

11.01 

10.39 

 

 

12.64 

13.36 

14.44 

15.17 

18.05 

18.78 

21.68 

22.40 

25.29 

26.01 

25.69 

26.42 

26.09 

26.82 

 

17.25 

18.76 

22.27 

 

14.96 

16.83 

0.16 

0.20 

0.19 

0.18 

0.22 

0.21 

0.20 

0.24 

0.23 

 

0.17 

0.23 

0.19 

0.21 

0.26 

0.22 

0.24 

0.29 

0.25 

0.33 

0.39 

0.35 

0.40 

0.45 

0.41 

 

0.12 

0.16 

0.15 

0.13 

0.17 

0.16 

0.14 

0.18 

0.17 

0.15 

0.19 

0.18 

0.17 

0.21 

0.19 

0.18 

0.22 

0.21 

 

 

0.25 

0.27 

0.29 

0.30 

0.36 

0.38 

0.43 

0.45 

0.51 

0.52 

0.51 

0.53 

0.52 

0.54 

 

0.25 

0.38 

0.45 

 

0.30 

0.34 

x3,3,2 

x3,4,2 

x3,5,2 

x3,3,3 

x3,4,3 

x3,5,3 

x3,3,4 

x3,4,4 

x3,5,4 

 

x3,6,1 

x3,7,1 

x3,8,1 

x3,6,2 

x3,7,2 

x3,8,2 

x3,6,3 

x3,7,3 

x3,8,3 

x3,6,4 

x3,7,4 

x3,8,4 

x3,6,5 

x3,7,5 

x3,8,5 

 

x3,9,1 

x3,10,1 

x3,11,1 

x3,9,2 

x3,10,2 

x4,11,2 

x3,9,3 

x3,10,3 

x3,11,3 

x3,9,4 

x3,10,4 

x3,11,4 

x3,9,5 

x3,10,5 

x3,11,5 

x3,9,6 

x3,10,6 

x3,11,6 

 

 

x3,12,1 

x3,13,1 

x3,12,2 

x3,13,2 

x3,12,3 

x3,13,3 

x3,12,4 

x3,13,4 

x3,12,5 

x3,13,5 

x3,12,6 

x3,13,6 

x3,12,7 

x3,13,7 

 

x3,14,1 

x3,14,2 

x3,14,3 

 

x3,15,1 

x3,15,2 
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Mechanical fixing 

Mechanical fixing 

0.035 

0.05 

0.09 

0.09 

18.26 

21.00 

0.37 

0.42 

x3,15,3 

x3,15,4 

4. Air gap 

 

 

 

 

 

 

 

 

Light ventilated air gap 

  

 

 

 

Not ventilated air gap 

 

 

 

 

No air 

0.03 

0.05 

0.08 

0.10 

 

0.03 

0.05 

0.08 

0.10 

 

0 

0.08 

0.09 

0.09 

0.09 

 

0.17 

0.18 

0.18 

0.18 

 

- 

0 

0 

0 

0 

 

0 

0 

0 

0 

 

0  

  0 

  0 

  0 

  0 

 

  0 

  0 

  0 

  0 

 

  0 

 x4,1,1 

    x4,1,2 

    x4,1,3 

    x4,1,4 

 

    x4,2,1 

    x4,2,2 

    x4,2,3 

    x4,2,4 

 

    x4,3,1 

5. External panel 

5a 

 

 

 

5b 

 

 

 

 

Solid brick  

Concrete block 

Perforated brick 

33x30x11 

Face brick  

24x11.5x5 waterproof 

24x11.3x5.2 clinker 

29x11.5x5 waterproof 

Pressed face brick 
24x12x4 

Pressed face brick 
24x12x5 

0.115 

0.15 

 

0.11 

 

0.115 

0.115 

0.115 

 

0.12 

 

0.12 

0.85 

0.46 

 

0.35 

 

0.76 

0.76 

0.76 

 

0.76 

 

0.76 

25.46 

22.63 

 

20.53 

 

70.65 

79.44 

72.79 

 

109.95 

 

103.81 

 1.28 

 1.14 

 

 1.03 

 

 6.36 

 7.15 

 6.55 

 

 9.90 

 

 9.34 

    x5,1,1 

    x5,2,1 

 

    x5,3,1 

 

    x5,4,1 

    x5,5,1 

    x5,6,1 

 

    x5,7,1 

 

    x5,8,1 

6. External coating 

6a. External coating 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6b. Without external 

coating with 5b 

Regular plaster 

 

 

 

 

Thermal plaster 

 

 

 

 

Metallic plate corten 

S355J0WP 

Limestone plate (Spain) 

Limestone plate (Brasil) 

Marble plate (Spain) 

Marble plate (Italy) 

Composite plate 

Ceramic plate 

exposed fixing 30x60 

hidden fixing 30x60 

    0.010 

0.013 

0.015 

0.018 

0.020 

0.010 

0.013 

0.015 

0.018 

0.020 

0.015 

0.02 

0.04 

0.04 

0.03 

0.03 

0.04 

 

0.10 

0.10 

 

0 

        0.93 

0.93 

0.93 

0.93 

0.93 

0.67 

0.67 

0.67 

0.67 

0.67 

0.58 

0.58 

3.5 

3.5 

2.09 

2.09 

3.38 

 

1.3 

1.3 

 

- 

   13.22 

14.46 

15.29 

16.52 

17.35 

24.41 

25.81 

27.22 

28.62 

30.02 

121.65 

130.16 

93.07 

53.71 

55.51€ 

102.33 

113.19 

 

124.10 

170.35 

 

0 

 0.66 

 0.72 

 0.76 

 0.83 

 0.87 

 1.22 

 1.28 

 1.35 

 1.42 

 1.50 

 6.27 

 6.71 

 8.72 

 5.03 

 5.20 

 9.59 

19.24 

 

28.54 

39.18 

 

  0 

 x6,1,1 

 x6,1,2 

 x6,1,3 

 x6,1,4 

 x6,1,5 

 x6,2,1 

 x6,2,2 

 x6,2,3 

 x6,2,4 

 x6,2,5 

 x6,3,1 

 x6,3,2 

 x6,4,1 

 x6,5,1 

 x6,6,1 

 x6,7,1 

 x6,8,1 

 

 x6,9,1 

x6,10,1 

 

x6,11,1 

 

 


