
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/121428

Piqueras-García, MÁ.; Company Rossi, R.; Jódar Sánchez, LA. (2018). Computing positive
stable numerical solutions of moving boundary problems for concrete carbonation. Journal of
Computational and Applied Mathematics. 330:794-805.
https://doi.org/10.1016/j.cam.2017.03.007

http://doi.org/10.1016/j.cam.2017.03.007

Elsevier



Computing positive stable numerical solutions of

moving boundary problems for concrete carbonation

M.-A. Piqueras, R. Company1, L. Jódar
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Abstract

This paper deals with the construction and computation of numerical solutions

of a coupled mixed partial differential equation system arising in concrete car-

bonation problems. The moving boundary problem under study is firstly trans-

formed in a fixed boundary one, allowing the computation of the propagation

front as a new unknown that can be computed together with the mass concen-

trations of CO2 in air and water. Apart from the stability and the consistency

of the numerical solution, constructed by a finite difference scheme, qualitative

properties of the numerical solution are established. In fact, positivity of the

concentrations, increasing properties of the propagation front and monotone be-

haviour of the solution are proved. We also confirm numerically the
√
t-law of

propagation. Results are illustrated with numerical examples.
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1. Introduction

Environmental impact on concrete parts of buildings and civil engineering

works such as bridges, sewage pipes and seawalls results in a variety of chemical

and mechanical changes. The bulk of these changes leads to damaging and

destabilization of the concrete itself or of the reinforcement embedded in the5

concrete. It is well known that in all carbonation scenarios, gaseous carbon

dioxide is assumed to be supplied from an inexhaustible exterior source to the

concrete sample, [1, 2]. Carbon dioxide entering the non-saturated concrete

sample through the air parts of the pores dissolves into the pore water and forms

carbonic acid. This phenomenon, called concrete carbonation, may reduce the10

durability of reinforced concrete structures, causing the corrosion of the steel

bars. The concrete carbonation level is measured throughout the CO2 mass

concentration in air and water phases in the concrete pores, that needs to be

calculated. Gradually the process penetrates deeper into de concrete shaping

a carbonation front that separates the carbonated zone from the uncarbonated15

one. A good understanding of the evolution of the carbonation process is crucial

to predict the life service of concrete structures and save important amounts of

money and energy.

Empirical evidences of the behaviour of the carbonation front propagation

have shown a dependence on time following the so-called
√
t-law, [3, 4, 5, 6, 7,20

8, 9, 10]. In the framework of moving-boundary problems, to our knowledge,

Tuutti [11] in 1982, was the first appealing to the square root of t-law in the

problem of concrete carbonation. Such conclusions were based on the Neumann

solution of the two-phase Stefan problem, see Section 13.2.2 of [12].

In recent papers [1, 13], the authors studied a one-dimensional free boundary

problem modeling the carbonation process. The unknown CO2 mass concen-

trations in air and water phases of pores are denoted by U(t, x) and V (t, x)

respectively, depending on variables time t and space x. The space variable x is

measured from the exposed boundary x = 0 to the unknown carbonation front
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x = S(t). In the the system (2)-(9) it is assumed that κ1 and κ2 are positive

diffusion constants (κ1 ≫ κ2) and the functions f(U, V ) and ψ(r) are defined

as

f(U, V ) = β(γV − U), β > 0, γ > 0. (1)

The continuous model is described by

∂U

∂t
− ∂

∂x

(

κ1
∂U

∂x

)

= f(U, V ), 0 < t < T, 0 < x < S(t), (2)

∂V

∂t
− ∂

∂x

(

κ2
∂V

∂x

)

= −f(U, V ), 0 < t < T, 0 < x < S(t), (3)

together with the left boundary conditions

U(t, 0) = G(t), V (t, 0) = H(t), 0 ≤ t ≤ T. (4)

The propagation front behaviour comes out from the Stefan-like conditions,

involving function ψ(r) linked to the chemical reactions:

S′(t) = ψ(U(t, S(t))), 0 < t < T, (5)

−κ1
∂U

∂x
(t, S(t)) = ψ(U(t, S(t))) + S′(t)U(t, S(t)), 0 < t < T, (6)

−κ2
∂V

∂x
(t, S(t)) = S′(t)V (t, S(t)), 0 < t < T. (7)

Function ψ(r) is given by

ψ(r) = α|r|p, r ∈ R, α > 0, p ≥ 1, (8)

where p is the so called order of the chemical reaction.25

The bounded initial conditions functions are described by

S(0) = S0, U(0, x) = U0(x), V (0, x) = V0(x), 0 < x < S0. (9)
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Aiki and Muntean [1, 13] show qualitative properties of the solutions U(t, x)

and V (t, x) of (2)-(9) as positivity and boundedness for fairly well posed initial

conditions. Furthermore, they also justify rigorously that the carbonation front

S(t) satisfies a long time behaviour of the type C1

√
t ≤ S(t) ≤ C2

√
t, when

the exposed boundary conditions are constant, G(t) = G∗, H(t) = H∗, and30

linked by the condition G∗ = γH∗. Numerical simulations of the solution of

carbonation problems using the finite element method have been performed in

[14, 15].

