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Abstract

This thesis presents two main contributions in the fields of Statistical Machine Trans-
lation and Interactive Machine Translation.

In the field of Statistical Machine Translation, the efforts have been focused on
obtaining high quality, linguistically motivated phrase pairs by means of Statistical
Inversion Transduction Grammars. By using a SITG for parsing a bilingual corpus,
spans are defined over both input and output strings, yielding the possibility of con-
sidering these spans as translations of each other. By doing so, phrase tables can be
built from the bilingual corpus and fed to an off-the-shelf Statistical Machine Transla-
tion decoder. Moreover, novel syntax-based models are introduced in this thesis, and
experimental results are shown which back up the inclusion of such models into the
standard phrase translation table. Since these models are inherent to SITGs, they
cannot be included into other standard phrase-based models.

In the field of Interactive Machine Translation, a new interface between the user
and the machine is proposed. By considering the Mouse Actions the user performs as
an important input source for the system, it is shown that important and consistent
performance gains may be achieved. These gains come in some cases at the cost of
having the user ask for new suffix hypotheses, but in other cases these gains come at
no cost, hence yielding true improvements to the state of the art.
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Overview

This Masters Thesis is structured into five chapters. The first two intend to be an
introduction to the main aspects of Statistical Machine Translation and Interactive
Machine Translation. Then, in Chapter 4, an improvement of the current machine–
human interaction is proposed, leading to a significant improvement over the state of
the art. This chapter finishes the first part of this thesis, devoted to Interactive Ma-
chine Translation. Then, in Chapter 2, the Stochastic Inversion Transduction Gram-
mars are defined, along with the way in which they can be used for phrase extraction
and the experiments carried out in this framework. In the last chapter, other work
done during the period of elaboration of this thesis is presented.
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Chapter 1

Statistical Machine
Translation

1.1 Word-Based Statistical Machine Translation

Machine Translation (MT) is a research field of great importance in the European
Community, where language plurality implies both a very important cultural richness
and not negligible obstacle towards building a unified Europe. Because of this, a
growing interrest on MT has been shown both by politicians and research groups,
which become more and more specialised in this field.

On the other hand, Statistical Machine Translation (SMT), systems have proved in
the last years to be an important alternative to rule-based MT systems, being even able
of outperforming commercial machine translation systems in the tasks they have been
trained on. Moreover, the development effort behind a rule-based machine translation
system and an SMT system is dramatically different, the latter being able to adapt
to new language pairs with little or no human effort, whenever suitable corpora are
available.

The grounds of modern SMT, the pattern recognition approach to Machine Transla-
tion, were established in [Brown et al., 1993], where the problem of machine transla-
tion was defined as following: given a sentence x = x1...xj ...x|x| from a certain source
language, an adequate sentence ŷ = y1...yi...y|y| that maximises the posterior proba-
bility is to be found. Such a statement can be specified with the following formula:

ŷ = argmax
y

Pr(y|x) (1.1)

Applying the Bayes theorem on this definition, one can easily reach the next formula

ŷ = argmax
y

Pr(y) · Pr(x|y)
Pr(x)

(1.2)

and, since we are maximising over t, the denominator can be neglected, arriving to

1



1 Statistical Machine Translation

ŷ = argmax
y

Pr(y) · Pr(x|y) (1.3)

where Pr(y|x) has been decomposed into two different probabilities: the statistical lan-
guage model of the target language Pr(y) and the (inverse) translation model Pr(x|y).

Although it might seem odd to model the probability of the source sentence given
the target sentence, this decomposition has a very intuitive interpretation: the trans-
lation model Pr(x|y) will capture the word or phrase relations between both input
and output language, whereas the language model Pr(y) will ensure that the output
sentence is a well-formed sentence belonging to the target language.

A great variety of models have been proposed in order to model the probability
Pr(y|x) adequately. In [Brown et al., 1993], five alignment models (known as IBM
models) were already described, in which the correspondance between source and tar-
get sentences was establised by means of a hidden alignment variable a = a1...ai...a|y|,
which was defined as a function over the target words. Being a function, each target
word is assigned a source word which is evidenced as being a good translation. How-
ever, and in order to account for possible target words with no mapping in the source
sentence, the artificial zero (or NULL) position was introduced, yielding

Pr(y|x) =
∑

a∈A(x,y))

p(y,a|x), (1.4)

where A(x,y)) denotes the set of all possible alignments between x and y.
In practise, the direct modelling of the posterior probability Pr(y|x) has been widely

adopted. To this purpose, different authors [Papineni et al., 1998, Och and Ney, 2002]
propose the use of the so-called log-linear models, where the decision rule is given by
the expression

ŷ = argmax
y

M∑
m=1

λmhm(x,y) (1.5)

where hm(x,y) is a score function representing an important feature for the translation
of x into y, M is the number of models (or features) and λm are the weights of the
log-linear combination. Under this perspective, Equation 1.1 can be seen as a special
case of Equation 1.5, where Pr(y|x) and Pr(y) are the important features, and there
are two λm, both set to 1.
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1.2 Phrase-Based Statistical Machine Translation

1.2 Phrase-Based Statistical Machine Translation

One of the most popular instantiations of log-linear models is that including
Phrase-Based (PB) models [Tomas and Casacuberta, 2001, Marcu and Wong, 2002,
Zens et al., 2002, Zens and Ney, 2004], which have proved to provide a very effi-
cient framework for MT. Computing the translation probability of a given phrase,
i.e. a sequence of words, and hence introducing information about context, these
SMT systems seem to have mostly outperformed single-word models, quickly evolv-
ing into the predominant technology in the state of the art [Koehn and Monz, 2006a,
Callison-Burch et al., 2007, Fordyce, 2007].

1.2.1 The model

The derivation of PB models stems from the concept of bilingual segmentation, i.e.
sequences of source words and sequences of target words. It is assumed that only
segments of contiguous words are considered, the number of source segments being
equal to the number of target segments (say K) and each source segment being aligned
with only one target segment and vice versa.

Let I and J be the lengths of t and s respectively1. Then, the bilingual segmen-
tation is formalised through two segmentation functions: µ for the target segmen-
tation (µK1 : µk ∈ {1, 2, . . . , I}, 0 < µ1 ≤ µ2 ≤ · · · ≤ µk = I) and γ for the
source segmentation (γK1 : γk ∈ {1, 2, . . . , J}, 0 < γ1 ≤ γ2 ≤ · · · ≤ γk = J).
The alignment between segments is introduced through the alignment function α
(αK1 : αk ∈ {1, 2, . . . ,K}, α(k) = α(k′) iff k = k′).

By assuming that all possible segmentations of s in K phrases and all possible
segmentations of t in K phrases have the same probability independent of K, then
p(s|t) can be written as:

p(s|t) ∝
∑
K

∑
µK1

∑
γK1

∑
αK1

K∏
k=1

p(αk| αk−1) · p(sγαkγαk−1+1|t
µk
µk−1+1) (1.6)

where the distortion model p(αk| αk−1) (the probability that the target segment k is
aligned with the source segment αk) is usually assumed to depend only on the previous
alignment αk−1 (first order model).

1.2.2 Learning phrase-based models

Ultimately, when learning a PB model, the purpose is to compute a phrase translation
table, in the form

{(sj . . . sj′) , (ti . . . ti′) , p(sj . . . sj′ |ti . . . ti′)}
1Following a notation used in [Brown et al., 1993], a sequence of the form zi, . . . , zj is denoted as

zj
i . For some positive integers N and M , the image of a function f : {1, 2, . . . , N} → {1, 2, . . . , M}

for n is denoted as fn, and all the possible values of the function as fN
1

3



1 Statistical Machine Translation

Figure 1.1: Example of how consistent phrases are extracted from a word alignment.

where the first term represents the input (source) phrase, the second term represents
the output (target) phrase and the last term is the probability assigned by the model
to the given phrase pair.

In the last years, a wide variety of techniques to produce PB models have been
researched and implemented [Koehn et al., 2003]. Firstly, a direct learning of the
parameters of the equation p(sj

′

j |ti
′

i ) was proposed [Tomas and Casacuberta, 2001,
Marcu and Wong, 2002]. Other approaches have been suggested, exploring more lin-
guistically motivated techniques [Sánchez and Bened́ı, 2006b, Watanabe et al., 2003].
However, the one technique which has been more widely adopted is the one developed
by [Zens et al., 2002], in which all phrase pairs coherent with a given word alignment
are extracted. In most cases, one of the IBM alignments described in Section 1.1 is used
for this purpose. Since these word alignments are very restrictive because each target
word is assigned only zero or one source words, source-to-target and target-to-source
alignments are combined heuristically. This procedure is often called symmetrization.
Once this is done, the set of phrases consistent with the symmetrized word alignments
is extracted from every sentence pair in the training set. An illustration of how this is
done can be seen in Figure 1.1

Most typically, the different features that are included into the translation model
are:
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1.3 Corpora: Europarl

• Inverse translation probability, given by the formula

p(t|s) =
C(s, t)
C(s)

(1.7)

where C(s, t) is the number of times segments s and t were extracted throughout
the whole corpus, and C(s) is the count for phrase s.

• Direct translation probability, p(s|t), which is obtained analogously.

• Inverse and direct lexicalized features, which attempt to account for the lexical
soundness of each phrase pair, estimating how well each of the words in one
language translates to each of the words in the other language. These lexicalized
features were defined in [Zens et al., 2002]

• A constant feature, or phrase penalty, whose purpose is to avoid the use of many
small phrases in decoding time, and favour the use of longer ones.

1.2.3 Decoding in phrase-based models

Once a SMT system has been trained, a decoding algorithm is needed. Different search
strategies have been suggested to define the way in which the search space is organised.
Some authors [Ortiz et al., 2003, Germann et al., 2001] have proposed the use of an
A? algorithm, which adopts a best-first strategy that uses a stack (priority-queue) in
order to organise the search space. On the other hand, a depth-first strategy was also
suggested in [Berger et al., 1996], using a set of stacks to perform the search.

1.3 Corpora: Europarl

The Europarl corpus [Koehn, 2005], built from the proceedings of the European Par-
liament, is a reference corpus in SMT, and has been used in several MT campaigns. For
this reason, most of the experiments conducted in this thesis were performed on the
partition of this corpus established for the Workshop on Statistical Machine Transla-
tion of the NAACL 2006 [Koehn and Monz, 2006b], where the language pairs involved
were German–English, Spanish–English and French–English. The curpus is divided
into four separate sets: one for training, one for development, one for test and another
test set which was the one used in the workshop for the final evaluation. This test
set will be referred to as “Test”, whereas the test set provided for evaluation purposes
outside the final evaluation will be referred to as “Devtest”. It must be noted that the
Test set included a surprise out-of-domain subset, and hence the translation quality
on this set will be significantly lower. The characteristics of the corpus can be seen in
Table 1.1. It might seem surprising that the average sentence length in the training
set is significantly lower than in the rest of the subsets. This is due to the fact that,
for the competition, the training corpus pruned to contain only those sentences with a
maximum length of 40, whereas this restriction was not imposed on the other subsets.

