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Abstract

The matter of the stability for multidimensional diffusion-advection-reaction problems treated 

with the semi-discretization method is remaining challenge because when all the stepsizes tend 

simultaneously to zero the involved size of the problem grows without bounds. Solution of such 

problems is constructed by starting with a semi-discretization approach followed by a full 

discretization using exponential time differencing and matrix quadrature rules. Analysis of 

the time variation of the numerical solution with respect to previous time level together with 

the use of logarithmic norm of matrices are the basis of the stability result. Sufficient stability 

conditions on stepsizes, that also guarantee positivity and boundedness of the solution, are 

found. Numerical examples in different fields prove its competitiveness with other relevant 

methods.

Keywords: Diffusion-advection-reaction, semi-discretization, exponential time

differencing, finite difference, numerical analysis.
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1. Introduction

Time-dependent diffusion-advection-reaction (DAR) models have applica-

tion in a wide class of problems [1] appearing in many fields as fluid dynamics

[1], biology [2], population dynamics [3], and financial mathematics [4], etc.

5 Such time evolution problems are modeled by involving three factors: diffusion, 

advection and reaction. Diffusion deals with the dispersion given in the species 

involved in the process throughout the domain of the problem. Advection is

Preprint submitted to Elsevier May 4, 2018



related to the movement of species due to the fluid transport medium and the 

reaction explains the interaction through which the species are generated or 10 

consumed [5].

The partial differential equation (PDE) that governs the diffusion-advection-

reaction type processes adds significant mathematical complexity to be consid-

ered carefully when solving the problem. Well-posedness conditions for nonlin-

ear second order PDEs problems including DAR initial value problems are given

15 in Section 4.9 of [6]. The notion of viscosity solutions provides a framework in

which existence and uniqueness theorems may be proved by very efficient argu-

ments. A rigorous study can be found in [7] for initial boundary second order 

PDEs.

It is important to point out that existence and uniqueness conditions uses

20 to be much more restrictive that they appear frequently in practice. Even when

such conditions are not fulfilled, the search of numerical solutions is important 

because the practitioners may have empirical evidences of the problem to check 

the reliability of the approximation.

Only in some particular cases it is possible to solve the DAR equations

25 exactly [8]. In a more general situation, numerical techniques are required.

One of the common methods is a semi-discretization with respect to spatial 

variables achieving a system of ordinary differential equations (ODE). It is a 

fertile approach allowing two further alternatives. For the numerical solution of 

the systems of ODEs there are many numerical methods available, such as

30 Runge-Kutta methods [9] or the further time discretization deriving many types

of finite difference schemes [1, 10, 11].

Alternative approach, that it is used in the present study, is the exact integra-

tion of the semi-discretized equations using the Exponential Time Differencing

(ETD) method [12] involving an integral term that needs to be approximated

35 because is expressed in terms of the unknown solution of the semi-discretized

system of ODEs, that it has been recently treated in [13]. This approach has to 

afford the challenge of the computation of the inverse of matrices not always well 

conditioned when eigenvalues are close to zero [14].

2



Dealing with numerical finite difference methods, as the best model may

40 be wasted with careless analysis, it is convenient to study the stability of 

thenumerical solution as all the stepsize tends to zero. However, as the spatial

stepsize tends to zero the dimension of the matrix of the semi-discretized system

of ODEs grows without end becoming a mathematical challenge. Apart from the

stability, as the solutions of the problems represent concentrations, populations

45 or prices, the positivity is a necessary requirement for many practical problems.

In this paper we consider multidimensional heterogeneous DAR problems of

the type

∂u

∂t
=

M∑
i=1

Dii(x)
∂2u

∂x2i
+

M∑
i=1

αi(x)
∂u

∂xi
+ F (x, u), (1)

where (x, t) ∈ Ω × (0, T ) ⊂ RM+1, together with the non-negative initial and

boundary conditions

u(x, 0) = U0(x) ≤ 1, x ∈ Ω, u(x, t) = ϕ(x, t) ≤ 1, x ∈ ∂Ω, (2)

where diffusion and advection coefficients Dii(x) and αi(x) are continuous func-50

tions for 1 ≤ i ≤M and Dii(x) > 0. The source term F (x, u) is positive admit-

ting bounded partial derivatives
∣∣∂F
∂u (x, u)

∣∣ ≤ λ, 0 ≤ u ≤ 1, and F (x, 1) = 0,

x ∈ Ω.

