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Formação Avançada, Universidade de Évora
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Abstract

This paper deals with the extension, in the mean square sense, of the de-
terministic gamma function to the random framework. In a first step, we
provide such extension to Γ(A) by assuming that the parameter A is a pos-
itive random variable satisfying certain conditions related to its exponential
moments. As a particular case, we show that every positive random variable
satisfies such conditions if it is bounded and bounded away from zero. In
a second step, we establish the formula Γ(A + 1) = AΓ(A) that allows us
to extend the random gamma function to a class of random variables whose
supports lie over the real line with the exception of small neighborhoods
of zero and of the negative integers. This retains the classical definition of
the gamma function when A becomes a deterministic parameter. The study
is based on the Lp stochastic calculus with p = 2 and 4, usually referred
to as mean square and mean fourth stochastic calculus, respectively. Next,
we compute the mean and the variance of the random gamma function, in-
cluding several illustrative examples. Finally, with the aid of the random
gamma function, we define the random Bessel function and compute reliable
approximations of its mean and variance.
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1. Introduction and motivation

In its basic definition, the real Euler gamma function is introduced by
the following Riemann integral:

Γ : ]0,∞[⊂ R → R

α 7→
∫ ∞

0+
e−ttα−1 dt.

This parametric integral is absolutely convergent. This allows the definition
of the real Euler gamma function as [1]:

Γ(α) =

∫ ∞
0+

e−ttα−1 dt, α > 0. (1)

The Euler gamma function Γ(α) appears in describing the solution of
some significant deterministic ordinary differential equations (d.o.d.e.’s) whose
coefficients and/or initial conditions depend on the parameter α > 0, such as
the Bessel d.o.d.e. [2]. D.o.d.e.’s play an important role in modeling many
real problems. In practice, once the continuous model (d.o.d.e.) is selected,
setting its inputs (coefficient, source term, initial/boundary conditions) is
required. Often this task can only be achieved after measuring certain mag-
nitudes that could not be known exactly due to measuring errors and/or
inherent complexity of the phenomenon under study. This uncertainty is
transferred to the inputs of the d.o.d.e., such as the parameter α > 0. As
a consequence, in this type of situations it is more realistic to assume that
α is a random variable rather than a deterministic constant. This approach
motivates the extension of the gamma function to the random framework.
Notice that it entails the convergence analysis of the integral (1) which, from
a probabilistic stand-point, can be performed in several ways depending on
the chosen probabilistic convergence. Throughout this paper, mean square
convergence will be used. This is a strong-type of stochastic convergence, so
its consideration is advantageous since the results established in the mean
square sense entail straightforwardly their extension to other types of stochas-
tic convergence such as convergence in probability and in distribution. At
this point it is important to point out that mean square convergence possesses
key properties that make it particularly suited for computing the mean and
the variance of the random gamma function. These distinctive properties
will be apparent later. This is why another types of strong convergence, such
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as the almost sure convergence, have been discarded to conduct our subse-
quent study. Additionally, we highlight that mean square calculus has been
previously applied to extend important deterministic results to the random
framework, as can be seen, for instance, in [3, 4, 5, 6, 7, 8].

Apart from the above arguments, we can add that the random gamma
function could be also motivated in the context of fractional differential equa-
tions since it is well-know this special function plays a key role in this novel
theory [9]. Indeed, in applications the derivative order of fractional differ-
ential equations must be determined from sample data. As sampled data
usually involve measurement errors, it is natural to consider the derivative
order as a random variable instead of a deterministic quantity. This approach
also motivates the introduction of random gamma function in order to rig-
orously study random fractional differential equations in the mean square
sense.

To the best of our knowledge, this manuscript is the first to extend the
gamma function to the random framework using the mean square conver-
gence. This contribution could then help to generalize other important spe-
cial functions to the random context in subsequent contributions. To moti-
vate this issue, in this paper we will take advantage of a previous contribution
by some of the authors [10], where the random Bessel differential equation
has been studied in the mean square sense, to introduce the random Bessel
function in a particular scenario (see Example 12). As a consequence, this
generalization would enable the mean square study of important random-
ized differential equations whose solutions, in the classical framework, are
represented in terms of special functions.

The paper is organized as follows. In Section 2, the main results con-
cerning Lp stochastic calculus are summarized, particularly for p = 2 (mean
square calculus) and p = 4 (mean fourth calculus). In Section 3, we introduce
the random gamma function, in the m.s. sense, for a class of positive r.v.’s
satisfying some exponential moment conditions, which include as a particular
case the positive r.v.’s that are bounded and bounded away from zero. This
definition is extended to a more general class of real-valued random vari-
ables in Section 4, by establishing the classical formula Γ(A + 1) = AΓ(A)
in the random scenario and taking advantage of it. Section 5 includes the
expressions of the main statistical properties of the random gamma function,
namely the expectation and variance, as well as three illustrative examples.
Also, the mean and the variance of random Bessel function are computed in
a particular case. Conclusions are drawn in the closing section.
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2. Preliminaries about Lp calculus

For the sake of clarity, we summarize the main definitions and results
that will be used throughout this paper. Further details can be found in [11,
ch.1], [12, ch.XI], [13, ch.4], [14, ch.III] and [15].

A real random variable (r.v.) X : Ω → R defined on a probability space
(Ω,F,P) is said to be of order p ≥ 1 (in short p-r.v.) if E [|X|p] < +∞,
where E [·] denotes the expectation operator. The space Lp = Lp(Ω,F,P) of
all p-r.v.’s (assuming we do not distinguish between r.v.’s that are equal with
probability one), endowed with the norm

‖X‖p = (E [|X|p])1/p
, (2)

is a Banach space [11, p.9]. The convergence in Lp, usually called convergence
in p-th mean, is the one inferred by the p-norm (2).