5



1 Statistical Machine Translation

Table 1.1: Characteristics of Europarl for each of the subcorpora. OoV stands for “Out
of Vocabulary” words, Dev. for Development, K for thousands of elements
and M for millions of elements.

German English Spanish English French English

T
ra

in
in

g Sentences 751M 730M 688M
Running words 15.3M 16.1M 15.7M 15.2M 15.6M 13.8M
Average length 20.3 21.4 21.5 20.8 22.7 20.1
Vocabulary size 195K 66K 103K 64K 80K 62K

D
ev

.

Sentences 2000 2000 2000
Running words 55K 59K 61K 59K 67K 59K
Average length 27.6 29.3 30.3 29.3 33.6 29.3
OoV 432 125 208 127 144 138

D
ev

te
st Sentences 2000 2000 2000 2000 2000

Running words 54K 58K 60K 58K 66K 58K
Average length 27.1 29.0 30.2 29.0 33.1 29.3
OoV 377 127 207 125 139 133

T
es

t

Sentences 3064 3064 3064
Running words 82K 85K 92K 85K 101K 85K
Average length 26.9 27.8 29.9 27.8 32.9 27.8
OoV 1020 488 470 502 536 519
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Chapter 2

Stochastic Inverse
Transduction Grammars

Being closely related to context-free grammars, Stochastic Inverse Transduction Gram-
mars [Wu, 1997] specify a subset of syntax directed stochastic grammars for transla-
tion. Analysing two strings simultaneously, SITGs may be used to extract bilingual
segments from a parallel corpus while taking into account syntax-motivated restric-
tions.

2.1 SITG definition

The definition of SITG relies on the concept of bilingual parsing, where the input is
a bilingual sentence pair, rather than a single monolingual sentence. As such, their
aim is not to obtain syntactic derivation trees, but to extract structure from the input
data, and see how the output data relates to this structure.

A SITG in Chomsky Normal Form is defined as a tuple (N ,S,W1,W2,R,p), where N
is a finite set of non-terminals, S ∈ N is the initial symbol or axiom, W1 is a finite set
of terminal symbols pertaining to the first language, W2 is a set of terminals belonging
to the second language, R is a set of rules in the form A→ x/ε, A→ ε/y or A→ x/y,
with A ∈ N , x ∈W1 and y ∈W2 and p defines the probability of a given rule.

On the other hand, derivation rules can be direct, in which case they are noted as
A → [BC], or inverse, in which case they are written as A → 〈BC〉, with B,C ∈ N .
Whenever a sentence pair is analysed with the direct transduction rule, both strings
are analysed with a derivation rule of the type A → BC. However, when they are
analysed with an inverse rule, one of the strings is parsed with the rule A→ BC, but
the other one is parsed with the rule A → CB. Figure 2.1 illustrates an example of
these two types of derivation rules.

In this work we used only binary bracketing SITGs, although SITGs may have
more than two non-terminals on the right side. The reason for this is that such
a SITG admits an efficient bitext parsing algorithm, without adding any language-

7



2 Stochastic Inverse Transduction Grammars

Source tree Rule type Target tree

A→ [BC]

A→ 〈BC〉

xs

yu

yu yyi v

A

BC

B C

vyi

A

B C

xj t

A

x

v

Figure 2.1: Direct and inverse derivation rules in a SITG. In the case of the direct rule
(A → [BC]), string {xs...xj} is matched with string {yu...yi} and string
{xj+1...xt} is matched with string {yi+1...yv}, whereas in the case of the
inverse rule, the matching is {xs...xj} with {yi+1...yv} and {xj+1...xt} with
{yu...yi}.

specific bias. Nevertheless, binary bracketing SITGs are not able of representing all
possible permutations that may occur during translation. More specifically, reorderings
that contain as subsequence (3,1,4,2) or (2,4,1,3) have been shown to be impossible
to achieve in a SITG parsing tree [Zens and Ney, 2003]. However, and despite this
restriction, SITGs have proved to be useful in SMT tasks [Zens and Ney, 2003].

2.2 Parsing with SITGs

In [Wu, 1997], an algorithm similar to the CYK of context free grammars is proposed
in order to parse a sentence pair with a SITG. Let be x = x1...xs...xt...xT the input
sentence, y = y1...yu...yv...yV the output sentence, xts the substring composed by
words xs+1...xt and yvu the substring yu+1...yv. Then, each node of the parse tree can
be identified by a tuple q = (s, t, u, v), meaning that node q will derive substrings xts
and yvu. δq(n) is defined as the maximum probability of any derivation from n ∈ N
that successfully parses xts and yvu. Hence, δ0,T,0,V (S), with S the axiom of the SITG,
is the probability of the best parse of the given sentence pair.

Then, the following dynamic programming algorithm is established:

8



2.2 Parsing with SITGs

Figure 2.2: Illustration of the two reordering patterns which are not possible under the
SITG framework.

1. Initialization

δt−1,t,v−1,v(n) = bn(xt/yv), 1 ≤ t ≤ T, 1 ≤ v ≤ V (2.1)
δt−1,t,v,v(n) = bn(xt/ε), 1 ≤ t ≤ T, 0 ≤ v ≤ V (2.2)
δt,t,v−1,v(n) = bn(ε/yv), 0 ≤ t ≤ T, 1 ≤ v ≤ V (2.3)

2. Recursion

For all n, s, t, u, v such that


n ∈ N

0 ≤ s ≤ t ≤ T
0 ≤ u ≤ v ≤ V
t− s+ v − u > 2

δs,t,u,v(n) = max
[
δ

[ ]
s,t,u,v(i), δ

〈 〉
s,t,u,v(n)

]
(2.4)

Where bn(xt/yv) is the probability of the lexical rule n→ (xt/yv) and δ[]
s,t,u,v(n)

indicates that the direct rule was used in the first derivation of n, and δ
〈〉
s,t,u,v

indicates that the first rule in the derivation was an inverse rule. The condition
t−s+v−u > 2 establishes that the substring in one, but not both, languages may
be split into the empty string. This ensures that the recursion will terminate,
but allows words of one language to have no match in the other language.

This algorithm has a time complexity of O(T 3V 3|R|), being and |R| the number of
rules in the SITG. However, if the corpus has been previously parsed with a syntactical
parser and is given in a bracketed form, [Sánchez and Bened́ı, 2006a] suggest the use
of a version of the algorithm by [Wu, 1997] which is more efficient while performing the
analysis, achieving a time complexity of O(TV |R|) when x and y are fully bracketed.
Then, the parsing algorithm by [Wu, 1997] is adequately modified, following a similar
approach than [F. Pereira, 1992] did for CYK. Let be Bx the bracketing of x and By

the bracketing of y. Then, a derivation of (x,y) is compatible with Bx and By if,
and only if, all the spans defined by such parsing are compatible with Bx and By.
Expressing the compatibility as a function, we have

9



2 Stochastic Inverse Transduction Grammars

c(s, t, u, v) =

1 if
{

(s, t) does not overlap any b ∈ Bx

(u, v) does not overlap any b ∈ By

0 otherwise
(2.5)

Once the compatibility function is defined, we can reformulate the recursion step
in order to take into account only those parsings that are compatible with the given
bracketing:

2 Recursion

δs,t,u,v(n) = c(s, t, u, v) max
[
δ

[ ]
s,t,u,v(i), δ

〈 〉
s,t,u,v(n)

]
(2.6)

At this point, it is important to emphasise that it is the bracketing of the bilingual
corpus which enables training of SITGs with real-sized corpora. Only one iteration
of the estimation algorithm by [Sánchez and Bened́ı, 2006a] for a SITG of only one
non-terminal symbol takes about a day of computing time. Because of this, applying
the algorithm by [Wu, 1997] with more than one non-terminal symbol becomes almost
impracticable.

Moreover, the algorithm by [Sánchez and Bened́ı, 2006a] takes into account brack-
eting information contained in parsed corpora. This does not only imply a significant
speedup, but also that the bilingual segments obtained will obey the constraints de-
termined by the linguistic parsing. Hence, the segments obtained in this manner are
bound to be linguistically motivated and are expected to be of better quality than
those obtained with a purely heuristic algorithm.

10



2.3 SITGs for phrase extraction

2.3 SITGs for phrase extraction

Analysing two strings simultaneously and defining spans over each of the strings, SITGs
consitute a natural fit for phrase probability estimation, while taking into account
syntax motivated restrictions. The way this is done is easily explained with an example
(Figure 2.3), in which it can be seen how strings in the input and output sentences
relate either in a direct fashion (upper part of the figure) or in an inverse fashion
(lower part of the figure). Since non-terminal symbols define spans over both input
and output sentences, each non-terminal symbol will generate a new count in the
resulting phrase table.

In our case, we will be first parsing the input or output string (or both) with a linguis-
tic parser, in order to benefit of the algorithm by [Sánchez and Bened́ı, 2006a]. Then,
we will reestimate the probabilities in a heuristically obtained SITG with such algo-
rithm, and finally we will parse the bilingual corpus in order to generate the final phrase
translation table. For Spanish and English, we used FreeLing [Asterias et al., 2006],
which is an open-source suite of language analysers. For German, we used the Stanford
Parser [Klein and Manning, 2003].

As in the case of traditional PB models, we used for our experimentation the direct
and inverse translation probabilities (see Section 1.2.2). We also investigated the
effect of adding the lexicalised weights and syntactic translation probabilities. These
probabilities can be obtained by considering the probability with which each SITG
derives a given string.

2.4 Syntactic probabilities with SITGs

In order to introduce a score that determines how probable is a given phrase according
to the SITG trained, we introduced the following syntax-based models.