In this paper a semi-discretization method to solve (1)-(2) is presented to-

55 gether with a ETD scheme for the integration of the resulting system of ODEs

using the accurate Simpson’s rule and avoiding the calculation of the inverse of 

the coefficient matrix of the system. Furthermore, taking advantage of log-

arithmic norm of matrices and found properties of matrix exponential of the 

coefficient matrix a stability analysis is performed to guarantee conditionally

60 the boundedness of the solution independently of the size of the semi-discrete

system.

This paper is organized as follows. Section 2 addresses the spatial semi-

discretization and further proposed ETD scheme construction. Positivity and 

stability analysis is included into Section 3. In Section 4, a couple of numer-
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65 ical examples dealing with Fisher-Kolmogorov-Petrovsky-Piscounov equation 

in Population Dynamics and Multi-asset American basket option in Financial 

Mathematics are included in order to illustrate the use of the proposed scheme.

2. Semi-discretization and ETD scheme

The numerical solution is constructed in the computational domain with 

limits ximin and ximax , i = 1, . . . , M . A uniform mesh in each coordinate spatial 

computational grid of Ni + 1 nodes with stepsizes hi takes the following form

ξji = ximin + jhi, hi =
ximax − ximin

Ni
, 0 ≤ j ≤ Ni, 1 ≤ i ≤M. (3)

An approximate solution at the point (ξj , t) = (ξj11 , ξ
j2
2 , . . . , ξ

jM
M , t) is denoted

by uj1,...,jM = uj1,...,jM (t). Let us denote the set of all mesh points by Γ, the

subset of the mesh points located at the boundary of the numerical domain by

∂Γ =
{
(ξj11 , ξ

j2
2 , . . . , ξ

jM
M )

∣∣∣ ∃m, 1 ≤ m ≤M, jm = 0 or jm = Nm

}
, (4)

and the subset of interior nodes by Γ̊ = Γ \ ∂Γ. Then semi-discretization of the

equation (1) is obtained by using the second order central difference approxi-

mation for the spatial derivatives, resulting in the system of ODEs of the form

duj1,...,jM
dt

=
M∑
i=1

Dii(ξ
j)
uj1,...,ji−1,...,jM − 2uj1,...,ji,...,jM + uj1,...,ji+1,...,jM

h2i

+
M∑
i=1

αi(ξ
j)
uj1,...,ji+1,...,jM − uj1,...,ji−1,...,jM

2hi
+ F (ξj , uj1,...,jM ).

(5)

Let us introduce the following notation for i = 1, . . . ,M :70

hi = βih, D(ξj) =
M∑
i=1

Dii(ξ
j)

β2
i

, (6)

aj0 = − 2

h2
D(ξj), (7)

aj±i =
1

h2

(
Dii(ξ

j)

β2
i

± h

2βi
αi(ξ

j)

)
. (8)
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Let us denote by u = u(t) ∈ RN+1 the vector of all values uj1,...,jM , such

that u = [u0, . . . , uN ]T , where N + 1 means the total number of mesh points

and each index j, 0 ≤ j ≤ N , has a one to one correspondence with the set of

indexes [j1, . . . , jM ] as follows

N + 1 =

M∏
i=1

(Ni + 1) =
1

hM

M∏
i=1

ximax − ximin + βih

βi
, (9)

[j1, . . . , jM ] ≡ j = j1 +
M∑

m=2

(
m−1∏
n=1

(Nn + 1)

)
jm. (10)

System (5) with the boundary and initial conditions (2) can be presented in

the following vector form

du

dt
(t) = Au(t) + f(ξ,u); u(0) = [u0(0), . . . , uN (0)]T , (11)

where f(ξ,u) = [f0, . . . , fN ]T , fj = F (ξj ,u), if ξj ∈ Γ̊ and fj = ∂ϕ(ξj ,t)
∂t

otherwise, uj(0) = U0(ξ
j), j = 0, . . . , N .