More generally, let T denote an arbitrary non-empty index set, a family
X(t) ≡ {X(t) : t ∈ T } of r.v.’s is called a stochastic process (s.p.). Through-
out this paper, T = [0,∞[. If E [|X(t)|p] < +∞ for each t ∈ T , then
{X(t) : t ∈ T } is said to be a p-stochastic process (p-s.p.). The concepts of
p-continuity, p-differentiability and p-integrability of p-s.p.’s in Lp-spaces are
the usual ones derived from the p-norm in Banach spaces. For instance,

Definition 1. A p-s.p.
{
dX(t)
dt

: t ∈ T
}

is said to be the p-derivative of the

p-s.p. {X(t) : t ∈ T } with respect to t if

lim
∆t→0

∥∥∥∥X(t+ ∆t)−X(t)

∆t
− dX(t)

dt

∥∥∥∥
p

= 0, t, t+ ∆t ∈ T .

We illustrate the above definition by means of the following example that
will be used later.

Example 1. Let A ∈ L4. Then {X(t) = A ln(t) : t > 0} is a 4-s.p. and its
4-derivative with respect to t is given by

{
A
t

: t > 0
}

. In fact, first notice
that: ‖A ln(t)‖4 = |ln(t)| ‖A‖4 <∞ for every t > 0 since A is assumed to be
a 4-r.v. Moreover,

lim
∆t→0

∥∥∥∥A ln(t+ ∆t)− A ln(t)

∆t
− A

t

∥∥∥∥
4

= ‖A‖4 lim
∆t→0

∣∣∣∣ ln(t+ ∆t)− ln(t)

∆t
− 1

t

∣∣∣∣ = 0,

where in the last step we have used that ‖A‖4 <∞ and (ln(t))′ = 1/t, where
′ denotes the classical derivative.
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In the particular case that p = 2, (L2, ‖·‖2) is a Hilbert space with the
inner product

〈X, Y 〉 = E [XY ] , X, Y ∈ L2.

The convergence associated to the 2-norm inferred by this inner product,
which is given by (2) with p = 2, is usually referred to as mean square (m.s.)
convergence. Let {Xn : n ≥ 0} be a sequence in L2 m.s. convergent to X ∈
L2 as n→∞; in the sequel this will be denoted by Xn

m.s.−−−→
n→∞

X or l.i.m.
n→∞

Xn =

X, indistinctly. In accordance with previous definitions, the r.v. X and the
s.p. {X(t) : t > 0} in L2 are called 2-r.v.’s and 2-s.p.’s, respectively. For each
t, s > 0, we will for convenience call ΓX(t, s) = E [X(t)X(s)] the covariance
function associated to the s.p. {X(t) : t > 0}. We point out that many
m.s. properties, such as 2-continuity, 2-differentiability, 2-integrability, can
be directly characterized through this two-variable deterministic function [13,
ch.4].

An important result in dealing with p-r.v.’s is the Hölder inequality

E [|XY |] ≤ ‖X‖p ‖Y ‖q , p, q > 1,
1

p
+

1

q
= 1, X ∈ Lp, Y ∈ Lq. (3)

Taking p = q = 2 in (3), one obtains the Schwarz inequality:

E [|XY |] ≤ ‖X‖2 ‖Y ‖2 , X, Y ∈ L2.

This inequality guarantees that the covariance function ΓX(t, s) is well-defined
for every 2-s.p.

The following inequality will be crucial in the subsequent development.
It deduces directly from the application of the Schwarz inequality:

‖XY ‖p ≤ ‖X‖2p ‖Y ‖2p , X, Y ∈ L2p. (4)

The Lyapunov’s inequality:

‖X‖p1 = (E [|X|p1 ])1/p1 ≤ (E [|X|p2 ])1/p2 = ‖X‖p2 , 0 < p1 ≤ p2,

implies Lp2 ⊂ Lp1 and p2-convergence implies p1-convergence whenever p1 ≤
p2.

Example 2. If A is a r.v. such that

∃ α ,M > 0 , t̂ > 0 :
∥∥tA−1

∥∥
2
≤Mtα−1, ∀t ≥ t̂, (5)
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then l.i.m.
t→+∞

e−ttA−1 = 0. In fact, for t ≥ t̂,

0 ≤
∥∥e−ttA−1

∥∥
2

= e−t
∥∥tA−1

∥∥
2
≤Me−ttα−1 −−−−→

t→+∞
0.

Similarly, if A is a r.v. such that

∃ α > 1 ,M > 0 , t̂ > 0 :
∥∥tA−1

∥∥
2
≤Mtα−1, ∀ 0 < t ≤ t̂, (6)

then l.i.m.
t→0+

e−ttA−1 = 0. In fact, for 0 < t ≤ t̂,

0 ≤
∥∥e−ttA−1

∥∥
2

= e−t
∥∥tA−1

∥∥
2
≤Me−ttα−1 −−−→

t→0+
0.

Note that, if an analogous condition to (5) [or to (6)] is fulfilled for a p2-
norm with p2 > 2, then, by the Liapunov’s inequality with p1 = 2, condition
(5) [or (6)] also holds. Later, the role of conditions (5) and (6) will be more
apparent throughout our discussion.

Another result that will be used later is the Jensen inequality. Let h be
a convex function on R. If E [|X|] and E [|h(X)|] are finite, then

h(E [X]) ≤ E [h(X)] . (7)

Observe that taking h(x) = x2, this results guarantees that the variance
V [X] = E [X2]− (E [X])2 is always non-negative.

As we are interested in extending the gamma deterministic function to
the m.s. random context and the gamma function is defined by the improper
Riemann integral (1), next we remember the definition of m.s. Riemann in-
tegral of a 2-s.p. on a finite interval and, on the basis of this definition, we
will introduce the improper m.s. Riemann integral of a 2-s.p. Characteriza-
tions of both types of m.s. Riemann integrals will also be given. All these
definitions and results can be found in [13, pp. 99–101].

Definition 2. Let [a, b] be an interval on the real line, and let a = tn,0 <
tn,1 < ... < tn,n = b be a partition such that ∆n = max {tn,k − tn,k−1 : k = 1, ..., n} →
0 as n→ +∞. Let t′n,k be an arbitrary point in the interval [tn,k−1, tn,k). Let
f(t, u) be a deterministic function defined on the same interval for the vari-
able t and Riemann integrable for every u ∈ U , where U is a subset of R. We
say that the 2-s.p. {f(t, u)X(t) : t ∈ T} is mean square Riemann integrable
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over [a, b] if for each u ∈ U the following m.s. limit exists for some sequence
of partitions of [a, b]

n∑
k=1

f(t′n,k, u)X(t′n,k)(tn,k − tn,k−1)
m.s.−−−−→

n→+∞
Y (u) ,

and in this case it is denoted by

Y (u) =

∫ b

a

f(t, u)X(t) dt .