Let be f = xts and e = yvu. In the process of obtaining the best parse tree t̂f ,e a given
pair of strings (f , e), a joint probability p̂(f , e) for several overlapping spans is obtained,
which matches with the function δs,t,u,v(n) described in Section 2.2. However, this
probability may be different depending on the non-terminal symbol the strings derive
from, and, furthermore, depending on the bracketing of the particular sentence being
parsed. Based on this information, it is possible to define a new translation model.
Let Ω the multiset of spans (word segments) obtained from the training sample, and
Ωf ,e ⊆ Ω the multiset of (f , e) spans. We define the expected value of p̂(f , e) according
to the empirical distribution as:

EΩ(p̂(f , e)) =

∑
(a,b)∈Ωf,e

p̂(a,b)

|Ω|
. (2.7)

If we marginalise for the input side of the word segments and for the output side of
the segments, then we get:

EΩ(p̂(f)) =
∑
e

EΩ(p̂(f , e))

11



2 Stochastic Inverse Transduction Grammars

Direct translation rule: A→ [BC]

xs yu

B C

yyi v

A

B C

xxj t

A

Inverse translation rule: A→ 〈BC〉

yixjxs yu

C B

yv

A

B C

xt

A

⇒
{
{xs...xj , yu...yi}
{xj+1...xt, yi+1...yv}

⇒
{
{xs...xj , yi+1...yv}
{xj+1...xt, yu...yi}

Figure 2.3: Example of phrase pairs that would be extracted.

and
EΩ(p̂(e)) =

∑
s

EΩ(p̂(f , e)).

In this way we obtain these two new syntax-based models:

p(f |e) =
EΩ(p̂(f , e))
EΩ(p̂(e))

, p(e|f) =
EΩ(p̂(f , e))
EΩ(p̂(f))

. (2.8)

2.5 Experimentation

2.5.1 System evaluation

The SMT system developed has been automatically evaluated by measuring the fol-
lowing rates:

WER (Word Error Rate): The WER criterion computes the minimum number of
editions (substitutions, insertions and deletions) needed to convert the translated
sentence into the sentence considered ground truth. This measure is because of
its nature a pessimistic one, when applied to Machine Translation.

BLEU (Bilingual Evaluation Understudy) score: This score measures the precision
of unigrams, bigrams, trigrams, and 4-grams with respect to a set of reference

12



2.5 Experimentation

translations, with a penalty for too short sentences [Papineni et al., 2002]. BLEU
is not an error rate, i.e. the higher the BLEU score, the better. BLEU can be
single- or multi-reference. In this case we will be using single-reference BLEU
because of corpus restrictions.

TER (Translation Edit Rate): Translation Error Rate [Snover et al., 2006] is an
error metric for machine translation that messures the number of edits required
to change a system output into one of the references. TER is computed as the
minumum number of edits required to modify the system hypothesis so that it
matches the reference translation, normalized by the average number of reference
words. In this case, possible edits include insertion, deletion, substitution of
single words and shifts of word sequences. In the original paper, the authors
claimed that single-reference TER correlates as well with human judgments of
MT quality as the for-reference variant of BLEU. As in BLEU, TER can also be
multi-reference, but we will be using single-reference TER.

2.5.2 Corpora

Europarl

We conducted experiments on the Europarl [Koehn, 2005] corpus, described in Sec-
tion 1.3. In this case, we will focus on the German–English task, and evaluation was
performed on the Devtest subset.

Parsing the Europarl corpus with a SITG can take very long even with 4 non-
terminal symbols and having the corpus fully bracketed. For this reason, only pairs
with input and output sentence length less than 25 were considered when reestimating
the probabilities of the SITG. After the reestimation procedure, the resulting SITG
was smoothed by adding all those rules in the heuristically obtained SITG, but with a
probability 1000 times less than the rule with the least probability in the reestimated
SITG. This was done so that extracting phrases from the complete corpus is still
possible, since otherwise the amount of sentence pairs that the SITG would not be
able to parse would grow considerably. Hence, the whole corpus was used for phrase
extraction, since this procedure may be run in a parallelised fashion easily.

Albayzin 2008

Recently, we have taken part in the Albayzin Machine Translation competition, which
has been organized in conjunction with the 2008 Jornadas en Tecnoloǵıa del Habla.
For this competition, the corpus chosen was the Albayzin corpus, a Spanish–Basque
translation task. The statistics of this corpus can be seen in Table 2.1. As it can be
seen on the Table, translating both from or into Basque is a difficult task, since the
amount of Out of Vocabulary words quickly becomes very high.

13
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Table 2.1: Characteristics of Albayzin corpus. K stands for thousands of elements, and
M for millions.

Spanish Basque

Training

Sentences 58K
Running words 1151K 885M
Vocabulary size 49.4K 87.8K
Average length 19.8 15.2

Development

Sentences 1456
Running words 29K 23K
Average length 20.1 15.5
Out of Vocabulary 489 8376

Test

Sentences 1446
Running words 28K 22K
Average length 19.3 14.9
Out of Vocabulary 483 8096

2.5.3 Experimental results

First, we built an initial SITG by following the method described
in [Sánchez and Bened́ı, 2006b]. Then, both source and target languages in the
training corpus were bracketed by using FreeLing [Asterias et al., 2006], which is an
open-source suite of language analysers. This being done, we then used the bracketed
corpus to perform one estimation iteration on the initial SITG and obtain improved
SITGs. Finally, the SITG obtained after the estimation iteration was used to parse
the bracketed training corpus and extract segment pairs to setup a phrase-based
translation model.

Initial SITGs with increasing number of non-terminal symbols were built and then
estimated. The purpose of building SITGs with several non-terminal symbols was
to analyse whether augmenting the number of non-terminals would improve word
reorderings between both input and output languages. Adding non-terminal symbols
may provide more complexity to the grammar built, and hence increases its expressive
power. [Sánchez and Bened́ı, 2006b]

Results with Europarl

The results of this setup can be seen in Table 2.2. It can be seen that performing one
reestimation iteration on the heuristical SITG proves to be beneficial, as shown by
all three translation measures used, and throughout all the experiments carried out.
Moreover, adding the syntax-based models or the lexicalised weights also proves to
be beneficial, although the syntax-based models do not seem to improve the results
obtained once the lexicalised weights have been added.

Comparatively, the best score obtained by the Moses toolkit [Koehn et al., 2007],
which is a state of the art SMT system, in its default monotonic setup is 18.5/71.6/67.4,
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Table 2.2: Translation results for a SITG with only one, two and four non-terminal
symbols. Results are shown in BLEU/WER/TER. 0 iterations means the
SITG was obtained by the heuristic technique, and +syntactic means that
the syntax-based models were added to the phrase-table obtained with one
reestimation iteration, +lexical that the lexical weights were added, and
+both that both lexical weights and syntax-based models were added. The
NT column lists the number of non-terminal symbols.

German–English

NT It. 0 It. 1 +syntactic +lexical +both

1 19.9/73.1/66.2 20.2/71.1/66.2 21.5/69.7/64.4 22.5/68.6/62.9 22.8/68.6/62.8
2 20.1/72.3/66.4 21.2/70.1/65.1 22.3/69.4/64.0 23.3/67.9/62.2 23.4/67.7/62.0
4 20.5/71.3/66.5 21.2/69.9/64.9 22.2/69.0/63.5 23.4/67.8/62.0 23.1/68.0/62.3

English–German

NT It. 0 It. 1 +syntactic +lexical +both

1 15.1/75.9/72.4 15.4/75.8/72.2 16.2/74.3/70.5 17.5/72.5/68.7 17.3/72.8/69.0
2 15.3/75.9/72.4 15.7/75.2/71.7 16.4/74.2/70.4 17.3/72.9/69.1 17.4/73.1/69.2
4 15.4/75.8/72.1 16.0/74.9/71.2 16.5/74.2/70.4 17.5/72.8/69.0 17.6/72.8/68.9

for English→German, and 25.0/66.7/60.6 for German→English. Although Moses ob-
tains a slightly better score, it must be taken into consideration that this toolkit
achieves this by using about 1.5 times more phrases than the system built in this
Section. This fact has important implications: being the model smaller, less compu-
tational resources are used in decoding time, but also the final translation is produced
faster.

Results with Albayzin

Being corpus is smaller than the Europarl corpus allowed for a second reestimation
iteration of the SITG. Hence, the results presented here involve two reestimation iter-
ations. Since it had already been shown in the case of the Europarl corpus that adding
syntax-based probabilities or lexical weights proved to be beneficial, in this case no
experiments involving only direct and inverse translation models were performed.

As Table 2.3 shows, the translation quality tends to get better when increasing
number of non-terminal symbols are used, as measured by BLEU. Moreover, the com-
bination in which all translation models are used seems to yield improvements over
the other alternatives, as measured by BLEU, WER and TER. However, it must be
noted that these differences are not statistically significant. The results shown in
this table were obtained restricting the decoder to perform a monotonic translation
procedure, since at this stage we have not yet implemented a SITG-based reordering
model. In this case, the language model used was a 5-gram, applying interpolation
with Knesser-Ney discount.
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Table 2.3: Translation results for Spanish-Basque translation when using a SITG with
only one, three and five non-terminal symbols

non terms combination BLEU WER TER

1
+syntactic 8.8 82.0 78.5

+lexical 8.8 81.8 78.2
+both 9.0 81.7 78.1

3
+syntactic 8.9 81.9 78.6

+lexical 8.9 81.8 78.3
+both 9.1 81.4 77.9

5
+syntactic 9.1 82.2 78.7

+lexical 9.2 81.5 78.9
+both 9.3 81.6 78.1

For comparison purposes, the best scores obtained by the Moses toolkit in its default
monotonic setup are 9.4 BLEU, 81.7 WER and 78.3 TER, which are not significantly
better than the scores obtained by our system trained with 5 non-terminal symbols
with all translation models.

2.6 Conclusions

In this work, an alternative method for phrase extraction is presentend, which is
competitive in terms of quality and produces smaller phrase-based models when com-
pared to the traditional phrase-based extraction algorithms used. This method obtains
phrase segments from paired sentences by parsing both of them in a completely un-
lexicalixed manner.

In the future, we plan to compute more complex SITGs and introduce further mod-
els to improve our translation table, such as other models obtained by combining the
various probabilities that SITG estimation entails. In this line, we also plan to in-
vestigate which effect has the combination of our phrase table with the phrase table
produced by Moses.

Lastly, we also plan on investigating how to make use of the direct/inverse translation
rule probabilities in order to obtain an adequate reordering model.
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Chapter 3

Interactive Machine
Translation

Information technology advances in modern society have led to the need of more ef-
ficient methods of translation. It is important to remark that current MT systems
are not able to produce ready-to-use texts [Kay, 1997, Hutchins, 1999, Arnold, 2003].
Indeed, MT systems are usually limited to specific semantic domains and the trans-
lations provided require human post-editing in order to achieve a correct high-quality
translation.

A way of taking advantage of MT systems is to combine them with the knowl-
edge of a human translator, constituting the so-called Computer-Assisted Translation
(CAT) paradigm. CAT offers different approaches in order to benefit from the synergy
between humans and MT systems.

An important contribution to interactive CAT technology was carried out around
the TransType (TT) project [Langlais et al., 2002, Foster et al., 2002, Foster, 2002,
Och et al., 2003]. This project entailed an interesting focus shift in which interaction
directly aimed at the production of the target text, rather than at the disambiguation
of the source text, as in former interactive systems. The idea proposed was to embed
data driven MT techniques within the interactive translation environment.