As the exact solution of the model (2)-(9) is not available and the best model

may be wasted with a bad numerical analysis, in this paper we provide condition-35

ally stable positive numerical solutions, apart from preserving the qualitative

properties of the theoretical solution.

In Section 2, after a front-fixing transformation approach, the original prob-

lem is transformed into another one where the moving boundary becomes a

new unknown of the problem, allowing the possibility to compute the expand-40

ing front. We propose a coupled finite difference scheme whose unknowns are

both CO2 concentrations, in air and water phases of pores, as well as the square

power values of the expanding front. In Section 3, stability and positivity of

the numerical solution is treated. The monotone increase in time behaviour

of the expanding front is shown numerically. We also prove for a fixed time45

the CO2 concentrations are spatially decreasing from the exposed front to the

carbonation front. Section 4 deals with a numerical conformation of the
√
t-

law assumption. Numerical experiments illustrating the shown properties are

included in the corresponding sections. Consistency of the proposed numerical

scheme with the PDE problem is addressed in Section 5.50

2. Front-fixing transformation and discretization

Let us begin this section by transforming the moving boundary problem

(2)-(9) into another one with fixed boundary conditions. The Landau transfor-
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mation, [16, 17], suggests the substitution

L(t) = S2(t), z(t, x) =
x

√

L(t)
, 0 ≤ t ≤ T, 0 < x <

√

L(t). (10)

Using substitution (10), the problem (2)-(9) becomes

L(t)
∂W

∂t
− L′(t)

z

2

∂W

∂z
− κ1

∂2W

∂z2
= L(t)β(γY −W ), 0 < t < T, 0 < z < 1,

(11)

L(t)
∂Y

∂t
− L′(t)

z

2

∂Y

∂z
− κ2

∂2Y

∂z2
= −L(t)β(γY −W ), 0 < t < T, 0 < z < 1,

(12)

where

W (t, z) = U(t, x), Y (t, z) = V (t, x). (13)

In addition, the new boundary conditions take the form

W (t, 0) = G(t), Y (t, 0) = H(t), 0 ≤ t ≤ T. (14)

The Stefan-like conditions (5)-(7) are transformed into

L′(t) = 2
√

L(t)α[W (t, 1)]p, 0 < t < T, (15)

−2κ1
∂W

∂z
(t, 1) = L′(t)(1 +W (t, 1)), 0 < t < T, (16)

−2κ2
∂Y

∂z
(t, 1) = L′(t)Y (t, 1), 0 < t < T, (17)

and the initial conditions (9) become

L(0) = L0; W (0, z) =W0(z) = U0(zS0); Y (0, z) = Y0(z) = V0(zS0), 0 < z < 1.

(18)

Note that the transformed problem (11)-(18) is an initial-fixed boundary

problem for a system of two nonlinear parabolic partial differential equations in

the bounded fixed domain (0, T )× (0, 1).55
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Let N and M be positive integers and let us consider the step sizes dis-

cretizations k = ∆t = T/N , h = ∆z = 1/M and the mesh points (tn, zj), with

tn = nk, zj = jh, 0 ≤ n ≤ N , 0 ≤ j ≤ M . Numerical approximations of the

involved variables are denoted by: wn
j ≈ W (tn, zj), y

n
j ≈ Y (tn, zj), l

n ≈ L(tn),

while we denote Gn = G(tn), Hn = H(tn).60

Partial derivatives at the interior points are approximated using forward in

time and centered in space finite difference expressions:

wn+1
j − wn

j

k
≈ ∂W

∂t
(tn, zj),

yn+1
j − ynj

k
≈ ∂Y

∂t
(tn, zj),

ln+1 − ln

k
≈ L′(tn),

(19)

wn
j+1 − wn

j−1

2h
≈ ∂W

∂z
(tn, zj),

wn
j−1 − 2wn

j + wn
j+1

h2
≈ ∂2W

∂z2
(tn, zj), (20)

ynj+1 − ynj−1

2h
≈ ∂Y

∂z
(tn, zj),

ynj−1 − 2ynj + ynj+1

h2
≈ ∂2Y

∂z2
(tn, zj). (21)

To preserve the second order accuracy at the right boundary z = 1, we take

left side approximations with three points:

3wn
M − 4wn

M−1 + wn
M−2

2h
≈ ∂W

∂z
(tn, 1),

3ynM − 4ynM−1 + ynM−2

2h
≈ ∂Y

∂z
(tn, 1).