This value is independent of the sequence of partitions as well as the position
of t′n,k ∈ [tn,k−1, tn,k). Note that, for each u, the integral is a random variable,
since we integrate with respect to time.

The following result, that will be used later, characterizes the existence of
the m.s. Riemann integral of a 2-s.p. in terms of the deterministic Riemann
integral of its covariance function

Proposition 1. (see Theorem 4.5.1 of [13, p.100]) Let the s.p.

Y (u) =

∫ b

a

f(t, u)X(t) dt, (8)

where f(t, u) is a deterministic function t-Riemann integrable on [a, b[ for
every u ∈ U ⊂ R and {X(t) : a ≤ t ≤ b} is a 2-s.p. with covariance function
ΓX(t, s). Then, the s.p. {Y (u) : u ∈ U} exists if and only if the ordinary
double Riemann integral∫ b

a

∫ b

a

f(t, u)f(s, u)ΓX(t, s) dt ds (9)

exists and is finite.

Improper m.s. Riemann integrals are defined in the same manner. In our
case, the integrals will be improper of the first kind because b = +∞ and,
sometimes, when the integrand has a singularity at t = a, also improper of
the second kind. So, we define∫ ∞

a+
f(t, u)X(t) dt = l.i.m.

ε→0+, T→∞

∫ T

a+ε

f(t, u)X(t) dt. (10)
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One can prove that this improper m.s. Riemann integral exists if and only
if the improper ordinary double Riemann integral∫ ∞

a+

∫ ∞
a+

f(t, u)f(s, u)ΓX(t, s) dt ds (11)

exists and is finite (see [13, pp. 100–101]).

Remark 1. The existence and convergence of integral (11) can be guaranteed
in terms of a unidimensional integral. In fact, by Jensen (see (7) with h(x) =
|x|) and Schwarz’s inequalities one gets:

|ΓX(t, s)| = |E [X(t)X(s)]| ≤ E [|X(t)X(s)|] ≤ ‖X(t)‖2 ‖X(s)‖2 .

Then by the Fubini theorem∫ ∞
a+

∫ ∞
a+
|f(t, u)f(s, u)ΓX(t, s)|dt ds

≤
∫ ∞
a+

∫ ∞
a+
|f(t, u)| |f(s, u)| ‖X(t)‖2 ‖X(s)‖2 dt ds

=

(∫ ∞
a+
|f(t, u)| ‖X(t)‖2 dt

)(∫ ∞
a+
|f(s, u)| ‖X(s)‖2 ds

)
.

Summarizing, if f(t, u) is a deterministic function t-Riemann integrable on
]a,∞[ for every u ∈ U ⊂ R, {X(t) : t > a} is a 2-s.p and the following
deterministic integral ∫ ∞

a+
|f(t, u)| ‖X(t)‖2 dt

is finite, then the stochastic integral
∫∞
a+
f(t, u)X(t) dt is well-defined in the

m.s. sense.

Although we are interested in establishing the random gamma function in
the m.s. sense, as it was pointed out in the introductory section, throughout
this paper we will need to use Lp stochastic calculus for p = 2 and p = 4. In
fact, for instance the following L2-operational basic property

A ∈ L2,

{Xn : n ≥ 0} ⊂ L2 : Xn
m.s.−−−→
n→∞

X ∈ L2,

⇒ AXn
m.s.−−−→
n→∞

AX, (12)
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does not hold, in general, as we will show in Examples 3 and 4. However, as
it will be seen later, it can be established by including hypotheses involving
L4 information.

Notice that, if A and {Xn : n ≥ 0} are assumed to be independent for
each n, then property (12) is fulfilled. Unfortunately, as we will see later,
independence hypothesis cannot be embraced in our context. Nevertheless,
the following result shows that the property (12) becomes true if we include
appropriate L4 conditions in the hypotheses. From now on, the notation m.f.
will stand for mean fourth convergence, i.e., convergence in the norm defined
by (2) with p = 4.

Lemma 1. Let {Xn : n ≥ 0} be a sequence in L4 such as Xn
m.f.−−−→
n→∞

X and

A ∈ L4. Then AXn
m.s.−−−→
n→∞

AX.

Proof . The result follows straightforwardly by applying (4) for p = 2:

‖A(X −Xn)‖2 ≤ ‖A‖4 ‖X −Xn‖4 −−−→n→∞
0,

where, we have used that ‖A‖4 < ∞ (since by hypothesis A ∈ L4) together

with ‖X −Xn‖4 −−−→n→∞
0 (since by hypothesis Xn

m.f.−−−→
n→∞

X).

The following couple of examples shows that the hypotheses assumed in
Lemma 1 are minimum.

Example 3. (A ∈ L2 is not sufficient). Let us consider a r.v. A ∈ L2 such
that E [A4] does not exist. Notice that if A is a Pareto r.v., A ∼ Pa(α; β),
α ∈ R, β > 0, then E [Am] does not exist when m ≥ α. Hence, it is enough
to take A ∼ Pa(4; β). Let us define the sequence of r.v.’s

Xn =


0 w.p. 1− 1

n3
,

nA w.p.
1

n3
,

n ≥ 0,

(w.p. stands for with probability). Let us prove that Xn
m.s.−−−→
n→∞

X = 0. For

it, note that by the definition of conditional expectation one gets

E
[
(Xn −X)2 |A

]
= E

[
(Xn)2 |A

]
= n2A2 1

n3
=

1

n
A2,
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and applying conditional expectation properties one obtains

E
[
(Xn −X)2] = E

[
E
[
(Xn −X)2 |A

]]
= E

[
1

n
A2

]
=

1

n
E
[
A2
]
−−−→
n→∞

0,

since E [A2] < ∞. This proves that Xn
m.s.−−−→
n→∞

X = 0. On the other hand,

note that

(AXn)2 =


0 w.p. 1− 1

n3
,

n2A4 w.p.
1

n3
,

n ≥ 0.