Matrix A is a sparse banded (N+1)× (N+1) matrix whose size depends on

stepsize h (see eq. (9)), and rows are entirely with zeros or containing 2M + 1

non-zero entries. In fact, A = (aij)0≤i,j≤N , with only non-zero entries for ξi ∈ Γ̊,

such that

aii = ai0, ai,i±1 = ai±1, ai,i±
∏m−1

n=1 (Nn+1) = ai±m, 2 ≤ m ≤M. (12)

Numerical solution of the system (11) is constructed by the ETD method

[12]. Let us introduce temporal discretization with the fixed constant time step

k = T
Nt

, so tn = nk, n = 0, . . . , Nt − 1. Then the exact solution of the system

of ODE (11) in some given interval t ∈ [tn, tn+1] is given by Section 2.1 of [12]:

u(tn+1) = eAku(tn) +

∫ k

0

eAsf(ξ,u(tn+1 − s))ds. (13)

We propose a first explicit approximation of the integral in (13) by replacing

u(tn+1 − s) by the known value u(tn) corresponding to s = k. Let us denote

vn+1 by

vn+1 = eAku(tn) +

(∫ k

0

eAsds

)
f(ξ,u(tn)), (14)

5



then in accordance with Section 2.1 of [12], the local truncation error is O(k2).

Instead of solving the integral
∫ k

0
eAsds in exact form involving A−1 like [15],

as matrix A can be singular or ill-conditioned, we use the accurate Simpson’s

rule, see [16],∫ k

0

eAsds = kφ(A, k) +O(k5), φ(A, k) =
1

6

(
I + 4eA

k
2 + eAk

)
. (15)

Let un ≈ u(tn) be the numerical solution of the proposed fully discretized

explicit scheme

un+1 = eAkun + kφ(A, k)f(ξ,un), tn = nk, n = 0, . . . , Nt − 1. (16)

According to (15) the local truncation error of the full discretized explicit

scheme (16) versus the ODE system (11) is of the second order in time.75

3. Positivity and stability

In this section we pay attention to the stability in the infinity norm of the

scheme (16) in the classical sense, i.e. that the numerical solution un remains 
bounded at each time level n, such that, ||un||∞ ≤ C, 0 ≤ n ≤ Nt, where C 80 is 

independent of the stepsizes h and k. For the proposed scheme the stability analysis 

is a challenging task, because the dimension of the matrix A grows as stepsizes 

decrease (see (3)) and the entries of the matrix A also grows (see (8)).

For the sake of clarity in the presentation we recall some definitions and

results that might be found in [17].

A matrix A ∈ Rn×n is called the Metzler matrix if its off-diagonal entries

are non-negative. If A is the Metzler matrix, then eAt ≥ 0 for t ≥ 0. It is well

known the boundedness of exponential matrix norm by the exponential of the

logarithmic norm µ[A], [18]:

∥∥eAk
∥∥ ≤ ekµ[A]. (17)

Denoting the real part of complex number x by ℜ(x), µ∞[A] can be calcu-
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lated as follows, see [19], p. 33,

µ∞[A] = max
i

ℜ(aii) +
∑
j ̸=i

|aij |

 . (18)

From (8) coefficients aj±i, i = 1, . . . ,M, are non-negative, and correspond-

ingly matrix A is Metzler, if stepsize h is chosen as

h ≤ min
1≤i≤M

2Dii(x)

βi|αi(x)|
, x ∈ Ω. (19)

From (8), (12) and (18), one gets µ∞[A] = 0.85

Thus, from (17)
∥∥eAk

∥∥
∞ ≤ e0 = 1. And from (15), ∥φ(A, k)∥∞ ≤ 1. A has

several zero rows, and their corresponding rows in eAk have only one entry equal

to 1 while the other entries are zeros, then

∥∥eAk
∥∥
∞ = ∥φ(A, k)∥∞ = 1, (20)