(22)

Using the approximations (19)-(21), equations (11)-(12) become discretized65

at the interior mesh points in the following way

ln
wn+1

j − wn
j

k
− zj

2

wn
j+1 − wn

j−1

2h

(

ln+1 − ln

k

)

− κ1
wn

j−1 − 2wn
j + wn

j+1

h2

= lnβ(γynj − wn
j ), 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1, (23)
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ln
yn+1
j − ynj

k
− zj

2

ynj+1 − ynj−1

2h

(

ln+1 − ln

k

)

− κ2
ynj−1 − 2ynj + ynj+1

h2

= −lnβ(γynj − wn
j ), 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1. (24)

Initial conditions given in (18) take the discrete form

l0 = S2(0) = S2
0 , w0

j = U0(zjS0), y0j = V0(zjS0), 1 ≤ j ≤M − 1. (25)

Note that the starting values w0
M and y0M are not given and need to be

obtained.

Left boundary conditions are discretized as

wn
0 = Gn, yn0 = Hn, 0 ≤ n ≤ N. (26)

The discretization of the Stefan-like conditions (15)-(17) takes the form

ln+1 − ln

k
= 2α(ln)

1
2 (wn

M )p, 0 ≤ n ≤ N − 1, (27)

−κ1
3wn

M − 4wn
M−1 + wn

M−2

h
=
ln+1 − ln

k
(1 + wn

M ), 0 ≤ n ≤ N − 1, (28)

−κ2
3ynM − 4ynM−1 + ynM−2

h
=
ln+1 − ln

k
ynM , 0 ≤ n ≤ N − 1. (29)

For the sake of clarity we explain how to transit from the time level n

to n + 1. Firstly, solving (27)-(29) for n = 0 one gets the starting unknown

values w0
M and y0M , as well as l1. Then, from the values for the time level

n, {wn
j , y

n
j , l

n; 0 ≤ j ≤ M − 1}, one needs to obtain the remaining values

{wn
M , y

n
M} and {wn+1

j , yn+1
j , ln+1; 1 ≤ j ≤ M − 1}. Note that the nonlinear

system (27)-(28) is coupled in the unknowns wn
M and ln+1. From (27) one gets

ln+1 = ln + 2kα(ln)
1
2 (wn

M )p, 0 ≤ n ≤ N − 1. (30)
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By substituting (30) in (28) the following nonlinear equation in wn
M for each

step n must be solved

Fn(w
n
M ) = 0, 0 ≤ n ≤ N, (31)

where Fn : [0,∞[→ R, is given by

Fn(ξ) = 2α(ln)
1
2 ξp+1 + 2α(ln)

1
2 ξp +

3κ1
h
ξ − κ1

h
(4wn

M−1 − wn
M−2). (32)

We solve equation (31)-(32) using Newton iteration method. Once wn
M is70

calculated solving (31)-(32), the unknown ln+1 is given by (30) and ynM is com-

puted using (29). In this process, positivity of the involved quantities wn
M , ln

and ynM has to be proved. This positiveness requirement is fulfilled in Section

3.

Finally, equations (23)-(24) allow to obtain explicitly the solutions at the

interior points at time level n+ 1 as follows

wn+1
j = an1,jw

n
j−1+b

n
1,jw

n
j +c

n
1,jw

n
j+1+kβγy

n
j , 0 ≤ n ≤ N−1, 1 ≤ j ≤M−1,

(33)

yn+1
j = an2,jy

n
j−1 + bn2,jy

n
j + cn2,jy

n
j+1 + kβwn

j , 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1,

(34)

where

ani,j =
κik

h2ln
− zj

4h
∆n, cni,j =

κik

h2ln
+
zj
4h

∆n, i = 1, 2,

bn1,j = 1− kβ − 2κ1k

h2ln
, bn2,j = 1− kβγ − 2κ2k

h2ln
, (35)

and

∆n =
ln+1

ln
− 1. (36)

We summarize the construction of the numerical solution in the procedure75

exposed in Algorithm 1.
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Algorithm 1: Calculation procedure for (wn
j , y

n
j , l

n)

Data: Initial conditions given in (25); Boundary conditions given in (26).

Result: Solution (wn
j , y

n
j , l

n) of the problem (23)-(29).

1 n=0;

2 while n ≤ N do

3 Compute wn
M solving (31)-(32) by Newton-Raphson method:

Data: (wn
M )0, Initial estimate of wn

M ; e, Tolerance.

Result: wn
M .