Then

E
[
(AXn)2

]
= E

[
E
[
(AXn)2 |A

]]
= E

[
n2A4 1

n3

]
=

1

n
E
[
A4
]
.

As E [A4] does not exist, the sequence {AXn : n ≥ 0} does not converge in
the m.s. sense to the null r.v. X = 0.

Example 4. (Xn
m.s.−−−→
n→∞

X is not sufficient). Let A be a Pareto r.v., A ∼
Pa(α; β) with 4 < α ≤ 6 and β > 0. Let us consider the sequence of r.v.’s

Xn =
1

n
A2, n ≥ 0.

As A ∈ L4, E [A4] < +∞ and

E
[
(Xn)2] =

1

n2
E
[
A4
]
−−−→
n→∞

0.

Then, Xn
m.s.−−−→
n→∞

X = 0. However, it does not converge to the null r.v.,

X = 0, in the m.f. sense since

E
[
(Xn)4] =

1

n4
E
[
A8
]

and E [A8] does not exist. On the other hand, as

E
[
(AXn)2] =

1

n2
E
[
A6
]
,

AXn does not m.s. converge to AX = 0 because E [A6] does not exist.
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Remark 2. According to the previous exposition, as the m.s. Riemann in-
tegral of a 2-s.p. X(t) is the m.s. limit of the Riemann sums of X(t) (see
[13, p.100]), the following basic property∫ b

a

AX(t) dt = A

∫ b

a

X(t) dt, (13)

does not hold, in general, if A and X(t) are assumed to be in L2. Lemma 1
allows us to apply such property by assuming that A ∈ L4 and the Riemann
integral of the 4-s.p. X(t) is considered in the m.f. sense. Notice that, if
the m.f. Riemann integral of the 4-s.p. X(t) exists, then its m.s. Riemann
integral also exists and coincides with the m.f. integral (see [15]).

Later, we will need to compute the m.s. derivative of a s.p. of the
form X(t) = f(Y (t)), being f a C1(R) real-valued deterministic function
and Y (t) a 4-s.p. The following stochastic rule will be used to justify such
computations:

Theorem 3 (Chain Rule). (see [15]) Let f be a real-valued function with
continuous derivative f ′, i.e. f ∈ C1(R) and {Y (t) : t > 0} be a 4-s.p.
satisfying:

1. Y (t) is m.f. differentiable.
2. Y (t) is path continuous w.p. 1.
3. There exist r > 4 and δ > 0 such that sup

s∈[−δ,δ]
E
[∣∣f ′(y)|y=Y (t+s)

∣∣r] <
+∞.

Then, the 2-s.p. X(t) = f(Y (t)) is m.s. differentiable and its m.s. derivative
is given by

dX(t)

dt
= f ′(y)

∣∣∣
y=Y (t)

dY (t)

dt
. (14)

Example 5. Let X(t) =
{
tA : t > 0

}
be a s.p. where A ∈ L4. Then, by

applying Theorem 3, let us justify that its m.s. derivative is: dX(t)
dt

= AtA−1.
For this, we write X(t) in the form X(t) = f(Y (t)), with f(y) = ey and
Y (t) = A ln(t). Notice that f(y) ∈ C1(R) and, by Example 1, Y (t) is a 4-s.p.

m.f. differentiable for t > 0, being its m.f. derivative dY (t)
dt

= A
t
. In addition,

as ln(t) is continuous on ]0,∞[, the s.p. Y (t) is path continuous. If there
exists r > 4 and δ > 0 such that:

sup
s∈[−δ,δ]

E
[
(t+ s)rA

]
< +∞,
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then by (14): dX(t)
dt

= ey
∣∣∣
y=A ln(t)

A
t

= tAA
t

= AtA−1, where this derivative is

considered in the m.s. sense.

Remark 4. In Theorem 3, when f(y) = ey, such as it happens in the previ-
ous example, condition 3 might, in some cases, be easier to verify if we check
that, for some δ > 0,

sup
s∈[t−δ,t+δ]

∑
n≥0

(
E
[
(Y (s))6n])1/6

n!
< +∞,

in which case the exponential s.p. defined as eY (t) =
∑

n≥0
(Y (t))n

n!
is in L6,

[15]. This implies that E
[(
eY (s)

)6
]

is finite continuous for all s ∈ [t−δ, t+δ]

and condition 3 follows.

The following lemma will be used later to prove that a stochastic integral
is well-defined in both m.s. and m.f. senses.

Lemma 2. (see Lemma 5 of [16]) Let f be a real continuous function and
{Y (x, t) : x, t ∈ [a, b]} a q-s.p. satisfying:

i) Y (x, t) is path continuous on [a, b]× [a, b] w.p.1.

ii) There exist r > q ≥ 1 and δ > 0 such that:

sup
s,s∗∈[−δ,δ]

E
[∣∣f(y)|y=Y (x+s,t+s∗)

∣∣r] <∞. (15)

Then, the q-s.p. f(Y (x, t)) is q-mean continuous at (x, t).

To close this section, we point out that a good account of the relationship
between L2 and L4 stochastic calculus can be found in [15].

3. Introducing the gamma function for positive random variables

The purpose of this section is to define, in the m.s. sense, the gamma
function for positive r.v.’s A and to determine conditions on A for its exis-
tence. So, throughout this section, we assume that A > 0 with probability
one (w.p.1).

12



Motivated by its deterministic definition (see expression (1)), it is natural
to define Γ(A) as the r.v.

Γ(A) =

∫ ∞
0+

e−ttA−1 dt, (16)

whenever this m.s. Riemann integral converges. As the argument is denoted
by an upper case letter in the random scenario, there is no confusion be-
tween the deterministic (Γ(α)) and random (Γ(A)) notation of the gamma
functions.

From Remark 1, if A is a r.v. such as X(t) = tA−1 is a 2-s.p. and the
following deterministic integral∫ ∞

0+
e−t
∥∥tA−1

∥∥
2

dt, (17)

is convergent, then the random gamma function (16) is well-defined in the
m.s. sense.

The following example shows that X(t) = tA−1 may not be a 2-s.p. even
for standard positive 2-r.v.’s A.