Following these TT ideas, [Barrachina et al., 2008] propose the usage of fully-fledged
statistical MT (SMT) systems to produce full target sentence hypotheses, or portions
thereof, which can be partially or completely accepted and amended by a human trans-
lator. Each partial correct text segment is then used by the SMT system as additional
information to achieve further, hopefully improved suggestions. In this paper, we also
focus on the interactive and predictive, statistical MT (IMT) approach to CAT. The
IMT paradigm fits well within the Interactive Pattern Recognition framework intro-
duced in [Vidal et al., 2007].

Figure 3.1 illustrates a typical IMT session. Initially, the user is given an input
sentence x to be translated. The reference y provided is the translation that the user
would like to achieve at the end of the IMT session. At iteration 0, the user does
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3 Interactive Machine Translation

SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-
0

(p) ( )
(ŝh) To switch on:

ITER-
1

(p) To
(sl) switch on:
(k) power
(ŝh) on the printer:

ITER-
2

(p) To power on the printer:
(sl) ( )
(k) (#)
(ŝh) ( )

FINAL (p ≡ y) To power on the printer:

Figure 3.1: IMT session to translate a Spanish sentence into English. Non-validated
hypotheses are displayed in italics, whereas accepted prefixes are printed
in normal font.

not supply any correct text prefix to the system, for this reason p is shown as empty.
Therefore, the IMT system has to provide an initial complete translation sh, as it were
a conventional SMT system. At the next iteration, the user validates a prefix p as
correct by positioning the cursor in a certain position of sh. In this case, after the
words “To print a”. Implicitly, he is also marking the rest of the sentence, the suffix
sl, as potentially incorrect. Next, he introduces a new word k, which is assumed to be
different from the first word sl1 in the suffix sl which was not validated, k 6= sl1 . This
being done, the system suggests a new suffix hypothesis ŝh, subject to ŝh1 = k. Again,
the user validates a new prefix, introduces a new word and so forth. The process
continues until the whole sentence is correct that is validated introducing the special
word “#”.

As the reader could devise from the IMT session described above, IMT aims at
reducing the effort and increasing the productivity of translators, while preserving
high-quality translation. For instance, in Figure 3.1, only three interactions were
necessary in order to achieve the reference translation.

3.1 Statistical Interactive-Predictive Machine
Translation

Relying on the basic formulation of SMT, to establish the fundamental equation for
IMT we need to modify Equation 1.1 according to the IMT scenario in order to take
into account part of the target sentence that is already translated, that is p and k

ŝh = argmax
sh

Pr(sh|x,p, k) (3.1)
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where the maximisation problem is defined over the suffix sh. This allows us to rewrite
Eq. 3.1, by decomposing the right side appropriately and eliminating constant terms,
achieving the equivalent criterion

ŝh = argmax
sh

Pr(p, k, sh|x). (3.2)

An example of the intuition behind these variables can be seen in Figure 3.1.
Note that, since (p k sh) = y, Eq. 3.2 is very similar to Eq. 1.1. The main difference

is that the argmax search is now performed over the set of suffixes sh that complete
(p k) instead of complete sentences (y in Eq. 1.1). This implies that we can use the
same models if the search procedures are adequately modified [Barrachina et al., 2008].

3.2 Phrase-based IMT

The phrase-based approach presented above can be easily adapted for its use in
an IMT scenario. The most important modification is to rely on a word graph
that represents possible translations of the given source sentence. The use of
word graphs in IMT has been studied in [Barrachina et al., 2008] in combination
with two different translation techniques, namely, the Alignment Templates tech-
nique [Och et al., 1999, Och and Ney, 2004], and the Stochastic Finite State Trans-
ducers technique [Casacuberta and Vidal, 2007].

3.3 IMT using word graphs

A word graph is a weighted directed acyclic graph, in which each node repre-
sents a partial translation hypothesis and each edge is labeled with a word of the
target sentence and is weighted according to the scores given by an SMT model
(see [Ueffing et al., 2002] for more details).

In [Och et al., 2003], the use of a wordgraph is proposed as interface between an
alignment-template SMT model and the IMT engine. Analogously, in this work we
will be using a wordgraph built during the search procedure performed on a PB SMT
model. Since a such a model would generate a phrase-graph, instead of a word-graph,
it is necessary to convert the former into the latter. However, such procedure is quite
simple, and is achieved by adding artificial nodes and edges between each one of the
words that constitute the phrases and assigning the score of the phrase to the final
edge. An example of this procedure can be seen in 3.3. Note that the scores on the
edges are not probabilities, since the maximisation in Formula 1.4 is performed without
normalisation.

During the process of IMT for a given source sentence, the system makes use of the
word graph generated for that sentence in order to complete the prefixes accepted by
the human translator. Specifically, the system finds the best path in the word graph
associated with a given prefix so that it is able to complete the target sentence, being
capable of providing several completion suggestions for each prefix.
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<s>

s=1

approval of the minutes

s=0.619537

of the last meeting

s=0.153993

of the previous part-session

s=0.293714

of the last sitting

s=0.359853

of the previous sitting

s=1.10004

!NULL

s=1

!NULL

s=1

!NULL

s=1

</s>

s=1

<s>

s=1

approval

s=1

of

s=1

the

s=1

minutes

s=0.619537

of

s=1

of

s=1

of

s=1

of

s=1

the

s=1

the

s=1

the

s=1

the

s=1

last

s=1

previous

s=1

last

s=1

previous

s=1

meeting

s=0.153993

part-session

s=0.293714

sitting

s=0.359853

sitting

s=1.10004

!NULL

s=1

!NULL

s=1

!NULL

s=1

</s>

s=1

Figure 3.2: Example of word-graph (up) obtained from a phrase-graph (down).

A common problem in IMT arises when the user sets a prefix which cannot be found
in the word graph, since in such a situation the system is unable to find a path through
the word graph and provide an appropriate suffix. The common procedure to face this
problem is to perform a tolerant search in the word graph. This tolerant search uses
the well known concept of Levenshtein distance in order to obtain the most similar
string for the given prefix (see [Och et al., 2003] for more details).
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Chapter 4

Enriching user–machine
interaction

Although the IMT paradigm has proved to offer interesting benefits to potential users,
one aspect that has not been reconsidered as of yet is the user–machine interface.
Hence, in traditional IMT the system only received feedback whenever the user typed
in a new word. In this work, we show how to enrich user–machine interaction by
introducing Mouse Actions (MA) as an additional information source for the system.
By doing so, we will consider two types of MAs, i.e. non-explicit (or positioning) MAs
and interaction-explicit MAs.

4.1 Non-explicit positioning MAs

Before typing in a new word in order to correct a hypothesis, the user needs to position
the cursor in the place where he wants to type such a word. In this work, we will
assume that this is done by performing a MA, although the same idea presented can
also be applied when this is done by some other means. It is important to point out
that, by doing so, the user is already providing some very useful information to the
system: he is validating a prefix up to the position where he positioned the cursor,
and, in addition, he is signalling that whatever word is located after the cursor is to
be considered incorrect. Hence, the system can already capture this fact and provide
a new translation hypothesis, in which the prefix remains unchanged and the suffix is
replaced by a new one in which the first word is different to the first word of the previous
suffix. We are aware that this does not mean that the new suffix will be correct, but
given that we know that the first word in the previous suffix was incorrect, the worst
thing which can happen is that the the first word of the new suffix is incorrect as well.
However, if the new suffix happens to be correct, the user will happily find that he
does not need to correct that word any more.

An example of such behaviour can be seen in Figure 4.1. In this example, the SMT
system first provides a translation which the user does not like. Hence, he positions
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SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-
0

(p) ( )
(ŝh) To switch on:

ITER-
1

(p) To
(sl) |switch on:
(ŝh) power on the printer:

ITER-
2

(p) To power on the printer:
(sl) ( )
(k) (#)
(ŝh) ( )

FINAL (p ≡ y) To power on the printer:

Figure 4.1: Example of non-explicit positioning MA which solves an error of a missing
word. In this case, the system produces t he correct suffix sh immediately
after the user validates a prefix p, implicitly indicating that we wants
the suffix to be changed, without need of any further action. In ITER-1,
character | indicates the position where a MA was performed, sl is the suffix
which was rejected by that MA, and ŝh is the new suffix that the system
suggests after observing that sl is to be considered incorrect. Character #
is a special character introduced by the user to indicate that the hypothesis
is to be accepted.

the cursor before word “postscript”, with the purpose of typing in “lists”. By doing so,
he is validating the prefix “To print a”, and signalling that he wants “postscript” to
be replaced. Before typing in anything, the system realises that he is going to change
the word located after the cursor, and replaces the suffix by another one, which is the
one the user had in mind in the first place. Finally, the user only has to accept the
final translation.

We are naming this kind of MA non-explicit because it does not require any addi-
tional action from the user: he has already performed a MA in order to position the
cursor at the place he wants, and we are taking advantage of this fact to suggest a
new suffix hypothesis.

Since the user needs to position the cursor before typing in a new word, it is im-
portant to point out that any improvement achieved by introducing non-explicit MAs
does not require any further effort from the user, and hence is considered to have no
cost.

Hence, we are now considering two different situations: the first one, the traditional
IMT framework, in which the system needs to find a suffix according to Eq. 3.2, and
a new one, in which the system needs to find a suffix in which the first word does not
need to be a given k, but needs to be different to a given sl1. This constraint can be
expressed by the following equation:

ŝh = argmax
sh:sh1 6=sl1

Pr(p, sh|x, sl) (4.1)
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4.2 Interaction-explicit MAs

SOURCE (x): Seleccione el tipo de instalación.
REFERENCE (y): Select the type of installation.

ITER-
0

(p) ( )
(ŝh) Select the installation wizard.

ITER-
1

(p) Select the
(sl) |installation wizard.
(ŝh) install script.

ITER-
2

(p) Select the
(k) type
(ŝh) installation wizard.

ITER-
3

(p) Select the type
(sl) |installation wizard.
(ŝh) of installation.

ITER-
4

(p) Select the type of installation.
(sl) ( )
(k) (#)
(ŝh) ( )

FINAL (p ≡ y) Select the type of installation.

Figure 4.2: Example of explicit interactive MA which corrects an erroneous suffix.
In this case, a non-explicit MA is performed in ITER-1 with no success.
Hence, the user introduces word “type” in ITER-2, which leaves the cursor
pos ition located immediately after word “type”. In this situation the user
would not need to perform a MA to re-position the cursor and continue
typing in order to further correct the remaining errors. However, since he
has learnt the potential benefit of MAs, he performs an interaction-explicit
MA in order to ask for a new suffix hypothesis, which happens to correct
the error.

where sl is the suffix generated in the previous iteration, already discarded by the user,
and sl1 is the first word in sl. k is omitted in this formula because the user did not
type any word at all.