4 i=0;

5 (wn
M )1 = (wn

M )0 − Fn((w
n
M )0)/F ′

n((w
n
M )0);

6 while
∣

∣

∣

(wn

M
)i+1

−(wn

M
)i

(wn

M
)i+1

∣

∣

∣
≥ e do

7 i=i+1;

8 (wn
M )i+1 = (wn

M )i − Fn((w
n
M )i)/F ′

n((w
n
M )i);

9 end

10 Compute ln+1 by (30);

11 Compute ynM using (29);

12 while n ≤ N − 1 do

13 for j = 1, . . . ,M − 1 do

14 Obtain wn+1
j by (33);

15 Obtain yn+1
j by (34);

16 end

17 end

18 n=n+1;

19 end

9



3. Positivity, stability and monotonicity of the numerical solution

Dealing with concentrations, the positivity of the computed values is not an

alternative but a necessity that needs to be guaranteed. We use an inductive

method where, under the assumption that values {wn
j , y

n
j , l

n; 1 ≤ j ≤ M − 1}80

are positive, we show the positivity of the elements of {wn+1
j , yn+1

j , ln+1; 1 ≤
j ≤ M − 1}, as well as the positivity of the remaining values on the right

boundary of the discrete domain, {wn
M , y

n
M}.

Let us start showing the positivity of the solution wn
M of equation (31)-(32)

paying attention to the last term of equation (32). Note that from Taylor’s

theorem one has

wn
M−2 = wn

M−1 − h
∂W

∂z
(tn, ξ); (M − 2)h < ξ < (M − 1)h. (37)

Let En be defined by

En = max

∣

∣

∣

∣

∂W

∂z
(tn, z)

∣

∣

∣

∣

, 0 ≤ z ≤ 1, (38)

from (37) and (38)

|wn
M−2 − wn

M−1| < Enh. (39)

Hence, taking h < 3wM−1/En, one gets

4wn
M−1 − wn

M−2 = 3wn
M−1 + (wn

M−1 − wn
M−2) > 3wn

M−2 − Enh > 0. (40)

Let us denote δn = (4wn
M−1 − wn

M−2)/3 > 0 and note that Fn(ξ) de-

fined by (32) is a continuous strictly increasing function satisfying Fn(0) =85

(−3κ1/h)δ
n < 0 and Fn(δ

n) > 0, for each n ≥ 0. Thus, there exists a unique

point ξn
∗

such that 0 < ξn
∗
< δn and Fn(ξ

n
∗
) = 0 . This unique solution of

(31)-(32) is the required value wn
M = ξn

∗
> 0.

From (30) and induction principle, it follows that

0 < ln < ln+1, 0 ≤ n ≤ N − 1. (41)
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From (29), one gets

ynM = k

[

κ2(4y
n
M−1 − ynM−2)

3kκ2 + h(ln+1 − ln)

]

, 0 ≤ n ≤ N − 1. (42)

Positivity of (4ynM−1 − ynM−2) for small enough values of h, is obtained in

analogous way to the proof of the same result for (4wn
M−1 −wn

M−2). Using (41)90

and (42) we have that ynM > 0.

Regarding to the positivity of the remaining wn+1
j and yn+1

j , 1 ≤ j ≤M −1,

let us study the nonnegativity of the coefficients (35) of the scheme (33)-(34).

From (35) and (41) one gets that cni,j > 0, i = 1, 2, and

bn1,j ≥ 1− kβ − 2κ1k

h2l0
, bn2,j ≥ 1− kβγ − 2κ2k

h2l0
. (43)

Then, coefficients bni,j , i = 1, 2, are positive under the condition

k < k0 = min{k1, k2}, (44)

where

k1 =
h2l0

2κ1 + h2βl0
, k2 =

h2l0
2κ2 + h2βγl0

. (45)

Now we address the nonnegativity of the coefficients an1,j , whose sign de-

pends on the difference ln+1 − ln and, from the discretization of the Stefan-like

condition (28), this difference involves wM and (4wM−1 − wM−2).

In order to simplify these relationships, let us consider the right-hand side

approximation of the spatial partial derivative of W (t, z) at (tn, 1)

−3wn
M + 4wn

M+1 − wn
M+2

2h
=
∂W

∂z
(tn, 1) +O(h2), (46)

where the artificial values wn
M+1 and wn

M+2 vanish because they are outside of95

the real carbonated region.

In agreement with (22), left-hand side backward approximation of the spatial

partial derivative of W (t, z) at (tn, 1) satisfies

3wn
M − 4wn

M−1 + wn
M−2

2h
=
∂W

∂z
(tn, 1) +O(h2). (47)
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From (46)-(47), one gets

6wn
M = 4wn

M−1 − wn
M−2 +O(h3). (48)

Using (28) and (48), it follows that

ln+1 − ln =
kκ1
h

3wn
M

1 + wn
M

+O(kh2), (49)

and from (35) and (49), using that 0 < zj ≤ 1,

an1,j ≥
κ1k

h2ln

(

4 + wn
M

4(1 + wn
M )

+O(h3)

)

. (50)

Hence, for small enough values of k and h, coefficients an1,j are positive.