Example 6. Let A be an exponential r.v. of parameter λ > 0: A ∼ Exp(λ).
Notice that A is a positive r.v., i.e. P ({ω ∈ Ω : A(ω) > 0}) = 1. Then,(∥∥tA−1

∥∥
2

)2
=
λ

t2

∫ ∞
0+

t2ae−λa da =

{
λ

t2(λ−2 ln(t))
if t < eλ/2,

+∞ otherwise.
(18)

This means that X(t) = tA−1 is not a 2-s.p. for all t > 0 as it is required to
give a satisfactory m.s. definition of the complete random gamma function
that extends its deterministic counterpart.

The previous example motivates the search of conditions for the r.v. A
under which the deterministic integral (17) converges in order to guarantee
that the stochastic integral (16) is well-defined in the m.s. sense.

Example 7. We will show that the set of s.p.’s X(t) = tA−1 for which the
random gamma function (16) is well-defined in the m.s. sense, is not empty.
Let A be a uniform r.v. on the interval [2, 3]: A ∼ U([2, 3]). First, we prove
that X(t) is a 2-s.p. for all t > 0,

n(t) =
(∥∥tA−1

∥∥
2

)2
= E

[
t2A−2

]
=

∫ 3

2

t2a−2 da =
(t2 − 1)t2

2 ln t
<∞, ∀t > 0.

(19)

13



Note that n(1) = 1 and by L’Hôpital rule one gets

lim
t→1

(t2 − 1)t2

2 ln t
= 1.

Now, we need to check that (17) is convergent for A ∼ U([2, 3]). To do that,
we will need the following inequality

ln t ≥ 1− 1

t
, ∀t > 0. (20)

To show it, let us put u(t) = ln t+ 1
t
−1. For 0 < t < 1, we have limt→0+ u(t) =

+∞ (easy to see by noting, using L’Hôpital rule, that tu(t) → 1 when t →
0+), limt→1− u(t) = 0 and u is decreasing since u′(t) = t−1

t2
< 0; therefore,

u(t) ≥ 0 and (20) holds. For t ≥ 1, we have limt→1+ u(t) = 0 and u is
non-decreasing since u′(t) ≥ 0; therefore, u(t) ≥ 0 and (20) holds.

Let

p(t) =
t2 − 1

2 ln t
.

Using (20), one gets for t > 1

p(t) =
t2 − 1

2 ln t
≤ t2 − 1

2
(
1− 1

t

) =
t(t+ 1)

2
≤ t2, t > 1. (21)

For 0 < t < 1, one gets limt→0+ p(t) = 0, limt→1− p(t) = 1 and p(t) is
increasing since

p′(t) =
1− t2 + 2t2 ln t

2t(ln t)2
≥

1− t2 + 2t2
(
1− 1

t

)
2t(ln t)2

=
(1− t)2

2t(ln t)2
> 0, 0 < t < 1;

therefore
0 < p(t) < 1, 0 < t < 1. (22)

Then, taking into account (19) and inequalities (21)–(22) one gets∫ ∞
0+

e−t
∥∥tA−1

∥∥
2

dt =

∫ ∞
0+

e−t
(
t2 − 1

2 ln t
t2
)1/2

dt

≤
∫ 1

0+
e−t
(
t2
)1/2

dt+

∫ ∞
1

e−t
(
t4
)1/2

dt

=

∫ 1

0+
e−t t dt+

∫ ∞
1

e−t t2 dt <∞.

14



Motivated by the previous example, next we introduce a class of r.v.’s for
which the random gamma function (16) is well-defined in the m.s. sense. Let
us assume that A is a positive r.v. such that

∃ M1,M2, α1, α2 > 0 :


∥∥tA−1

∥∥
2
≤M1t

α1−1, 0 < t ≤ t̂,∥∥tA−1
∥∥

2
≤M2t

α2−1, t̂ ≤ t <∞,
(23)

for some t̂ > 0; then∫ ∞
0+

e−t
∥∥tA−1

∥∥
2

dt =

∫ t̂

0+
e−t
∥∥tA−1

∥∥
2

dt+

∫ ∞
t̂

e−t
∥∥tA−1

∥∥
2

dt

≤ M1

∫ t̂

0+
e−ttα1−1 dt+M2

∫ ∞
t̂

e−ttα2−1 dt

≤ M1

∫ ∞
0+

e−ttα1−1 dt+M2

∫ ∞
0+

e−ttα2−1 dt

= M1Γ(α1) +M2Γ(α2) <∞.

The following example shows that the r.v. A considered in Example 7 fulfils
conditions (23).

Example 8. If A ∼ U([2, 3]), then checking computations contained in the
Example 7, it is easy to see that

∥∥tA−1
∥∥

2
≤


t if 0 < t ≤ 1,

t2 if t ≥ 1.

Therefore, conditions (23) are satisfied for t̂ = 1, M1 = M2 = 1, α1 = 2 and
α2 = 3.

Remark 5. The exponential moment of a r.v., say X, is defined as E
[
tX
]
.

So, rewriting the 2-norm in terms of the expectation operator, the inequality∥∥tA−1
∥∥

2
≤M2t

α2−1, t ≥ t̂ included in condition (23) can be read as the expo-
nential moments of r.v. 2A growing at most as t2α2, α2 > 0, or equivalently,
using Landau’s notation,

∥∥tA−1
∥∥

2
= O (tα2−1).
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Remark 6. In the Example 6 we showed that, if A ∼ Exp(λ), λ > 0, then∥∥tA−1
∥∥

2
does not exist for t ≥ eλ/2. As a consequence, condition (23) does

not hold. This motivates the subsequent search of a general treatment that
allows us to define the random gamma function for a wide range of positive
r.v.’s.

Let us consider the set of all positive r.v.’s A bounded and bounded away
from 0, i.e. satisfying w.p.1

0 < h1 ≤ A(ω) ≤ h2 < +∞, ∀ω ∈ Ω. (24)

Notice that the function

h(x) = tx = ex ln(t), x ∈ R, t > 0 (25)

satisfies {
0 < t < 1 ⇒ h(x) is decreasing ∀x ∈ R,
t > 1 ⇒ h(x) is increasing ∀x ∈ R, (26)

since h′(x) = ln(t)ex ln(t) is negative (positive) for 0 < t < 1 (t > 1). Then,
for 0 < t < 1, as h(x) is decreasing, one gets w.p.1

2(h1 − 1) ≤ 2(A− 1)⇒ h(2(A− 1)) ≤ h(2(h1 − 1))⇒ t2(A−1) ≤ t2(h1−1),

and, as a consequence,(∥∥tA−1
∥∥

2

)2
= E

[
t2(A−1)

]
≤ t2(h1−1) ⇒

∥∥tA−1
∥∥

2
≤ th1−1 <∞ .