The non-negativity of un follows from the property of the Metzler matrix

A, that is the exponential eAk is non-negative, and non-negativity of the source

term and φ(A, k). The boundedness of the solution (uni ≤ 1, 0 ≤ i ≤ N ,

0 ≤ n ≤ Nt) is proven by using the induction principle. Let us represent (16)

as a function gi on the arguments un0 , . . . , u
n
N , given by

un+1
i = gi(u

n
0 , . . . , u

n
N ) =

(
eAk
)
i
un + k (φ(A, k))i f(ξ,u

n). (21)

Assuming the boundedness of the derivative
∣∣∂F
∂u

∣∣ ≤ λ, x ∈ Ω, 0 ≤ u ≤ 1,

then from non-negativity of eAk and φ(A, k) one gets

∂gi
∂unj

≥
(
eAk
)
ij
− kλ (φ(A, k))ij , 0 ≤ i, j ≤ N. (22)

Let us denote Ψ(A, k) = eAk − kλφ(A, k), and the vector function

g(uni , . . . , u
n
N ) = [g1, . . . , gN ]T , (23)

then from (22) the Jacobian matrix ∂g
∂un satisfies

∂g

∂un
≥ Ψ(A, k). (24)

7



Let us denote

a0 = min
0≤j≤N

aj0. (25)

Note that the non-negativity of Ψ(A, k) guarantees the non-negativity of

∂g
∂un and hence, gi increases in each direction ujn. In fact, from (8) and under

condition (19), B = A − a0I verifies B ≥ 0, and taking into account that

eAk = ea0keBk, Ψ(A, k) can be written as follows

Ψ(A, k) = ϕ0(k)I +

∞∑
s=1

ϕs(k)
Bsks

s!
, (26)

ϕ0(k) = ea0k − kλ

6

(
1 + 4ea0

k
2 + ea0k

)
, (27)

ϕs(k) = ea0k − kλ

6

(
4

2s
ea0

k
2 + ea0k

)
. (28)

Taylor expansion of (27) shows that for some ξ, such that 0 < ξ < k,

ϕ0(k) = 1− k(λ− a0) + k2
ϕ′′0(ξ)

2
,

ϕ′′0(ξ) = a20e
a0ξ +

λ

3
|a0|ea0

ξ
2 +

λ|a0|
6

(2− |a0|ξ)
(
ea0ξ + ea0

ξ
2

)
.

(29)

Note that the sum of the two first terms of the Taylor expansion of ϕ0(k),

1− k(λ− a0) is positive, if k <
1

λ+|a0| , and by (8) this occurs when

k <
h2

2d+ λh2
, d = max

x∈Ω
D(x). (30)

Condition (30) implies 2 − |a0|ξ > 0 and from (29), ϕ′′0(ξ) and ϕ0(k) are

positive. It is easy to check that for s ≥ 1,ϕs(k) ≥ ϕ0(k) > 0. Thus, Jacobian

matrix ∂g
∂un is non-negative, and using induction hypothesis uni ≤ 1 and (21),

non-negativity of uni and F (x, 1) = 0, x ∈ Ω, under conditions (19) and (30) for

the interior points one gets

0 ≤ un+1
i = gi(u

n
0 , . . . , u

n
N ) ≤ gi(1, . . . , 1) =

∥∥(eAk
)
i

∥∥
∞ ≤

∥∥eAk
∥∥
∞ = 1. (31)

Summarizing all above, the main result of the paper is established as follows

Theorem 3.1. With previous notation under conditions (19) and (30) the nu-

merical solution un of the scheme (16) is non-negative and ∥·∥∞-stable, with

∥un∥∞ ≤ 1 at any time level 0 ≤ n ≤ Nt.90
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4. Applications and simulations

In this section we present two multidimensional DAR problems to illustrate

the proposed ETD technique.