Finally, from the expression (35) for an2,j , managing the values of ynM and

(4ynM−1 − ynM−2) in analogous way to the previous study with wn
j , one gets

6ynM = 4ynM−1 − ynM−2 +O(h3), (51)

ln+1 − ln =
3kκ2
h

+O(kh2), (52)

and

an2,j ≥
κ2k

h2ln

(

1

4
+O(h3)

)

. (53)

Summarizing, the following result has been established:

Theorem 1. With previous notation, for small enough values of the step sizes

h and k linked by the condition (44)-(45), the following conclusions hold true:100

i) Concentration solutions of the scheme (33)-(34) wn
j and ynj are positive for

1 ≤ j ≤M − 1, 1 ≤ n ≤ N .

ii) Concentrations at the right boundary wn
M and ynM are positive.

iii) The moving carbonation front is positive and increasing, 0 < l0 < l1

< . . . < lN .105
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The positivity guaranteed by Theorem 1 is not unconditional and the fol-

lowing example shows that this condition can not be removed.

Example 1. In accordance with [15], consider the carbonation model (2)-

(9) with parameters listed in the Table 1 and time horizon T = 15 years. For

h = 0.05, one gets k1 = 0.0062 and k2 = 0.0625. Taking k = 0.0075, the110

positivity condition is broken. Figure 1 shows that positivity does not hold.

Units in x-axe are taken in cm and y-axe in 10−6 g cm−3.

Magnitude Value

Initial concentrations (10−6 × g cm−3)

U0(x), 0 < x < S0 0.80− 1.50x

V0(x), 0 < x < S0 200000− 398000x

Exposed boundary concentrations (10−6 × g cm−3)

G(t) 0.80

H(t) 200000

Diffusion constants (108 × cm2 year−1)

κ1 0.05

κ2 0.005

Model parameters

α 1.00

β (year−1) 0.001

γ 5× 10−6

p 2.00

Initial position of carbonation front (cm)

S0 0.50

Table 1: Data for numerical examples.

Apart from the positivity of the numerical solution, a crucial requirement

is the stability of such numerical solution. For the sake of clarity in the pre-

sentation and because of the existence in the literature of several definitions of115

13
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Figure 1: Numerical solution of Example 1 for t = 0.375 years, when positivity condition is

broken.

stability, we precise the concept of stability we use. As the stability is related

to the boundedness of the numerical solution, we need to precise a norm. We

denote the so called supremum norm of a vector x = (x1, x2, ..., xn)
T in R

n as

‖x‖∞ = max(|x1|, |x2|, ..., |xn|).

Definition 1. With previous notation, let us denote the vectors of CO
2
concen-

trations wn = [wn
0 , w

n
1 , . . . , w

n
M ]T and yn = [yn0 , y

n
1 , . . . , y

n
M ]T . We say that the

numerical solution {wn, yn, 0 ≤ n ≤ N} is ‖ · ‖∞-stable if there exist positive

constants C1 and C2 independent of n, k and h, such that

‖wn‖∞ ≤ C1, ‖yn‖∞ ≤ C2, 0 ≤ n ≤ N. (54)

Now we show that under the positivity conditions of Theorem 1, the numer-

ical solution {wn
j , y

n
j } is ‖ · ‖∞-stable. Let G(t) and H(t) be the left boundary

conditions given by (4) and let U0(x) and V0(x) be the initial conditions given

by (9). Let G̃ and H̃ be positive upper bounds such that

G(t) ≤ G̃, H(t) ≤ H̃, 0 ≤ t ≤ T,

U0(zjS0) = w0
j ≤ G̃, V0(zjS0) = y0j ≤ H̃, 1 ≤ j ≤M − 1,

G̃ = γH̃.



















(55)

From (48) and (51) evaluated at n = 0 it follows

w0
M <

2

3
w0

M−1 ≤ G̃, y0M <
2

3
y0M−1 ≤ H̃. (56)

14



Once we have the bound at the time level n = 0, we prove using the induction

principle the boundedness of the numerical solution for all the time levels. Let

us assume the induction hypothesis

wn
j ≤ G̃, ynj ≤ H̃, 1 ≤ j ≤M, G̃ = γH̃. (57)

From (33)-(34) and (35) under the conditions of Theorem 1 one gets, for

1 ≤ j ≤M − 1,

wn+1
j ≤ (an1,j + bn1,j + cn1,j)G̃ + kβγH̃ = (1− kβ)G̃+ kβγG̃ = G̃, (58)

yn+1
j ≤ (an2,j + bn2,j + cn2,j)H̃ + kβG̃ = (1 − kβγ)H̃ + kβG̃ = H̃. (59)

Furthermore, using (48) and (51), together with (58)-(59) for j =M − 1, it120

follows that wn+1
M ≤ G̃ and yn+1

M ≤ H̃ .