If t > 1, taking into account that h(x) is increasing, an analogous reasoning
yields w.p.1

2(A− 1) ≤ 2(h2 − 1)⇒ h(2(A− 1)) ≤ h(2(h2 − 1))⇒ t2(A−1) ≤ t2(h2−1),

and so (∥∥tA−1
∥∥

2

)2
= E

[
t2(A−1)

]
≤ t2(h2−1) ⇒

∥∥tA−1
∥∥

2
≤ th2−1 <∞ .

Therefore, if A is a positive r.v. satisfying (24), then condition (23) holds
taking M1 = M2 = 1, t̂ = 1, α1 = h1 and α2 = h2.

Summarizing, the following result has been established:
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Theorem 7. If A is a positive r.v. satisfying condition (23), then the ran-
dom gamma function Γ(A) is well-defined in the mean square sense. In par-
ticular, (23) holds for every positive r.v. A satisfying condition (24) w.p.1.

Remark 8. Note that if A is a positive r.v. satisfying (24), or satisfying the
first part of (23), the random lower incomplete gamma function, ΓL(A, s),
defined by

ΓL(A, s) =

∫ s

0+
e−ttA−1 dt

is well defined in the m.s. sense. Now, if A is a positive r.v. satisfying (24),
or satisfying the second part of (23), the random upper incomplete gamma
function, ΓU(A, s), defined by

ΓU(A, s) =

∫ ∞
s

e−ttA−1 dt,

is well defined in the m.s. sense. These special functions play an important
role in deterministic Numerical Analysis, (see, for instance, [17, ch.10]). So,
it is expected that its random extension impacts random numerics.

4. Extending the gamma function to real random variables. Main
statistical properties

So far, we have shown (Theorem 7) that the m.s. gamma function Γ(A)
given by (16) is well defined whenA is a positive r.v. satisfying condition (23);
in particular, that happens when A is a positive r.v. satisfying condition (24).
The aim of this section is to extend Γ(A) to real-valued r.v.’s A. Motivated
by the deterministic approach, this extension will be based on the rigorous
proof, in the m.s. sense, of the formula Γ(A+1) = AΓ(A). This requires the
application of the following integration by parts formula for improper m.s.
Riemann integrals, which is a direct extension of the integration by parts
formula for m.s. proper Riemann integrals (see [13, p.104]).

Proposition 2. (improper m.s. Riemann integration by parts rule) Let f(t)
be a deterministic function of class C1 for t > a and {X(t) : t > a} be a 2-s.p.
m.s. differentiable such that its m.s. derivative X ′(t) is m.s. continuous. If
three of the four following m.s. limits

l.i.m.
ε→0+,T→∞

∫ T

a+ε

f(t)X ′(t) dt, l.i.m.
ε→0+,T→∞

∫ T

a+ε

f ′(t)X(t) dt,

l.i.m.
T→∞

f(T )X(T ), l.i.m.
ε→a+

f(a+ ε)X(a+ ε)
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exist, then the remaining m.s. limit also exists and one gets:∫ ∞
a+

f ′(t)X(t) dt = l.i.m.
T→∞

f(T )X(T )−l.i.m.
ε→0+

f(a+ε)X(a+ε)−
∫ ∞
a+

f(t)X ′(t) dt.

(27)

Let us assume that A is a positive r-r.v. with r > 4 such that

sup
s∈[−δ,δ]

E
[
(t+ s)rA

]
< +∞ (28)

for some δ > 0. Of course, if A satisfies (28), so does A+1 and the reciprocal
is also true.

Let us further assume that A satisfies condition (23) with parameters
M1 > 0, α1 > 0, M2 > 0, α2 > 0, and t̂ > 0. Then A + 1 also satisfies
condition (23) with parameters M1 > 0, α1 + 1 > 1, M2 > 0, α2 + 1 > 1, and
t̂ > 0. Then, by Theorem 7, both Γ(A) and Γ(A+ 1) are well defined in the
m.s. sense.

Under these assumptions, we will now establish the formula Γ(A + 1) =
AΓ(A).

We will first apply the integration by parts formula (27) given in Propo-
sition 2 for a = 0, f(t) = −e−t, and X(t) = tA.

Note that, due to (28), X(t) is a 4-s.p. and, therefore, also a 2-s.p.
Applying Lemma 2 with fixed x to f(y) = ey, Y (t) = A ln t and taking into
account that condition (15) is guaranteed from hypothesis (28), we conclude
that X(t) is m.f. continuous. By Example 5, X(t) is m.s differentiable with
m.s. derivative AtA−1; since tA is m.f. continuous, such derivative is m.s.
continuous.

So, all conditions for application of Proposition 2 are verified. Notice that,
by Example 2 applied to A + 1, we conclude that f(T )X(T ) = e−TTA will
converge in m.s. to 0 as T → +∞ and, since α1 +1 > 1 we also conclude that
f(a + ε)X(a + ε) = e−εεA will converge in m.s. to 0 as ε → 0+. Therefore,
by (27), we have ∫ ∞

0+
e−ttAdt =

∫ ∞
0+

e−tAtA−1dt.

Since X(t) and so e−ttA−1 are m.f. continuous, the integrals
∫ T
ε
e−ttA−1dt

are well-defined in the m.f. sense (and coincide with the corresponding

m.s. sense integrals, [15]). So, by Remark 2, we have
∫ T
ε
e−tAtA−1dt =

A
∫ T
ε
e−ttA−1dt in the m.s. sense. Taking m.s. limits as ε → 0+ and
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T → +∞, we obtain
∫∞

0+
e−tAtA−1dt = A

∫∞
0+
e−ttA−1dt. Therefore, in the

m.s. sense, we obtain

Γ(A+ 1) =

∫ ∞
0+

e−ttAdt = A

∫ ∞
0+

e−tAtA−1dt = AΓ(A). (29)

Summarizing, the following result has been established:

Proposition 3. Let A be a positive r-r.v. with r > 4 such that conditions
(23) and (28) hold. Then, both Γ(A) and Γ(A+ 1) are well defined and

Γ(A+ 1) = AΓ(A). (30)

Remark 9. In particular, if A is a positive r.v. satisfying condition (24)
w.p.1, it automatically satisfies all the conditions of this Proposition.