4.2 Interaction-explicit MAs

If the system is efficient and provides suggestions which are good enough, one could
easily picture a situation in which the expert would ask the system to replace a given
suffix, without typing in any word. We will be modelling this as another kind of MA,
interaction-explicit MA, since the user needs to indicate explicitly that he wants a
given suffix to be replaced, in contrast to the non-explicit positioning MA. However,
if the underlying MT engine providing the suffixes is powerful enough, the user would
quickly realise that performing a MA is less costly that introducing a whole new word,
and would take advantage of this fact by systematically clicking before introducing
any new word. In this case, as well, we assume that the user clicks before an incorrect
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word, hence demanding a new suffix whose first word is different, but by doing so he is
adopting a more participative and interactive attitude, which was not demanded in the
case of non-explicit positioning MAs. An example of such an explicit MA correcting
an error can be seen in Figure 4.2

In this case, however, there is a cost associated to this kind of MAs, since the user
does need to perform additional actions, which may or may not be beneficial. It is very
possible that, even after asking for several new hypothesis, the user will even though
need to introduce the word he had in mind, hence wasting the additional MAs he had
performed.

If we allow the user to perform n MAs before introducing a word, this problem can
be formalised in an analogous way as in the case of non-explicit MAs as follows:

ŝh= argmax
sh:sh1 6=s

i
l1∀i∈{1..n}

Pr(p, sh|x, s1
l , s

2
l , . . . , s

n
l ) (4.2)

where sil1 is the first word of the i-th suffix discarded and s1
l , s

2
l , . . . , s

n
l is the set of all

n suffixes discarded.
Note that this kind of MA could also be implemented with some other kind of

interface, e.g. by typing some special key such as F1 or Tab. However, the experi-
mental results would not differ, and in our user interface we found it more intuitive to
implement it as a MA.
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4.3 Experimental results in IMT

4.3 Experimental results in IMT

4.3.1 System evaluation

Automatic evaluation of results is a difficult problem in MT. In fact, it has evolved
to a research field with own identity. This is due to the fact that, given an input
sentence, a large amount of correct and different output sentences may exist. Hence,
there is no sentence which can be considered ground truth, as is the case in speech or
text recognition. By extension, this problem is also applicable to IMT.

In this paper, we will be reporting our results as measured by Word Stroke Ratio
(WSR) [Barrachina et al., 2008], which is computed as the quotient between the num-
ber of word-strokes a user would need to perform in order to achieve the translation
he has in mind and the total number of words in the sentence. In this context, a word-
stroke is interpreted as a single action, in which the user types a complete word, and
is assumed to have constant cost. Moreover, each word-stroke also takes into account
the cost incurred by the user when reading the new suffix provided by the system.

In the present work, we decided to use WSR instead of Key Stroke Ratio (KSR),
which is used in other works on IMT such as [Och et al., 2003]. The reason for this is
that KSR is clearly an optimistic measure, since in such a scenario the user is often
overwhelmed by receiving a great amount of translation options, as much as one per
key stroke, and it is not taken into account the time the user would need to read all
those hypotheses.

In addition, and because we are also introducing MAs as a new action, we will also
present results in terms of Mouse Action Ratio (MAR), which is the quotient between
the amount of explicit MAs performed and the number of words of the final translation.
Hence, the purpose is to elicit the number of times the user needed to request a new
translation (i.e. performed a MA), on a per word basis.

Lastly, we will also present results in terms of uMAR (useful MAR), which indicates
the amount of MAs which were useful, i.e. the MAs that actually produced a change
in the first word of the suffix and such word was accepted. Formally, uMAR is defined
as follows:

uMAR =
MAC − n ·WSC

MAC
(4.3)

where MAC stands for “Mouse Action Count”, WSC for “Word Stroke Count” and
n is the maximum amount of MAs allowed before the user types in a word. Note that
MAC − n ·WSC is the amount of MAs that were useful since WSC is the amount of
word-strokes the user performed even though he had already performed n MAs.

Since we will only use single-reference WSR and MAR, the results presented here are
clearly pessimistic. In fact, it is relatively common to have the underlying SMT system
provide a perfectly correct translation, which is ”corrected” by the IMT procedure into
another equivalent translation, increasing WSR and MAR significantly by doing so.
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Table 4.1: WSR improvement when considering non-explicit MAs. “rel.” indicates the
relative improvement. All results are given in %.

pair baseline non-explicit rel.
Es–En 63.0±0.9 59.2±0.9 6.0±1.4
En–Es 63.8±0.9 60.5±1.0 5.2±1.6
De–En 71.6±0.8 69.0±0.9 3.6±1.3
En–De 75.9±0.8 73.5±0.9 3.2±1.2
Fr–En 62.9±0.9 59.2±1.0 5.9±1.6
En–Fr 63.4±0.9 60.0±0.9 5.4±1.4

4.3.2 Corpora

Our experiments were carried out on the Europarl [Koehn, 2005] corpus, described in
Section 1.3. The results shown here are over the Devtest subcorpus.

4.3.3 Experimental results

As a first step, we built a SMT system for each of the language pairs cited in the pre-
vious subsection. This was done by means of the Moses toolkit [Koehn et al., 2007],
which is a complete system for building Phrase-Based SMT models. This toolkit
involves the estimation from the training set of four different translation mod-
els, which are in turn combined in a log-linear fashion by adjusting a weight
for each of them by means of the MERT [Och, 2003] procedure, optimising the
BLEU [Papineni et al., 2002] score obtained on the development partition.

This being done, word graphs were generated for the IMT system. For this purpose,
we used a multi-stack phrase-based decoder which will be distributed in the near
future together with the Thot toolkit [Ortiz-Mart́ınez et al., 2005]. We discarded the
use of the Moses decoder because preliminary experiments performed with it revealed
that the decoder by [Ortiz-Mart́ınez et al., 2005] performs clearly better when used
to generate word graphs for use in IMT. In addition, we performed an experimental
comparison in regular SMT with the Europarl corpus, and found that the performance
difference was negligible. The decoder was set to only consider monotonic translation,
since in real IMT scenarios considering non-monotonic translation leads to excessive
waiting time for the user.

Finally, the word graphs obtained were used within the IMT procedure to produce
the reference translation contained in the test set, measuring WSR and MAR. The
results of such a setup can be seen in Table 4.1. As a baseline system, we report
the traditional IMT framework, in which no MA is taken into account. Then, we
introduced non-explicit MAs, obtaining an average improvement in WSR of about
3.2% (4.9% relative). The table also shows the confidence intervals at a confidence level
of 95%. These intervals were computed following the bootstrap technique described
in [Koehn, 2004]. Since the confidence intervals do not overlap, it can be stated that
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Figure 4.3: Plot evidencing the inverse relation between baseline WSR and WSR rel-
ative improvement when considering non-explicit and explicit MAs. This
graph has been obtained by including preliminary results with other cor-
porae.

the improvements obtained are statistically significant.
Once the non-explicit MAs were considered and introduced into the system, we anal-

ysed the effect of performing up to a maximum of 5 explicit MAs. Here, we modelled
the user in such a way that, in case a given word is considered incorrect, he will always
ask for another translation hypothesis until he has asked for as many different suffixes
as MAs considered. The results of this setup can be seen in Figure 4.4. This yielded a
further average improvement in WSR of about 16% (25% relative improvement) when
considering a maximum of 5 explicit MAs. However, relative improvement in WSR
and uMAR increase drop significantly when increasing the maximum allowed amount
of explicit MAs from 1 to 5. For this reason, it is difficult to imagine that a user
would perform more than two or three MAs before actually typing in a new word.
Nevertheless, just by asking twice for a new suffix before typing in the word he has in
mind, the user might be saving about 15% of word-strokes.

Although the results in Figure 4.4 are only for the translation direction
“foreign”→English, the experiments in the opposite direction (i.e. English→“foreign”)
were also performed. However, the results were very similar to the ones displayed here.
Because of this, and for clarity purposes, we decided to omit them and only display
the direction “foreign”→English.

Moreover, it must be noted that, according to these results, it seems that the lower
the baseline WSR, the higher the relative improvement when introducing both non-
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Figure 4.4: WSR improvement when considering one to five maximum MAs. All figures
are given in %. The left column lists WSR improvement versus MAR
degradation, and the right column lists WSR improvement versus uMAR.
Confidence intervals at 95% confidence level following [Koehn, 2004].

explicit and explicit MAs. This is due to the fact that a higher baseline points towards
a better translation model, which will, in turn, be able to provide a more useful suffix
hypotheses when asking it to return a new ŝh such that sh1 6= sl1 . If the translation
model is not complex enough, it will most probably return an empty suffix, since the
only suffix hypothesis which it is able provide is the one the user already discarded.
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This (inverse) relation is illustrated in Figure 4.3.

4.4 Conclusions

New input sources for IMT have been considered. More specifically, it has been shown
that considering Mouse Actions can lead to significant and consistent improvements
in terms of word-stroke reduction, both when considering only non-explicit MAs and
when considering MAs as a way of offering the user several suffix hypotheses. In
addition, we have applied these ideas on a state-of-the-art SMT baseline, such as
phrase-based models. To achieve this, we have first obtained a word graph for each
sentence which is to be translated. Experiments were carried out on a reference corpus
in SMT.

Note that there are other systems [Esteban et al., 2004] that, for a given prefix,
provide n-best lists of suffixes. However, the functionality of our system is slightly
(but fundamentally) different, since the suggestions are demanded to be different in
their first word, which implies that the n-best list is scanned deeper, going directly to
those hypotheses that may be of interest to the user. In addition, this can be done
“on demand”, which implies that the system’s response is faster and that the user is
not confronted with a large list of hypotheses, which often results overwhelming.

4.5 Future work

As future work, we are planning on performing a human evaluation that assesses the
appropriateness of the improvements described.

Other future work in this field involves the reestimation of the weights in the log-
linear model of the underlying SMT system with the purpose of performing an adap-
tation to the current human translator or topic. This will be done following the ideas
of Bayesian Adaptation.
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Chapter 5

Other contributions

This section lists other contributions to Statistical Machine Translation which were
achieved during the research period that culminated in this Masters Thesis.