4.1. Fisher-Kolmogorov-Petrovsky-Piscounov equation

A generalized diffusive logistic model finds an application in many fields.95

For two spatial dimensions it takes the form of the well known 2D Fisher-

Kolmogorov-Petrovsky-Piscounov equation [20, 21]

∂u

∂t
= a

(
∂2u

∂x2
+
∂2u

∂y2

)
+ f(u), (32)

where the unknown u(x, y, t) represents the distribution density of a species

expressed as a function of the spatial coordinates x, y, and time t. Here a > 0

is the diffusion coefficient, f(u) = bu(1− up) is the source term with b > 0 and100

p ≥ 1. Without lost of generality, we take a = b = 1. Following the method

in [22], initial and boundary conditions are defined by a family of the travelling

wave solutions with the arbitrary real numbers φ and C given in [23].

u±(x, y, t) =

[
1

2
tanhψ +

1

2

]2/p
, (33)

ψ = ± p

2
√
2p+ 4

(x sinφ+ ycosφ) +
p(p+ 4)

4(p+ 2)
t+ C. (34)

Example 1. Let us consider Fisher-KPP equation with the parameters given in

Table 1 for the cases a) and b) correspondingly, as it is proposed in [23]. In both105

cases the computational domain is a square symmetric with respect to x and y

axes, such that xmin = ymin = −xmax = −ymax. The spatial discretization is

presented by the uniform grid h1 = h2 = h.

The numerical solution for both examples is presented in Figures 1 and

2. The solid surface corresponds to the initial condition, the wireframe mesh110

correspond to the solution at the moment t = T .

9



p xmax T ± C φ h k

Example 1.a) 1 20 10 - − ln
√
10 3

4π 1.00 0.01

Example 1.b) 2 30 15 + − ln
√
5 2

3π 2.00 0.02

Table 1: Parameters in Example 1.

h k

10−1 10−2 10−4

4 2.8985e-03 1.2824e-03 1.1425e-03

2 2.4343e-03 4.8579e-04 3.2553e-04

1 2.3595e-03 2.8714e-04 8.5989e-05

0.5 2.3206e-03 2.5000e-04 2.2995e-05

Table 2: Relative errors of the numerical solution with respect to the exact solution at

t = 1 in Example 1.a).

The relative error at t = 1 for the numerical solution by the proposed ETD

method in Example 1.a) is presented in Table 2. Results demonstrate competi-

tive accuracy with respect to the semi-explicit finite difference methods proposed

in [23].115

4.2. Multi-asset American basket option

The considered approach can be applied to multi-dimensional Black-Scholes

(BS) equation. Let S1, . . . , SM be the asset prices, where M is the number of

assets in a portfolio. Let us denote the vector of asset prices S = (S1, . . . , SM )T

and P (S, τ) be the value of American basket option at the moment τ , where τ120

is time to maturity T , with the payoff function

P (S, 0) =

(
E −

M∑
i=1

αiSi

)+

, (35)

where E is the strike price and αi is the positive weight of the corresponding i-th

asset in the basket. Assuming that the asset prices follow a geometric Brownian

10



0
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0.2

0.4

10 20

u(
x,

y,
τ
) 0.6

10

y

0.8

0

x

1

0
-10 -10

-20 -20

τ = 0
τ = T

Figure 1: Example 1.a).

motion, using Martingale strategies, no-arbitrage principle and Itô’s calculus

(see [24]), the option price P (S, τ) is the solution of the following PDE problem125

∂P

∂τ
=

1

2

M∑
i=1,j=1

ρijσiσjSiSj
∂2P

∂Si∂Sj
+

M∑
i=1

(r − qi)Si
∂P

∂Si
− rP + F (P ),

Si > 0, i = 1, . . . ,M, 0 < τ ≤ T,

(36)

where σi is the volatility of Si, ρij is the correlation between Si and Sj , r is the

risk-free rate, qi is the constant dividend yield of i-th asset.