As in the deterministic case, formula (30) permits the extension, in the
m.s. sense, of the random gamma function. Should Γ(A+ 1) be well-defined
in the m.s. sense by (16), the idea is to use (30) to define Γ(A) in cases in
which it can not be defined by (16). This is particularly useful when A is
not a positive r.v., but A+ 1 is. Of course, the procedure can be iterated.

Assume A is a real-valued r-r.v. with r > 4 satisfying condition (28). As-
sume further that the support ofA is w.p.1 a subset of S = ]−1, −α[∪ ]α, +∞[
for some small α > 0. This means that the support of A should not contain
a small neighborhood of zero and that A may take negative values > −1,
although the case of A being a positive r.v. is not excluded. We are not
assuming that A satisfies condition (23), and so, even in the particular case
of A being a positive r.v., the requirements for the use of (16) to define Γ(A)
in the m.s. sense could not be met. However, we will now assume that A+ 1
does satisfy condition (23). Since A + 1 is a positive r-r.v. also satisfying
(28), we know from Theorem 7 that Γ(A+1) is well-defined in the m.s. sense
by (16), namely Γ(A+ 1) =

∫∞
0+
e−ttA+1−1 dt. We can now define Γ(A) in the

m.s. sense by

Γ(A) :=
Γ(A+ 1)

A
. (31)

Indeed, Γ(A) ∈ L2 since

E
[
(Γ(A))2

]
= E

[
1

A2
(Γ(A+ 1))2

]
≤ 1

α2
E
[
(Γ(A+ 1))2

]
<∞.
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Notice that A+ 1 satisfying (23) is equivalent to A satisfying the condition

∃ M1 > 0,M2 > 0, α1 > −1, α2 > −1 :


∥∥tA−1

∥∥
2
≤M1t

α1−1, 0 < t ≤ t̂,∥∥tA−1
∥∥

2
≤M2t

α2−1, t̂ ≤ t <∞,

for some t̂ > 0.
Iterating Γ(A + 1) = AΓ(A), we can now define Γ(A) in the m.s. sense

using, with n positive integer,

Γ(A) :=
Γ(A+ n)

A(A+ 1) · · · (A+ n− 1)
(32)

as long as A + n satisfies condition (23) and the support of r.v. A is w.p.1
a subset of S = ] − n,−(n − 1) − α[∪] − (n − 1) + α,−(n − 2) − α[∪
. . . ∪ ]− 2 +α,−1−α[∪ ]− 1 +α,−α[∪ ]α,+∞[ for some small α > 0. This
means that A is allowed (but not required) to take negative values > −n
but its support should exclude small neighborhoods of 0, −1, . . . ,−(n − 1).
Indeed, Γ(A) is well-defined in the m.s., i.e. Γ(A) ∈ L2, since

E
[
(Γ(A))2

]
= E

[
1

(A(A+ 1) · · · (A+ n− 1))2
(Γ(A+ n))2

]
≤ 1

α2n
E
[
(Γ(A+ n))2

]
<∞.

Notice that A+ n satisfying (23) is equivalent to A satisfying the condition

∃ M1 > 0,M2 > 0, α1 > −n, α2 > −n :


∥∥tA−1

∥∥
2
≤M1t

α1−1, 0 < t ≤ t̂,∥∥tA−1
∥∥

2
≤M2t

α2−1, t̂ ≤ t <∞,

for some t̂ > 0.
We can do the same for the particular case of A + n being a positive

r.v. satisfying condition (24) w.p.1 (bounded and bounded away from 0),
in which case Γ(A + n) is well defined in the m.s. sense by Γ(A + n) =∫∞

0+
e−ttA+n−1 dt. Of course, to sucessfully apply (32), A now needs to be

bounded and bounded away from −n and its support should exclude small
neigborhoods of 0, −1, . . . ,−(n − 1). In conclusion, we can define Γ(A)
in the m.s. sense by using (32) if A is a r.v. which support is w.p.1 a
subset of S = [−n + α,−(n − 1) − α[ ∪ ] − (n − 1) + α,−(n − 2) − α[
∪ . . . ∪ ]− 2 +α,−1 − α[ ∪ ] − 1 + α,−α[ ∪ ]α,L] for a small α > 0 and a
finite L > 0 as large as desired.
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5. Numerical examples and computing

As Γ(A) is a r.v., it is also interesting to provide its main statistical
properties such as the expectation, E[Γ(A)], and the variance, V[Γ(A)] =
E[(Γ(A))2]− (E[Γ(A)])2. Using properties of m.s. Riemann integral (see [13,
p.104-105]), one gets:

E[Γ(A)] =

∫ ∞
0+

e−tE
[
tA−1

]
dt,

E[(Γ(A))2] =

∫ ∞
0+

∫ ∞
0+

e−(t+s)E
[
(ts)A−1

]
dt ds.

In the next examples, we illustrate the computation of the expectation and
variance of Γ(A).

Example 9. Let A be a uniform r.v. on the interval [1, 2]. As it is an
absolutely continuous positive r.v. whose support is bounded, then, according
to Theorem 7, the r.v. Γ(A) is well-defined in the m.s. sense. Moreover

E[Γ(A)] =

∫ ∞
0+

e−t
(∫ 2

1

ta−1 da

)
dt = 0.922746,

and

V[Γ(A)] =

∫ ∞
0+

∫ ∞
0+

e−(t+s)

(∫ 2

1

(ts)a−1 da

)
dt ds− (E[Γ(A)])2 = 0.00114156.