5.1 Source sentence reordering

In the last years, SMT systems have evolved to become the present state of
the art, two of the most representative techniques being the phrase based mod-
els [Koehn et al., 2003, Och and Ney, 2004] and the Weighted Finite State Transduc-
ers for Machine Translation [Casacuberta and Vidal, 2004, Kumar and Byrne, 2003].
Both of these frameworks typically rely on word-aligned corpora, which often lead
them to incur in word ordering related errors. Although there have been different
efforts aiming towards enabling them to deal with non-monotonicity, the algorithms
developed often only account for very limited reorderings, being unable to tackle with
the more complex reorderings that e.g. some Asian languages introduce with respect
to European languages. Because of this, not only will monotone systems present in-
correctly ordered translations, but, in addition, the parameters of such models will be
incorrectly estimated, whenever a certain input phrase is erroneously assumed to be
the translation of a certain output phrase in training time.

Although no efficient solution has still been found, this problem is well known already
since the origin of what is known as statistical machine translation: [Berger et al., 1996]
already introduced in their alignment models what they called distortion models, in
an effort towards including in their SMT system a solution for the reordering prob-
lem. However, these distortion models are usually implemented within the decoding
algorithms and imply serious computational problems, leading ultimately to restric-
tions being applied to the set of possible permutations of the output sentence. Hence,
the search performed turns sub-optimal, and an important loss in the representational
power of the distortion models takes place.

On the other hand, dealing with arbitrary word reordering and choosing the
one which best scores given a translation model has been shown not to be a vi-
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able solution, since when allowing all possible word permutations the search is NP-
hard [Knight, 1999].

The present work is based on the work of Zens, Matusov and Kan-
thak [Zens et al., 2004, Matusov et al., 2005, Kanthak et al., 2005], who introduced
the idea of monotonizing a corpus. The key idea behind this concept is to use the
IBM alignment models to efficiently reorder the input sentence s and produce a new
bilingual, monotone pair, composed by the reordered input sentence s′ and the output
sentence t. Hence, once this new bilingual pair has been produced, the translation
model to be applied will not have to tackle with the problems derived from different
word reorderings, since this problem will not be present any more. Still, there is one
more problem to be solved: in search time, only the input sentence is available, and
hence the pair cannot be monotonized. To solve this, a very simple reordering model
will be introduced, together with a reordered language model and n-best hypothesis
generation. In this work, a phrase based model is trained using these monotone pairs.

5.1.1 Brief overview of existing approaches

Three main possibilities exist when trying to solve the reordering problem: input
sentence reordering, output sentence reordering, or reordering both. The latter is, to
the best of our knowledge, as yet unexplored.

[Vilar et al., 1996], tried to partially solve the problem by monotonizing the most
probable non-monotone alignment patterns and adding a mark in order to be able
to remember the original word order. This being done, a new output language has
been defined and a new language and translation model can be trained, making the
translation process now monotone.

More recently, [Kumar and Byrne, 2005] learned weighted finite state transducers
accounting for local reorderings of two or three positions. These models were applied
to phrase reordering, but the training of the models did not yield statistically significant
results with respect to the introduction of the models with fixed probabilities.

When dealing with input sentence reordering [Zens et al., 2004,
Matusov et al., 2005, Kanthak et al., 2005], the main idea is to reorder the in-
put sentence in such a way that the translation model will not need to account
for possible word reorderings. To achieve this, alignment models are used, in order
to establish which word order should be the appropriate for the translation to be
monotone, and then the input sentence is reordered in such a manner that the
alignment is monotone.

However, this approach has an obvious problem, since the output sentence is not
available in search time and the sentence pair cannot be made monotone.

The näıve solution, test on all possible permutations of the input sentence, has
already been discussed earlier, being NP-hard [Knight, 1999], as J ! possible permuta-
tions can be obtained from a sentence of length J . Hence, the search space must be
restricted, and such restrictions are bound to yield sub-optimal results. In their work,
Kanthak et al. present four types of constraints: IBM, inverse IBM, local and ITG
constraints.
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• Let:
– s a source sentence, and sj its j-th word
– t a target sentence, and ti its i-th word

• Let C be a cost matrix
cij = cost(align(sj , ti))

• Let {sr} = {all possible permutations of s}.
1. compute alignment AD(j) = argmin

i
cij

2. s′ = {sr|∀j : AD(j) ≤ AD(j + 1)}
3. recompute (reorder) C, obtaining C ′.
4. set A′I(i) = argmin

j
c′ij .

5. Optional: Compute minimum-cost
monotonic path through cost matrix C ′.

Figure 5.1: Algorithm for obtaining a monotonic alignment by reordering the source
sentence.

Although the restrictions presented in their work (IBM, inverse IBM, local and ITG
constraints) did yield interesting results, the search space still remained huge, and the
computational price paid for a relatively small benefit was far too high.

5.1.2 The reordering model and N-Best reorderings

An important motivation behind the approach in this work is that the reordering con-
straints presented by Kanthak et al. [Kanthak et al., 2005] do not take into account
extremely significant information that can be extracted from monotonized corpora:
while reordering the input sentence in such a fashion that the alignment turns mono-
tone, we are performing the reordering step needed further on when this action is
needed to be taken on the input test set. Hence, what we would ideally want to do
is learn a model using this information that will be capable of reordering a given, un-
seen, input sentence in the same way that the monotonization procedure would have
done, in the hope that the benefits introduced will be greater than the error that an
additional model will add into the translation procedure.

Once the alignments made monotonic according to the algorithm shown in Fig-
ure 5.1 [Kanthak et al., 2005], a new source ”language” has been established, meaning
that a reordered language model can be trained with the reordered input sentences s′.
Such a language will have the words of the original source language, but the distinctive
ordering of the target language. An example of this procedure is shown in Figure 5.2.
Hence, a reordering model can be learnt from the monotonized corpus, which will most
likely not depend on the output sentence, whenever the word-by-word translation is
accurate enough.

Hence, the reordering problem can be defined as:
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Figure 5.2: Alignment produced by GIZA (top) and alignment after the mono-
tonization procedure (bottom). This is an example extracted from the
Spanish→Basque corpus (i.e. Spanish is the source language). Although
these sentences mean “We have to go day 10 in the evening.”, the reordered
Spanish sentence would mean something like “Day ten in the evening go
to we have.”.
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Spanish Basque

T
ra

in
in

g

Sentences 38940
Different pairs 20318
Words 368314 290868
Vocabulary 722 884
Average length 9.5 7.5

T
es

t
Sentences 1000
Test independent 434
Words 9507 7453
Average length 9.5 7.5

Table 5.1: Characteristics of the Tourist corpus.

s′ = argmax
sr

Pr(sr) · Pr(s|sr)

where Pr(sr) is the reordered language model, and Pr(s|sr) is the reordering model.
Being this problem very similar to the translation problem but with a very constrained
translation table, it seems only natural to use the same methods developed to solve
the translation problem to face the reordering problem. Hence, in this paper we will
be using an exponential model as reordering model, defined as:

Pr(s|s′) ≈ exp(−
∑
i

di)

where di is the distance between the last reordered word position and the current
candidate position.

However, and in order to reduce the error that will introduce a reordering model
into the system, we found to be very useful to compute an n-best list of reordering
hypothesis and translate them all, selecting then as final output sentence the one which
obtains the highest probability according to the models Pr(t) · Pr(sr|t). Ultimately,
what we are actually doing with this procedure is to constrain the search space of per-
mutations of the source sentence as well, but taking into account the information that
monotonized alignments entail. In addition, this technique implies a much stronger
restriction of the search space than previous approaches, reducing significantly the
computational effort needed.

5.1.3 Translation experiments

Corpora used

Basque-Spanish Tourist corpus The Tourist corpus [Pérez et al., 2005], is an
adaptation of a set of Spanish-German grammars generating bilingual sentence
pairs [Vidal, 1997] in such languages. Hence, the corpus is semi-synthetic. In this
task, the sentences describe typical human dialogues in the reception desk of a hotel,
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Spanish Basque

T
ra

in
in

g

Sentences 14615
Different pairs 8462
Words 191156 187462
Vocabulary 722 1149
Average length 13.1 12.8

T
es

t

Sentences 1500
Test independent 702
Words 18978 18711
Average length 12.7 12.5

Table 5.2: Characteristics of MetEus corpus.

being mainly extracted from tourist guides. However, because of its design, there is
some asymmetry between both languages, and a concept being expressed in several
manners in the source language will always be translated in the same manner in the
target language. Because of this, the target language is meant to be simpler than the
source language. Since the input language during the design of the corpus was Spanish,
the vocabulary size of Basque should be smaller. In spite of this fact, the vocabulary
size of Basque is bigger than that of Spanish, and this is due to the agglutinative na-
ture of the Basque language. The corpus has been divided into two separate subsets,
a bigger one for training and a smaller one for test. The characteristics of this corpus
can be seen in Table 5.1.

Basque-Spanish MetEus corpus MetEus [Pérez et al., 2006] is a weather forecast
corpus composed of 28 months of daily weather forecast reports in Spanish and Basque
languages. These reports were picked from those published in Internet by the Basque
Institute of Meteorology. Again, this corpus consists of two separate subsets: one for
training and one for test. The characteristics of this corpus are shown in Table 5.2.

System evaluation

The SMT system developed has been automatically evaluated by measuring the fol-
lowing rates:

WER (Word Error Rate): The WER criterion computes the minimum number of
editions (substitutions, insertions and deletions) needed to convert the translated
sentence into the sentence considered ground truth. This measure is because of
its nature a pessimistic one, when applied to Machine Translation.

PER (position-independent WER): This criterion is similar to WER, but word order
is ignored, accounting for the fact that an acceptable (and even grammatically
correct) translation may be produced that differs only in word order.
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Baseline Reordered, n = 5
WER 20.7% 16.2%
BLEU 77.9% 79.8%
PER 12.6% 11.0%

Baseline Reordered, n = 5
WER 19.5% 10.9%
BLEU 81.0% 87.1%
PER 6.2% 4.9%

Table 5.3: Results for Spanish to Basque (left) and Basque to Spanish (right) transla-
tion in the Tourist corpus.

BLEU (Bilingual Evaluation Understudy) score: This score measures the precision
of unigrams, bigrams, trigrams, and 4-grams with respect to a set of reference
translations, with a penalty for too short sentences [Papineni et al., 2002]. BLEU
is not an error rate, i.e. the higher the BLEU score, the better.

Experimental setup and translation results

We used the reordering technique described above to obtain an n-best reordering
hypothesis list and translate them, keeping the best scoring one.

First, the bilingual pairs were aligned using IBM model 4 by means of the GIZA++
toolkit [Och and Ney, 2000]. After this, the alignments were made monotone in the
way described in Figure 5.1 and a new alignment was recalculated, determining the
new monotone alignment between the reordered source sentence and the target, and
a reordered source sentence language model was built. In addition, a phrase based
model involving reordered source sentences and target sentences was learnt by using
the Thot toolkit [Ortiz et al., 2005].