Summarizing the following conditional stability result has been established:

Theorem 2. With previous notation, for small enough values of h and k sat-

isfying the positivity step size condition (44)-(45), the numerical solution of

scheme (33)-(34) is ‖ · ‖∞-stable.125

As it has been shown in Example 1, where the positivity does not occur when

the positivity condition (44)-(45) was broken, in the following example we show

that when the positivity condition is satisfied, then we have both positivity and

‖ · ‖∞-stability.

Example 2. With the notation and the parameters of Example 1, and step130

sizes h = 0.05 and k = 0.005, the stability of the solutions U(t, x) and V (t, x) is

guaranteed as it is shown in Figure 2. Units in x-axe are taken in cm and y-axe

in 10−6 g cm−3.

An important property of the numerical solution is its monotone decreasing

behaviour with respect to the space from the exposed boundary to the carbon-135

ation front at each time level under the positivity step size conditions. For the
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Figure 2: Numerical solution of U(t, x) and V (t, x) in Example 2 for t = 13 years, under

stability condition.

sake of clarity in the presentation and the concept of monotone schemes has

been used earlier in the literature [18], we introduce the following definition:

Definition 2. With previous notation, we say that the numerical scheme (33)-

(34) is spatial monotone preserving, if assuming that the numerical solution is140

spatial monotone decreasing at time level n, 0 ≤ n ≤ N − 1, i. e.,:

wn
j+1 ≤ wn

j , ynj+1 ≤ ynj , 0 ≤ j ≤M − 1, (60)

then, one satisfies

wn+1
j+1 ≤ wn+1

j , yn+1
j+1 ≤ yn+1

j , 0 ≤ j ≤M − 1. (61)

Now we state that, under the positivity constraints (44)-(45) on the co-

efficients (35) together with an additional condition for concentrations at the

exposed boundary, the numerical scheme is spatial monotone preserving. This

condition imposes that G(t) and H(t) are time monotone non decreasing func-

tions satisfying

G(t) = γH(t), 0 ≤ t ≤ T. (62)

From equation (33), the positivity of coefficients an1,j , b
n
1,j , c

n
1,j and the in-

duction hypothesis of Definition 2, it follows that wn
j−1 ≥ wn

j , w
n
j ≥ wn

j+1,

wn+1
j ≥ an1,jw

n
j + bn1,jw

n
j + cn1,jw

n
j + kβγynj

=

(

1− kβ − κ1k

h2ln
− j

4
∆n

)

wn
j + cn1,jw

n
j+1 + kβγynj , 1 ≤ j ≤M − 1, (63)
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and

wn+1
j+1 ≤ an1,j+1w

n
j + bn1,jw

n
j+1 + cn1,j+1w

n
j+1 + kβγynj+1

=

(

1− kβ − κ1k

h2ln
+
j + 1

4
∆n

)

wn
j+1 + an1,j+1w

n
j + kβγynj , 1 ≤ j ≤M − 2.

(64)

From (63) and (64) and the hypothesis condition of Definition 2 it follows

that

wn+1
j+1 −wn+1

j ≤
(

bn1,j+
1

4
∆n

)

(wn
j+1−wn

j )+kβγ(y
n
j+1−ynj ) ≤ 0, 1 ≤ j ≤M−2.

(65)

Furthermore wn+1
M < wn+1

M−1 due to (56). Using equation (33) for j = 1,

hypothesis of Definition 2 and assuming that G(t) and H(t) are monotone non

decreasing functions satisfying (62), it follows

wn+1
1 ≤ (an1,1 + bn1,1 + cn1,1)w

n
0 + kβγyn0

≤ (1− kβ)Gn + kβγHn = Gn ≤ Gn+1 = wn+1
0 . (66)

The monotonicity of {yn+1
j } can be shown in an analogous way to that used

for {wn+1
j }, and the following result has been established.145

Theorem 3. With previous notation, under the positivity conditions (44-(45),

assuming that the concentrations at the exposed boundary are monotone non

decreasing functions such that G(t) = γH(t), then the numerical scheme (33)-

(34) is spatial monotone preserving.

Next Example 3 illustrates the decreasing monotonicity behaviour of both150

concentrations U(t, x) and V (t, x) in the space variable when the time is fixed.

Example 3. With data of Table 1 and taking step sizes h = 0.05 and

k = 0.005 satisfying the monotonicity requirements of Theorem 3, Figures 3

and 4 show the monotone behaviour of the functions U(ti, x) and V (ti, x) cor-

responding to the mass concentrations of CO2 in air and water, respectively.155
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Here ti, 1 ≤ i ≤ 5, represent four equidistant fixed values of time. Note also

that the carbonation zone is increasing with time, according to the spreading

of the propagation front S(t), see Theorem 1-iii).
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Figure 3: Numerical solution U(t, x) of Example 3 for several equidistant times ti.
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Figure 4: Numerical solution V (t, x) of Example 3 for several equidistant times ti.