Example 10. Let A be an exponential r.v. with parameter λ = 3 truncated
to the interval [1, 10]. Again, notice that Γ(A) is well-defined in the m.s.
sense. In this case:

E[Γ(A)] =

∫ ∞
0+

e−t
(∫ 10

1

f̂A(a)ta−1 da

)
dt = 0.946847,

and

V[Γ(A)] =

∫ ∞
0+

∫ ∞
0+

e−(t+s)

(∫ 10

1

f̂A(a)(ts)a−1 da

)
dt ds−(E[Γ(A)])2 = 0.590667,

where

f̂A(a) =


e−3a∫ 10

1
e−3ada

if a ∈ [1, 10],

0 otherwise,

is the density function associated with the truncated r.v. A.
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Example 11. Let A be a r.v. with density function

fA(a) =


1

2(b1 − a1)
if a ∈ [a1, b1],

1

2(b2 − a2)
if a ∈ [a2, b2],

0 otherwise,

where a1 = −2.9, b1 = −2.1, a2 = 1, b2 = 2. As 0.1 ≤ A + 3 ≤ 5, condition
(24) holds for A+3. Moreover, the support of A excludes small neighborhoods
of 0 and the negative integers. Therefore, Γ(A) is well-defined in the m.s.
sense and can be defined by (32) with n = 3 and so one gets

E[Γ(A)]=

∫ b1

a1

1

2(b1 − a1)

Γ(a+ 3)

a(a+ 1)(a+ 2)
da+

∫ b2

a2

1

2(b2 − a2)

Γ(a+ 3)

a(a+ 1)(a+ 2)
da

= −0.253131,

and

V[Γ(A)] =

∫ b1

a1

1

2(b1 − a1)

(
Γ(a+ 3)

a(a+ 1)(a+ 2)

)2

da

+

∫ b2

a2

1

2(b2 − a2)

(
Γ(a+ 3)

a(a+ 1)(a+ 2)

)2

da− (E[Γ(A)])2

= 1.66481.

In the next example the random Gamma function is applied to define the
random Bessel function for a uniform random variable.

Example 12. We define the random Bessel function, denoted by JA(t), for
a random variable A with uniform distribution on the interval [1, 2] as

JA(t) =
X(t)

2AΓ(A+ 1)
, with X(t) = tA

[
1 +

∞∑
n=1

(−1)nt2n

4nn!
∏n

i=1(A+ i)

]
, t > 0.

The s.p. X(t) is m.f. convergent, see [10, p.7] and E[( 1
2AΓ(A+1)

)4] <∞, then

E
[
(JA(t))2] <∞. Moreover, A satisfies condition (24), thus by Remark 9 it

follows that Γ(A+ 1) = AΓ(A). This last property implies that JA(t) can be
written as

JA(t) =
∞∑
n=0

tA

2AΓ(n+ A+ 1)

(−1)n

n! 4n
t2n. (33)
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To compute approximations of the mean and variance of JA(t), we truncate
the infinite sum (33) at N and define JNA (t) by

JNA (t) =
N∑
n=0

tA

2AΓ(n+ A+ 1)

(−1)n

n! 4n
t2n. (34)

Using expression (34) the mean of JNA (t), denoted by E
[
JNA (t)

]
, is given by

E
[
JNA (t)

]
=

N∑
n=0

E
[

tA

2AΓ(n+ A+ 1)

]
(−1)n

n! 4n
t2n

=
N∑
n=0

(∫ 2

1

tA

2AΓ(n+ A+ 1)
dA

)
(−1)n

n! 4n
t2n,

(35)

and the variance of JNA (t), denoted by V
[
JNA (t)

]
, is

V
[
JNA (t)

]
= E

[(
JNA (t)

)2
]
−
(
E
[
JNA (t)

])2

=
N∑
n=0

E
[

t2A

4A(Γ(n+ A+ 1))2

]
1

(n!)2 42n
t4n

+ 2
N∑
m=1

m−1∑
n=0

E
[

t2A

4AΓ(n+ A+ 1)Γ(m+ A+ 1)

]
(−1)m+n

m!n! 4n+m
t2(n+m)

−
(
E
[
JNA (t)

])2
,

(36)

where

E
[

t2A

4A(Γ(n+ A+ 1))2

]
=

∫ 2

1

t2A

4A(Γ(n+ A+ 1))2
dA,

E
[

t2A

4AΓ(n+ A+ 1)Γ(m+ A+ 1)

]
=

∫ 2

1

t2A

4AΓ(n+ A+ 1)Γ(m+ A+ 1)
dA.

In Tables 1 and 2 we have collected the numerical approximations of the mean
and variance of JA(t) for different values of t and N . It is observed that for
N = 10, 20 the numerical values of the mean and the variance matched,
respectively.
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Table 1: Approximations of the mean of JN
A (t) using expression (35) for N = 3, 5, 10, 20.

t E[J3
A(t)] E[J5

A(t)] E[J10
A (t)] E[J20

A (t)]

1.0 0.072954 0.072955 0.072955 0.072955

2.0 0.237481 0.237644 0.237644 0.237644

2.5 0.256552 0.257843 0.257845 0.257845

3.5 0.106055 0.122285 0.122401 0.122401

4.0 0.030294 0.045701 0.045985 0.045985

Table 2: Approximations of the variance of JN
A (t) using expression (36) for N = 3, 5, 10, 20.

t V[J3
A(t)] V[J5

A(t)] V[J10
A (t)] V[J20

A (t)]

1.0 0.008953 0.008953 0.008953 0.008953

2.0 0.004658 0.004668 0.004668 0.004668

2.5 0.000549 0.000565 0.000565 0.000565

3.5 0.010953 0.009021 0.009005 0.009005

4.0 0.024517 0.016219 0.016105 0.016105

6. Conclusions

In this paper, a generalization to the random scenario of the gamma
function has been made. To conduct this extension, first the gamma function,
Γ(A), has been introduced for a class of positive random variablesA satisfying
certain conditions related to their exponential moments. This class includes
the positive random variables that are bounded and bounded away from zero.
Then, establishing the formula Γ(A + 1) = AΓ(A) in the random scenario,
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we have extended Γ(A) to a class of random variables A whose support lies
over the real line with the exception of small neighborhoods of zero and of the
negative integers. The study has been based on the application of the mean
square and mean fourth stochastic calculus. The obtained results extend its
deterministic counterpart. In a forthcoming work, we will take advantage of
this approach to generalize to the random scenario other important special
functions.
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