Let us denote matrix R ∈ RM×M as the correlation matrix with entries ρij ,

satisfying −1 ≤ ρij ≤ 1. The nonlinear penalty term F (P ) has several suitable

forms [25, 26]. Here we chose the following type, see [25],

F (P ) = λ (P (S, 0)− P (S, τ))
+
, (37)

where λ is non-negative. This penalty term is in accordance with recent ratio-

nality parameter approach [27, 28], that takes into account that the buyer does

not exercise when it is not profitable.130
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Figure 2: Example 1.b) .

Note that at each boundary Si = 0 the Black-Scholes equation for M − 1

assets is established and

lim
Si→∞

P (S1, . . . , Si, . . . , τ) = 0, 1 ≤ i ≤M. (38)

In the case of two underlying assets after the cross-derivative elimination

proposed in [29] and following notation therein, (36) takes the DAR problem

form

∂U

∂τ
=

1

2

∂2U

∂y21
+

1

2
(1− ρ2)

∂2U

∂y22
+ δ1

∂U

∂y1

+ (δ2 − ρδ1)
∂U

∂y2
− rU + λ (U(y, 0)− U(y, τ))

+
,

(39)

where (y1, y2) ∈ R2, 0 < τ ≤ T, and

y1 =
1

σ1
ln
S1

E
, y2 =

1

σ2
ln
S2

E
− ρ

σ1
ln
S1

E
, U(y1, y2, τ) =

1

E
P (S1, S2, τ). (40)

12



Initial condition takes the following form135

U(y1, y2, 0) =
(
1− α1e

σ1y1 − α2e
σ2(y2+ρy1)

)+
. (41)

Numerical solution is found in bounded domain [y1min , y1max ]× [y2min , y2max ],

such that boundary conditions are fulfilled.

Then the semi-discretized in space approximation of (39) takes the following

five-point stencil form

dui,j
dτ

= a−2ui,j−1 + a−1ui−1,j + a0ui,j + a1ui+1,j + a2ui,j+1

+ λ (ui,j(0)− ui,j(τ))
+
,

(42)

where the coefficients a0 and a±i are140

a0 = − 1

h2

(
1

β2
1

+
1− ρ2

β2
2

+ rh2
)
, a±1 =

1

h2

(
1

2β2
1

± hδ1
2β1

)
, (43)

a±2 =
1

h2

(
1− ρ2

2β2
2

± h

2β2
(δ2 − ρδ1)

)
. (44)

In this case we include the linear reaction term −ru into the homogeneous 

part Au of equation (11), because the matrix A remains a Metzler one and the 

nonlinear source term is non-negative. Theorem 3.1 is applied to (42), the

nonlinear source term (37) admitting piecewise bounded derivative with respect

to P , or U after the transformation. In this case stability condition (30) takes145

the form

k <
h2

d+ (r + λ)h2
, d =

1

β2
1

+
1− ρ2

β2
2

. (45)

Next, we present some numerical results. Example 2 shows that the stability 

condition (45) is crucial: if the condition is broken, the numerical results can

be wrong. The implementation of the proposed method has been done by using

150 MatLAB R2015a on processor Pentium(R) Dual-Core CPU E5700 3.00 GHz.

The results of the following examples are presented in original variables (S, τ)

obtained by the inverse transformation.
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Example 2. We consider American basket put option with no dividends pay-

ments pricing with the following parameters

σ1 = 0.65, σ2 = 0.25, r = 0.05, ρ = 0.1, α1 = α2 = 0.5, T = 1, E = 9. (46)

155

The penalty parameter is chosen λ = 100, β1 = β2 = 1. Transformed 
computational domain is [−8, 8] × [−8, 8]. In Figures 3 and 4 the option price 

is presented for various h and according to (45), fixed k = 8 · 10−3. If time step 

is chosen larger, for example, k = 0.05 or k = 0.1 (see Figures 5 and 6), the 

solution exceeds the strike value E, which does not agree with reality.

0

20

S
1

40

6040
30

S
2

20
10

0

4

6

8

0

2

P
(S

1
,S

2
,T

)

Figure 3: Reliable basket option price of Example 2 at τ = T for h = 0.5.