For the next step, the reordering model, we used the reordering model built in
the toolkit Pharaoh. This was done by including in the translation table only the
words contained in the vocabulary of the desired source language, and allowing the
toolkit to reorder the words by taking into account the language model and the phrase-
reordering model it implements, which is an exponential model. Since in this case, the
phrases are just words, what results is an effective implementation of an exponential
word-reordering model, just as we wanted.

Once the n best reordering hypothesis had been calculated, we translated them all
by using Pharaoh once again, and kept the best scoring translation, being the score
determined as the product of the (inverse) translation model and the language model.

As a baseline, we took the results of translating the same test set, but without the
reordering pipeline, i.e. just using GIZA++ for aligning, Thot for phrase extraction
and Pharaoh for translating.

Tourist The results of this setup applied to the Tourist corpus can be seen in Ta-
ble 5.3, with n-best list size set to 5. At this point, it must be noted that Pharaoh by
itself also performs some reordering of the output sentence, but only on a per-phrase
basis.
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These results show that the reordering pipeline established does have significant
benefits on the overall quality of the translation, almost achieving a relative improve-
ment of 50% in WER. Furthermode, it is interesting to point out that even in the
case of the PER criterion the results obtained are better. At first sight, this might
seem odd, since the PER criterion does not take into account word order errors within
a sentence, which is the main problem reordering techniques try to solve. However,
this improvement is explained because reordering the source sentence allows for better
phrases to be extracted.

It is also interesting to point out that the translation quality when translating from
Spanish to Basque is much higher than in the opposite sense. This is due to the corpus
characteristics described in the previous section: Spanish being the input language of
the corpus, it is only natural that the translation quality will worsen when reversing the
meant translation direction. In addition, it can also be observed that the reordering
pipeline has less beneficial effects when translating from Basque to Spanish.

Lastly, in Figure 5.3, the result of increasing the size of the n-best reordering hypoth-
esis list can be seen. In the case of Spanish-Basque translation, it can be seen how the
translation quality still increases until size 20, where as in the case of Basque-Spanish
the translation quality already reaches its maximum with the first 5 best hypothesis.
However, it can also be seen that just using the best reordering hypothesis already
yields better results than without introducing the reordering pipeline. Hence, these
figures also show that the phrase extraction process obtains better quality phrases
when the monotonization procedure has been implemented before the extraction takes
place.

MetEus corpus Given the extremely encouraging results presented in the previous
section, we decided to carry on and test our setup with a more complex corpus. Since
our system seemed to perform well with Basque, we decided to continue using Basque
and pursued our experiments with the MetEus corpus. The results can be seen in
Figure 5.4.

Disappointingly enough, however, the translations of our reordering system did not
achieve to perform better than the baseline system, even for n-best lists of size 100.

One possible reason for this is that the MetEus corpus is a much more complex
corpus than the Tourist corpus: although the vocabulary sizes are almost identical,
the amount of (different) training pairs is almost one third. Moreover, the average
sentence length in the MetEus corpus is much higher in relation with the Tourist
corpus. This also implies that the exponential reordering model described in 5.1.2 will
have a much stronger effect than with short sentences, hindering the appearance in
the n-best list of long-term reorderings, which are frequently observed in Basque.

In the figures above only some of the experiments carried out can be seen. Actually,
the Thot toolkit can perform phrase extraction according to five different algorithms,
named as “and, or, sum, sym1” and “sym2”. See [Ortiz et al., 2005] for a detailed
description about how these algorithms are implemented. Experiments were performed
with all five intersection operations, and the results can be found in appendix A.
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5.1.4 Conclusions

A reordering technique has been implemented, taking profit of the information that
monotonized corpora provide. By doing so, better quality phrases can be extracted
and the overall performance of the system may improve significantly in the case of a
pair of languages with heavy reordering complications.

This technique has been applied to translate a semi-synthetic corpus which deals
with the task of Spanish-Basque translation, and the results obtained prove to be
statistically significant and show to be very promising, specially taking into account
that Basque is an extremely complex language that poses many problems for state of
the art systems.

However, the improvements observed in the simple corpus did not carry over to the
other more complex corpora on which our system has been tested. A reason for this
might be that the sentences in these corpora are way too long for our exponential
reordering model to allow enough reordering. Nevertheless, other experiments show
that the effectiveness of a reordering step in SMT entails variable results, depending
strongly on the language pair. As an example, introducing a reordering model for
French to English translation has, to the best of our knowledge, always a negative
impact on the translation quality.

The technique we propose in this paper is learnt automatically, without any need
of linguistic annotation or manually specified syntactic reordering rules, which means
that out technique can be applied to any language pair without need for any additional
development effort.

Both reordered corpora and reordering techniques seem to have a very important
potential for the case of very different language pairs, which are the most difficult
translation tasks. However, a much more thorough insight into this question is needed
before extracting definitive conclusions.
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5.2 Phrase Table size reduction

Another important drawback of Phrase-Based systems is the enormous size the phase
tables need, which has as consequence the high requirements such models need, in
terms of space but also time. In this paper, we propose a novel technique for reducing
the amount of segment pairs needed for translating a given test set.

Related work was performed by [Johnson et al., 2007], where the authors present a
method for reducing the phrase table by performing significance testing. The present
work, however, does not perform a statistical analysis of the phrases in the phrase
table, but instead uses the concept of optimal segmentation of each sentence pair to
reduce significantly the amount of segments to be included in the final phrase table.
In addition, a speed analysis of the different systems built, both before and after the
reduction, is performed.

5.2.1 Phrase table reduction via suboptimal bilingual segmentation

The problem of segmenting a bilingual sentence pair in such a manner, that the result-
ing segmentation is the one that contains, without overlap, the best phrases that can
be extracted from that pair is a difficult problem. In the first place, because all pos-
sible segmentations must be considered, and this number is a combinatorial number.
In the second place, because a measure of “optimality” must be established. Consider
the following example:

Source: The table is red .
Target: La mesa es roja .

At the sight of this example, one would probably state that {{The table , La mesa},
{is red, es roja}, {. , .}} is a good segmentation for this bilingual pair. However, why is
such a segmentation better than {{The , La},{table is , mesa es},{red . , roja .}}? As
humans, we could argue with more or less convincing linguistic terms in favour of the
first option, but that does not necessarily mean that such a segmentation is the most
appropriate one for SMT, and, moreover, one could easily think of several linguistically
appropriate segmentations of this small example. To overcome this problem, PB SMT
systems are forced to extract a large number of possible overlapping segmentations,
and hope that one of them will be useful. Obviously, such an aggressive approach is
bound to be computationally costly, and decoding time greatly suffers because of this
issue.

When considering all possible segmentations of a bilingual sentence pair and as-
suming a “bag of words” model for the target sentence, the probability Pr(x|y) in
Equation 1.3 can be modelled as:

P (x|y) =
∑
K

∑
µ

∑
γ

K∏
k=1

p(xγkγk−1+1|y
µk
µk−1+1) (5.1)

where K is the number of bilingual segments into which each bilingual pair is divided,
µ is the set of possible segmentations of the source sentence x and γ the set of possible
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segmentations of the target sentence y. In this formula we have assumed monotonic
translation, in which no word (or segment) reordering is performed for the sake of
simplicity.

Our approach for solving the problem of the overwhelming amount of possible seg-
mentations, and the consequent increase of the phrase table, is based on the concept of
Viterbi re-estimation [Viterbi, 1967]. Following this idea, we can approximate P (x|y)
by changing the summations by maximisations:

P (x|y) ≈ P̂ (x|y) = max
K

max
µ

max
γ

K∏
k=1

p(xγkγk−1+1|y
µk
µk−1+1) (5.2)

Given that the phrase table establishes the probability of an input segment given
a certain output segment, we can use the scores within the phrase table to compute
P̂ (x|y), and then build a phrase table by only taking into account those segments used
to compute the optimal segmentation of each bilingual sentence in the training corpus.

However, computing P̂ (x|y) according to a given phrase table is not an easy task: if
we establish a certain maximum length for the segments contained in the phrase table,
it is common that, due to non-monotonic alignments, certain words of a sentence will
not be contained in the segments extracted. Observing all possible segments without
constraining the maximum length is not a solution either, since the number of entries
in the phrase table would grow too much. This implies that the phrase table has
coverage problems even on the training set.

Nevertheless, our intention is to discard unnecessary segment pairs contained in
the phrase table. To this purpose, a suboptimal bilingual segmentation, in which
we translate the source sentence, may be enough. We are aware, nevertheless, that
translating the input sentence will not necessarily produce the output sentence in the
training pair, but our experiments show that this might be good enough to prune the
phrase table without a significant loss in translation quality.

5.2.2 Experiments

We conducted our experiments on the Europarl corpus [Koehn, 2005], described in
Section 1.3. The translation systems were tuned using the development set with the
MERT [Och et al., 2003] optimisation procedure, where the measure to be optimised
was BLEU [Papineni et al., 2002].

We performed experiments on both test sets, yielding similar results for both of
them. Because of this, and in order not to provide an overwhelming amount of results,
we only report the results obtained with the Test set, being this result more interesting
because of the out-of-domain data it contains.

Suboptimal segmentation filtering

As a baseline system, we used the same system as the one used in the workshop. To
filter the phrase table as described in the previous section, we translated the whole
training subcorpus using the baseline model, and kept only those entries of the phrase
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Table 5.4: Performance comparison between the baseline system and our suboptimal-
segmentation-reduced approach. Lexicalised reordering is considered. Speed
is measured in number of translated source words per second, and fsize is
the size of the phrase table when filtered for the test set.

baseline reduced
pair WER BLEU size fsize speed WER BLEU size fsize speed size red. Sp
Es–En 57.8 30.6 19M 1.6M 5.3 57.5 30.9 1.9M 0.15M 13.1 91% 2.5
En–Es 57.5 30.3 19M 1.8M 5.7 57.4 30.6 1.7M 0.16M 11.3 92% 2.0
De–En 68.1 23.7 12M 1.1M 6.6 68.2 23.9 1.8M 0.18M 11.4 84% 1.7
En–De 72.5 16.4 13M 1.7M 4.3 72.4 16.5 1.9M 0.23M 9.0 86% 2.1
Fr–En 60.2 28.3 15M 1.6M 5.6 60.1 28.3 1.5M 0.12M 17.7 92% 3.2
En–Fr 60.5 30.5 16M 1.7M 4.5 60.1 30.9 1.6M 0.15M 9.5 91% 2.1

table which were used while doing this. Since the baseline system uses lexicalised
reordering [Koehn et al., 2005], we also filtered the reordering table according to the
segments used. The result of this setup can be seen in Table 5.4.