4. Numerical evidences of the
√

t-law of propagation

In this Section we confirm numerically, under appropriated positivity condi-160

tions, that the proposed numerical solution behaves as the theoretical solution

suggested. In fact, in the next example, according to data from [15], we match

the numerical solution of the carbonation front as a function of the type C
√
t.

Example 4. With the same parameters and step size values of Example 2,

Table 2 shows long time values of the carbonation front S(t) on of time, with165
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a time horizon of T = 35 years. These points (ti, S(ti)) have been fitted to a

curve with two parameters of the type S(t) = atb. The best fit (in the least

square sense) is matched by a = 0.2715 and b = 0.4568, and the coefficient of

determination R2 = 0.9999. This numerical experiment illustrates the agree-

ment with the behaviour of the theoretical solution.170

ti (years) 33.00 33.50 34.00 34.50 35.00

S(ti) (cm) 1.3407 1.3499 1.3591 1.3682 1.3772

Table 2: Carbonation depth for several times.

5. Consistency

Consistency of a numerical scheme with a PDE problem means that the

theoretical solution of the problem approximates well the numerical scheme

when the step size discretizations tend to zero. So, a numerical scheme can be175

consistent with an equation and not with another one, see [19], Chap. 2, and

[20], Chap. 1. Thus, it is important to address the consistency of a numerical

scheme with a problem.

Equations of the problem (11)-(17) can be written in vector form as L(W,Y, L) =
(L1(W,Y, L),L2(W,Y, L),L3(W,L),L4(W,L),L5(Y, L)) = 0, in which

L1(W,Y, L) = L(t)
∂W

∂t
−L′(t)

z

2

∂W

∂z
−κ1

∂2W

∂z2
−L(t)β(γY−W ) = 0, t > 0, 0 < z < 1,

(67)

L2(W,Y, L) = L(t)
∂Y

∂t
−L′(t)

z

2

∂Y

∂z
−κ2

∂2Y

∂z2
+L(t)β(γY−W ) = 0, t > 0, 0 < z < 1,

(68)

L3(W,L) = L′(t)− 2
(

L(t)
)

1
2α[W (t, 1)]p = 0, t > 0, (69)

L4(W,L) = L′(t)
(

1 +W (t, 1)
)

+ 2κ1
∂W

∂z
(t, 1) = 0, t > 0, (70)
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L5(Y, L) = L′(t)Y (t, 1) + 2κ2
∂Y

∂z
(t, 1) = 0, t > 0, (71)

and the finite difference scheme (23)-(29), also can be written in a compact way

as ℓ(w, y, l) = (ℓ1(w, y, l), ℓ2(w, y, l), ℓ3(w, l), ℓ4(w, l), ℓ5(y, l)), where:

ℓ1(w, y, l) = ln
wn+1

j − wn
j

k
− zj

2

wn
j+1 − wn

j−1

2h

(

ln+1 − ln

k

)

− κ1
wn

j−1 − 2wn
j + wn

j+1

h2

− lnβ(γynj − wn
j ) = 0, 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1, (72)

ℓ2(w, y, l) = ln
yn+1
j − ynj

k
− zj

2

ynj+1 − ynj−1

2h

(

ln+1 − ln

k

)

− κ2
ynj−1 − 2ynj + ynj+1

h2

+ lnβ(γynj − wn
j ) = 0, 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1, (73)

ℓ3(w, l) =
ln+1 − ln

k
− 2α(ln)

1
2 (wn

M )p = 0, 0 ≤ n ≤ N − 1, (74)

ℓ4(w, l) = κ1
3wn

M − 4wn
M−1 + wn

M−2

h
+
ln+1 − ln

k
(1+wn

M ) = 0, 0 ≤ n ≤ N−1,

(75)

ℓ5(y, l) = κ2
3ynM − 4ynM−1 + ynM−2

h
+
ln+1 − ln

k
ynM = 0, 0 ≤ n ≤ N − 1. (76)

In accordance with [19], scheme ℓ(w, y, l) is said to be consistent with prob-

lem L(W,Y, L) if local truncation error T n
j (W,Y, L) = (T (1)nj , T (2)

n
j , T (3)

n
j , T (4)

n
j , T (5)

n
j ),

T (1)nj (W,Y, L) = ℓ1(W
n
j , Y

n
j , L

n)− L1(W
n
j , Y

n
j , L

n), (77)

T (2)nj (W,Y, L) = ℓ2(W
j
n, Y

n
j , L

n)− L2(W
n
j , Y

n
j , L

n), (78)