Example 3 deals with comparison between the proposed scheme and the tree 

method of [30]. Influence of the parameter λ to the solution is also studied.

Example 3. The American basket put option of two assets is considered 

with the following parameters [30]

σ1 = 0.3, σ2 = 0.2, r = 0.05, ρ = 0.6, α1 = 0.7, α2 = 0.3, T = 1, E = 50.

(47)

14



0

20

S
1

40

6040
30

S
2

20
10

0

8

4

6

2

0

P
(S

1
,S

2
,T

)

Figure 4: Reliable basket option price of Example 2 at τ = T for h = 0.2.

As a reference value at the point S = (50, 50) the result of the Binomial160

Tree method of [30] is used. The results of the proposed method with various

spatial stepsizes h and fixed k = 5 · 10−3, in the computational spatial domain

[−8, 8]× [−8, 8] are presented in Table 3.

h Number of nodes Value Ratio

0.8 21× 21 3.7075

0.4 41× 41 3.9537 12.5047

0.2 81× 81 3.9730 10.1905

0.1 161× 161 3.9747 5.2500

Tree method (P ) 3.9751

Table 3: Comparison of option price for Example 3.

The convergence ratio is the factor by which the error decreases at each grid 

refinement. It is presented in Table 3, where the absolute error is computed as
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Figure 5: Wrong basket option price of Example 2 at τ = T with broken stability

conditions (k = 0.05, h = 0.2).

follows

ϵh = |Ph − P | , (48)

where Ph is the computed value of the option, P is the reference value obtained

by the tree method in [30]. The error ϵ is plotted for various stepsizes h in165

Figure 7.

The choice of timestep k depends on the value of the parameter λ. In Table

4 values of the basket option with parameters (47) at S = (50, 50) applying

fixed spatial stepsize h = 0.2 are presented depending on λ.

The numerical simulations of Example 3 show that the accuracy remains170

almost fixed for values of λ > 100. It is advisable to chose λ about 100 to save

the computational time.

The proposed method can be applied not only for put options, but also for
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Figure 6: Wrong basket option price of Example 2 at τ = T with broken stability

conditions (k = 0.1, h = 0.2).

call options. Initial condition in this case takes the following form

P (S, 0) =

(
M∑
i=1

αiSi − E

)+

. (49)

Example 4 provides numerical solution for American basket call option and

its comparison with high order finite element method of [15].

Example 4. The American basket call option of two assets with the strike price

E = 100$ is considered with the following parameters [15]

σ1 = 0.12, σ2 = 0.14, r = 0.03, ρ = 0.3, q1 = 0.01, q2 = 0.01, T = 0.5. (50)

In Table 5 we include the results at S = (100, 100) for λ = 100, various175

spatial stepsizes h and corresponding k under condition (30). The numerical

solution by high-order computational method of [15] is denoted by HOC. The

numerical solution at τ = T and the payoff for American basket call options are

presented in Figures 8 and 9.
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Figure 7: Absolute error ϵh of the proposed method in Example 2 for various h .

5. Conclusions180

In this paper multidimensional DAR problems are solved by a proposed

ETD method paying a special attention to the numerical analysis of the fully

discretized scheme instead of the stability of the solution of the system of ODEs

freezing spatial step sizes.

In fact, using logarithmic norm of matrices and properties of matrix expo-185

nential, sufficient condition on the step sizes are given, so that the numerical 

solution of the difference scheme remains norm bounded as the stepsizes tend to 

zero and the size of the involved matrices grows infinitely. Moreover, these con-

ditions are sufficient for the positivity of the solution, that is important dealing

with real physical objects, as concentrations, populations, prices, etc.190
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λ Ph

0 3.6583

1 3.7869

10 3.9288

100 3.9730

1000 3.9732

10000 3.9733

Tree method (P ) 3.9751

Table 4: Option price for the parameters (47).

Nodes Proposed method HOC

12 × 12 3.18982 2.86247

24 × 24 3.35338 3.27894

48 × 48 3.41344 3.35094

Table 5: American basket call option price comparison for Example 4.
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