In this table, the sizes are given in number of entries in the phrase table and the
speed is given in words per second. fsize is the size of the phrase table after filtering
out all segments which will not be needed for translating the current test set, which
is usual when dealing with big phrase tables. In this context, it must be noted that
the translation speed detailed in Table 5.4 was measured in all cases when translating
using the filtered phrase table, since loading the complete phrase table into memory
without any filtering is unfeasible with the baseline model. Moreover, the speed does
not take into account the time the system needs to load the model files (i.e. phrase
table and lexicalised reordering table), which is reduced in a factor of ten due to the
difference in model size. Sp is the speedup, which is given by the formula Sp = Tb/Tr,
where Tb is the time taken by the baseline system and Tr is the time taken by the
filtered system. The values appearing as “size red.” in the table represent the fsize
reduction in percentage with respect to the original fsize. Hence, this column displays
the effective reduction of data loaded into the decoder when translating.

Translation quality, as measured with BLEU [Papineni et al., 2002] is not affected
by the reduction of the size of the phrase table we proposing. Moreover, we can see
that, in the worst case, we get exactly the same score than with the baseline system,
and in the best case we are improving BLEU by 0.35 points. As measured with WER,
which is an adaptation of the edit distance used in Speech Recognition, the translation
quality is slightly worsened in some cases (with a maximum of 0.1 points), and in some
cases improved. The behaviour difference between BLEU and WER can be explained
because of the measure being optimised in MERT, which was BLEU.

Although the differences named in the previous paragraph are not significant, it is
important to stress that we are improving translation speed by a factor of 3.2 in the
best case and 1.7 in the worst case, without a significant loss of translation quality
even in cases where out-of-domain sentences were translated.
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Table 5.5: Performance comparison between the baseline system and our suboptimal-
segmentation-reduced approach. Monotonic search is considered. Speed is
measured in number of translated source words per second, and fsize is the
size of the phrase table when filtered for the test set.

baseline reduced
pair WER BLEU fsize speed WER BLEU fsize speed Sp
Es–En 58.8 29.6 1.6M 17.6 58.4 29.7 0.13M 91.5 5.2
En–Es 58.5 29.2 1.8M 19.1 58.6 29.2 0.08M 125.0 6.5
De–En 68.9 22.6 1.1M 20.6 69.0 22.5 0.14M 107.0 5.2
En–De 73.1 16.0 1.7M 23.5 72.6 16.2 0.20M 80.0 3.4
Fr–En 60.3 27.6 1.6M 15.8 60.9 27.4 0.11M 147.0 9.3
En–Fr 61.7 29.4 1.7M 19.0 61.5 29.4 0.16M 74.7 3.9

Increasing translation speed further

Although the speeds achieved in the previous subsection are already competitive, they
may not be enough for real time applications: translating an average sentence of 25
words may take more than two seconds, and this might not be enough for the user
who is waiting for the translation.

A common resource for increasing translation speed is to consider only monotonic
translation. Under this decoding strategy, a given bilingual segment must occupy
the same position in both input and output sentences. For example, if the source
part of a certain bilingual segment is placed at the start of the source sentence, it
cannot be placed at the end of the target sentence (or anywhere else but at the start).
Although it is true that some translation quality is lost by doing so, the difference is
relatively small the language pairs considered in our work. Our phrase table reduction
technique can also be applied to monotonic translation. The results for this setup are
shown in Table 5.5, yielding, again, no significant worsening (or improvement) of the
translation scores, but achieving speedups ranging from 3.2 to 9.5, depending mainly
on the language pair chosen and when compared to the non-reduced monotonic search.

In this case, it must be emphasised that the fsize of the baseline is the same as
in the case of the lexicalised reordering search, since the reordering has no effect
on the number of phrases extracted. This is not so, however, with our suboptimal
segmentation, since the monotonicity constraint is also imposed when obtaining the
segments that will be part of the final phrase table, which implies that fewer (but
shorter) segments will be kept.

5.2.3 Analysis and side notes

A question which could be asked at this point is whether we can truly obtain the same
translation quality by just taking into account the suboptimal segmentation, or rather
what we are doing is simply a filtering, but we actually would need the probabilities
contained within the complete phrase table. In order to clarify this, we re-normalised
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Table 5.6: Performance as measured by BLEU and WER for the re-normalised system.
Both monotonic and non-monotonic search are considered.

baseline re-normalised
monotonic reordering monotonic reordering

pair WER BLEU WER BLEU WER BLEU WER BLEU
Es–En 58.8 29.6 57.8 30.6 59.0 29.1 57.8 30.5
En–Es 58.5 29.2 57.5 30.3 58.8 29.0 57.6 30.4
De–En 68.9 22.6 68.1 23.7 69.1 22.5 68.3 23.8
En–De 73.1 16.0 72.5 16.4 72.7 16.3 72.7 16.4
Fr–En 60.3 27.6 60.2 28.3 61.0 27.2 60.2 28.1
En–Fr 61.7 29.4 60.5 30.5 61.8 29.3 60.4 30.9

Table 5.7: BLEU and WER scores for the Training set, with both monotonic and
non-monotonic search.

pair monotonic reordering
WER BLEU WER BLEU

Es-En 44.9 48.2 43.2 50.6
En-Es 47.1 46.3 44.8 49.4
De-En 53.9 41.6 51.8 43.6
En-De 55.6 37.9 55.6 37.9
Fr-En 46.7 45.9 46.9 46.0
En-Fr 51.5 44.4 46.4 49.8

the phrase table, assigning to each segment the score obtained by only taking into
account those phrase pairs contained within the reduced phrase table. In Table 5.6 we
can see the results of performing such a renormalisation.

As can be seen in the table, the performance is not significantly affected by the renor-
malisation. In our opinion, this clearly reveals that computing the phrase translation
probabilities by only taking into account the segments used to translate the training
set obtains a similar result than taking into account all possible segmentations that
are consistent with the word alignments, as is common in regular SMT systems. A
possible interpretation is that those segments which were selected to stay in the final,
filtered table are those which account for the biggest part of the probability mass.

Lastly, and since we already had translated the training set, we found interesting to
compute the BLEU and WER scores over the training data. These scores, which can
be seen in Table 5.7, constitute an upper bound of the score that could be achieved
in the test set. However, these results are not as good as could be expected, which
hints towards a relatively weak (but even though state-of-the-art) performance of the
translation models and (or) decoding algorithm.
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5.2.4 Conclusions and future work

In this work we have presented a straight-forward method for reducing the size of the
phrase table by a factor of ten, and increasing translation speed up to nine times. By
doing so, the translation quality as measured by WER and BLEU remains unaffected,
for both in-domain and out-of-domain data. Given that translation speed is a serious
issue in systems implementing phrase-based models, the approach presented in this
paper provides an efficient solution for the problem.

As future work, we are planning on researching ways to obtain the optimal segmen-
tation of the sentences in the training corpus, without going through the drawback of
having to translate the corpus. This includes both segmenting the sentences according
to a phrase table, and without having the phrase table as a starting point.
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Figure 5.3: Evolution of translation quality when increasing n in the Tourist corpus.
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Figure 5.4: Evolution of translation quality when increasing n for Spanish to Basque
and Basque to Spanish in the MetEus corpus.
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Chapter 6

Scientific publications

The content of this thesis has been published in several national and international
workshops and conferences. In this section, we review these publications and their
relation with the topics of this thesis.

The content of Chapter 4 was published in an international workshop and an inter-
national conference:

• G. Sanchis-Trilles, M.T. González, F. Casacuberta, E. Vidal, J. Civera. Intro-
ducing Additional Input Information into IMT Systems. In Proceedings of the
5th Joint Workshop on Multimodal Interaction and Related Machine Learning
ALgorithms, volume 5237 of Lecture Notes in Computer Science, pages 284–295.
Sringer-Verlag. Utrecht (The Netherlands), Septiembre 2008. (CORE category
B)

• G. Sanchis-Trilles, D. Ortiz-Mart́ınez, J. Civera, F. Casacuberta, E. Vidal,
H. Hoang. Improving Interactive Machine Translation via Mouse Actions. In
Proceedings of the 2008 conference on Empirical Methods in Natural Language
Processing. Honolulu, Hawaii (USA), October 2008. (CORE category A)

The work presented in Chapter 2 originated two publications, one in an interna-
tional conference, and one in a national workshop. However, some of the work is still
unpublished.

• G. Sanchis-Trilles, J.A. Sánchez. Using Parsed Corpora for Estimating
Stochastic Inversion Transduction Grammars. In Proceedings of the 6th edition
of the International Conference on Language Resources and Evaluation. Mar-
rakech, Morocco, May 2008. (CORE category C)

• G. Sanchis-Trilles, J.A. Sánchez. Phrase segments obtained with Stochastic
Inversion Transduction Grammars for Spanish-Basque Translation. Accepted for
publication in the V Jornadas en Tecnoloǵıa del Habla. Bilbao, Spain, November
2008.
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The reordering technique described in Chapter 5 was published in a national work-
shop and an international conference:

• G. Sanchis-Trilles, F. Casacuberta. N-Best reordering in Statistical Machine
Translation. In Proceedings of IV Jornadas en Tecnoloǵıa del Habla. Zaragoza,
Spain, November 2006.

• G. Sanchis-Trilles, F. Casacuberta. Reordering via N-best lists for Spanish-
Basque translation. In Proceedings of the 11th International Conference on The-
oretical and Methodological Issues in Machine Translation. Skövde, Sweden,
September 2007.

The phrase table size reduction technique originated a publication in an international
conference and an international workshop:

• J. González, G. Sanchis-Trilles, F. Casacuberta. Learning Finite State Trans-
ducers using Bilingual Phrases. In Proceedings of the 9th International Confer-
ence on Intelligent Text Processing and Computational Linguistics, volume 4919
of Lecture Notes in Computer Science, pages 411–422. Springer-Verlag. Haifa,
Israel, February 2008. (CORE category B)

• G. Sanchis-Trilles, F. Casacuberta. Increasing translation speed in phrase-
based models via suboptimal segmentation. In Proceedings of the 8th Interna-
tional Workshop on Pattern Recognition in Information Systems (PRIS 2008),
Barcelona, Spain, June 2008.

Finally, other publications with significant contributions from the author of this
thesis appeared in two international conferences and an international workshop:

• J. González-Rubio, G. Sanchis-Trilles, A. Juan, F. Casacuberta. A novel
alignment model inspired on IBM model 1. In Proceedings of the 12th Annual
Meeting of the European Association for Machine Translation, Hamburg, Ger-
many, October 2008.

• G. Sanchis-Trilles, J.A. Sánchez. Vocabulary extension via pos information
for SMT. In Proceedings of Mixing Approaches to Machine Translation, San
Sebastián, Spain, February 2008.
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