T (3)nj (W,L) = ℓ3(W
n
j , L

n)− L3(W
n
j , L

n), (79)

T (4)nj (W,L) = ℓ4(W
n
j , L

n)− L4(W
n
j , L

n), (80)
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T (5)nj (Y, L) = ℓ5(Y
n
j , L

n)− L5(Y
n
j , L

n), (81)

tends to zero as k → 0, h → 0, where Wn
j = W (tn, zj), Y

n
j = Y (tn, zj) and

Ln = L(tn) are the values of the exact solution of problem (11)-(17) of both the180

PDE and the free boundary respectively at the point (tn, zj). We assume that

the exact solutions {W (t, z), Y (t, z)} are continuously partial differentiable four

times with respect to z and two times with respect to t. We also assume that

L(t) is two times continuously differentiable.

Let us first consider the components T (1)nj and T (2)nj of the local truncation

error. By using Taylor’s expansion about (tn, zj) one gets:

T (1)nj (W,Y, L) = LnEn
j (2)k −

zj
2

∂W

∂z
(tn, zj)kE

n(1)

− zj
2
L′(tn)En

j (3)−
zj
2
En(1)En

j (3)kh
2 − κ1E

n
j (4)h

2, (82)

T (2)nj (W,Y, L) = LnEn
j (5)k −

zj
2

∂Y

∂z
(tn, zj)kE

n(1)

− zj
2
L′(tn)En

j (6)−
zj
2
En(1)En

j (6)kh
2 − κ2E

n
j (7)h

2, (83)

where:

En(1) =
1

2

d2L

dt2
(τ1), En

j (2) =
1

2

∂2W

∂t2
(τ2, zj), En

j (5) =
1

2

∂2Y

∂t2
(τ3, zj),

tn < τ i < tn+1, i = 1, 2, 3, (84)

En
j (3) =

1

6

∂3W

∂z3
(tn, ξ1), En

j (4) =
1

12

∂4W

∂z4
(tn, ξ2), En

j (6) =
1

6

∂3Y

∂z3
(tn, ξ3),

En
j (7) =

1

12

∂4Y

∂z4
(tn, ξ4), zj−1 < ξi < zj+1, i = 1, 2, 3, 4, (85)

En
j (8) =

1

3

∂3W

∂z3
(tn, ξ5), En

j (9) =
1

3

∂3Y

∂z3
(tn, ξ6), zM−2 < ξi < zM , i = 5, 6.

(86)

Hence, T (1)nj (W,Y, L) and T (2)
n
j (W,Y, L) satisfy

T (1)nj (W,Y, L) = O(k) +O(h2), (87)
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T (2)nj (W,Y, L) = O(k) +O(h2). (88)

The remaining components of the truncation error are

T (3)nj (W,L) = kEn(1), (89)

T (4)nj (W,L) = kEn(1)(1 +W (tn, zM ))− 2h2κ1E
n
j (8), (90)

T (5)nj (Y, L) = kEn(1)Y (tn, zM )− 2h2κ2E
n
j (9). (91)

Thus, it holds

T (3)nj (W,L) = O(k), (92)

T (4)nj (W,L) = O(k) +O(h2), (93)

T (5)nj (Y, L) = O(k) +O(h2). (94)

Summarizing, the following result has been established:185

Theorem 4. With previous notation, the scheme ℓ(w, y, l) is consistent with

the problem L(W,Y, L) and the local truncation error behaves as:

T n
j (W,Y, L) = O(k) +O(h2). (95)

Remark 1. Note that the coefficients of (35), carbonation front ln+1 and the

CO
2
concentration in water ynM at the propagation front, are distorted by the

computation of the CO
2
concentration in air wn

M at the propagation front, using

Newton-Raphson method to solve equation (31)-(32). This means that above we

studied the consistency of the scheme resulting of replacing in (23)-(29) the190

theoretical value wn
M by the numerical one w̃n

M obtained by the Newton-Raphson

method. Standard analysis based on the mean value theorem shows that the

error of order p motivated by equation (30) is linearly transmitted to the other

variables adding a local error of order O(|wn
M − w̃n

M |p) to the expression (95).
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Remark 2. The real initial deterioration state of the concrete in the carbona-

tion process is measured in terms of the value L(0) = S2(0) = S2
0 . This value

has influence in the step size conditions (44)-(45) in order to guarantee posi-

tivity, stability and monotonicity, that cannot be removed as Example 1 shows.

However, this fact does not mean a limitation in our study and its applications,

when S(0) is small enough, because starting from any initial position of the

carbonation front, using the substitution

τ =
κ1t

L(0)
, λ(τ) =

L(t)

L(0)
, (96)

the problem becomes independent of this situation, as well as of the quality of195

diffusion given by the coefficient κ1.
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